KR102343545B1 - 상관 수밀봉을 갖는 연료 전지의 애노드 배출 시스템에서의 차압을 재균등화하기 위한 시스템 - Google Patents

상관 수밀봉을 갖는 연료 전지의 애노드 배출 시스템에서의 차압을 재균등화하기 위한 시스템 Download PDF

Info

Publication number
KR102343545B1
KR102343545B1 KR1020207001144A KR20207001144A KR102343545B1 KR 102343545 B1 KR102343545 B1 KR 102343545B1 KR 1020207001144 A KR1020207001144 A KR 1020207001144A KR 20207001144 A KR20207001144 A KR 20207001144A KR 102343545 B1 KR102343545 B1 KR 102343545B1
Authority
KR
South Korea
Prior art keywords
anode
pressure
fuel cell
pipe
tank
Prior art date
Application number
KR1020207001144A
Other languages
English (en)
Other versions
KR20200017489A (ko
Inventor
프레드 씨 잔케
매튜 램브리치
조셉 엠 데일리
Original Assignee
퓨얼 셀 에너지, 인크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퓨얼 셀 에너지, 인크 filed Critical 퓨얼 셀 에너지, 인크
Publication of KR20200017489A publication Critical patent/KR20200017489A/ko
Application granted granted Critical
Publication of KR102343545B1 publication Critical patent/KR102343545B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04783Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

연료 전지 시스템은 적어도 하나의 연료 전지 모듈 및 제2 압력이 제1 압력을 적어도 제1 미리 결정된 양만큼 초과하는 애노드 과소 여압(under-pressurization) 상황에서 상기 연료 전지 시스템에서의 차압의 크기를 제한하도록 구성된 적어도 하나의 상관 수밀봉(relational water seal)을 포함한다. 연료 전지 모듈은 스택 구성으로 배열되는 하나 이상의 연료 전지를 갖는 연료 전지 어셈블리, 애노드 입구 매니폴드, 제1 압력을 갖는 애노드 출구 매니폴드, 제2 압력을 갖는 캐소드 입구 매니폴드, 및 캐소드 출구 매니폴드를 포함한다.

Description

상관 수밀봉을 갖는 연료 전지의 애노드 배출 시스템에서의 차압을 재균등화하기 위한 시스템
정부 권리문
본 발명은 미국 에너지부가 수여한 협력 계약 DE-EE0003679 하에서 정부 지원으로 이루어졌다. 정부는 본 발명에서 특정 권리를 가진다.
관련 출원 상호 참조
본 출원은 2017년 6월 22일에 출원된 미국 특허 출원 번호 15/630,805의 우선권 및 이익을 주장하며, 이의 전문이 여기에 참고로 편입된다.
본 개시는 연료 전지에의 압력 손상을 방지하기 위한 시스템 및 방법에 관한 것이다. 특히, 본 개시는 애노드 배출 가스를 처리할 때 연료 전지 압력 균형을 위한 상관 및 양방향 수밀봉에 관한 것이다.
일반적으로, 연료 전지는 전해질에 의해 분리되는 음극 또는 애노드 전극, 및 양극 또는 캐소드 전극을 포함하며, 전해질은 그것들 사이에서 전기적으로 대전된 이온들을 전도시키는 역할을 한다. 연료 전지는 연료 및 산화제가 각각 애노드 및 캐소드에 공급되는 한 계속해서 전력을 생산할 수 있을 것이다. 이를 달성하기 위해, 가스 흐름 범위는 연료 및 산화 가스가 공급되는 애노드 및 캐소드에 인접하여 제공된다. 유용한 전력 수준을 생산하기 위해, 다수의 개개의 연료 전지가 각 연료 전지와 인접한 연료 전지 사이 전기 전도성 분리판과 일렬로 적층된다.
고온 연료 전지 스택들에서는, 신선한 공기가 보통 산화제로서의 역할을 하고 연료 전지 스택의 캐소드측 입구에 제공된다. 이러한 신선한 공기는 통상적으로 주변 온도이고 연료 전지 스택의 동작 온도로 가열되어야 한다. 통상적으로, 연료 전지 스택의 애노드측에서 나가는 애노드 배출 가스에서 사용되지 않은 연료는 공기를 가열하기 위해 유입되는 신선한 공기로 산화되거나 연소된다. 연료의 완전한 반응을 보장하고 온도 구배를 최소화하기 위해, 양극 배출물은 공기와 완전히 혼합되어야 한다.
연료 전지 스택의 작동 동안, 두 공정 가스 스트림의 접합부에서, 연료 전지 스택의 애노드측 출구에서의 가스 압력은 연료 전지의 캐소드측 입구에서의 가스 압력에 결부된다. 통상적으로, 애노드측의 출구에서의 압력은 캐소드측의 입구에서의 압력보다 반드시 임의의 연결 배관 및 애노드 배출물 및 유입되는 산화 가스를 연소시키는 데 사용되는 산화제와 연관된 압력 손실을 극복하는 데 필요한 양만큼 더 높다. 가스 혼합 및 차압 문제들을 해결하기 위해 애노드 배출물 처리 시스템이 추가될 수 있다. 애노드 배출 처리 시스템은 예를 들어, 전환되지 않은 애노드 연료를 산화시키고, 유입 공기를 예열하고, 이산화탄소(CO2)를 캐소드로 재순환시키며, 애노드와 캐소드 가스 스트림들 간 차압을 감소시키는 MEO(혼합기-이덕터-산화기, mixer-eductor-oxidizer)를 포함할 수있다.
물 회수 및/또는 수소 또는 애노드 배출물 전송이 연료 전지 시스템에 추가될 때, 애노드 배출물 처리 시스템의 추가된 압력 강하를 상쇄하기 위해 일반적으로 송풍기가 편입되어, 연료 전지의 애노드 및 캐소드의 압력 균형을 유지한다. 예를 들어, 연료 전지 시스템의 전력 출력이 급격히 변하거나 송풍기가 오작동할 때, 시스템 동작의 혼란 상황(즉, 비정상적인 동작 상황) 동안 연료 전지의 애노드와 캐소드 사이의 상당한 압력 불균형 발생할 수 있다. 예를 들어, 전력 출력의 급격한 감소시, 압력 불균형은 연료 전지 애노드 배출물로부터의 스트림 및 이산화탄소 흐름이 순간적으로 감소된다는 사실에 기인할 수 있다. 한편, 애노드 배출 송풍기는 속도를 감소시키기 위해 몇 초가 걸릴 수 있다. 이 시간 동안, 송풍기 속도에 비해 흐름이 불충분하여, 캐소드 압력에 비해 애노드 압력이 낮아진다 (즉, 애노드 과소 여압). 다른 한편으로, 예를 들어, 송풍기의 속도 제어기에 대한 전력 손실 또는 다른 송풍기 또는 제어기 고장으로 인해 송풍기 속도가 너무 느리면, 캐소드 압력에 비해 애노드 압력이 높아진다(즉, 애노드 과도 여압). 애노드와 캐소드 사이의 높은 차압은 연료 전지의 밀봉을 손상시킬 수 있다.
애노드 과도 여압을 회피하는 통상적인 방법은 대기로 통기되는 수밀봉을 사용하는 것이다. 이 경우, 동일한 수준의 과압 보호를 유지하려면, 시스템 압력의 변화에 따라 수밀봉의 수위를 조정해야 한다. 수위가 시스템 압력에 비해 너무 낮으면, 공정 가스는 혼란 상황이 아닌, 정상 동작 조건하에서 수밀봉을 통해 배출될 수 있다. 수위가 시스템 압력에 비해 너무 높으면, 수밀봉은 원하는 것보다 큰 과도 압력 이벤트가 발생할 때까지 활성화되지 않을 것이기 때문에 원하는 과도 압력 보호 기능을 잃게 될 것이다. 이러한 점들은 애노드 과도 여압을 방지하기 위해 대기로 통기되는 종래의 수밀봉의 한계이다. 대안적으로, 애노드 과도 여압을 회피하는 다른 통상적인 방법은 대기로 통기되는 종래 수밀봉 대신 대기로 통기되는 릴리프 밸브(relief valve)를 사용하는 것이다. 수밀봉과 비교하여 릴리프 밸브는 단순성과 비용의 이점을 가질 수 있지만, 수밀봉에 비해 릴리프 압력을 조정하는 것이 더 어렵거나 덜 신뢰할 수 있다.
대기로 통기되는 종래의 수밀봉 또는 릴리프 밸브를 사용한다고 해서 애노드 과소 여압의 가능성이 해결되지는 않는다. 더욱이, 애노드 과소 여압은 연료 전지가 제로 전력 출력과 같이 신속하게 부하를 떨어 뜨릴 때마다 보통 발생하기 때문에 애노드 과도 여압보다 더 흔한 공정 혼란 상황이다. 인버터 결함 또는 인버터 셧 다운을 필요로 하는 계통 변동과 같이 연료 전지가 급격하게 부하를 떨어 뜨리는 몇 가지 메커니즘이 있다. 그에 따라, 애노드 과소 압력 보호 시스템이 제공될 때, 그것이 자주 활성화될 것으로 예상된다.
따라서, 캐소드에 비한 애노드의 과도 압력 및 과소 압력의 정도를 제한함으로써, 연료 전지의 손상 위험을 감소시키는 데 사용될 수 있는 개선된 기술이 필요하다. 하기 실시 예에 설명된 시스템 및 방법은 비산화성 가스가 저압 영역으로 흐를 수 있게 함으로써 애노드 과소 여압 보호를 해결하도록 구성되어, 저압의 크기를 제한하면서 또한 애노드 과도 압력 보호도 개선한다.
특정 실시 예들에서, 연료 전지 시스템은 적어도 하나의 연료 전지 모듈 및 제2 압력이 제1 압력을 적어도 제1 미리 결정된 양만큼 초과하는 애노드 과소 여압(under-pressurization) 상황에서 상기 연료 전지 시스템에서의 차압의 크기를 제한하도록 구성된 적어도 하나의 상관 수밀봉(relational water seal)을 포함한다. 상기 연료 전지 모듈은 스택 구성으로 배열되는 하나 이상의 연료 전지를 갖는 연료 전지 어셈블리, 애노드 입구 매니폴드, 제1 압력을 갖는 애노드 출구 매니폴드, 제2 압력을 갖는 캐소드 입구 매니폴드, 및 캐소드 출구 매니폴드를 포함한
몇몇 양태에서, 상기 연료 전지 시스템은 제1 상관 수밀봉 및 제2 상관 수밀봉을 더 포함한다. 상기 제1 상관 수밀봉은 상기 제1 압력이 상기 제2 압력을 적어도 제2 미리 결정된 양만큼 초과하는 애노드 과도 여압(over-pressurization) 상황에서 상기 연료 전지 시스템에서의 차압의 크기를 제한하도록 구성된다. 상기 제2 상관 수밀봉은 상기 제2 압력이 상기 제1 압력을 적어도 제1 미리 결정된 양만큼 초과하는 애노드 과소 여압 상황에서 상기 연료 전지 시스템에서의 상기 차압의 크기를 제한하도록 구성된다. 상기 제1 상관 수밀봉 및 상기 제2 상관 수밀봉은 서로 독립적으로 동작할 수 있다.
몇몇 양태에서, 상기 연료 전지 시스템은 상기 제2 압력이 상기 제1 압력을 적어도 제1 미리 결정된 양만큼 초과하는 애노드 과소 여압 상황에서 상기 연료 전지 시스템에서의 상기 차압의 크기를 제한하도록, 그리고 상기 제1 압력이 상기 제2 압력을 적어도 제2 미리 결정된 양만큼 초과하는 애노드 과도 여압 상황에서 상기 연료 전지 시스템에서의 차압의 크기를 제한하도록 구성된 양방향 수밀봉을 더 포함한다.
몇몇 양태에서, 상기 양방향 수밀봉은 미리 결정된 물의 수위를 유지하도록 구성된 탱크, 상기 탱크에 연결되고 어느 단부도 상기 물에 잠기지 않는 제1 파이프, 상기 탱크에 연결되고 어느 단부도 상기 물에 잠기지 않는 제2 파이프, 및 상기 탱크의 상단으로부터 상기 물을 향해 연장되는 배플 벽으로서, 상기 탱크의 내부를 제1 부분 및 제2 부분으로 나누는, 상기 배플 벽을 포함한다. 상기 배플 벽과 상기 탱크의 하단 사이에 존재하는 갭으로서, 사익 갭은 물 및 애노드 가스가 이동할 수 있게 하도록 구성된다. 상기 배플 벽은 상기 탱크의 폭의 중심에 위치됨으로써, 상기 탱크를 동일한 면적들을 갖는 제1 부분 및 제2 부분으로 나눌 수 있거나, 상기 배플 벽은 상기 탱크의 폭의 중심을 벗어나 위치됨으로써, 상기 탱크를 동일하지 않은 면적들을 갖는 제1 부분 및 제2 부분으로 나눌 수 있다. 상기 배플 벽은 그 안에 조그(jog)를 포함할 수 있다.
본 개시의 추가적인 특징증, 이점들 및 실시 예들은 다음의 구체적인 내용, 도면 및 청구범위를 고려하여 제시될 수 있다. 또한, 본 개시의 전술한 발명의 내용 및 하기의 구체적인 내용은 대표적이고 청구된 본 개시의 범위를 추가로 제한하지 않으면서 추가의 설명을 제공하도록 의도된 것으로 이해되어야 한다.
본 발명의 추가 이해를 제공하기 위해 포함된 첨부 도면들은 본 명세서에 포함되어 본 명세서의 일부를 구성하고, 본 개시의 실시 예들을 도시하며 구체적인 내용과 함께 본 개시의 원리들을 설명하는 역할을 한다. 본 개시에 대한 기본적인 이해 및 실시될 수 있는 다양한 방법에 필요할 수 있는 것보다 더 상세히 본 개시의 구조적 세부 사항들을 도시하려는 시도는 없다.
도 1a는 제1 실시 예에 따른 연료 전지를 도시한다.
도 1b는 제2 실시 예에 따른 연료 전지를 도시한다.
도 2는 각각 애노드 과도 여압 조건 및 애노드 과소 여압 조건을 해결하도록 구성된 제1 상관 수밀봉 및 제2 상관 수밀봉을 포함하는 연료 전지 시스템을 도시한다. 도 1a 또는 도 1b의 연료 전지가 연료 전지 시스템에 사용될 수 있다.
도 3은 애노드 과도 여압 조건 및 애노드 과소 여압 조건을 해결하도록 구성된 양방향 상관 수밀봉을 포함하는 연료 전지 시스템을 도시한다. 도 1a 또는 도 1b의 연료 전지가 연료 전지 시스템에 사용될 수 있다.
도 4는 도 2의 제1 상관 수밀봉 및 제2 상관 수밀봉의 구조를 도시한다.
도 5는 연료 전지 및 파이핑 시스템에 부여되는 미리 결정된 정상 상태 동작 압력들을 포함하는 도 1의 연료 전지 시스템의 일례를 도시한다. 도 1a 또는 도 1b의 연료 전지가 연료 전지 시스템에 사용될 수 있다.
도 6은 도 5의 연료 전지 시스템의 압력 균형의 일례를 도시하는 그래프로서, 달성된 압력하의 애노드 및 즉각적인 전력 생산 동안 수밀봉의 반응을 혼란 상황 동작 조건에 있는 제로까지 보인다.
도 7은 도 3의 양방향 상관 수밀봉의 구조를 도시한다.
도 8은 연료 전지 및 파이핑 시스템에 부여되는 미리 결정된 정상 상태 동작 압력들을 포함하는 도 3의 연료 전지 시스템의 일례를 도시한다.
도 9a는 정상 동작 동안 도 7의 양방향 상관 수밀봉의 제1 부분의 수위(A) 및 제2 부분의 수위(B)의 일례를 도시한다.
도 9b는 애노드 과소 여압 동안 도 9a의 양방향 상관 수밀봉의 제1 부분의 수위(A) 및 제2 부분의 수위(B)를 도시한다.
도 9c는 애노드 과도 여압 동안 도 9a의 양방향 상관 수밀봉의 제1 부분의 수위(A) 및 제2 부분의 수위(B)를 도시한다.
도 10a는 정상 동작 동안, 중심에서 벗어난 배플 벽을 갖는 양방향 상관 수밀봉의 제1 부분의 수위(A) 및 제2 부분의 수위(B)를 도시한다.
도 10b는 애노드 과소 여압 동안 도 10a의 양방향 상관 수밀봉의 제1 부분의 수위(A) 및 제2 부분의 수위(B)를 도시한다.
도 10c는 애노드 과도 여압 동안 도 10a의 양방향 상관 수밀봉의 제1 부분의 수위(A) 및 제2 부분의 수위(B)를 도시한다.
도 11a는 정상 동작 동안, 그 안에 조그가 있는 중심에서 벗어난 배플 벽을 갖는 양방향 상관 수밀봉의 제1 부분의 수위(A) 및 제2 부분의 수위(B)를 도시한다.
도 11b는 애노드 과소 여압 동안 도 11a의 양방향 상관 수밀봉의 제1 부분의 수위(A) 및 제2 부분의 수위(B)를 도시한다.
도 11c는 애노드 과도 여압 동안 도 11a의 양방향 상관 수밀봉의 제1 부분의 수위(A) 및 제2 부분의 수위(B)를 도시한다.
대표적인 실시 예들을 상세히 도시하는 도면들로 돌아가기 전에, 본 개시는 구체적인 내용에 제시되거나 도면들에 도시된 세부 사항들 또는 방법론에 제한되지 않는다는 것을 이해해야 한다. 또한 용어는 설명의 목적만을 위한 것이고 제한하는 것으로 간주되어서는 안 된다는 것을 이해해야 한다. 도면들 전체에 걸쳐 동일하거나 유사한 참조 부호들을 사용하여 동일하거나 유사한 부분들을 지칭하려는 노력이 이루어졌다.
도 1a는 제1 실시 예에 따른 연료 전지 모듈(100A)의 개략도이다. 연료 전지 모듈(100A)은 스택 배열로 하나 이상의 연료 전지를 포함할 수 있는 연료 전지 어셈블리(7A)를 포함한다. 연료 전지 어셈블리(7A)에서의 각 연료 전지는 애노드, 캐소드 및 그 사이 전해질을 포함한다. 연료 전지 어셈블리(7A)의 네 측면상에는 네 개의 매니폴드(1A, 2A, 5A 및 6A)가 위치된다. 특히, 연료 전지 모듈(100A)은 캐소드 입구 매니폴드(2A), 캐소드 배출 매니폴드(6A), 애노드 입구 매니폴드(5A) 및 애노드 배출 매니폴드(1A)를 포함한다. 매니폴드들(1A, 2A, 5A 및 6A)은 연료 및 산화제 가스를 연료 전지 모듈(100A) 내 연료 전지 어셈블리(7A)의 하나 이상의 연료 전지로 전닳고 그러한 가스의 흐름을 연료 전지 어셈블리(7A)의 하나 이상의 연료 전지로 보내기 위한 밀봉된 통로들을 제공함으로써, 연료 및 산화제 가스가 환경으로 또는 다른 매니폴드들로 누설되는 것을 방지한다.
도 1b는 제2실시 예에 따른 연료 전지 모듈(100B)의 개략도이다. 연료 전지 모듈(100B)은 스택 배열로 하나 이상의 연료 전지를 포함할 수 있는 연료 전지 어셈블리(7B)를 포함한다. 연료 전지 어셈블리(7B)에서의 각 연료 전지는 애노드, 캐소드 및 그 사이 전해질을 포함한다. 연료 전지 어셈블리(7B)의 세 측면상에는 매니폴드들(1B, 5B 및 6B)이 위치된다. 특히, 캐소드 배출 매니폴드(6B), 애노드 입구 매니폴드(5B) 및 애노드 배출 매니폴드(1B)가 연료 전지 어셈블리(7B)의 세 측면상에 위치된다. 용기(2B)는 연료 전지 어셈블리(7B), 캐소드 배출 매니폴드(6B), 애노드 입구 매니폴드(5B) 및 애노드 배출 매니폴드(1B)를 봉입하고 포함한다. 용기(2B)는 캐소드 입구 매니폴드로서 사용될 수 있다. 용기(2B), 캐소드 배출 매니폴드(6B), 애노드 입구 매니폴드(5B) 및 애노드 배출 매니폴드(1B)는 연료 및 산화제 가스를 연료 전지 어셈블리(7B)의 하나 이상의 연료 전지로 전달하고 그러한 가스의 흐름을 연료 전지 어셈블리(7B)의 하나 이상의 연료 전지로 보냄으로써, 연료 및 산화제 가스가 환경으로 또는 다른 매니폴드들로 누설되는 것을 방지한다.
연료 전지 모듈(100A, 100B)은 예를 들어, 고온 연료 전지 모듈, 이를테면 대략 550-650°C에서 동작하는 용융 탄산염 연료 전지(MCFC, Molten Carbonate Fuel Cell)일 수 있다. MCFC가 연료 전지 모듈(100A, 100B)의 일례로서 설명되나, 여기에 개시된 개념들은 이러한 점에서 제한되지 않는다. 연료 전지 모듈(100A, 100B)은 다른 고온 연료 전지 모듈들을 포함하여, 임의의 알려져 있는 유형의 연료 전지 모듈일 수 있다. 연료 전지 시스템은 단일 연료 전지 모듈(100A, 100B), 복수의 연료 전지 모듈(100A) 또는 복수의 연료 전지 모듈(100B)(이때 개개의 연료 전지 모듈들(100A, 100B)은 직렬로 또는 병렬로 배열됨)을 포함할 수 있다. 적어도 하나의 연료 전지 스택은 연료 전지 모듈를 형성하기 위해 격납 또는 하우징 유닛 내에 배치될 수 있다. 연료 전지 시스템은 하나 이상의 연료 전지 모듈을 포함할 수 있다. 연료 전지 시스템(1000)을 도시하는 아래 도면들이 연료 전지 모듈(100A)을 포함하지만, 여기에 개시된 개념들은 이러한 점에서 제한되지 않는다. 아래에 설명될 임의의 예들에서, 연료 전지 시스템(1000)은 연료 전지 모듈(100A) 대신 연료 전지 모듈(100B)을 포함할 수 있다.
도 2 및 도 3의 예들에서, 연료 전지 시스템(1000)은 적어도 하나의 연료 전지(예를 들어, 도 1a의 연료 전지 모듈(100A) 또는 도 1b의 연료 전지 모듈(100B)) 및 애노드 배출물 처리 시스템(12)을 포함한다. 애노드 배출물 처리 시스템(12)은 적어도 하나의 연료 전지의 애노드 배출 매니폴드(1)로부터 출력되는 애노드 배출 가스를 처리하도록 구성된다. 연료 전지 시스템(1000)은 애노드 배출 매니폴드(1) 및 캐소드 입구 매니폴드(2)의 압력 균형을 위해, 애노드 배출물 처리 시스템(12)의 추가된 압력 강하를 상쇄하기 위해 편입되는 애노드 배출 가스 송풍기(13)를 더 포함한다. 모든 애노드 배출 가스는 애노드 배출 가스 송풍기(13)에 의해 펌핑된다. 애노드 배출 가스 송풍기(13)에 의해 펌핑되면, 애노드 배출 가스의 부분 또는 전부는 애노드 전송 우회 제어 밸브(15)를 통해 애노드 가스 산화기(8)로 직접 보내지거나 최종 처리 및/또는 전송을 위해 보내질 수 있다. 애노드 배출 가스가 애노드 전송 우회 제어 밸브(15)를 통해 직접적으로 가든 추가 처리를 통해 간접적으로 가든, 애노드 가스 산화기(8)로 회귀하는 애노드 배출 가스는 "애노드 회귀 가스"라고 불리운다. 애노드 회귀 가스는 공기와 조합된 다음 캐소드 입구 매니폴드(2)로의 산화제 공급 가스로서 처리 및 전달을 위해 애노드 가스 산화기(8)를 통해 전달된다. 이러한 방식으로, 애노드 회귀 라인은 항상 캐소드 입구 매니폴드(2)의 압력에 가깝다. 애노드 전송 우회 제어 밸브(15)의 완전 폐쇄 상태에서, 모든 애노드 배출 가스는 최종 처리를 위해 전달되며, 이 경우 애노드 배출 가스의 특정 구성 성분들이 전송을 위해 분리될 수 있다. 나머지 가스는 애노드 회귀 가스로서 공정으로 회귀한다. 몇몇 양태에서, 애노드 가스 산화기(8)는 MEO(mixer-eductor-oxidizer)일 수 있으나, 이러한 점에서 제한되지 않는다. 애노드 가스 산화기(8)의 출력은 캐소드 입구 매니폴드(2)로의 산화제 공급 가스로서 전달된다. 애노드 회귀 라인은 애노드 배출 가스 송풍기(13)에 기인하여 보통 애노드 배출 라인보다 수주의 수 인치만큼 더 높은 압력을 가지며, 이는 애노드와 캐소드 간 차압을 최적의 압력, 통상적으로 매우 낮은 차압으로 유지하도록 동작된다.
애노드 배출 가스 송풍기(13)의 속도는 P1(애노드 배출 매니폴드 내 압력)과 P2(캐소드 입구 매니폴드 내 압력) 간에 특정 차압을 유지하기 위해 속도 제어기에 의해 제어된다. 속도 제어기는 애노드 배출 가스 송풍기(13)의 속도, 신선한 공기 송풍기(9)의 속도 또는 애노드 전송 우회 제어 밸브(15)의 개방 정도 중 적어도 하나를 제어하여 예를 들어, 애노드 배출 가스 송풍기(13)에 의해 애노드 가스 산화기(8)로 재순환되는 애노드 배출 가스의 양 및/도는 애노드 가스 산화기(8)의 상류로 애노드 배출 가스와 혼합되는 주변 공기의 양을 제어하도록 프로그램되는 제어 어셈블리의 부분일 수 있다. 제어 어셈블리는 또한 여기에 설명된 임의의 방법 또는 제어 단계들을 구현하도록 프로그램될 수 있다.
애노드 가스 산화기(8)가 MEO인 양태들에서, MEO는 애노드 배출 가스에 존재하는 소비되지 않은 연료를 산화하여, 캐소드 유입 기체(즉, 산화제 공급 가스)를 예열하도록 구성된다. 보다 구체적으로, 혼합기-이덕터는 산화기를 통해 혼합물을 전달하기 전에 점화되어 소비되지 않은 연료 및 공기를 연소시키기 시작한다. 이는 산화제의 촉매층에서 증기의 응축을 감소시키고 연료 전지 시스템의 온도 분포를 개선함으로써 MEO의 전체 성능을 개선시킨다. 임의의 알려져 있는 MEO 설계가 본 출원의 연료 전지 시스템에 사용될 수 있다. 예를 들어, 미국 특허 번호 9,190,676는 고온 연료 전지들을 위한 화염 안정화 MEO를 설명한다. 미국 특허 번호 9,190,676의 전체 내용은 모든 목적에 대한 그 전체 내용이 여기에 참고로 편입된다(MEO 설계들과 관련된 개시 내용을 포함).
애노드 배출 매니폴드(1)에서의 압력(P1)에 대한 바람직한 제어점은 캐소드 입구 매니폴드(2)의 압력(P2)에 매우 가깝다. 예를 들어, 애노드 배출 가스 송풍기(13)에 대한 속도 제어기는 P1을 +2 또는 -2 인치 내에서 P2로서 수주 압력(iwc)의 인치로 유지하도록 프로그램될 수 있다. 저압 강하 설계에 의해, 애노드 배기 라인(3)에서 애노드 배기 가스의 압력(P3)은 예를 들어, 0.5 iwc 내지 2.0 iwc 내에서 애노드 배기 매니폴드(1)의 압력(P1)에 매우 가깝다. 저압 강하 설계에 의해, 애노드 회귀 라인(4)에서의 압력(P4)은 캐소드 입구 매니폴드(2)에서의 압력(P2)보다 수주 압력이 단지 수 인치 더 크다. 본질적으로, 압력 차이는 MEO 또는 애노드 가스 산화기(8)의 압력 강하이며, 이는 보통 적어도 1.5 iwc이지만, 5 iwc만큼 높을 수 있다. 따라서, 연료 전지 시스템의 정상 동작 조건들 하에서, P3와 P4 사이에는 비교적 일정한 관계가 있으며, 여기서 P4는 애노드 가스 산화기(8)에 걸친 압력 강하로 인해 수주 압력이 P3보다 수 인치 더 크다(예를 들어, 1.5 내지 5.0 iwc).
상술된 바와 같이, 다수의 공정 혼란 상황은 애노드 배기 압력(P1)이 캐소드 입구 압력(P2)보다 더 낮아지게 할 수 있다. 이를 애노드 과소 여압이라 칭한다. 애노드 과소 여압을 유발할 수 있는 공정 혼란 상황들은 연료 전지 전력 출력의 갑작스러운 감소, 애노드 전송 우회 제어 밸브(15)의 갑작스러운 개방 및 예를 들어, 송풍기 속도 제어기의 오작동에 기인한 애노드 배출 가스 송풍기(13)의 과속을 포함하지만, 이에 제한되지는 않는다. 대안적으로, 다수의 공정 혼란 상황은 애노드 배기 압력(P1)이 캐소드 입구 압력(P2)보다 더 커지게 할 수 있다. 이를 애노드 과도 여압이라 칭한다. 애노드 과도 여압을 유발할 수 있는 공정 혼란 상황들은 연료 전지 전력 출력의 급격한 증가, 애노드 전송 우회 제어 밸브(15)의 갑작스러운 폐쇄, 가스 전송 시스템으로부터의 애노드 회귀 가스의 갑작스러운 증가 및 예를 들어, 속도 제어기(VFD) 결함에 기인한 애노드 배출 가스 송풍기(13)의 과속, 구동 전력의 손실 또는 그 외 송풍기 속도 제어기의 오작동을 포함하지만, 이에 제한되지는 않는다.
예를 들어 P1이 P2와 미리 결정된 값 이를테면 +/- 15 iwc 이상으로 다른, 연료 전지 또는 연료 전지 밀봉을 손상시킬 수 있는 과도한 애노드 과소 여압 및 애노드 과도 여압을 방지하기 위해, 연료 전지 시스템은 차압의 크기를 미리 결정된 값 미만, 이를테면 15 iwc 미만으로 제한하도록 하나 이상의 상관 수밀봉(20)을 포함한다. 도 2는 두 상관 수밀봉(20)을 갖는 연료 전지 시스템을 도시한다. 특히, 연료 전지 시스템은 애노드 과도 여압을 방지하도록 구성된 제1 상관 수밀봉(20A) 및 애노드 과소 여압을 방지하도록 구성된 제2 상관 수밀봉(20B)을 포함한다. 도 3은 애노드 과도 여압 및 애노드 과소 여압을 방지하도록 구성된 양방향 수밀봉(20C)을 갖는 연료 전지 시스템을 도시한다. 도 2 및 도 3의 유일한 차이점은 도 2의 두 상관 수밀봉(20A, 20B)이 도 3에서는 양방향 수밀봉(2C)을 형성하기 위해 조합된다는 점이다.
도 4는 제1 상관 수밀봉(20A) 및 제2 상관 수밀봉(20B)의 구조를 도시한다. 제1 상관 수밀봉(20A) 및 제2 상관 수밀봉(20B)은 동일한 구조를 갖는다. 특히, 제1 상관 수밀봉(20A)은 미리 결정된 물의 수위에 담궈지는 제1 파이프(22A) 및 탱크(21A)의 상면으로부터 연장되는 제2 파이프(23A)를 갖는 탱크(21A)를 포함한다. 제2 상관 수밀봉(20B)은 미리 결정된 물의 수위에 담궈지는 제1 파이프(22B) 및 탱크(21B)의 상면으로부터 연장되는 제2 파이프(23B)를 갖는 탱크(21B)를 포함한다. 참조 부호들(24A, 24B)은 수선(즉, 물의 상면의 위치)을 식별한다. 제1 상관 수밀봉(20A)의 제1 파이프(22A)는 애노드 배출 라인(3)과 유체 연통하는 한편, 제2 파이프(23A)는 애노드 회귀 라인(4)과 유체 연통한다. 제2 상관 수밀봉(20B)의 제1 파이프(22B)는 애노드 회귀 라인(4)과 유체 연통하는 한편, 제2 파이프(23B)는 애노드 배출 라인(3)과 유체 연통한다. 제1 상관 수밀봉(20A) 및 제2 상관 수밀봉(20B)은 제2 파이프(23A, 23B)로부터 출력되는 가스로 넘겨질 수 있는 물방울들을 제거하기 위해 제2 파이프(23A, 23B)의 상류에 맞는 데미스터(demister)(28A, 28B)를 임의로 포함할 수 있다. 데미스터(28A, 28B)는 예를 들어, 와이어 메쉬 데미스터 패드일 수 있다.
과도 압력의 경우, 애노드 배출 라인(3)으로부터의 애노드 배출 가스는 제1 상관 수밀봉(20A)을 통해 거품이 일고 애노드 가스 회귀 라인(4)으로 방출됨으로써, 과도 압력을 완화시키고 과도 압력의 크기를 제한함으로써 연료 전지에 대한 손상 위험을 감소시킨다. 종래 연료 전지 시스템들은 예를 들어, 애노드 배출 라인이 송풍기 또는 그 밖의 다른 장비없이 애노드 회귀 라인에 직접 연결되기 때문에, 제1 상관 수밀봉(20A)과 같은 상관 수밀봉을 포함하지 않는다. 이러한 종래 연료 전지 시스템들 중 몇몇에서는, 대기로 통기되는 단순 수밀봉이 사용된다. 그러나 이것은 대기에 관한 실제 시스템 압력을 기반으로 단순 수밀봉의 능동적인 수준 제어를 필요로 할 것이다. 또한, 단순 수밀봉의 물의 보호 수준은 정상 동작시 제어되는 경우에만 적합할 것이고, 수준을 변경하는 데 시간이 걸린다. 따라서, 대기와 관련된 단순 수밀봉은 혼란 상황 동작 동안 시스템 압력이 변동함에 따라 부적절한 수준으로 인해 연료 전지의 손상을 방지하는 능력을 잃을 수 있다. 이러한 예에서 설명된 상관 수밀봉(20)(예를 들어, 제1 상관 수밀봉(20A))은 그렇지 않다.
과소 압력의 경우, 애노드 가스 회귀 라인(4)으로부터의 애노드 회귀 가스는 제2 상관 수밀봉(20B)을 통해 거품이 일고 애노드 배출 라인(3)으로 방출됨으로써, 과소 압력을 완화시키고 연료 전지에 대한 손상 위험을 감소시킨다. 종래 연료 전지 시스템들은 제2 상관 수밀봉(20B)과 같은 상관 수밀봉을 포함하지 않는다. 이러한 종래 연료 전지 시스템들에서는, 과소 여압 상황이 발생하면 이를 해결할 수 있는 방법이 없다.
상관 수밀봉들(20A, 20B)의 동작이 이제 도 5를 참조하여 설명될 것이다. 도 5에 보여지는 바와 같이, 미리 결정된 정상 상태 동작 압력들이 연료 전지 및 파이핑 시스템에 부여된다. 제1 상관 수밀봉(20A)의 탱크(21A) 및 제2 상관 수밀봉(20B)의 탱크(21B)는 각각 목적하는 보호를 제공하기 위해 미리 결정된 수위로 채워진다. 제1 상관 수밀봉(20A) 및 제2 상관 수밀봉(20B)에 의해 제공되는 보호는 탱크(21A) 내 물에 잠기는 제1 파이프(22A) 내 수위와 관련된다. 제1 파이프(22A) 내 수위는 제1 파이프(22)와 제2 파이프(23A) 간 차압에 따라, 탱크(21A) 내 수위와 상이하다. 도 5의 예에서, 제1 상관 수밀봉(20A)에서, 제1 파이프(22A)에서의 압력은 19 iwc(즉, P3, 또는 "제3 압력")이다. 다시 말해, 제1 파이프(22A)는 기본적으로 애노드 배출 라인과 동일한 압력을 갖는다. 이 압력은 탱크(21A) 내 물을 통해 애노드 가스 회귀 라인(4)으로 연통되며, 이는 23 iwc(즉, P4, 또는 "제4 압력")의 압력을 갖는다. 그에 따라, 제2 파이프(23A)는 애노드 회귀 라인의 압력과 대략 동일한 압력을 가지며, 이는 정상 동작 동안 애노드 배출 라인의 압력보다 조금 더 높다. 탱크(21A)에서의 압력이 제1 파이프(22A)에서의 압력보다 더 크기 때문에, 물은 제1 파이프(22A) 위 탱크(21A) 내 수위보다 높은 높이로 힘을 받는다. 예를 들어, 제1 파이프(22A) 내 물의 높이는 탱크(21A) 내 수위보다 약 4인치 더 높을 수 있다(예를 들어, 23"-19"). 도 5의 예에서, 탱크(21A)는 제1 파이프(22A)의 배출구(즉, 하단)보다 2" 수준 더 높게 채워진다. 그에 따라 제1 파이프(22A) 내 물의 높이는 6"이다. 애노드 배출 라인(3)에서의 압력(P3)이 애노드 회귀 라인(4)에서의 압력(P4)을 6 iwc 이상 초과하면, 애노드 배출 라인(3)은 제1 파이프(22A) 밖으로 물을 밀어 내고 애노드 배출 가스를 애노드 회귀 라인(4)으로 출력해 냄으로써, 압력을 완화시키고 P4에 비해 P3에서 과도 압력의 정도를 6 iwc로 제한한다. 애노드 가스 회귀 라인(4)(P4에서)으로부터 캐소드 입구(P2)로 약 3 iwc의 압력 강하로 인해, 이는 -1 iwc의 정상 동작점에 대한 + 3 iwc의 P2에 관한 연료 전지(P1)에서의 차분과 동일하다.
도 5의 예에서, 제2 상관 수밀봉(20B)에서, 제1 파이프(22B)에서의 애노드 회귀 가스 압력은 23 iwc(즉, P4)이다. 탱크(21B)에서의 압력(즉, 19 iwc 또는 P3)이 제1 파이프(22B)에서의 압력보다 더 적기 때문에, 물은 제1 파이프(22B) 아래 탱크(21B) 내 수위보다 더 낮은 높이로 힘을 받는다. 예를 들어, 제1 파이프(22B) 내 물의 높이는 탱크(21B) 내 수위보다 약 4인치 더 낮을 수 있다(예를 들어, 23"-19"). 도 5의 예에서, 탱크(21B)는 제1 파이프(22B)의 배출구(즉, 하단)보다 7" 수준 더 높게 채워진다. 그에 따라 제1 파이프(22B) 내 물의 높이는 3"이다. 애노드 배출 라인(3)에서의 압력(P3)이 애노드 회귀 라인(4)에서의 압력(P4)을 3 iwc 이상 더 낮으면, 애노드 회귀 라인(4)은 제1 파이프(22B) 밖으로 물을 밀어 내고 애노드 회귀 가스를 애노드 배출 라인(3)으로 출력해 냄으로써, 흡인 또는 과소 압력을 완화시키고 P4에 비해 P3에서 과소 압력의 정도를 3 iwc로 제한한다. 애노드 가스 회귀 라인(4)(P4에서)으로부터 캐소드 입구(P2)로 약 3 iwc의 압력 강하로 인해, 이는 대략 -1 iwc의 정상 동작점에 대한 -4 iwc의 P2에 관한 연료 전지(P1)에서의 차분과 동일하다.
제1 상관 수밀봉(20A)은 제2 상관 수밀봉(20B)과 그리고 그 반대로도 독립적으로 동작한다. 따라서, 애노드 과소 여압만으로부터의 보호가 요구된다면, 제2 상관 수밀봉(20B)은 제1 상관 수밀봉(20A) 없이 단독으로 설치될 수 있고, 애노드 과도 여압만으로부터의 보호가 요구된다면, 제1 상관 수밀봉(20A)이 제2 상관 수밀봉(20B) 없이 단독으로 설치될 수 있다.
도 6은 모든 공정 흐름의 즉각적인 부하 손실 및 정지와 함께 발생하는 비상 셧 다운(ESD)이라고 불리우는 이동동안 연료 전지 시스템의 압력 평형 데이터의 일례를 도시한다. 이동 직후, 애노드 배출 송풍기의 입구 압력은 수밀봉 한계에 도달할 때까지 급격히 감소한 다음, 그 지점에서 차압이 멈춰서, 이 경우 차압을 10 iwc로 제한한다. 이러한 압력 스파이크는 2 내지 4초 동안 지속되지만, 수밀봉이 없으면 더 커져 연료 전지 매니폴드들에 손상을 줄 수 있다.
도 7은 양방향 상관 수밀봉(20C)의 일례의 구조를 도시한다. 양방향 상관 수밀봉(20C)은 애노드 배출 라인(3)과 유체 연통하는 제1 파이프(22), 애노드 회귀 라인(4)과 유체 연통하는 제2 파이프(23) 및 탱크(21)에 포함된 미리 결정된 물의 수위에 담궈지는 배플 벽(25)을 갖는 탱크(21)를 포함한다. 제1 및 제2 상관 수밀봉들(20A 및 20B)과 달리, 양방향 상관 수밀봉(20C)의 제1 파이프(22)는 탱크(21) 내 물에 잠기지 않는다. 대신, 양방향 상관 수밀봉(20C)의 제1 파이프(22) 및 제2 파이프(23) 양자는 탱크(21)의 상면에 연결된다. 배플 벽(25)은 탱크(21)의 내부에 제공되고 탱크(21)의 내부의 상면으로부터 하향 탱크(21)에 포함되는 수위 아래로 연장되지만, 탱크의 바닥까지 연장되지는 않는다(즉, 배플 벽(25)의 바닥과 탱크(21)의 바닥 사이에 갭이 존재함). 일례에서(도 7 및 도 9a 내지 도 9c 참조), 배플 벽(25)은 탱크(21)의 폭의 중심에 제공됨으로써, 탱크(21)를 동일한 면적을 갖는 제1 부분(A) 및 제2 부분(B)으로 나눈다.
애노드 과도 압력 및 애노드 과소 압력을 위해 양방향 상관 수밀봉(20C)에서 상이한 압력이 요구되는 경우, 배플 벽(25)은 탱크(21)의 폭에 대해 중심을 벗어난 곳에 위치될 필요가 있을 것이다. 따라서, 다른 예들(도 10a 내지 도 10c 및 도 11a 내지 11c 참조)에서, 배플 벽(25)은 양방향 수밀봉(20C)의 폭의 중심을 벗어나 제공됨으로써, 양방향 수밀봉(20C)을 동일하지 않은 면적들을 갖는 제1 부분 (A) 및 제2 부분(B)으로 나눌 수 있다. 특히, 제2 부분(B)의 면적은 제1 부분(A)의 면적의 배수이다. 예를 들어, 제2 부분(B)의 면적은 제1 부분(A)의 면적의 2배일 수 있다. 과도 압력 경우에서 차압(DP)을 감소시키기 때문에 중심을 벗어난 배플 벽(25)을 사용하는 것이 바람직 할 수 있다(도 9a 내지 도 9c를 도 10a 내지 도 10c와 비교).
중심을 벗어난 배플 벽(25)을 사용하면 과소 압력 경우 동안 배출구에서 속도가 더 높아질 수 있다. 도 11a 내지 도 11c에 보여지는 바와 같이, 배출구에서의 더 높은 속도에 관한 문제를 해결하기 위해, 적어도 하나의 조그 또는 굴곡부를 그 안에 포함하는 중심을 벗어난 배플 벽이 사용될 수 있다. 중심에 있는 배플상에 조그가 제공될 수 있지만, 과도 압력 및 과소 압력 유속이 통상적으로 유사하기 때문에 이는 일반적으로 필요하지는 않다.
도 9a 내지 도 11c에 도시된 양방향 수밀봉(20C)의 예들을 참조하면, 탱크(21)는 3차원 인 것에 유의하고, 도 9a 내지 도 11c는 일련의 비제한적인 실시 예에 따른 탱크(21)의 2차원 개념화를 도시한다. 당업자는 수위가 단지 예일 뿐이고, 여기에 설명된 개념들은 이러한 특정 예들에 제한되지 않는다는 것을 이해할 것이다. 도 9a 내지 도 11c의 설명에서 사용된 용어 "면적"은 (평면도에서 양방향 수밀봉(20C)을 볼 때) 제1 부분(A) 및 제2 부분(B)의 바닥 면적 또는 수평 표면적을 지칭한다. 당업자는 탱크(21)의 부피가 바닥 면적에 높이를 곱한 것과 같고, 제1 부분(A)의 높이는 제2 부분(B)의 높이와 동일하다는 것을 이해할 것이다. 따라서, 부피 A/부피 B는 바닥 면적A/바닥 면적 B와 같다.
양방향 수밀봉(20C)의 임의의 예들은 임의로 물과 각각의 제1 파이프(22) 및 제2 파이프(23) 사이에 맞는 디미스터(28)를 포함할 수 있다(도 7 참조). 디미스터(28)는 양방향 수밀봉(20C)로부터 출력되는 애노드 배출 가스로 넘겨질 수 있는 물방울들을 제거하도록 구성되어, 더 작은 직경의 용기가 수밀봉에 사용될 수 있게 한다. 데미스터(28)는 예를 들어, 와이어 메쉬 데미스터 패드일 수 있다. 양방향 수밀봉(20C)을 통한 흐름은 아래에서 더 상세히 논의될 것이다.
양방향 상관 수밀봉(20C)의 동작이 이제 도 8 및 도 9a 내지 도 9c를 참조하여 설명될 것이다. 탱크(21) 내 수위는 탱크(21)에 걸친 차압이 원하는 양보다 클 때, 물이 더 낮은 압력을 갖는 배플 벽(25)의 한 쪽으로 가압되고, 그 다음 애노드 가스가 배플 벽(25) 밑에서 거픔을 일으키고 압력의 균형을 맞추도록 설정된다. 정상 동작 동안 도 5의 예로부터 압력을 가하면, 제1 부분(A)상의 탱크 수준은 제1 부분(A)의 압력이 19 iwc(즉, P3)이고 제2 부분(B)의 압력이 23iwc(즉, P4)이기 때문에 제2 부분(B)보다 4" 더 높을 것이다. 혼란 상황 조건들 동안, 가스가 양방향 수밀봉(20C)을 통해 흘러 압력을 균등화할 때, 모든 물은 탱크(21)의 한 쪽으로 가압되어, 가스가 배플 벽(25) 밑에서 거품을 일으킬 수 있게 한다. 수위는 모든 물이 탱크(21)의 한 쪽으로 가압될 때, 배플 벽(25)의 바닥에 관한 물의 높이가 원하는 최대 차압과 동일하도록 선택된다. 예를 들어, 정상 작동 동안 수위가 제2 부분(B)상의 배플 벽(25) 바닥 위 3"로 설정되는 경우, 수위는 제1 부분(A)상의 배플 벽(25) 바닥 위 7" 가 될 것이다. 따라서, 애노드 과도 압력 보호는 모든 물이 탱크(21)의 한 쪽으로 가압될 때, 수위가 배플 벽(25)의 바닥 위 10 인치일 것이기 때문에 (3 + 7) 10 iwc가 될 것이다. 이는 배플 벽(25) 아래에서 가스가 거품이 일 수 있게 하기 위해 일측으로부터 타측으로 전달하는 물의 수준 변화를 설명한다(즉, P4에 관해 P3에서 총 10 iwc, 이는 P2에 관해 P1에서 13 iwc에 해당). 배플 벽(25)이 탱크의 중심에 위치하는 경우 애노드 과소 압력 보호는 동일할 것이다. 밀봉을 활성화하기 위해 추가되는 압력(즉, 가스가 배플 벽(25) 아래로 흐르게 함)은 중심에 있는 배플 설계를 갖고 탱크의 저수위측으로부터 배플 벽(25)의 바닥까지 수위의 2배이며 배플 벽(25)의 각 측상의 면적은 일측상의 수위 아래로 미는 것이 동일한 양만큼 타측상의 수위를 증가시키기 때문에 동일하다. 이는 배플 아래에서 가스가 거품이 일 수 있게 하기 위해 물 전달 측들로부터의 수준 변화를 설명한다(즉, P4에 관해 P3에서 총 -10 iwc, 이는 P2에 관해 P1에서 -7 iwc에 해당).
P1 및 P2에서 측정될 때 애노드 과소 압력 및 애노드 과도 압력 둘 다에 대해 최대 차압을 동일하게 하기 위해, 중심을 벗어나 위치한 배플 벽(25)이 사용될 수 있다. 예를 들어, 배플 벽(25)이 제2 부분(B)의 면적이 제1 부분(A)의 면적의 2배가 되도록 위치되면, A 측으로부터 B 측으로 흐르는 물은 단지 B 측상의 수위를 A 측 수준의 절반 증가시킬 것이고 그 반대의 경우도 마찬가지이다. 예를 들어, 정상 작동 동안 수위가 제2 부분(B)의 배플 벽(25) 바닥 위 2"로 설정되는 경우, 수위는 제1 부분(A)의 배플 벽(25) 바닥 위 6"가 될 것이다. 따라서, 애노드 과도 압력 보호는 모든 물이 제2 부분(B)의 1/2 면적을 갖는 제1 부분(A)으로 가압될 때, 수위가 배플 벽(25)의 바닥 위 10 인치일 것이기 때문에 10 iwc가 될 것이다(즉, 6 + 2*2). 이는 배플 벽(25) 아래에서 가스가 거품이 일 수 있게 하도록 B 측으로부터 전달되는 물로부터의 수준 변화를 설명한다. 이는 P4에 관해 P3에서 총 10 iwc를 제공하며, 이는 P2에 관해 P1에서 13 iwc에 해당한다. 애노드 과소 압력 보호를 위해, 제1 부분(A)의 6인치 물이 제2 부분(B)으로 가압되어, B 측 수준이 3 인치로 증가될 것이다. 그에 따라, B 측상의 총 수준이 5 인치(2 + 6/2)가 되어 배플 벽(25) 아래에서 가스가 거품이 일 수 있게 하기 위해 물 전달 측들로부터의 수준 변화를 설명할 것이다(즉, P4에 관해 P3에서 총 -5 iwc, 이는 P2에 관해 P1에서 -8 iwc에 해당). 배플 벽(25)의 각 측상의 면적들을 적절히 선택함으로써, 애노드 과도 압력 및 애노드 과소 압력 혼란 상황들 모두에 대해 최대 10 인치의 차압을 얻을 수 있다.
하나 이상의 수밀봉을 포함하는 상술한 연료 전지 시스템들의 예들은 하나 이상의 수밀봉이 애노드 과소 여압에 대한 기술적 해결책을 제공하고, 신뢰성을 증가시키며, 동작 범위를 증가시키기 때문에 애노드 여압 문제에 대한 더 나은 해결책을 제공한다. 제1 상관 수밀봉(20A) 및 제2 상관 수밀봉(20B)의 사용은 과소 여압 보호 및/또는 빠른 응답으로부터 과도 여압 보호를 독립적으로 선택하기 위해 바람직할 수 있다. 양방향 수밀봉(20C)은 과도 여압/과소 여압 제어 사이의 빠른 응답 및 오프셋 변경이 필요하지 않은 적용 예들에 필요한 비용, 배관 및 공간을 줄인다.
일반적으로, 공정 혼란 상황 조건이 없는 한, 정상 동작 조건의 경우 P3과 P4 사이에 비교적 일정한 관계가 있으며, 여기서 P4는 애노드 가스 산화기(8)에 걸친 압력 강하로 인해 P3보다 단지 수 iwc 더 크다. 따라서, 상관 수밀봉(20A, 20B 및 20C) 내 수위는 일정한 수준으로 설정될 수 있고 변경될 필요가 없다. 따라서, 상관 수밀봉(20A, 20B 및 20C)의 능동적인 충전 및 배출은 필요하지 않다.
본원에 사용 된 용어 "대략", "약", "실질적으로"및 유사한 용어는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적이고 수용되는 사용법과 조화되는 넓은 의미를 갖는 것으로 의도된다 본 개시는 관련이있다. 본 개시를 검토하는 당업자는 이들 용어가 이들 특징의 범위를 제공된 정확한 수치 범위로 제한하지 않으면 서 기술되고 청구 된 특정 특징의 설명을 허용하도록 의도된다는 것을 이해해야 한다. 따라서, 이들 용어는 설명되고 청구 된 주제의 비 실질적이거나 결과적이지 않은 수정 또는 변경이 첨부 된 청구 범위에 언급 된 바와 같이 본 발명의 범위 내에있는 것으로 간주됨을 나타내는 것으로 해석되어야 한다.
본 명세서에서 요소의 위치 (예를 들어, "상부", "하부", "위", "아래"등)에 대한 언급은 단지 도면에서 다양한 요소의 배향을 설명하기 위해 사용된다. 다양한 구성 요소들의 방향이 다른 예시적인 실시 예들에 따라 달라질 수 있고, 이러한 변형들은 본 개시에 포함되도록 의도된다는 것을 주목해야 한다.
다양한 예시적인 실시 예들의 구성 및 배열은 단지 예시적인 것임을 주목하는 것이 중요하다. 비록 본 개시에서 소수의 실시 예들만이 상세하게 설명되었지만, 본 개시를 검토하는 당업자는 많은 수정 (예를 들어, 다양한 요소들의 크기, 치수, 구조, 형태 및 비율의 변화, 본 명세서에 기술 된 주제의 신규 한 교시 및 장점을 실질적으로 벗어나지 않으면 서, 파라미터의 값, 장착 배열, 재료의 사용, 색상, 배향 등)이 가능하다는 것을 이해할 것이다. 예를 들어, 일체로 형성된 것으로 도시 된 요소는 다수의 부분 또는 요소로 구성 될 수 있고, 요소의 위치는 반대로 변경되거나 달리 변경 될 수 있으며, 개별 요소 또는 위치의 성질 또는 수는 변경되거나 변경 될 수있다. 임의의 프로세스 또는 방법 단계의 순서 또는 순서는 대안적인 실시 예에 따라 변하거나 재서열될 수있다. 본 발명의 범위를 벗어나지 않고 다양한 예시적인 실시 예의 설계, 작동 조건 및 배열에서 다른 대체, 수정, 변경 및 생략이 또한 이루어질 수있다.

Claims (20)

  1. 연료 전지 시스템으로서,
    적어도 하나의 연료 전지 모듈로서:
    스택 구성으로 배열되는 하나 이상의 연료 전지를 갖는 연료 전지 어셈블리;
    애노드 입구 매니폴드;
    제1 압력을 갖는 애노드 출구 매니폴드;
    제2 압력을 갖는 캐소드 입구 매니폴드; 및
    캐소드 출구 매니폴드를 포함하는, 적어도 하나의 연료 전지 모듈; 및
    상기 제2 압력이 상기 제1 압력을 적어도 제1 미리 결정된 양만큼 초과하는 애노드 과소 여압(under-pressurization) 상황에서 상기 연료 전지 시스템에서의 차압의 크기를 제한하도록 구성된 제1 상관 수밀봉(relational water seal)을 포함하고,
    상기 제1 상관 수밀봉은,
    물을 수용하도록 구성된 탱크;
    상기 탱크에 유체적으로 연결되고 상기 물에 잠기는 제1 단부 및 상기 캐소드 입구 매니폴드에 유체적으로 연결되는 제2 단부를 갖는 제1 파이프; 및
    상기 탱크에 유체적으로 연결되고 상기 물에 잠기지 않는 제1 단부 및 상기 애노드 출구 매니폴드에 유체적으로 연결되는 제2 단부를 갖는 제2 파이프를 포함하는 것인,
    연료 전지 시스템.
  2. 제1항에 있어서,
    상기 제1 압력이 상기 제2 압력을 적어도 제2 미리 결정된 양만큼 초과하는 애노드 과도 여압(over-pressurization) 상황에서 상기 연료 전지 시스템에서의 차압의 크기를 제한하도록 구성되는 제2 상관 수밀봉을 더 포함하고,
    상기 제2 상관 수밀봉은,
    물을 수용하도록 구성된 제2 탱크;
    상기 제2 탱크에 유체적으로 연결되고 상기 물에 잠기는 제1 단부 및 상기 애노드 출구 매니폴드에 유체적으로 연결되는 제2 단부를 갖는 제1 파이프; 및
    상기 제2 탱크에 유체적으로 연결되고 상기 물에 잠기지 않는 제1 단부 및 상기 캐소드 입구 매니폴드에 유체적으로 연결되는 제2 단부를 갖는 제2 파이프를 포함하는 것인,
    연료 전지 시스템.
  3. 연료 전지 시스템으로서,
    적어도 하나의 연료 전지 모듈로서:
    스택 구성으로 배열되는 하나 이상의 연료 전지를 갖는 연료 전지 어셈블리;
    애노드 입구 매니폴드;
    제1 압력을 갖는 애노드 출구 매니폴드;
    제2 압력을 갖는 캐소드 입구 매니폴드; 및
    캐소드 출구 매니폴드를 포함하는, 적어도 하나의 연료 전지 모듈; 및
    양방향 수밀봉을 포함하고,
    상기 양방향 수밀봉은:
    물을 수용하도록 구성된 탱크;
    상기 탱크의 상단으로부터 상기 물로 연장되는 배플 벽으로서, 상기 탱크의 내부를 제1 부분 및 제2 부분으로 나누는, 배플 벽;
    상기 배플 벽과 상기 탱크의 하단 사이에 존재하는 갭으로서, 물 및 애노드 가스가 이동할 수 있게 하도록 구성된, 갭;
    상기 탱크에 연결된 제1 파이프로서, 상기 탱크의 상기 제1 부분에 유체적으로 연결되고 상기 물에 잠기지 않는 제1 단부 및 상기 애노드 출구 매니폴드에 유체적으로 연결되는 제2 단부를 갖는, 제1 파이프; 및
    상기 탱크에 연결된 제2 파이프로서, 상기 탱크의 상기 제2 부분에 유체적으로 연결되고 상기 물에 잠기지 않는 제1 단부 및 상기 캐소드 입구 매니폴드에 유체적으로 연결되는 제2 단부를 갖는 제2 파이프를 포함하고,
    상기 양방향 수밀봉은 상기 제2 압력이 상기 제1 압력을 적어도 제1 미리 결정된 양만큼 초과하는 애노드 과소 여압 상황에서 상기 연료 전지 시스템에서의 차압의 크기를 제한하도록, 그리고 상기 제1 압력이 상기 제2 압력을 적어도 제2 미리 결정된 양만큼 초과하는 애노드 과도 여압(over-pressurization) 상황에서 상기 연료 전지 시스템에서의 차압의 크기를 제한하도록 구성되는 것인,
    연료 전지 시스템.
  4. 제3항에 있어서,
    상기 배플 벽은 상기 탱크의 폭의 중심에 위치됨으로써, 상기 탱크를 동일한 면적들을 갖는 제1 부분 및 제2 부분으로 나누는,
    연료 전지 시스템.
  5. 제3항에 있어서,
    상기 배플 벽은 상기 탱크의 폭의 중심을 벗어나 위치됨으로써, 상기 탱크를 동일하지 않은 면적들을 갖는 제1 부분 및 제2 부분으로 나누는,
    연료 전지 시스템.
  6. 제5항에 있어서,
    상기 제2 부분의 면적은 상기 제1 부분의 면적의 배수인,
    연료 전지 시스템.
  7. 제3항에 있어서,
    상기 배플 벽은 그 안에 조그(jog)를 포함하는,
    연료 전지 시스템.
  8. 제2항에 있어서,
    애노드 배출 가스 송풍기;
    상기 애노드 출구 매니폴드로부터 출력되는 애노드 배출 가스가 상기 애노드 배출 가스 송풍기로 전송되는 애노드 배출 라인; 및
    상기 애노드 배출 가스 송풍기로부터 출력되는 애노드 회귀 가스가 상기 캐소드 입구 매니폴드로 전송되는 애노드 회귀 라인을 더 포함하는,
    연료 전지 시스템.
  9. 제8항에 있어서,
    상기 제1 상관 수밀봉의 상기 제1 파이프는 상기 애노드 배출 라인과 유체 연통하고, 상기 제1 상관 수밀봉의 상기 제2 파이프는 상기 애노드 회귀 라인과 유체 연통하며;
    상기 제2 상관 수밀봉의 상기 제1 파이프는 상기 애노드 회귀 라인과 유체 연통하고, 상기 제2 상관 수밀봉의 상기 제2 파이프는 상기 애노드 배출 라인과 유체 연통하는,
    연료 전지 시스템.
  10. 제9항에 있어서,
    상기 애노드 배출 라인 및 상기 제1 상관 수밀봉의 상기 제1 파이프는 제3 압력을 갖고;
    상기 애노드 회귀 라인 및 상기 제1 상관 수밀봉의 상기 제2 파이프는 정상 동작 동안 상기 제3 압력보다 더 높은 제4 압력을 갖는,
    연료 전지 시스템.
  11. 제10항에 있어서,
    상기 제3 압력이 상기 제4 압력을 미리 결정된 양만큼 초과하는 혼란 상황 동작 조건에서, 상기 제1 상관 수밀봉은 상기 애노드 배출 라인으로부터의 애노드 배출 가스가 상기 제1 상관 수밀봉의 상기 제1 파이프로 들어가고 상기 제1 상관 수밀봉의 상기 제1 파이프 밖으로 상기 물을 밀어 내도록 구성됨으로써, 애노드 배출 가스를 상기 제1 상관 수밀봉의 상기 제2 파이프를 통해 상기 애노드 회귀 라인으로 출력해 내고 상기 제3 압력과 상기 제4 압력 간 차압을 줄이는,
    연료 전지 시스템.
  12. 제9항에 있어서,
    상기 애노드 회귀 라인 및 상기 제2 상관 수밀봉의 상기 제1 파이프는 제4 압력을 갖고;
    상기 애노드 배출 라인 및 상기 제2 상관 수밀봉의 상기 제2 파이프는 상기 제4 압력보다 더 낮은 제3 압력을 갖는,
    연료 전지 시스템.
  13. 제12항에 있어서,
    상기 제4 압력이 상기 제3 압력을 미리 결정된 양만큼 초과하는 혼란 상황 동작 조건에서, 상기 제2 상관 수밀봉은 상기 애노드 회귀 라인으로부터의 애노드 회귀 가스가 상기 제2 상관 수밀봉의 상기 제1 파이프로 들어가고 상기 제2 상관 수밀봉의 상기 제1 파이프 밖으로 물을 밀어 내도록 구성됨으로써, 애노드 회귀 가스를 상기 제2 상관 수밀봉의 상기 제2 파이프를 통해 상기 애노드 회귀 라인으로 출력해 내고 상기 제3 압력과 상기 제4 압력 간 차압을 줄이는,
    연료 전지 시스템.
  14. 제3항에 있어서,
    애노드 배출 가스 송풍기;
    상기 애노드 출구 매니폴드로부터 출력되는 애노드 배출 가스가 상기 애노드 배출 가스 송풍기로 전송되는 애노드 배출 라인; 및
    상기 애노드 배출 가스 송풍기로부터 출력되는 애노드 회귀 가스가 상기 캐소드 입구 매니폴드로 전송되는 애노드 회귀 라인을 더 포함하며;
    상기 제1 파이프는 상기 애노드 배출 라인 및 상기 탱크의 상기 제1 부분과 유체 연통하고, 상기 제2 파이프는 상기 애노드 회귀 라인 및 상기 탱크의 상기 제2 부분과 유체 연통하며;
    정상 동작 조건들 하에서, 상기 탱크의 상기 제1 부분에서의 수위는 상기 탱크의 상기 제2 부분에서의 수위보다 더 큰,
    연료 전지 시스템.
  15. 제14항에 있어서,
    상기 탱크에 걸친 차압이 미리 결정된 차압보다 큰 상황에서, 상기 양방향 수밀봉은 물 및 애노드 가스가 상기 갭을 통해 보다 저압을 갖는 상기 배플 벽의 한 쪽으로 이동시키도록 구성되어 상기 제1 부분과 상기 제2 부분 간 차압의 크기를 제한하는,
    연료 전지 시스템.
  16. 제3항에 있어서,
    상기 양방향 수밀봉은 상기 제1 파이프에 존재하는 수주 압력 및 상기 제2 파이프에 존재하는 상기 압력의 인치와 동등한 압력에 대해 여압 보호를 제공하도록 구성되는,
    연료 전지 시스템.
  17. 제9항에 있어서,
    상기 제1 상관 수밀봉 및 상기 제2 상관 수밀봉은 그것의 상기 제1 파이프에 존재하는 수주 압력 및 그것의 상기 제2 파이프에 존재하는 상기 압력의 인치와 동등한 압력에 대해 여압 보호를 제공하도록 구성되는,
    연료 전지 시스템.
  18. 삭제
  19. 삭제
  20. 삭제
KR1020207001144A 2017-06-22 2018-03-29 상관 수밀봉을 갖는 연료 전지의 애노드 배출 시스템에서의 차압을 재균등화하기 위한 시스템 KR102343545B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/630,805 US10483562B2 (en) 2017-06-22 2017-06-22 System for rebalancing a pressure differential in an anode exhaust system of a fuel cell with a relational water seal
US15/630,805 2017-06-22
PCT/US2018/025274 WO2018236450A1 (en) 2017-06-22 2018-03-29 SYSTEM FOR REBALANCING A PRESSURE DIFFERENTIAL IN ANODE EXHAUST SYSTEM OF A FUEL CELL WITH A RELATIONAL RELAY HYDRAULIC JOINT

Publications (2)

Publication Number Publication Date
KR20200017489A KR20200017489A (ko) 2020-02-18
KR102343545B1 true KR102343545B1 (ko) 2021-12-24

Family

ID=62002493

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207001144A KR102343545B1 (ko) 2017-06-22 2018-03-29 상관 수밀봉을 갖는 연료 전지의 애노드 배출 시스템에서의 차압을 재균등화하기 위한 시스템

Country Status (4)

Country Link
US (1) US10483562B2 (ko)
KR (1) KR102343545B1 (ko)
CN (1) CN110785883B (ko)
WO (1) WO2018236450A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10991963B2 (en) * 2018-07-10 2021-04-27 Cummins Enterprise Llc Fuel cell system and control method thereof
US20210135256A1 (en) * 2019-11-06 2021-05-06 GM Global Technology Operations LLC Process and system for anode overpressure remedial action in a fuel cell system
KR20230024373A (ko) * 2020-06-22 2023-02-20 퓨얼셀 에너지, 인크 가스 주입을 이용하여 연료 전지에서 차동 압력의 균형을 재조정하기 위한 시스템

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164159A (ja) 1982-03-25 1983-09-29 Kansai Electric Power Co Inc:The 燃料電池の異常差圧防止装置
JPH0636785A (ja) 1992-07-17 1994-02-10 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池の差圧防止装置
US6902840B2 (en) * 2002-07-02 2005-06-07 Fuelcell Energy, Inc. Fuel cell system with mixer/eductor
US6911275B2 (en) * 2002-07-12 2005-06-28 Utc Fuel Cells, Llc High molecular weight direct antifreeze cooled fuel cell
JP5065678B2 (ja) * 2004-10-15 2012-11-07 パナソニック株式会社 燃料電池システム及びその運転方法
JP2009026526A (ja) * 2007-07-18 2009-02-05 Toyota Motor Corp 燃料電池
WO2012138576A1 (en) * 2011-04-05 2012-10-11 Blacklight Power, Inc. H2o-based electrochemical hydrogen-catalyst power system
US9190676B2 (en) 2012-09-28 2015-11-17 Fuelcell Energy, Inc. Flame stabilized mixer-eductor-oxidizer for high temperature fuel cells

Also Published As

Publication number Publication date
KR20200017489A (ko) 2020-02-18
US10483562B2 (en) 2019-11-19
CN110785883B (zh) 2023-03-21
US20180375121A1 (en) 2018-12-27
CN110785883A (zh) 2020-02-11
WO2018236450A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
KR102343545B1 (ko) 상관 수밀봉을 갖는 연료 전지의 애노드 배출 시스템에서의 차압을 재균등화하기 위한 시스템
JP5318415B2 (ja) 液体分離器を有する燃料電池システム
JP4984329B2 (ja) 高圧タンク用のバルブ装置および燃料電池システム
AU2021236514B2 (en) Thermal management of fuel cell units and systems
US9279542B2 (en) Compressed hydrogen fueling control valve
EP2863463A1 (en) Fuel cell system
AU2014310784B2 (en) Method for operating a fuel cell stack, fuel cell stack and fuel cell system
JP5877449B2 (ja) セルスタックシステム
CN101425590B (zh) 一种燃料电池发动机的氢气安全保护系统
JP2014120468A (ja) 燃料電池システムの水素供給装置
CN218447992U (zh) 燃料电池的供气系统和具有其的燃料电池
KR101233323B1 (ko) 연료전지 시스템
EP2889931A1 (en) Adaptor plug for industrial battery
CN102089915B (zh) 减少燃料电池系统中的安全气体的消耗的方法和装置
JPS6246951B2 (ko)
US20170170499A1 (en) System and method for fuel cell cathode gas humidification
CN213988958U (zh) 一种燃料电池堆的分流装置
JPS58100371A (ja) 燃料電池システム
JP2005347189A (ja) 燃料電池システム
KR20230093840A (ko) 고온수전해 설비
JP3244133B2 (ja) 燃料電池の過大差圧防止方法
JPS58133770A (ja) 燃料電池
EP1826854B1 (en) Mixing tank for a fuel cell system
CN201117723Y (zh) 一种氢气减压弹射泵装置
JP4049089B2 (ja) 触媒燃焼器

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant