KR102343281B1 - 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
KR102343281B1
KR102343281B1 KR1020197023520A KR20197023520A KR102343281B1 KR 102343281 B1 KR102343281 B1 KR 102343281B1 KR 1020197023520 A KR1020197023520 A KR 1020197023520A KR 20197023520 A KR20197023520 A KR 20197023520A KR 102343281 B1 KR102343281 B1 KR 102343281B1
Authority
KR
South Korea
Prior art keywords
csi
information
reporting
report
time
Prior art date
Application number
KR1020197023520A
Other languages
English (en)
Other versions
KR20190104204A (ko
Inventor
강지원
박종현
김기준
김형태
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20190104204A publication Critical patent/KR20190104204A/ko
Application granted granted Critical
Publication of KR102343281B1 publication Critical patent/KR102343281B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • H04W72/042
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Abstract

본 명세서는 무선 통신 시스템에서 채널 상태 정보(Channel State Information, CSI)를 측정 및 보고하는 방법 및 이를 위한 장치를 제공한다.
구체적으로, 무선 통신 시스템에서 단말이 CSI를 보고하는(reporting) 방법은, CSI 보고와 관련된 CSI 보고 설정 정보(CSI reporting setting information)를 수신하는 과정과, 하나 이상의 채널 상태 정보 참조 신호(CSI-Reference Signal, CSI-RS)들을 수신하는 과정과, 상기 하나 이상의 CSI-RS들 중 적어도 하나의 특정 CSI-RS에 의해 추정된 측정 값(measurement value)을 이용하여 상기 CSI 보고를 수행하는 과정을 포함하되, 상기 CSI 보고 설정 정보는, 상기 적어도 하나의 특정 CSI-RS는, 상기 측정 값을 추정하기 위한 측정 구간(measurement interval)을 설정하는 간격 정보(gap information) 및 상기 CSI 보고의 수행 시점에 기반하여 결정될 수 있다.

Description

무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 채널 상태 정보(Channel State Information, CSI)를 측정 및 보고하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 CSI 프레임워크(CSI framework)에 기반하여 CSI를 측정 및 보고하는 방법 및 이를 위한 장치를 제안한다.
이와 관련하여, 본 명세서는, CSI-RS의 전송 시점과 CSI 보고 시점을 고려하여 설정된 시간 간격(time gap)을 이용하여, CSI 보고를 위한 추정 값을 산출하는 방법을 제안한다.
또한, 본 명세서는, 단말에 대해 설정된 측정 제한(measurement restriction) 여부를 구분하여 CSI 보고를 위한 추정 값을 산출하는 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따른 무선 통신 시스템에서 단말이 채널 상태 정보(Channel State Information, CSI)를 보고하는(reporting) 방법에 있어서, CSI 보고와 관련된 CSI 보고 설정 정보(CSI reporting setting information)를 수신하는 과정과, 하나 이상의 채널 상태 정보 참조 신호(CSI-Reference Signal, CSI-RS)들을 수신하는 과정과, 상기 하나 이상의 CSI-RS들 중 적어도 하나의 특정 CSI-RS에 의해 추정된 측정 값(measurement value)을 이용하여 상기 CSI 보고를 수행하는 과정을 포함하되, 상기 적어도 하나의 특정 CSI-RS는, 상기 측정 값을 추정하기 위한 측정 구간(measurement interval)을 설정하는 간격 정보(gap information) 및 상기 CSI 보고의 수행 시점에 기반하여 결정된다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 적어도 하나의 특정 CSI-RS는, 상기 CSI 보고의 수행 시점을 기준으로 상기 간격 정보에 의해 지시되는 시점 이전에 수신될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 단말의 간격 정보를 기지국으로 보고하는 과정을 더 포함하고, 상기 간격 정보는, 상기 단말의 능력 정보(capability information)에 기반하여 결정될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 간격 정보는, 상기 기지국에 의해, 상기 단말이 보고할 CSI의 유형(type)을 고려하여 설정될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 CSI 보고 설정 정보는, 상기 CSI 보고에 대한 측정 제한(measurement restriction) 여부를 나타내는 지시 정보를 더 포함할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 하나 이상의 CSI-RS들은 주기적(periodic) 또는 반-지속적(semi-persistent)으로 설정된 CSI-RS에 해당하고, 상기 지시 정보가 온(ON)을 지시하는 경우, 상기 적어도 하나의 특정 CSI-RS는, 상기 CSI 보고의 수행 시점을 기준으로 상기 간격 정보에 의해 지시되는 시점 이전에 수신되는 마지막(last) CSI-RS에 해당할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 하나 이상의 CSI-RS들은 주기적 또는 반-지속적으로 설정된 CSI-RS에 해당하고, 상기 지시 정보가 오프(OFF)를 지시하는 경우, 상기 적어도 하나의 특정 CSI-RS는, 상기 CSI 보고의 수행 시점을 기준으로 상기 간격 정보에 의해 지시되는 시점 이전에 수신되는 CSI-RS에 해당할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 측정 값은, 상기 적어도 하나의 특정 CSI-RS를 이용하여 산출된 적어도 하나의 값들의 평균 값(average value)일 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 평균 값은, 상기 적어도 하나의 특정 CSI-RS 각각의 수신 시점에 따라 가중치 평균(weighted average)을 적용하여 산출될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 측정 값은, 상기 적어도 하나의 특정 CSI-RS를 이용하여 산출된 값에 기반하여, 상기 CSI 보고의 수행 시점을 기준으로 상기 간격 정보에 의해 지시되는 시점까지 추정(estimation)된 값일 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 하나 이상의 CSI-RS들이 비주기적(aperiodic) CSI-RS에 해당하는 경우, 상기 적어도 하나의 특정 CSI-RS는, 상기 CSI 보고의 수행 시점을 기준으로 상기 간격 정보에 의해 지시되는 시점 이전에 수신되는 비주기적 CSI-RS에 해당할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 하나 이상의 CSI-RS들이 비주기적(aperiodic) CSI-RS에 해당하는 경우, 모든 CSI-RS는, 상기 CSI 보고의 수행 시점을 기준으로 상기 간격 정보에 의해 지시되는 시점 이전에 수신되는 비주기적 CSI-RS에 해당할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 CSI 보고가 비주기적(aperiodic)으로 설정되는 경우, 상기 CSI 보고 설정 정보는, 상기 CSI 보고를 트리거링(triggering)하는 하향링크 제어 정보(downlink control information)를 통해 수신될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법은, 상기 하나 이상의 CSI-RS들의 전송과 관련된 자원 설정 정보(resource setting information)를 수신하는 과정을 더 포함하되, 상기 자원 설정 정보는, CSI-RS의 전송에 대한 트리거링 시점과 CSI-RS의 전송 시점 간의 간격을 지시하는 제1 오프셋(offset) 정보를 포함하며, 상기 CSI 보고 설정 정보는, CSI 보고에 대한 트리거링 시점과 CSI 보고의 수행 시점 간의 간격을 지시하는 제2 오프셋 정보를 더 포함할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 하나 이상의 CSI-RS들의 전송 및 상기 CSI 보고가 조인트 트리거링(joint triggering)되는 경우, 상기 적어도 하나의 특정 CSI-RS에 대해 설정된 제1 오프셋 정보가 나타내는 값과 상기 CSI 보고에 대해 설정된 제2 오프셋 정보가 나타내는 값 간의 차이 값(difference value)은, 상기 간격 정보가 나타내는 값보다 클 수 있다.
본 발명의 실시 예에 따른 무선 통신 시스템에서 채널 상태 정보(Channel State Information, CSI)를 보고하는(reporting) 단말에 있어서, 상기 단말은, 무선 신호를 송수신하기 위한 RF 모듈(radio frequency module), 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, CSI 보고와 관련된 CSI 보고 설정 정보(CSI reporting setting information)를 수신하고, 하나 이상의 채널 상태 정보 참조 신호(CSI-Reference Signal, CSI-RS)들을 수신하고, 상기 하나 이상의 CSI-RS들 중 적어도 하나의 특정 CSI-RS에 의해 추정된 측정 값(measurement value)을 이용하여 상기 CSI 보고를 수행하도록 제어하되, 상기 적어도 하나의 특정 CSI-RS는, 상기 측정 값을 추정하기 위한 측정 구간(measurement interval)을 설정하는 간격 정보(gap information) 및 상기 CSI 보고의 수행 시점에 기반하여 결정된다.
본 발명의 실시 예에 따르면, 이하 설명되는 하나 또는 그 이상의 효과들이 존재할 수 있다.
본 발명의 실시 예에 따르면, 단말 별로(예: 단말 능력에 따라) CSI 보고의 측정 값을 산출하기 위한 시간 간격(time gap)을 설정함에 따라, 획일화되지 않은 유연한 CSI 측정 및 보고가 수행될 수 있는 효과가 있다.
또한, 본 발명의 실시 예에 따르면, 단말의 CSI 산출 능력을 고려하여 CSI 측정 및 보고를 수행함에 따라, 해당 단말에 허용되는 가장 최근의 채널 추정 값 또는 간섭 추정 값을 산출할 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained slot 구조의 일례를 나타낸 도이다.
도 6은 본 명세서에서 제안하는 방법이 적용될 수 있는 TXRU와 안테나 element의 연결 방식의 일례들을 나타낸다.
도 7은 본 명세서에서 제안하는 방법이 적용될 수 있는 TXRU 별 서비스 영역의 다양한 일례들을 나타낸다.
도 8은 본 명세서에서 제안하는 방법이 적용될 수 있는 2 차원 평면 어레이 구조를 이용하는 MIMO 시스템의 일 예를 나타낸다.
도 9는 본 명세서에서 제안하는 방법이 적용될 수 있는 NR 시스템에서 고려되는 CSI 프레임워크(CSI framework)의 일 예를 나타낸다.
도 10은 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI 측정 및 보고를 수행하는 방법의 일 예를 나타낸다.
도 11은 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI 측정 및 보고를 수행하는 방법의 다른 예를 나타낸다.
도 12는 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI 측정 및 보고를 수행하는 방법의 또 다른 예를 나타낸다.
도 13은 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI를 측정 및 보고하는 단말의 동작 순서도를 나타낸다.
도 14은 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 15는 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 통상의 기술자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(next generation NB, general NB, gNodeB) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A/NR(New RAT)를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
용어 정의
eLTE eNB: eLTE eNB는 EPC 및 NGC에 대한 연결을 지원하는 eNB의 진화(evolution)이다.
gNB: NGC와의 연결뿐만 아니라 NR을 지원하는 노드.
새로운 RAN: NR 또는 E-UTRA를 지원하거나 NGC와 상호 작용하는 무선 액세스 네트워크.
네트워크 슬라이스(network slice): 네트워크 슬라이스는 종단 간 범위와 함께 특정 요구 사항을 요구하는 특정 시장 시나리오에 대해 최적화된 솔루션을 제공하도록 operator에 의해 정의된 네트워크.
네트워크 기능(network function): 네트워크 기능은 잘 정의된 외부 인터페이스와 잘 정의된 기능적 동작을 가진 네트워크 인프라 내에서의 논리적 노드.
NG-C: 새로운 RAN과 NGC 사이의 NG2 레퍼런스 포인트(reference point)에 사용되는 제어 평면 인터페이스.
NG-U: 새로운 RAN과 NGC 사이의 NG3 레퍼런스 포인트(reference point)에 사용되는 사용자 평면 인터페이스.
비 독립형(Non-standalone) NR: gNB가 LTE eNB를 EPC로 제어 플레인 연결을 위한 앵커로 요구하거나 또는 eLTE eNB를 NGC로 제어 플레인 연결을 위한 앵커로 요구하는 배치 구성.
비 독립형 E-UTRA: eLTE eNB가 NGC로 제어 플레인 연결을 위한 앵커로 gNB를 요구하는 배치 구성.
사용자 평면 게이트웨이: NG-U 인터페이스의 종단점.
시스템 일반
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 1을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다.
상기 gNB는 Xn 인터페이스를 통해 상호 연결된다.
상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다.
보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF (Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF (User Plane Function)로 연결된다.
NR(New Rat) 뉴머롤로지(Numerology) 및 프레임(frame) 구조
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는,
Figure 112019081920509-pct00001
)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.
NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.
Figure 112019081920509-pct00002
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는
Figure 112019081920509-pct00003
의 시간 단위의 배수로 표현된다. 여기에서,
Figure 112019081920509-pct00004
이고,
Figure 112019081920509-pct00005
이다. 하향링크(downlink) 및 상향링크(uplink) 전송은
Figure 112019081920509-pct00006
의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각
Figure 112019081920509-pct00007
의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 2에 나타난 것과 같이, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다
Figure 112019081920509-pct00008
이전에 시작해야 한다.
뉴머롤로지
Figure 112019081920509-pct00009
에 대하여, 슬롯(slot)들은 서브프레임 내에서
Figure 112019081920509-pct00010
의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서
Figure 112019081920509-pct00011
의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은
Figure 112019081920509-pct00012
의 연속하는 OFDM 심볼들로 구성되고,
Figure 112019081920509-pct00013
는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯
Figure 112019081920509-pct00014
의 시작은 동일 서브프레임에서 OFDM 심볼
Figure 112019081920509-pct00015
의 시작과 시간적으로 정렬된다.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 2는 뉴머롤로지
Figure 112019081920509-pct00016
에서의 일반(normal) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타내고, 표 3은 뉴머롤로지
Figure 112019081920509-pct00017
에서의 확장(extended) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타낸다.
Figure 112019081920509-pct00018
Figure 112019081920509-pct00019
NR 물리 자원(NR Physical Resource)
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 추론될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3을 참고하면, 자원 그리드가 주파수 영역 상으로
Figure 112019081920509-pct00020
서브캐리어들로 구성되고, 하나의 서브프레임이 14 x 2u OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
NR 시스템에서, 전송되는 신호(transmitted signal)는
Figure 112019081920509-pct00021
서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및
Figure 112019081920509-pct00022
의 OFDM 심볼들에 의해 설명된다. 여기에서,
Figure 112019081920509-pct00023
이다. 상기
Figure 112019081920509-pct00024
는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
이 경우, 도 4와 같이, 뉴머롤로지
Figure 112019081920509-pct00025
및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
뉴머롤로지
Figure 112019081920509-pct00026
및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍
Figure 112019081920509-pct00027
에 의해 고유적으로 식별된다. 여기에서,
Figure 112019081920509-pct00028
는 주파수 영역 상의 인덱스이고,
Figure 112019081920509-pct00029
는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍
Figure 112019081920509-pct00030
이 이용된다. 여기에서,
Figure 112019081920509-pct00031
이다.
뉴머롤로지
Figure 112019081920509-pct00032
및 안테나 포트 p에 대한 자원 요소
Figure 112019081920509-pct00033
는 복소 값(complex value)
Figure 112019081920509-pct00034
에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및
Figure 112019081920509-pct00035
는 드롭(drop)될 수 있으며, 그 결과 복소 값은
Figure 112019081920509-pct00036
또는
Figure 112019081920509-pct00037
이 될 수 있다.
또한, 물리 자원 블록(physical resource block)은 주파수 영역 상의
Figure 112019081920509-pct00038
연속적인 서브캐리어들로 정의된다. 주파수 영역 상에서, 물리 자원 블록들은 0부터
Figure 112019081920509-pct00039
까지 번호가 매겨진다. 이 때, 주파수 영역 상의 물리 자원 블록 번호(physical resource block number)
Figure 112019081920509-pct00040
와 자원 요소들
Figure 112019081920509-pct00041
간의 관계는 수학식 1과 같이 주어진다.
Figure 112019081920509-pct00042
또한, 캐리어 파트(carrier part)와 관련하여, 단말은 자원 그리드의 서브셋(subset)만을 이용하여 수신 또는 전송하도록 설정될 수 있다. 이 때, 단말이 수신 또는 전송하도록 설정된 자원 블록의 집합(set)은 주파수 영역 상에서 0부터
Figure 112019081920509-pct00043
까지 번호가 매겨진다.
빔 관리(Beam management)
NR에서 빔 관리는 다음과 같이 정의된다.
빔 관리(Beam management): DL 및 UL 송수신에 사용될 수 있는 TRP(들) 및/또는 UE 빔들의 세트(set)를 획득하고 유지하기 위한 L1/L2 절차들의 세트로서, 적어도 다음 사항들을 포함한다:
- 빔 결정: TRP (들) 또는 UE가 자신의 송신 / 수신 빔을 선택하는 동작.
- 빔 측정: TRP (들) 또는 UE가 수신된 빔 형성 신호의 특성을 측정하는 동작.
- 빔 보고: UE가 빔 측정에 기반하여 빔 형성된 신호의 정보를 보고하는 동작.
- 빔 스위핑 (Beam sweeping): 미리 결정된 방식으로 시간 간격 동안 송신 및 / 또는 수신된 빔을 이용하여 공간 영역을 커버하는 동작.
또한, TRP 및 UE에서의 Tx / Rx 빔 대응(correspondence)는 다음과 같이 정의된다.
- TRP에서의 Tx / Rx 빔 대응은 다음 중 적어도 하나가 충족되면 유지된다.
- TRP는 TRP의 하나 이상의 송신 빔에 대한 UE의 하향링크 측정에 기초하여 상향링크 수신을 위한 TRP 수신 빔을 결정할 수 있다.
- TRP는 TRP의 하나 이상의 Rx 빔들에 대한 TRP의 상향링크 측정에 기초하여 하향링크 전송에 대한 TRP Tx 빔을 결정할 수 있다.
- UE에서의 Tx / Rx 빔 대응은 다음 중 적어도 하나가 충족되면 유지된다.
- UE는 UE의 하나 이상의 Rx 빔에 대한 UE의 하향링크 측정에 기초하여 상향링크 전송을 위한 UE Tx 빔을 결정할 수 있다.
- UE는 하나 이상의 Tx 빔에 대한 상향링크 측정에 기초한 TRP의 지시에 기초하여 하향링크 수신을 위한 UE 수신 빔을 결정할 수 있다.
- TRP로 UE 빔 대응 관련 정보의 능력 지시가 지원된다.
다음과 같은 DL L1 / L2 빔 관리 절차가 하나 또는 다수의 TRP들 내에서 지원된다.
P-1: TRP Tx 빔 / UE Rx 빔 (들)의 선택을 지원하기 위해 상이한 TRP Tx 빔에 대한 UE 측정을 가능하게 하기 위해 사용된다.
- TRP에서의 빔포밍의 경우 일반적으로 서로 다른 빔 세트에서 인트라(intra)/인터(inter)-TRP Tx 빔 스윕(sweep)을 포함한다. UE에서의 빔포밍을 위해, 그것은 통상적으로 상이한 빔들의 세트로부터의 UE Rx 빔 sweep를 포함한다.
P-2: 상이한 TRP Tx 빔에 대한 UE 측정이 인터/인트라-TRP Tx 빔(들)을 변경하도록 하기 위해 사용된다.
P-3: UE가 빔 포밍을 사용하는 경우에 동일한 TRP Tx 빔에 대한 UE 측정이 UE Rx 빔을 변경시키는데 사용된다.
적어도 네트워크에 의해 트리거된 비주기적 보고(apreiodic reporting)는 P-1, P-2 및 P-3 관련 동작에서 지원된다.
빔 관리 (적어도 CSI-RS)를 위한 RS에 기초한 UE 측정은 K (빔의 총 개수) 빔으로 구성되며, UE는 선택된 N개의 Tx 빔들의 측정 결과를 보고한다. 여기서, N은 반드시 고정된 수는 아니다. 이동성 목적을 위한 RS에 기반한 절차는 배제되지 않는다. 보고 정보는 적어도 N <K 인 경우 N 개의 빔 (들)에 대한 측정량 및 N 개의 DL 송신 빔을 나타내는 정보를 포함한다. 특히, UE가 K'> 1 논-제로-파워 (NZP) CSI- RS 자원들에 대해, UE는 N'의 CRI (CSI-RS 자원 지시자)를 보고 할 수 있다.
UE는 빔 관리를 위해 다음과 같은 상위 계층 파라미터(higher layer parameter)들로 설정될 수 있다.
- N≥1 보고 설정(setting), M≥1 자원 설정
- 보고 설정과 자원 설정 간의 링크들은 합의된 CSI 측정 설정에서 설정된다.
- CSI-RS 기반 P-1 및 P-2는 자원 및 보고 설정으로 지원된다.
- P-3은 보고 설정의 유무에 관계없이 지원될 수 있다.
- 적어도 이하 사항들을 포함하는 보고 설정(reporting setting)
*- 선택된 빔을 나타내는 정보
- L1 측정 보고(L1 measurement reporting)
- 시간 영역 동작(예: 비주기적(aperiodic) 동작, 주기적(periodic) 동작, 반-지속적(semi-persistent) 동작)
- 여러 주파수 세분성(frequency granularity)이 지원되는 경우의 주파수 세분성
- 적어도 이하 사항들을 포함하는 리소스 설정(resource setting)
- 시간 영역 동작(예: 비주기적 동작, 주기적 동작, 반-지속적 동작)
- RS 유형: 적어도 NZP CSI-RS
- 적어도 하나의 CSI-RS 자원 세트. 각 CSI-RS 자원 세트는 K≥1 CSI-RS 자원들을 포함(K개의 CSI-RS 자원들의 일부 파라미터들은 동일할 수 있다. 예를 들어, 포트 번호, 시간 영역 동작, 밀도 및 주기)
또한, NR은 L> 1 인 L 그룹을 고려하여 다음 빔 보고를 지원한다.
- 최소한의 그룹을 나타내는 정보
- N1 빔에 대한 측정량(measurement quantity)(L1 RSRP 및 CSI 보고 지원 (CSI-RS가 CSI 획득을 위한 경우))
- 적용 가능한 경우, Nl개의 DL 송신 빔을 나타내는 정보
상술한 바와 같은 그룹 기반의 빔 보고는 UE 단위로 구성할 수 있다. 또한, 상기 그룹 기반의 빔 보고는 UE 단위로 턴-오프(turn-off) 될 수 있다(예를 들어, L = 1 또는 Nl = 1인 경우).
NR은 UE가 빔 실패로부터 복구하는 메커니즘을 트리거할 수 있음을 지원한다.
빔 실패(beam failure) 이벤트는 연관된 제어 채널의 빔 쌍 링크(beam pair link)의 품질이 충분히 낮을 때 발생한다(예를 들어 임계 값과의 비교, 연관된 타이머의 타임 아웃). 빔 실패(또는 장애)로부터 복구하는 메커니즘은 빔 장애가 발생할 때 트리거된다.
네트워크는 복구 목적으로 UL 신호를 전송하기 위한 자원을 갖는 UE에 명시적으로 구성한다. 자원들의 구성은 기지국이 전체 또는 일부 방향으로부터(예를 들어, random access region) 청취(listening)하는 곳에서 지원된다.
빔 장애를 보고하는 UL 송신/자원은 PRACH (PRACH 자원에 직교하는 자원)와 동일한 시간 인스턴스(instance)에 또는 PRACH와 다른 시간 인스턴스(UE에 대해 구성 가능)에 위치할 수 있다. DL 신호의 송신은 UE가 새로운 잠재적인 빔들을 식별하기 위해 빔을 모니터할 수 있도록 지원된다.
NR은 빔 관련 지시(beam-related indication)에 관계 없이 빔 관리를 지원한다. 빔 관련 지시가 제공되는 경우, CSI-RS 기반 측정을 위해 사용된 UE 측 빔 형성 / 수신 절차에 관한 정보는 QCL을 통해 UE에 지시될 수 있다. NR에서 지원할 QCL 파라미터로는 LTE시스템에서 사용하던 delay, Doppler, average gain등에 대한 파라미터 뿐만 아니라 수신단에서의 빔포밍을 위한 공간 파라미터가 추가될 예정이며, 단말 수신 빔포밍 관점에서 angle of arrival 관련 파라미터 및/또는 기지국 수신 빔포밍 관점에서 angle of departure 관련 파라미터들이 포함될 수 있다. NR은 제어 채널 및 해당 데이터 채널 전송에서 동일하거나 다른 빔을 사용하는 것을 지원한다.
빔 쌍 링크 블로킹(beam pair link blocking)에 대한 견고성(robustness)를 지원하는 NR-PDCCH 전송을 위해, UE는 동시에 M개의 빔 쌍 링크상에서 NR-PDCCH를 모니터링하도록 구성될 수 있다. 여기서, M=1 및 M의 최대값은 적어도 UE 능력에 의존할 수 있다.
UE는 상이한 NR-PDCCH OFDM 심볼들에서 상이한 빔 쌍 링크(들)상의 NR-PDCCH를 모니터링하도록 구성될 수 있다. 다수의 빔 쌍 링크들 상에서 NR-PDCCH를 모니터링하기 위한 UE Rx 빔 설정과 관련된 파라미터는 상위 계층 시그널링 또는 MAC CE에 의해 구성되거나 및 / 또는 탐색 공간 설계에서 고려된다.
적어도, NR은 DL RS 안테나 포트(들)과 DL 제어 채널의 복조를 위한 DL RS 안테나 포트(들) 사이의 공간 QCL 가정의 지시를 지원한다. NR-PDCCH(즉, NR-PDCCH를 모니터링하는 구성 방법)에 대한 빔 지시를 위한 후보 시그널링 방법은 MAC CE 시그널링, RRC 시그널링, DCI 시그널링, 스펙 transparent 및/또는 암시적 방법, 및 이들 시그널링 방법의 조합이다.
유니 캐스트 DL 데이터 채널의 수신을 위해, NR은 DL RS 안테나 포트와 DL 데이터 채널의 DMRS 안테나 포트 사이의 공간 QCL 가정의 지시를 지원한다.
RS 안테나 포트를 나타내는 정보는 DCI (다운 링크 허가)를 통해 표시된다. 또한, 이 정보는 DMRS 안테나 포트와 QCL 되어 있는 RS 안테나 포트를 나타낸다. DL 데이터 채널에 대한 DMRS 안테나 포트의 상이한 세트는 RS 안테나 포트의 다른 세트와 QCL로서 나타낼 수 있다.
이하, 본 명세서에서 제안하는 방법들을 구체적으로 설명하기에 앞서 본 명세서에서 제안하는 방법들과 직/간접적으로 관련된 내용들에 대해 먼저 간략히 살펴보기로 한다.
5G, New Rat(NR) 등 차세대 통신에서는, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 radio access technology(RAT)에 비해 향상된 mobile broadband 통신에 대한 필요성이 대두되고 있다.
또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC (Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다.
뿐만 아니라, 신뢰성(reliability) 및 지연(latency)에 민감한 서비스 및/또는 단말(UE)를 고려한 통신 시스템의 디자인 또는 구조가 논의되고 있다.
이와 같이, enhanced mobile broadband(eMBB) communication, massive MTC(mMTC), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 radio access technology(RAT)의 도입이 현재 논의되고 있으며, 본 명세서에서는 편의상 해당 technology를 'new RAT(NR)'로 통칭하기로 한다.
Self-contained 슬롯 구조
TDD 시스템에서 데이터 전송의 latency를 최소화하기 위하여 5세대 New RAT(NR)에서는 도 5와 같은 self-contained slot structure를 고려하고 있다.
즉, 도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained slot 구조의 일례를 나타낸 도이다.
도 5에서, 빗금 친 영역(510)은 하향링크 제어(downlink control) 영역을 나타내고, 검정색 부분(520)은 상향링크 제어(uplink control) 영역을 나타낸다.
아무런 표시가 없는 부분(530)은 downlink data 전송을 위해 사용될 수도 있고, uplink data 전송을 위해 사용될 수도 있다.
이러한 구조의 특징은 한 개의 slot 내에서 DL 전송과 UL 전송이 순차적으로 진행되고, 하나의 slot 내에서 DL data를 보내고, UL Ack/Nack도 송수신할 수 있다.
이와 같은 slot을 'self-contained slot'이라고 정의할 수 있다.
즉, 이러한 slot 구조를 통해서, 기지국은 데이터 전송 에러 발생시에 단말로 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 latency를 최소화할 수 있다.
이러한 self-contained slot 구조에서, 기지국과 단말은 송신 모드에서 수신모드로 전환하는 과정 또는 수신모드에서 송신모드로 전환하는 과정을 위한 시간 간격(time gap)이 필요하다.
이를 위하여 해당 slot 구조에서, DL에서 UL로 전환되는 시점의 일부 OFDM symbol이 보호 구간(guard period, GP)로 설정된다.
아날로그 빔포밍(Analog beamforming)
밀리미터 웨이브(Millimeter Wave, mmW)에서는 파장이 짧아져서 동일 면적에 다수 개의 안테나 element들의 설치가 가능해 진다.
즉, 30GHz 대역에서 파장은 1cm로써 4 x 4cm의 패널(panel)에 0.5 lambda(파장) 간격으로 2-dimension 배열 형태로 총 64(8x8)개의 안테나 element 설치가 가능하다.
그러므로, mmW에서는 다수 개의 안테나 element를 사용하여 beamforming(BF) 이득을 높여 커버리지를 증가시키거나, throughput을 높이려고 한다.
이 경우에 안테나 element 별로 전송 파워 및 위상 조절이 가능하도록 TXRU(Transceiver Unit)을 가지면 주파수 자원 별로 독립적인 beamforming이 가능하다.
그러나, 약 100개의 안테나 element 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다.
그러므로, 하나의 TXRU에 다수 개의 안테나 element를 mapping하고 아날로그 위상 천이기(analog phase shifter)로 beam의 방향을 조절하는 방식이 고려되고 있다.
이러한 analog beamforming 방식은 전 대역에 있어서 하나의 beam 방향만을 만들 수 있어 주파수 선택적 beamforming을 해줄 수 없는 단점을 갖는다.
이러한 이유로 인해, Digital BF와 analog BF의 중간 형태로 Q개의 안테나 element보다 적은 개수인 B개의 TXRU를 갖는 hybrid BF(HBF)를 고려할 수 있다.
HBF는 B개의 TXRU와 Q개의 안테나 element의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 beam의 방향은 B개 이하로 제한되게 된다.
도 6은 본 명세서에서 제안하는 방법이 적용될 수 있는 TXRU와 안테나 element의 연결 방식의 일례들을 나타낸다.
여기서, TXRU 가상화(virtualization) 모델은 TXRU의 출력 signal과 antenna elements의 출력 signal의 관계를 나타낸다.
도 6의 (a)는 TXRU가 sub-array에 연결된 방식의 일례를 나타낸다.
도 6의 (a)를 참고하면, 안테나 element는 하나의 TXRU에만 연결된다. 도 6의 (a)와 달리 도 6의 (b)는 TXRU가 모든 안테나 element에 연결된 방식을 나타낸다.
즉, 도 6의 (b)의 경우, 안테나 element는 모든 TXRU에 연결된다.
도 6에서, W는 analog phase shifter에 의해 곱해지는 위상 벡터를 나타낸다.
즉, W에 의해 analog beamforming의 방향이 결정된다. 여기서, CSI-RS antenna ports와 TXRU들과의 mapping은 1-to-1 또는 1-to-many 일 수 있다.
CSI feedback
3GPP LTE(-A) 시스템에서는, 사용자 기기(UE)가 채널상태정보(CSI)를 기지국(BS)으로 보고하도록 정의되어 있다.
여기서, 채널상태정보(CSI)라 함은 UE와 안테나 포트 사이에 형성되는 무선 채널(혹은 '링크'라고도 함)의 품질을 나타낼 수 있는 정보를 통칭한다.
예를 들어, 랭크 지시자(rank indicator, RI), 프리코딩행렬 지시자(precoding matrix indicator, PMI), 채널품질지시자(channel quality indicator, CQI) 등이 이에 해당한다.
여기서, RI는 채널의 랭크(rank) 정보를 나타내며, 이는 UE가 동일 시간-주파수 자원을 통해 수신하는 스트림의 개수를 의미한다. 이 값은 채널의 롱 텀 페이딩(fading)에 의해 종속되어 결정되므로, PMI, CQI보다 보통 더 긴 주기를 가지고 UE에서 BS로 피드백된다.
PMI는 채널 공간 특성을 반영한 값으로, SINR 등의 메트릭(metric)을 기준으로 UE가 선호하는 프리코딩 인덱스를 나타낸다.
CQI는 채널의 세기를 나타내는 값으로, 일반적으로 기지국(BS)가 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다.
3GPP LTE(-A) 시스템에서 기지국은 다수개의 CSI 프로세스를 UE에게 설정해 주고, 각 프로세스에 대한 CSI를 보고 받을 수 있다.
여기서, CSI 프로세스는 기지국으로부터의 신호 품질 특정을 위한 CSI-RS와 간섭 측정을 위한 CSI-interference measurement (CSI-IM) 자원으로 구성된다.
참조 신호 가상화(RS virtualization)
mmW에서 analog beamforming에 의해 한 시점에 하나의 analog beam 방향으로만 PDSCH 전송이 가능하다.
그러므로, 기지국은 특정 방향에 있는 일부 소수의 UE에게만 데이터를 전송하게 된다.
따라서, 필요에 따라서 안테나 포트별로 analog beam 방향을 다르게 설정하여 여러 analog beam 방향에 있는 다수의 UE들에게 동시에 데이터 전송을 수행할 수 있도록 한다.
도 7은 본 명세서에서 제안하는 방법이 적용될 수 있는 TXRU 별 서비스 영역의 다양한 일례들을 나타낸다.
도 7의 경우, 256 antenna element를 4등분하여 4개의 sub-array를 형성하고, 각 sub-array에 TXRU를 연결한 구조에 관한 것으로 이를 예로 들어 설명한다.
각 sub-array가 2-dimension 배열 형태로 총 64(8x8)의 안테나 element로 구성되면, 특정 analog beamforming에 의해 15도의 수평각 영역과 15도의 수직각 영역에 해당하는 지역을 커버할 수 있게 된다.
즉, 기지국이 서비스해야 되는 지역을 다수 개의 영역으로 나누어, 한번에 하나씩 서비스 하게 된다.
이하의 설명에서 CSI-RS antenna port와 TXRU는 1-to-1 mapping되었다고 가정한다.
따라서, antenna port와 TXRU는 이하의 설명에서 같은 의미를 갖는 것으로 해석될 수 있다.
도 7의 (a)와 같이, 모든 TXRU(안테나 포트, sub-array)가 동일 analog beamforming 방향을 가지면, 더 높은 resolution을 갖는 digital beam을 형성하여 해당 지역의 throughput을 증가시킬 수 있다.
또한, 해당 지역으로 전송 데이터의 랭크(rank)를 증가시켜 해당 지역의 throughput을 증가시킬 수 있다.
또한, 도 7의 (b)와 같이, 각 TXRU(안테나 포트, sub-array)가 다른 analog beamforming 방향을 가지면, 더 넓은 영역에 분포된 UE들에게 해당 subframe(SF)에서 동시에 데이터 전송이 가능해 진다.
도 7의 (b)에 도시된 바와 같이, 4개의 안테나 포트들 중에서 2개는 영역 1에 있는 UE1에게 PDSCH 전송을 위해 사용하고, 나머지 2개는 영역 2에 있는 UE2에게 PDSCH 전송을 위해 사용하도록 한다.
또한, 도 7의 (b)는 UE1에게 전송되는 PDSCH 1과 UE2에게 전송되는 PDSCH 2가 SDM(Spatial Division Multiplexing)된 예를 나타낸다.
이와 달리, 도 7의 (c)에서와 같이, UE1에게 전송되는 PDSCH 1과 UE2에게 전송되는 PDSCH 2가 FDM(Frequency Division Multiplexing)되어 전송될 수도 있다.
모든 안테나 포트를 사용하여 한 영역을 서비스 하는 방식과 안테나 포트들을 나누어 여러 영역을 동시에 서비스 하는 방식 중에서 cell throughput을 최대화(maximization)하기 위하여, UE에게 서비스하는 RANK 및 MCS에 따라서 선호되는 방식이 바뀔 수 있다.
또한, 각 UE에게 전송할 데이터의 양에 따라서도 선호되는 방식이 바뀌게 된다.
기지국은 모든 안테나 포트를 사용하여 한 영역을 서비스 할 때 얻을 수 있는 cell throughput 또는 scheduling metric을 계산하고, 안테나 포트를 나누어서 두 영역을 서비스 할 때 얻을 수 있는 cell throughput 또는 scheduling metric을 계산한다.
기지국은 각 방식을 통해 얻을 수 있는 cell throughput 또는 scheduling metric을 비교하여 최종 전송 방식을 선택하도록 한다.
결과적으로, SF-by-SF으로 PDSCH 전송에 참여하는 안테나 포트의 개수가 변동되게 된다.
기지국이 안테나 포트의 개수에 따른 PDSCH의 전송 MCS를 계산하고 scheduling 알고리즘에 반영하기 위하여, 이에 적합한 UE로부터의 CSI 피드백이 요구된다.
빔 참조 신호(beam reference signal, BRS)
빔 참조 신호(BRS)들은 하나 또는 그 이상의 안테나 포트들 p = {0, 1, ..., 7}에서 전송된다.
BRS의 시퀀스 생성과 관련하여, 참조 신호 시퀀스 rl(m)은 수학식 2에 의해 정의된다.
Figure 112019081920509-pct00044
수학식 2에서, l은 0 내지 13으로, OFDM 심볼 번호를 나타낸다. 또한, c(i)는 의사-랜덤 시퀀스(pseudo-random sequence)를 의미하며, 의사-랜덤 시퀀스 생성기는 각 OFDM 심볼의 시작에서 수학식 3으로 초기화될 수 있다.
Figure 112019081920509-pct00045
빔 조정 참조 신호(beam refinement reference signal)
또한, 빔 조정 참조 신호(beam refinement reference signal)와 관련하여, 빔 조정 참조 신호는 8 개의 안테나 포트들(p = 600 내지 607)까지의 안테나 포트를 통해 전송된다.
빔 조정 참조 신호의 시퀀스 생성과 관련하여, 참조 신호 rl,ns(m)은 수학식 4와 같이 생성된다.
Figure 112019081920509-pct00046
수학식 4에서, ns는 무선 프레임 내의 슬롯 번호를 나타내고, l은 슬롯 내의 OFDM 심볼 번호를 나타낸다. c(n)은 의사-랜덤 시퀀스를 의미하며, 의사-랜덤 시퀀스 생성기는 각 OFDM 심볼의 시작에서 수학식 5로 초기화된다.
Figure 112019081920509-pct00047
수학식 5에서,
Figure 112019081920509-pct00048
는 RRC 시그널링을 통해 단말에세 설정된다.
DL 위상 잡음 보상 참조 신호(DL Phase noise compensation reference signal)
xPDSCH(즉, NR 시스템에서 지원하는 PDSCH)와 연관된 위상 잡음 보상 참조 신호는 DCI 포맷에서의 시그널링을 통해 안테나 포트(들) p = 60 및/또는 p = 61에서 전송된다. 또한, 위상 잡음 보상 참조 신호는 해당 안테나 포트와 연관된 xPDSCH 전송에 대해서만 존재(present) 및/또는 유효(valid)하며, 해당 sPDSCH가 매핑된 물리 자원 블록들 및 심볼들에서만 전송된다. 또한, 위상 잡음 보상 참조 신호는 xPDSCH 할당에 해당하는 모든 심볼들에서 동일하다.
위상 잡음 보상 참조 신호의 시퀀스 생성과 관련하여, 참조 신호 시퀀스 r(m)은 수학식 6에 의해 정의된다.
Figure 112019081920509-pct00049
수학식 6에서, c(i)는 의사-랜덤 시퀀스를 의미하며, 의사-랜덤 시퀀스 생성기는 각 서브프레임의 시작에서 수학식 7로 초기화된다.
Figure 112019081920509-pct00050
수학식 7에서, xPDSCH 전송의 경우, nSCID는 xPDSCH 전송과 관련된 DCI 포맷에 의해 주어지며, 특별한 경우가 아니면 0으로 설정된다.
또한, 3D-MIMO(3-dimension multiple-input multiple-output) 또는 FD-MIMO(Full-dimension multiple-input multiple-output) 기술의 경우, 2 차원 평면 어레이 구조(2-dimensional planar array structure)를 갖는 능동 안테나 시스템(Active Antenna System, AAS)이 이용될 수 있다.
도 8은 본 명세서에서 제안하는 방법이 적용될 수 있는 2 차원 평면 어레이 구조를 이용하는 MIMO 시스템의 일 예를 나타낸다.
2 차원 평면 어레이 구조를 통해, 많은 수의 안테나 요소(antenna element)들이 가능한 기지국 형태의 요소들 내에서 패킹(packing)될 뿐만 아니라, 3 차원 공간에서의 적응적인 빔포밍(adaptive electronic) 능력을 제공할 수도 있다.
NR 시스템의 MIMO 설계와 관련하여, 기지국과 단말 간의 채널 상태 측정 및 보고를 위한 CSI 프레임워크(CSI framework)가 고려되고 있다.
본 명세서는, 이하 설명되는 CSI 프레임워크(또는 CSI 획득 프레임워크)에 기반한 CSI 보고 방법을 제안한다. 구체적으로, 본 명세서는, CSI 프레임워크의 CSI 보고 설정(CSI reporting setting)에 기반하여, CSI 측정(또는 추정)에 대한 측정 간격(또는 시점)을 결정하는 방법을 제안한다. 다시 말해, 본 명세서에서는, CSI 측정에 이용되는 CSI-RS(들) 및/또는 CSI 측정의 시간 구간(time gap)을 결정하는 방법이 설명된다.
우선, NR 시스템에서 고려되는 CSI 프레임워크에 대해 구체적으로 살펴본다.
CSI 프레임워크는 CSI 보고 설정(CSI reporting setting), 자원 설정(resource setting), 및 CSI 측정 설정(CSI measurement setting)을 이용하여 CSI 관련 절차를 규정하는 것을 의미할 수 있다. 이는, 레거시 LTE 시스템과 같은 다른 시스템들과 같이 CSI 관련 절차가 CSI 프로세스(CSI process)의 형태로만 규정된 것과는 다를 수 있다. 이를 통해, NR 시스템에서는 CSI 관련 절차는 채널 상황 및/또는 자원 상황에 맞추어 보다 유연한(flexible) 방식으로 수행될 수 있다.
즉, NR 시스템에서의 CSI 관련 절차에 대한 설정은, CSI 보고 설정, 자원 설정, 및 CSI 측정 설정 간의 조합에 의해 정의될 수 있다.
예를 들어, 단말은, N≥1 개의 CSI 보고 설정들, M≥1 개의 자원 설정들, 및 하나의 CSI 측정 설정으로 CSI 획득을 위해 설정될 수 있다. 여기에서, CSI 측정 설정은 N 개의 CSI 보고 설정들과 M 개의 자원 설정들 간의 링크 관계(link)에 대한 설정 정보를 의미할 수 있다. 또한, 여기에서, 자원 설정들은 참조 신호 설정들(RS settings) 및/또는 간섭 측정 설정들(Interference Measurement settings, IM settings)을 포함한다.
도 9는 본 명세서에서 제안하는 방법이 적용될 수 있는 NR 시스템에서 고려되는 CSI 프레임워크(CSI framework)의 일 예를 나타낸다.
도 9를 참고하면, CSI 프레임워크는 보고 설정(Reporting setting)(902), 측정 설정(Measurement setting)(904), 및 자원 설정(Resource setting)(906)으로 설정될 수 있다. 여기에서, 보고 설정은 CSI 보고 설정을 의미하고, 측정 설정은 CSI 측정 설정을 의미하며, 자원 설정은 CSI-RS 자원 설정을 의미할 수 있다.
도 9에 나타난 것과 같이, 보고 설정(902)은 N 개의(N≥1) 보고 설정들(예: Reporting setting n1, Reporting setting n2 등)로 구성될 수 있다.
또한, 자원 설정(906)은, M 개의(M≥1) 자원 설정들(예: Resource setting m1, Resource setting m2, Resource setting m3 등)로 구성될 수 있다. 여기에서, 각 자원 설정은 S 개의(S≥1) 자원 집합(resource set)을 포함할 수 있으며, 각 자원 집합은 K 개의(K≥1) CSI-RS 자원을 포함할 수 있다.
또한, 측정 설정(904)는, 보고 설정과 자원 설정 간의 링크(link) 관계 및 해당 링크에 대해 설정된 측정 유형을 나타내는 설정 정보를 의미할 수 있다. 이 경우, 각 측정 설정은 L 개의(L≥1) 링크들을 포함할 수 있다. 예를 들어, 측정 설정은, Reporting setting n1과 Resource setting m1 간의 링크(Link l1) 에 대한 설정 정보, Reporting setting n1과 Resource setting m2 간의 링크(Link l2) 에 대한 설정 정보 등을 포함할 수 있다.
이 때, Link l1 및 Link l2 각각은 채널 측정용 링크 또는 간섭 측정용 링크 중 어느 하나로 설정될 수 있다. 뿐만 아니라, Link l1 및/또는 Link l2는 레이트 매칭(rate matching) 또는 다른 용도로 설정될 수도 있다.
이 경우, 하나의 CSI 측정 설정 내에서 하나 또는 그 이상의 CSI 보고 설정들이 L1(Layer 1) 또는 L2(Layer 2) 시그널링을 통해 동적으로(dynamically) 선택될 수 있다. 또한, 적어도 하나의 자원 설정으로부터 선택된 하나 또는 그 이상의 CSI-RS 자원 집합들 및 적어도 하나의 CSI-RS 자원 집합으로부터 선택된 하나 또는 그 이상의 CSI-RS 자원들도 L1 또는 L2 시그널링을 통해 동적으로 선택될 수 있다.
이하, NR 시스템에서 고려되는 CSI 프레임워크를 구성하는 CSI 보고 설정, 자원 설정(즉, CSI-RS 자원 설정), 및 CSI 측정 설정에 대해 살펴본다.
CSI 보고 설정(CSI reporting setting)
먼저, CSI 보고 설정은 단말이 기지국에 대해 수행할 CSI 보고의 유형, 해당 CSI 보고에 포함되는 정보 등을 설정하기 위한 정보를 의미할 수 있다.
예를 들어, CSI 보고 설정은, 시간 영역의 동작 유형(time-domain behavior type), 주파수 세분성(frequency granularity), 보고될 CSI 파라미터(예: PMI(Precoding Matrix Indicator), RI(Rank Indicator), CQI(Channel Quality Indicator)), CSI 유형(예: CSI Type 1 또는 2, 높은 복잡도의 CSI, 낮은 복잡도의 CSI), 코드북 부분 집합 제한(codebook subset restriction)을 포함하는 코드북 설정, 측정 제한(measurement restriction) 설정 등을 포함할 수 있다.
본 명세서에서, 시간 영역의 동작 유형은 비주기적(aperiodic) 동작, 주기적(periodic) 동작, 또는 반-지속적(semi-persistent) 동작을 의미할 수 있다.
이 때, CSI 보고 설정에 대한 설정 파라미터(들)는 상위 계층 시그널링(higher layer signaling)(예: RRC 시그널링)을 통해 설정(또는 지시)될 수 있다.
자원 설정(resource setting)
다음으로, 자원 설정은 CSI 측정 및 보고를 위해 이용할 자원을 설정하기 위한 정보를 의미할 수 있다. 예를 들어, 자원 설정은, 시간 영역의 동작 유형, RS의 유형(예: NZP CSI-RS(Non-Zero Power CSI-RS), ZP CSI-RS(Zero Power CSI-RS), DMRS 등), K 개의 자원들로 구성된 자원 집합 등을 포함할 수 있다.
앞서 언급한 바와 같이, 각 자원 설정은 하나 이상의 자원 집합들을 포함할 수 있으며, 각 자원 집합은 하나 이상의 자원들(예: CSI-RS 자원들)을 포함할 수 있다. 또한, 자원 설정은 채널 측정 및/또는 간섭 측정을 위한 신호에 대한 설정을 포함할 수 있다.
일례로, 각 자원 설정은 S 개의 자원 집합(예: CSI-RS 자원 집합)에 대한 설정 정보를 포함하며, 각 자원 집합에 대한 K 개의 자원들에 대한 설정 정보도 포함할 수 있다. 이 때, 각 자원 집합은 단말에 대해 설정된 모든 CSI-RS 자원들의 풀(pool)로부터 다르게 선택된 집합에 해당할 수 있다. 또한, 각 자원에 대한 설정 정보는, 자원 요소로의 매핑, 포트의 수, 시간 영역의 동작 유형 등에 관한 정보를 포함할 수 있다.
또는, 다른 예로, 각 자원 설정은 S 개의 CSI-RS 자원에 대한 설정 정보 및/또는 각 CSI-RS 자원에 대해 같거나 작은 수의 포트들의 K 개의 CSI-RS 자원에 대한 설정 정보를 포함할 수도 있다.
이 때, N-포트 CSI-RS 자원의 CSI-RS RE 매핑 패턴은 동일하거나 더 적은 포트 수(예: 2, 4, 또는 8)의 CSI-RS 자원들의 하나 또는 그 이상의 CSI-RS 매핑 패턴으로 구성될 수 있다. 여기에서, CSI-RS의 RS 매핑 패턴은 슬롯 내에서 정의될 수 있으며, 다수의 설정 가능한 연속적/비연속적 OFDM 심볼들에 걸칠(span) 수 있다.
이 경우, 자원 설정에 대한 설정 파라미터(들)는 상위 계층 시그널링(예: RRC 시그널링)을 통해 설정될 수 있다.
CSI 측정 설정(CSI measurement setting)
다음으로, CSI 측정 설정은 단말이 CSI 보고를 위하여 특정 CSI 보고 설정과 이에 매핑된 특정 자원 설정에 대해 어떠한 측정을 수행할지를 나타내는 설정 정보를 의미할 수 있다. 예를 들어, CSI 측정 설정은 CSI 보고 설정과 자원 설정 간의 링크 관계에 대한 정보를 포함하며, 각 링크(link)에 대한 측정 유형을 나타내는 정보를 포함할 수 있다. 또한, 측정 유형은 채널 측정(channel measurement), 간섭 측정(interference measurement), 레이트 매칭(rate matching) 등을 의미할 수 있다.
일례로, CSI 측정 설정은, CSI 보고 설정을 나타내는 정보, 자원 설정을 나타내는 정보, CQI의 경우 기준 전송 방식(reference transmission scheme)에 대한 설정을 포함할 수 있다. 이와 관련하여, 단말은 L≥1 개의 CSI 측정 설정을 지원할 수 있으며, L 값은 해당 단말의 능력에 따라 설정될 수 있다.
이 때, 하나의 CSI 보고 설정은 하나 또는 그 이상의 자원 설정들에 연결될 수 있으며, 다수의 CSI 보고 설정이 동일한 자원 설정에 대해 연결될 수도 있다.
이 경우, CSI 측정 설정에 대한 설정 파라미터(들)는 상위 계층 시그널링(예: RRC 시그널링)을 통해 설정될 수 있다.
또한, 상술한 CSI 보고 설정, 자원 설정, 및 CSI 측정 설정과 관련하여, 시간 영역에 동작 유형에 따른 합의 사항은 다음과 같다.
먼저, 주기적 CSI-RS의 경우(즉, CSI-RS의 전송이 주기적으로 수행되는 경우), 반-지속적 CSI 보고는 MAC CE 및/또는 하향링크 제어 정보(Downlink Control Information, DCI)에 의해 활성화(activation)/비활성화(deactivation)될 수 있다. 이와 달리, 비주기적 CSI 보고는 DCI에 의해 트리거링될 수 있으며, 다만 이 경우, MAC CE로 설정된 추가적인 시그널링이 필요할 수도 있다.
다음으로, 반-지속적 CSI-RS의 경우(즉, CSI-RS의 전송이 반-지속적으로 수행되는 경우), 주기적 CSI 보고는 지원되지 않는다. 반면, 반-지속적 CSI 보고는 MAC-CE 및/또는 DCI에 의해 활성화/비활성화될 수 있으며, 반-지속적 CSI-RS는 MAC-CE 및/또는 DCI에 의해 활성화/비활성화될 수 있다. 또한, 이 경우, 비주기적 CSI 보고는 DCI에 의해 트리거링될 수 있으며, 반-지속적 CSI-RS는 MAC-CE 및/또는 DCI에 의해 활성화/비활성화될 수 있다.
마지막으로, 비주기적 CSI-RS의 경우(즉, CSI-RS의 전송이 비주기적으로 수행되는 경우), 주기적(및 반-지속적) CSI 보고는 지원되지 않는다. 반면, 비주기적 CSI 보고는 DCI에 의해 트리거링될 수 있으며, 비주기적 CSI-RS는 DC 및/또는 MAC-CE에 의해 트리거링될 수 있다.
이하, 본 명세서에서 설명되는 실시 예들은 설명의 편의를 위하여 구분된 것일 뿐, 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다. 예를 들어, 이하 제1 실시 예 내지 제3 실시 예에서 설명되는 방식이 제4 실시 예에서 설명되는 방식에 적용될 수 있으며, 그 반대의 경우도 가능하다.
이하, 상술한 자원 설정(즉, CSI-RS 자원 설정), CSI 측정 설정, 및 CSI 보고 설정에 대해 고려될 수 있는 설정 방법들에 대해 살펴본다.
제1 실시 예 - 자원 설정(resource setting)을 위한 방법
먼저, 상술한 자원 설정과 관련하여, CSI-RS 자원 설정은 NZP CSI-RS 및 ZP CSI-RS와 같은 두 가지 유형의 RS 유형들을 포함할 수 있다(참고로, 본 명세서에서 언급되는 CSI-RS는 NZP CSI-RS 및 ZP CSI-RS 모두에 적용될 수 있다).
CSI 측정 설정 내에서 특정 자원의 용도가 각각 지시되기 때문에, NZP CSI-RS 자원 및 ZP CSI-RS 자원 모두가 해당 자원 설정 내에서 설정될 수 있다. 여기에서, ZP CSI-RS는 간섭 추정(즉, 간섭 측정(interference measurement)) 용도 또는 데이터 채널(예: NR-PDSCH)의 레이트 매칭(rate matching) 용도로 적용될 수 있다. 또한, NZP CSI-RS는 채널 추정(즉, 채널 측정(channel measurement)) 용도뿐만 아니라, 간섭 추정 용도로도 적용될 수 있다.
또한, 자원 설정에 포함되는 NZP CSI-RS는 CSI 획득 및 빔 관리(beam management) 모두에 대해 적용될 수 있다.
구체적으로, 빔 관리를 위한 CSI-RS 자원들도, 아날로그 빔 선택 및 디지털 빔 선택에 대한 통합 운용(unified operation)을 위한 자원 설정에 포함될 수 있다. CSI 획득의 주요 기능 중 하나는 PMI 및 CRI(CSI-TE Resource Indication)와 같은 단말 피드백 정보를 통한 빔 선택이다. DL 빔 관리의 목적도 빔(들)을 선택하는 것이며, TRP 전송 빔은 단말 피드백 정보를 통해 선택될 수 있다. 단지 DL 빔 관리의 추가 기능이 단말 수신 빔을 선택하는 것이지만, 단말 수신 빔 선택은 CSI-RS 심볼 또는 서브 심볼을 통해 다수의 반복된 송신 빔을 전송함에 따라 간단하게 지원될 수 있다. 결과적으로, 상술한 CSI 프레임워크는 빔 관리 목적으로도 이용될 수 있다.
이와 같은 자원 설정에 대하여, 비주기적 CSI-RS, 반-지속적 CSI-RS, 및 주기적 CSI-RS와 같은 세 가지의 시간 영역의 동작 유형들이 지원될 수 있다. 이 경우, 상술한 세 가지의 시간 영역의 동작 유형들은 NZP CSI-RS 및 ZP CSI-RS 모두에 대해 공통적으로 적용될 수 있다. 이와 관련하여, 비주기적 IMR(Interference Measurement Resource) 및 반-지속적 IMR은, 동적인(dynamic) TDD 동작 및 NR 시스템의 순방향 호환성(forward compatibility)을 고려할 때, 높은 간섭 추정 정확도와 시스템 설계에 대한 높은 유연성을 제공할 수 있다.
또한, 자원 설정에는, CSI-RS 타이밍 오프셋(이하, 'X'로 지칭함.)이 포함될 수 있다. 여기에서, X는 CSI-RS의 전송에 대한 트리거링/활성화/비활성화 시점(timing, instance)과 실제 CSI-RS의 전송 시점 간의 시간 간격(time gap)을 지칭할 수 있다.
이 때, X는 슬롯의 수(즉, 슬롯 단위) 또는 심볼의 수(즉, 심볼 단위)의 형태로 표현될 수 있다. 일례로, DCI에 의해 비주기적 CSI-RS 트리거링이 수행되는 경우, X는 '0'으로 설정될 수 있다.
본 발명의 다양한 실시 예들에서, X가 네트워크(즉, 기지국)에 의해 설정되면, X의 후보 값들은 상위 계층 메시지(예: RRC 메시지)에 의해 지시되며, CSI 프레임워크 상에서 자원 설정에 포함될 수 있다. 여기에서, X는 설정 가능하도록 지원되는 경우가 가정된다. 여기에서, X의 후보 값들은, 일정 기준에 따라(또는 규격(standard)에 따라) 미리 설정된 X 값들을 의미할 수 있다. 예를 들어, X가 특정 값(예: 0)으로 설정되는 것이 아닌, 상황(또는 서비스(service))에 따라 다르게 이용될 수 있는 값들(예: 0, 1, 2)로 설정될 수 있다.
구체적인 예로, 단말은 기지국으로부터 빔 관리를 위한 X 값으로 '1'을 지시 받을 수 있다. 이에 따라, CSI-RS의 전송이 특정 시점에 트리거링된 경우, 해당 단말은 특정 시점을 기준으로 '1'에 해당하는 시간 간격(예: 2 슬롯) 이후에 CSI-RS가 전송될 것임을 인식할 수 있다.
또는, 구체적인 예로, 짧은 지연(latency)를 요구하는 서비스(예: URLLC(Ultra-Reliable and Low Latency Communications))에서는 X 값들이 다른 서비스에 비해 짧게 설정될 수도 있다.
이 경우, 채널 측정 또는 간섭 측정을 위해 적용할 상기 X 값은, L1 또는 L2 시그널링(예: DCI 또는 MAC-CE)과 같은 동적 시그널링(dynamic signaling)을 통해 지시될 수도 있다. 특히, 상기 X 값에 대한 지시는 CSI-RS 트리거링을 위한 MAC-CE 및/또는 DCI에 포함되어 함께 전달될 수 있다. 즉, 해당 X 값은 CSI-RS에 대한 트리거링 정보(예: 트리거링되는 CSI-RS 자원 설정)와 함께 전달될 수 있다.
또한, CSI-RS 트리거링에 대해, RRC 시그널링으로 설정된 자원 설정에서 MAC-CE를 통해 후보 자원을 선택한 후, DCI로 최종 자원을 선택하는 계층적 시그널링(hierarchical signaling) 구조가 적용될 수도 있다. 이 때, 상기 X 값은 MAC-CE 또는 DCI 중 어느 하나에 포함될 수 있다. 또는, MAC-CE를 통해 후보 군을 선택한 후, DCI를 통해 최종 X 값이 설정(또는 지시)될 수도 있다. 즉, 상기 X 값은, RRC 시그널링, MAC-CE, 및/또는 DCI를 이용하여 계층적으로 단말에게 지시될 수 있다.
또한, 상기 X 값은, 특정 상황(예: CSI-RS 트리거링과 CSI 보고 트리거링이 동시에 수행되는 경우)에서, 본 명세서에서 제안하는 CSI 측정 간격을 결정하는 방법의 적용 여부를 설정하기 위해 이용될 수 있다. 이에 대한 구체적인 내용은, 후속하는 도 12 부분에서 구체적으로 설명된다.
제2 실시 예 - CSI 측정 설정(CSI measurement setting)을 위한 방법
다음으로, 상술한 CSI 측정 설정과 관련하여, NR 시스템에 적용될 수 있는 본 명세서의 실시 예에 따르면, 채널 측정을 위한 비주기적/반-지속적/주기적 자원 설정과 간섭 측정을 위한 비주기적/반-지속적/주기적 자원 설정 간의 임의의 조합을 지원하는 유연한 측정 설정(flexible measurement setting)이 가능할 수 있다.
예를 들어, 반-지속적 CSI 보고 또는 주기적 CSI 보고를 고려할 때, L1/L2 제어 시그널링을 회피 또는 최소화하기 위하여, 반-지속적 또는 주기적 간섭 측정용 자원(예: ZP CSI-RS 및 NZP CSI-RS)이 활용될 수 있다. 또한, 비주기적 CSI-RS 설정은 비주기적 CSI 보고를 위한 반-지속적 또는 주기적 간섭 측정용 자원과 연관될 수 있다. 반대로, 반-지속적 또는 주기적 CSI_RS는 비주기적 CSI 보고를 위한 비주기적 간섭 측정용 자원과 연관될 수 있다.
결론적으로, 측정 설정은, 비주기적/반-지속적/지속적 CSI 보고, 채널 측정을 위한 비주기적/반-지속적/지속적 자원 설정(예: NZP CSI-RS), 및 간섭 측정을 위한 비주기적/반-지속적/지속적 자원 설정(예: ZP CSI-RS 및 NZP CSI-RS) 간의 유연한 매핑 방식을 지원할 필요가 있다.
또한, 본 발명의 다양한 실시 예들에서, CSI 측정 설정 내의 특정 자원(즉, 자원 설정)이 데이터 채널(예: NR-PDSCH)의 복조 시의 레이트 매칭 용도로 설정될 수도 있다. 예를 들어, 레거시 LTE 시스템의 ZP CSI-RS와 같이, 해당 CSI-RS 자원이 주는(또는 받는) 간섭이 큰 것으로 판단되는 경우, 기지국은 해당 자원을 널링(nulling)하는 용도로 설정할 수 있다. 이를 통해, 해당 지시를 받는 단말의 채널 측정 또는 간섭 측정 시에 발생 가능한 간섭 정도가 효율적으로 제어될 수 있다.
제3 실시 예 - CSI 보고 설정(CSI reporting setting)을 위한 방법
다음으로, 상술한 CSI 보고 설정과 관련하여, NR 시스템에 적용될 수 있는 본 명세서의 실시 예는, 비주기적 CSI 보고, 반-지속적 CSI 보고, 및 주기적 CSI 보고를 지원할 수 있다.
이 경우, 상술한 CSI 측정 설정 구성(CSI measurement setting configuration)에 따라 적절한 CSI 보고 내용(CSI reporting contents)이 정의될 필요가 있다.
우선, CSI 획득을 위한 CSI-RS 자원(들)이 특정 측정 설정에서 지시되는 경우, 해당 CSI 보고 내용은, LTE 시스템(특히, eFD-MIMO WI)과 같은 일부 시스템에서 지원되는 기존 CSI 보고 유형들일 수 있다.
이와 달리, 빔 관리를 위한 CSI-RS 자원(들)이 특정 측정 설정에서 지시되는 경우, 해당 CSI 보고 내용은, DL 빔 관리를 지원하기 위한 필수 보고 내용에 기반하여 결정될 수 있다. CSI 자원 내의 각 CSI-RS 포트는 상이한 아날로그 빔에 대응할 수 있으므로, 해당 CSI 보고 내용은 적합한 빔 방향 정보(beam direction information)를 보고하기 위한 쌍(pair)으로 된 정보(예: {CRI, port index})일 수 있다. 빔 관련 정보 이외에도, RSRP와 같은 빔 이득 관련 메트릭(beam gain related metric)고 함께 보고될 필요가 있다.
또한, CSI 보고 설정에는, CSI 보고 오프셋(CSI reporting offset)(이하, 'Y'로 지칭함.)이 포함될 수 있다. 여기에서, Y는 CSI 보고에 대한 트리거링/활성화/비활성화 시점과 실제 CSI 보고 시점(CSI-RS reporting instance or timing) 간의 시간 간격을 지칭할 수 있다.
일례로, NR 시스템에서 고려되는 DL-UL 혼합 슬롯 구조(DL-UL mixed slot structure)(예: self-contained 슬롯 구조)의 경우, CSI 보고가 트리거링된 슬롯에서 CSI 보고가 바로 수행될 수 없는 경우가 발생될 수 있다. 이러한 경우를 고려하면, CSI 보고가 트리거링된 시점과 실제 단말이 CSI 보고를 수행하는 시점 간의 간격을 나타내는 Y 값이 설정될 필요가 있다.
상기 Y 값은 슬롯의 수(즉, 슬롯 단위) 또는 심볼의 수(즉, 심볼 단위)로 표현될 수 있으며, 시스템 상으로 미리 설정되어 있거나, 또는 네트워크(예: 기지국)에 의해 설정(또는 지시)될 수도 있다.
이 때, 상기 Y에 대한 후보 값(들)은, CSI 보고 설정에 포함된 정보에 따라 지원될 수 있다. 예를 들어, 상기 Y에 대한 후보 값들은, CSI 파라미터, CSI 유형(예: CSI type 1 또는 2), 코드북 설정(codebook configuration)(예: 코드북 크기), 최근 CSI-RS 전송 시점(nearest CSI-RS transmission timing), DL-UL 슬롯 구조, 단말 능력, 해당 CSI 보고 설정과 관련된 CSI 산출 횟수 등에 기반하여 설정될 수 있다.
상기 Y에 대한 후보 값들이 상술한 정보에 기반하여 설정되는 경우, Y 값에 대한 명시적인(explicit) 시그널링은 불필요할 수 있다. 물론, 이 경우에도 Y 값에 대한 시그널링이 수행될 수도 있으며, Y 값에 대한 하한 값(lower limit value)이 상술한 정보에 기반하여 설정될 수도 있다.
제4 실시 예 - CSI 보고 설정의 파라미터 값을 이용한 유연한(flexible) CSI 측정 및 보고 방법
단말의 CSI 측정 및 보고와 관련하여, 상기 Y 값과 별개로, 해당 단말이 실제 CSI-RS를 수신한 시점을 기준으로 CSI 보고를 수행하기 위해 요구되는 최소 시간 간격(이하 'Z'로 지칭함.)이 고려될 수 있다.
이러한 최소 시간 간격 Z는, 단말이 기지국(예: eNB)으로부터 CSI-RS를 수신하지만 지시된(즉, 트리거링된) CSI 보고 시점보다 앞선 CSI-RS에 대한 측정을 수행할 수 없는 시나리오에서 발생할 수 있는 문제를 완화하기 위해 구현될 수 있다.
여기에서, 상기 최소 시간 간격 Z는, 단말이 기지국으로부터 수신된 CSI-RS를 이용하여 CSI를 보고하기 위해 요구되는 처리 시간 간격을 의미할 수 있다. 예를 들어, 상기 Z는, CSI-RS 전송 시점 대비 CSI 보고 시점 간의 최소 시간 간격(minimum time gap)에 해당할 수 있다. 또한, 상기 Z는, CSI 보고에 대한 측정 값을 생성하기 한 측정 구간(measurement interval)(또는 측정 간격(measurement gap))을 설정하는 간격 정보(gap information)에 해당할 수도 있다.
일례로, 단말이 기지국에 의해 트리거링된 CSI 보고를 수행할 시점을 기준으로 상기 최소 시간 간격 Z 내(예: Z 윈도우(Z window) 내)에서 CSI-RS를 수신하는 경우, 해당 단말은 상기 CSI-RS에 대해 정확한 측정을 수행할 시간이 불충분할 수 있고, 이에 따라 해당 CSI 보고에서 상기 CSI-RS는 이용될 수 없을 수 있다.
이와 같은 경우를 완화하기 위해, 상기 Z 값은 해당 단말에서 CSI 보고에 요구되는 CSI 산출 시간(즉, CSI 처리 시간(CSI processing time))을 고려하여 설정될 수 있다. 예를 들어, 상기 Z 값은 CSI 산출 처리 시간을 결정하는 정보 요소들에 따라 설정될 수 있다.
구체적인 예로, 상기 Z 값은, CSI 보고 설정 파라미터들(예: CSI 파라미터, CSI 유형, CSI 코드북 유형, 코드북 크기 및 코드북 집합(또는 서브집합) 제한을 포함하는 코드북 설정 정보, CQI 및 PMI에 대한 주파수 세분성(frequency granularity) 등) 및 단말의 능력(UE capability)(예: UE computation capability)과 같은 다양한 파라미터(들)에 따라 설정될 수 있다.
일례로, 단말이 이용할 코드북이 서브집합으로 설정되고(즉, 그룹화되고) 특정 코드북 서브집합(들)으로 제한되는 경우, 상기 Z 값은 작게 설정될 수 있다. 이는, 코드북 서브집합이 제한되면, 해당 단말이 CSI 측정을 수행하기 위하여 코드북을 선택하기 위해 소요되는 시간이 감소되기 때문이다. 즉, 단말이 모든 코드북을 다 적용하지 않고, 특정 범위의 코드북만 이용하도록 설정되는 경우에는 네트워크(또는 기지국)에 의해 상기 Z 값이 작게 설정될 수 있다.
또한, 상기 Z 값은, L1 또는 L2 시그널링을 통해 동적으로 선택되는 CSI 보고 설정의 수에 따라 결정될 수도 있다. 또한, CSI 보고 설정에 대한 시간 영역의 동작 유형에 따라 요구 시간이 달라질 수 있다. 구체적으로, 주기적 CSI 보고 설정이 두 개 지정된 경우와 비주기적(또는 반-지속적) CSI 보고 설정이 두 개 지정된 경우에 Z 값이 서로 다르게 설정될 수 있다. 또한, 주기적 CSI 보고 설정이 한 개 지정된 경우와 두 개 지정된 경우에 대해 Z 값이 서로 다르게 설정될 수도 있다. 즉, CSI 보고 설정이 단말에 대해 어떻게 설정되느냐에 따라 Z 값이 다르게 설정될 수 있다.
상기 Z 값은, 기지국(또는 네트워크)에 의해 단말 별로 설정 또는 지시될 수 있다. 예를 들어, 상기 Z 값은 상위 계층 시그널링(예: RRC 시그널링)을 통해 전달되는 CSI 보고 설정 정보에 포함될 수 있다. 다른 예를 들어, 상기 Z 값은, L1 또는 L2 시그널링(즉, DCI 또는 MAC-CE)을 통해 동적으로 지시되는(또는 트리거링되는) CSI 보고 설정과 함께 전달될 수도 있다.
이 경우, 단말은 상기 Z 값을 자신의 능력(capability)으로서 기지국으로 보고할 수 있다. 단말이 Z 값에 대한 단말 능력을 기지국으로 보고함에 따라, 기지국은 해당 단말의 능력을 고려하여 Z 값을 설정할 수 있다. 즉, Z 값은 단말의 능력 보고에 의해 암시적인(implicit) 방법으로 설정될 수도 있다.
이하, 본 명세서는, 상술한 Z 값(즉, CSI-RS 전송 시점을 기준으로 CSI 보고 수행까지 요구되는 시간을 나타내는 값)을 고려하여 CSI 측정 및 보고를 수행하는 구체적인 방법을 제안한다.
단말이 기지국으로부터 CSI 보고를 지시 받은 경우(즉, CSI 보고가 트리거링된 경우), CSI 보고 시점 빼기 Z 값 이후 시점에서 CSI-RS가 설정(즉, 전송 설정)되거나, 트리거링(triggering)되거나, 또는 활성화될 수 있다. 이 경우, 단말은 해당 CSI 보고를 위한 채널 또는 간섭 추정 값을 산출할 때, 해당 CSI-RS로부터 산출된 추정 값(또는 측정 값)을 무시할 수 있다. 여기에서, CSI 보고를 위해 이용되는 CSI-RS 자원은 해당 CSI 보고에 대한 기준 자원(reference resource)으로 지칭될 수 있으며, Z 값은 기준 자원을 설정하기 위한 파라미터일 수 있다.
다만, 이후 시점에서 CSI 보고(즉, 추가적인 CSI 보고)가 설정되며, 해당 보고 시점 빼기 Z 값 보다 이전에 상기 CSI-RS가 존재하는 경우, 해당 시점(즉, 미래 시점)에서의 CSI 보고에서는 이전에 무시되었던 CSI-RS로부터의 추정 값이 이용될 수 있다.
다시 말해, 기지국에 의해 트리거링된 CSI 보고 시점을 기준으로 Z 값에 해당하는 이전(previous) 시간 간격 내에 존재하는 CSI-RS는 해당 CSI 보고에 이용될 수 없다. 예를 들어, CSI 보고 트리거링이 n 번째 슬롯(#n slot)에서 지시되고, CSI 보고 시점은 n+8 번째 슬롯(#n+8 slot)에서 수행되도록 지시되며, Z 값은 2 슬롯(2 slot)으로 지시되는 경우를 가정한다. 이 경우, 단말은, CSI 보고 시점을 기준으로 Z 값에 해당하는 이전 시간 간격 내(즉, #n+6 slot 부터 #n+8 slot)에서 수신되는 CSI-RS에 의해 추정된 값을 무시하도록 설정될 수 있다.
도 10은 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI 측정 및 보고를 수행하는 방법의 일 예를 나타낸다. 도 10은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 10을 참고하면, 단말 및 기지국(즉, TRP)은 상술한 CSI 프레임워크에 기반하여 CSI 측정 절차 및 보고 절차를 수행하는 경우가 가정된다.
도 10의 (a)는 CSI 측정 및 보고의 전반적인 절차 및 이와 관련된 설정 값들(즉, X 값, Y 값, 및 Z 값)을 나타낸다.
도 10의 (a)에 나타난 'X'는 상술한 CSI-RS의 전송에 대한 트리거링/활성화/비활성화 시점과 실제 CSI-RS의 전송 간의 시간 간격을 나타낸다. 일례로, CSI-RS #1의 경우, 'X'는 단말이 해당 CSI-RS의 트리거링에 대한 PDCCH(즉, DCI)를 수신한 시점부터 해당 CSI-RS를 실제 수신한 시점까지의 간격을 의미할 수 있다.
또한, 도 10의 (a)에 나타난 'Y'는 상술한 CSI 보고에 대한 트리거링/활성화/비활성화 시점과 실제 CSI 보고 시점 간의 시간 간격을 나타낸다. 일례로, 'Y'는 단말이 CSI 보고에 대한 트리거링 정보를 포함하는 PDCCH(즉, DCI)를 수신한 시점부터 해당 CSI 보고를 직접 수행하는 시점까지의 간격을 의미할 수 있다.
또한, 상술한 바와 같이, Z 값은 다양한 정보 요소들에 따라 설정될 수 있으며, 일례로, 일정 기준(즉, 미리 설정된 기준)에 따라 light CSI(즉, 낮은 복잡도의 CSI)를 위한 'Z1'과 heavy CSI(즉, 높은 복잡도의 CSI)를 위한 'Z2'로 설정될 수 있다.
여기에서, light CSI는 단말에 의한 CSI 처리 시간이 적게 설정되는 CSI를 의미하고, 반대로, heavy CSI는 CSI 처리 시간이 크게 설정되는 CSI를 의미할 수 있다. 예를 들어, CSI 측정 및 보고와 관련된 안테나 포트 수가 N 개 이상인 CSI는 heavy CSI에 해당하고, N 개 미만인 CSI는 light CSI에 해당할 수 있다.
이 때, 트리거링된 CSI 보고 시점을 기준으로 Z 간격 이내에 수신되는 CSI-RS에 대한 추정 값(즉, CSI-RS를 이용하여 측정된 채널 또는 간섭 추정 값)은, CSI 보고를 위한 정보에 포함되지 않는다. 즉, Z 값은 측정 윈도우(measurement window)로 지칭될 수 있으며, 해당 측정 윈도우 내에서 수신된 CSI-RS에 대한 추정 값은 CSI 보고에서 무시될 수 있다.
예를 들어, Z1에 대한 CSI 보고가 트리거링된 경우, 단말은 이전에 수신된 CSI-RS #0에 대한 추정 값 및 CSI-RS #1에 대한 추정 값을 CSI 보고 정보에 포함시킬 수 있다. 이와 달리, Z2에 대한 CSI 보고가 트리거링된 경우, 단말은 CSI-RS #1에 대한 추정 값은 무시하고, CSI-RS #0에 대한 추정 값만을 CSI 보고 정보에 포함시킬 수 있다.
도 10의 (b)는 상술한 단말의 동작과 관련하여 간략화된 예시를 나타낸다. 도 10의 (b)를 참고하면, CSI 보고 시점(CSI reporting instance)를 기준으로 Z 값 이전에 수신된 CSI-RS (1002)는 해당 CSI 보고에 이용되고, 이후에 수신된 CSI-RS (1004)는 해당 CSI 보고에서 무시될 수 있다.
상술한 단말의 동작은, 비주기적 CSI-RS 및/또는 비주기적 CSI 보고가 트리거링된 경우뿐만 아니라, 주기적 CSI-RS 및/또는 주기적 CSI 보고, 반-지속적 CSI-RS 및/또는 반-지속적 CSI 보고의 경우에도 동일하게 적용될 수 있다. 다시 말해, 상술한 단말의 동작은, CSI-RS 트리거링(즉, CSI-RS 전송 트리거링) 및 CSI 보고 트리거링의 시간 영역의 동작 유형에 관계없이 적용될 수 있다.
또한, 본 발명의 다양한 실시 예들에서, CSI-RS 트리거링과 CSI 보고 트리거링이 동일 시점(예: 동일 슬롯 또는 동일 심볼)에 존재하는 경우, 상술한 단말의 동작 여부를 일정 기준에 따라 결정하는 방법이 고려될 수 있다. 여기에서, 상기 일정 기준은 상술한 X 값, Y 값, 및 Z 값을 이용하여 설정될 수 있다. 특히, Z 값은 Y 값과 X 값 사이에서 보장될 필요가 있다.
예를 들어, Y 값과 X 값의 차이 값(difference value)과 Z 값의 비교를 통해 상술한 단말의 동작 여부가 결정될 수 있다.
도 11은 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI 측정 및 보고를 수행하는 방법의 다른 예를 나타낸다. 도 11은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 11의 내용 중 도 10의 내용과 중첩되는 구성 및 동작에 대한 설명은 생략된다. 도 11의 경우, 도 10에 나타난 것과 달리, CSI-RS 트리거링(구체적으로, CSI-RS #1에 대한 트리거링)과 CSI 보고 트리거링이 PDCCH(즉, DCI)를 통해 동시에 지시될 수 있다. 이 경우, 두 개의 트리거링 지시들이 하나의 DCI를 통해 지시되거나, 또는 두 개의 DCI(즉, 각각의 DCI)를 통해 지시될 수도 있다.
이 때, Y 값과 X 값 간의 차이 값(Y - X 값)과 CSI 보고에 대해 설정된 Z 값의 비교를 통해, 특정 CSI-RS에 대한 추정 값이 CSI 보고 정보에 포함될지 여부가 결정될 수 있다.
예를 들어, CSI-RS #1의 경우에 대해, Z1 값은 Y - X 값보다 작고, Z2 값은 Y - X 값보다 큰 경우를 가정한다. 이 때, Z1에 대한 CSI 보고가 트리거링된 경우, 단말은 이전에 수신된 CSI-RS #0에 대한 추정 값 및 CSI-RS #1에 대한 추정 값을 CSI 보고 정보에 포함시킬 수 있다. 이와 달리, Z2에 대한 CSI 보고가 트리거링된 경우, 단말은 CSI-RS #1에 대한 추정 값은 무시하고, CSI-RS #0에 대한 추정 값만을 CSI 보고 정보에 포함시킬 수 있다.
다시 말해, Z 값이 Y - X 값보다 크게 설정된 경우, 해당 CSI-RS에 대한 추정 값(즉, 채널 또는 간섭 추정 값)은 단말의 해당 CSI 보고에서 무시될 수 있다. 다만, 무시된 추정 값은, 향후 시점에서의 CSI 보고(예: 미리 설정된 또는 동적으로 트리거링/활성화 CSI 보고된)에서는 활용될 수도 있다.
참고로, 레거시 LTE 시스템의 경우, CSI 보고 정보는 CSI 보고 시점을 기준으로 규격으로 정해진 시점(예: n-4 번째 서브프레임) 이전의 CSI-RS에 대한 추정 값을 이용하여 결정되었다. 반면, 상술한 단말의 동작을 통해, NR 시스템에서는 보다 유연한 CSI 측정 및 보고를 수행할 수 있다. 다시 말해, 실제 CSI-RS의 전송 시점(CSI-RS transmission instance과 실제 CSI 보고 시점(CSI reporting instance)를 고려하여 설정된 Z 값을 이용하여, 획일화된 방식(예: n번째 슬롯을 기준으로 n-4번째 슬롯)을 통한 CSI 보고가 아닌, 적응적인 CSI 보고가 가능하다는 장점이 있다.
또한, 본 발명의 다양한 실시 예들에서, 단말에 대한 CSI 보고를 위하여 상술한 Z 값이 설정된 경우, CSI 보고 설정에 포함된 정보 요소인 측정 제한(measurement restriction) 여부에 따라 CSI 보고를 위해 산출되는 추정 값(또는 측정 값)이 달라질 수 있다. 여기에서, 측정 제한 여부는, 측정 제한 온(ON) 또는 오프(OFF)를 나타내는 지시자(indicator)에 의해 표현될 수 있다. 여기에서, 측정 제한이 온(ON)으로 설정되는 것은, 단말이 복수의 시점들(instances)에서 전송된 RS(예: CSI-RS)들 중 가장 최근 시점에서 전송된 RS에 의한 추정 값만을 이용하여 채널 또는 간섭 추정을 수행하도록 설정되는 것을 의미할 수 있다.
도 12는 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI 측정 및 보고를 수행하는 방법의 또 다른 예를 나타낸다. 도 12는 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 12를 참고하면, CSI 보고 설정을 통해 상술한 Z 값 및 측정 제한 여부가 설정(또는 지시)되는 경우가 가정된다. 또한, 트리거링된 CSI-RS 들(1202 내지 1208)은 주기적으로 전송되는 경우가 가정되나, 해당 방법은 주기적으로 CSI-RS가 전송되는 경우에만 한정되는 것이 아닌, 비주기적 또는 반-지속적으로 전송되는 경우에도 적용될 수 있음은 물론이다. 또한, CSI 보고도 비주기적인 경우가 가정되나, 이에 한정되는 것이 아닌 주기적 CSI 보고 또는 반-지속적 CSI 보고의 경우에도 해당 방법이 적용될 수 있음은 물론이다.
단말에 대해 Z 값이 설정되며 측정 제한이 온(ON)으로 지시되는 경우, 단말은 CSI 보고 시점을 기준으로 Z 값 이전의 시점(즉, CSI 보고 시점 - Z)에서 가장 최근에 측정된 추정 값(채널 추정 값 또는 간섭 추정 값)을 이용하도록 설정될 수 있다. 예를 들어, 단말은 CSI 보고 시점을 기준으로 Z 값에 해당하는 시간 간격 이전에 수신된 CSI-RS 1202 및 1204들 중에서, 최근에 수신된 CSI-RS 1204만을 이용하여 CSI 산출을 수행할 수 있다.
이 때, CSI 보고 시점을 기준으로 Z 값에 해당하는 시간 간격 이전에 가장 가까운 채널 측정(channel measurement) 용도의 NZP CSI-RS 심볼(들)의 위치와 간섭 측정(interference measurement) 용도의 ZP 또는 NZP CSI-RS 심볼(들)의 위치가 다를 수 있다. 이 경우, 단말은, 채널 측정 및 간섭 측정 각각에 대해, CSI 보고 시점을 기준으로 Z 값에 해당하는 시간 간격 이전에 전송된 CSI-RS에 기반한 측정 값을 이용할 수 있다.
또한, 연속적인 CSI-RS가 트리거링되었으나, CSI 보고 시점을 기준으로 Z 값 이전 시점에 속하는 추정 값이 하나만 존재하거나(예: 반-지속적 CSI-RS) 또는 비주기적 CSI-RS가 CSI 보고 시점을 기준으로 Z 값 이전 시점에 트리거링될 수도 있다. 이 경우, 단말은 해당 전송 시점의 CSI-RS에 대한 추정 값을 기준으로 CSI 산출을 수행할 수 있다.
반면에, 단말에 대해 Z 값이 설정되며 측정 제한이 오프(OFF)로 지시되는 경우 또는 CSI 보고 시점을 기준으로 Z 값 이전 시점에 다수의 추정 값들이 존재하는 경우(예: 반-지속적 CSI-RS), 단말은 CSI 보고 시점을 기준으로 Z 값 이전 시점까지의 하나 또는 그 이상의 추정 값들을 이용하여 CSI 산출을 수행할 수 있다. 다시 말해, 측정 제한이 오프로 지시되는 경우, 단말은 CSI 보고 시점을 기준으로 Z 값에 해당하는 시간 간격 이내(즉, 도 12에 나타난 'Z 구간')에 수신되는 CSI-RS에 의해 측정된 값을 CSI 보고 시에 무시할 수 있다. 즉, 이 경우, 단말은 CSI 보고 시점을 기준으로 Z 값에 해당하는 시간 간격 이내에 수신되는 CSI-RS에 의해 측정된 값에 따라 CSI 보고 값을 갱신(update)할 필요가 없다.
이 때, 단말은 하나 또는 그 이상의 추정 값들의 대해 평균 값으로 CSI를 산출할 수 있다. 특히, 단말은 하나 또는 그 이상의 추정 값들에 대해 가중치 평균(weighted average)을 적용하여 CSI를 산출할 수도 있다. 이 경우, 단말은 최근에 추정된 채널(즉, CSI-RS)에 대해 높은 가중치를 적용할 수 있다.
또는, 단말은 하나 또는 그 이상의 추정 값들에 기반하여 CSI 보고 시점을 기준으로 Z 값 이전 시점까지 보외법(extrapolation)을 수행하여 추정된 값을 해당 CSI 보고를 위한 채널 추정 값 또는 간섭 추정 값으로 이용할 수도 있다. 예를 들어, 단말은 CSI-RS 1202에 대한 추정 값 및 CSI-RS 1204에 대한 추정 값을 산출한 후, 산출된 값에 대해 CSI 보고 시점 - Z 시점까지 보외법을 적용하여 예측 추정 값을 산출할 수 있다. 여기에서, 보외법은 특정 값의 정도에 따라 일정 시간 이후의 값을 예측 추정하는 해석 기법을 의미할 수 있다.
상술한 방법을 이용하는 경우, 단말은 일정한 측정 시점이 정의된 경우보다 채널 상태(즉, 연결 상태)에 대한 최신 정보를 획득할 수 있는 장점이 있다. 구체적으로, 레거시 LTE 에서는, 단말은 CSI 보고 시점을 기준으로 일정 간격 이전(예: n-4번째 서브프레임)에서만 측정을 수행하도록 설정되었다. 이와 비교하여, 단말의 CSI 산출 능력을 고려하여 설정된 Z 값 이전까지 채널 상태에 정보를 획득할 수 있는 본 발명의 제안 방법은, 레거시 LTE의 경우보다 정확한(즉, 가장 최신의 채널 상태가 반영된) 채널(또는 간섭) 추정 값을 획득할 수 있는 장점이 있다.
도 13은 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI를 측정 및 보고하는 단말의 동작 순서도를 나타낸다. 도 13은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 13을 참고하면, 단말 및 기지국은 상술한 CSI 프레임워크에 기반하여 CSI 측정 절차 및 보고 절차를 수행하며, 이 경우 상술한 방법들 각각 독립적으로 또는 상호간에 결합하여 이용함이 가정된다.
S1305 단계에서, 단말은 CSI 보고와 관련된 CSI 보고 설정 정보(CSI reporting setting information)를 수신한다. 일례로, 상술한 바와 같이, 단말은 해당 CSI 보고를 트리거링하는 트리거링 정보 즉, 특정 CSI 보고 설정(들)에 대한 정보를 수신할 수 있다. 특히, 해당 CSI 보고가 비주기적(aperiodic)으로 설정되는 경우, 단말은 상기 CSI 보고 설정 정보를 상기 CSI 보고의 트리거링 DCI를 통해 수신할 수 있다.
이 때, S1305 단계 이전에, 단말은 기지국으로부터 CSI 프레임워크(즉, CSI 측정 설정, CSI 보고 설정, CSI-RS 자원 설정)에 대한 정보를 상위 계층 시그널링을 통해 수신할 수 있다. 또는, 상기 CSI 프레임워크에 대한 정보는 단말 및 기지국에 대해 미리 규격으로 설정될 수도 있다. 이 경우, S1305 단계에서 수신되는 CSI 보고 설정 정보는, 미리 수신된(또는 공유된) CSI 보고 설정들 중에서 특정 CSI 보고 설정에 대한 것일 수 있다.
이 후, S1310 단계에서, 단말은 하나 이상의 CSI-RS들을 수신한다. 이를 통해, 단말은 수신된 CSI-RS를 이용하여 채널 측정, 간섭 측정, 또는 레이트 매칭을 수행할 수 있다.
이 후, S1315 단계에서, 단말은 상기 하나 이상의 CSI-RS들 중 적어도 하나의 특정 CSI-RS에 의해 추정된 측정 값을 이용하여 상기 CSI 보고를 수행한다. 예를 들어, 단말은 수신된 CSI-RS #0 및 CSI-RS #1 중에서 CSI-RS #0에 대한 추정 값만을 이용하여 CSI 보고를 수행할 수 있다.
이 때, 상기 적어도 하나의 특정 CSI-RS는 상기 특정 값을 추정하기 위한 측정 구간(measurement interval)(또는 측정 윈도우)을 설정하는 간격 정보(gap information)(예: 상술한 'Z' 값) 및 상기 CSI 보고의 수행 시점에 기반하여 결정될 수 있다. 예를 들어, 상기 적어도 하나의 특정 CSI-RS는 상기 CSI 보고의 수행 시점을 기준으로 상기 간격 정보에 의해 지시되는 시점 이전에 수신될 수 있다. 즉, CSI 보고에 이용되는 적어도 하나의 특정 CSI-RS는 (CSI 보고의 수행 시점 - Z 값) 이전에 수신된 CSI-RS를 의미할 수 있다.
또한, 상기 간격 정보는, 상기 단말이 기지국으로부터 수신된 CSI-RS를 이용하여 CSI 보고를 수행하기 위해 요구되는 처리 시간(processing time)을 지시할 수 있다. 일례로, 상기 간격 정보는, 상기 처리 시간(즉, CSI 산출 시간)에 기반하여 설정될 수 있다.
또한, 상술한 바와 같이, 상기 단말은, 상기 단말의 간격 정보를 기지국으로 보고할 수 있다. 이 경우, 상기 간격 정보는, 상기 단말의 능력 정보(capability information)에 기반하여 결정될 수 있다.
또한, 상기 간격 정보는, 상기 기지국에 의해, 상기 단말이 보고할 CSI의 유형(type)(예: 높은 복잡도의 CSI 유형, 낮은 복잡도의 CSI 유형)을 고려하여 설정될 수 있다.
또한, 상기 CSI 보고 설정 정보는, 상기 CSI 보고에 대한 측정 제한(measurement restriction) 여부를 나타내는 지시 정보를 더 포함할 수 있다. 이 때, 상기 하나 이상의 CSI-RS이 주기적 또는 반-지속적으로 설정되는 CSI-RS에 해당하는 경우, 상기 지시 정보가 지시하는 값에 따라 단말의 동작이 달라질 수 있다(예: 도 12의 동작).
예를 들어, 상기 지시 정보가 온(ON)을 지시하는 경우, 상기 적어도 하나의 특정 CSI-RS는, 상기 CSI 보고의 수행 시점을 기준으로 상기 간격 정조에 의해 지시되는 시점 이전에 수신되는 마지막(last) CSI-RS(즉, 가장 최근의 CSI-RS)에 해당할 수 있다.
이와 달리, 상기 지시 정보가 오프(OFF)를 지시하는 경우, 상기 적어도 하나의 특정 CSI-RS는 상기 CSI 보고의 수행 시점을 기준으로 상기 간격 정보에 의해 지시되는 시점 이전에 수신되는 CSI-RS에 해당할 수 있다. 즉, 이 경우, 상기 간격 정보에 의해 지시되는 시점 이내(예: Z 윈도우 이내)에 수신되는 CSI-RS는 상기 단말에 의해 CSI 보고에서 무시될 수 있다.
또한, 상기 하나 이상의 CSI-RS들이 비주기적 CSI-RS에 해당하는 경우, 상기 적어도 하나의 특정 CSI-RS는 상기 CSI 보고의 수행 시점을 기준으로 상기 간격 정보에 의해 지시되는 시점 이전에 수신되는 비주기적 CSI-RS에 해당할 수 있다. 또는, 이 경우, 모든 CSI-RS는 상기 CSI 보고의 수행 시점을 기준으로 상기 간격 정보에 의해 지시되는 시점 이전에 수신되는 비주기적 CSI-RS에 해당할 수도 있다.
본 발명이 적용될 수 있는 장치 일반
도 14은 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 14을 참조하면, 무선 통신 시스템은 기지국(또는 네트워크)(1410)와 단말(1420)을 포함한다.
기지국(1410)는 프로세서(processor, 1411), 메모리(memory, 1412) 및 통신 모듈(communication module, 1413)을 포함한다.
프로세서(1411)는 앞서 도 1 내지 도 13에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(1411)에 의해 구현될 수 있다. 메모리(1412)는 프로세서(1411)와 연결되어, 프로세서(1411)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1413)은 프로세서(1411)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다.
상기 통신 모듈(1413)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(1420)은 프로세서(1421), 메모리(1422) 및 통신 모듈(또는 RF부)(1423)을 포함한다. 프로세서(1421)는 앞서 도 1 내지 도 13에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(1421)에 의해 구현될 수 있다. 메모리(1422)는 프로세서(1421)와 연결되어, 프로세서(1421)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1423)는 프로세서(1421)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1412, 1422)는 프로세서(1411, 1421) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1411, 1421)와 연결될 수 있다.
또한, 기지국(1410) 및/또는 단말(1420)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 15는 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 15에서는 앞서 도 14의 단말을 보다 상세히 예시하는 도면이다.
도 15를 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(1510), RF 모듈(RF module)(또는 RF 유닛)(1535), 파워 관리 모듈(power management module)(1505), 안테나(antenna)(1540), 배터리(battery)(1555), 디스플레이(display)(1515), 키패드(keypad)(1520), 메모리(memory)(1530), 심카드(SIM(Subscriber Identification Module) card)(1525)(이 구성은 선택적임), 스피커(speaker)(1545) 및 마이크로폰(microphone)(1550)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(1510)는 앞서 도 1 내지 도 13에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서(1510)에 의해 구현될 수 있다.
메모리(1530)는 프로세서(1510)와 연결되고, 프로세서(1510)의 동작과 관련된 정보를 저장한다. 메모리(1530)는 프로세서(1510) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1510)와 연결될 수 있다.
사용자는 예를 들어, 키패드(1520)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(1550)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(1510)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(1525) 또는 메모리(1530)로부터 추출할 수 있다. 또한, 프로세서(1510)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(1515) 상에 디스플레이할 수 있다.
RF 모듈(1535)는 프로세서(1510)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(1510)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(1535)에 전달한다. RF 모듈(1535)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(1540)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(1535)은 프로세서(1510)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(1545)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법은 3GPP LTE/LTE-A 시스템, 5G에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (18)

  1. 무선 통신 시스템에서 단말이 채널 상태 정보(Channel State Information, CSI) 보고를 수행하는 방법에 있어서,
    상기 CSI 보고와 관련된 CSI 보고 설정 정보(CSI reporting setting information)를 기지국으로부터 수신하는 단계;
    상기 CSI 보고 설정 정보에 기반하여 채널 상태 정보-참조 신호(CSI-Reference Signal, CSI-RS)를 상기 기지국으로부터 수신하는 단계;
    적어도 하나의 CSI-RS에 기반하여 측정 값을 연산하는 단계; 및
    상기 측정 값에 기반하여 CSI 보고를 수행하는 단계를 포함하되,
    상기 적어도 하나의 CSI-RS는 상기 측정 값의 연산(computation)과 관련된 간격 정보에 기반하여 결정되고,
    상기 간격 정보는 주파수 단위(frequency granularity)에 대한 정보에 기반하여 정의되며,
    상기 간격 정보는 특정 시점과 CSI 보고 시점 사이의 간격을 나타내고,
    상기 측정 값은 상기 특정 시점 전에 수신된 적어도 하나의 CSI-RS에 기반하여 연산되는 방법.
  2. 제1항에 있어서,
    상기 적어도 하나의 CSI-RS의 시점은, 상기 CSI 보고의 시점을 기준으로 상기 간격 정보에 의해 지시되는 시간 인스턴스 이전에 발생되는 방법.
  3. 제2항에 있어서,
    상기 간격 정보는 상기 단말에 대해 설정된 코드북 유형(type)을 고려하여 결정되는 방법.
  4. 제1항에 있어서,
    상기 간격 정보는, 상기 단말이 보고할 CSI의 유형(type)에 기반하여 상기 기지국에 의해 설정되는 방법.
  5. 제1항에 있어서,
    상기 단말에 대해 상기 CSI 보고와 관련된 측정 제한(measurement restriction)에 기반하여, 상기 측정 값은 상기 CSI 보고의 수행 시점을 기준으로 상기 간격 정보에 의해 지시되는 시간 인스턴스 이전에 수신되는 가장 최근의 CSI-RS에 기반하여 결정되는 방법.
  6. 제5항에 있어서,
    상기 단말에 대해 상기 CSI 보고와 관련하여 설정되지 않은 측정 제한에 기반하여, 상기 측정 값은 상기 적어도 하나의 CSI-RS를 이용하여 연산된 하나 이상의 값들의 평균 값으로 결정되는 방법.
  7. 제6항에 있어서,
    상기 측정 값은, 상기 적어도 하나의 CSI-RS를 이용하여 연산된 적어도 하나의 값들의 평균 값(average value)인 방법.
  8. 제7항에 있어서,
    상기 평균 값은, 상기 적어도 하나의 CSI-RS 각각의 수신 시점에 따라 가중치 평균(weighted average)을 적용하여 연산되는 방법.
  9. 제6항에 있어서,
    상기 측정 값은, 상기 적어도 하나의 CSI-RS에 의해 연산된 평균 값에 기반하여, 상기 CSI 보고의 시점을 기준으로 상기 간격 정보에 의해 지시되는 시간 인스턴스까지 추정(estimation)되는 방법.
  10. 제1항에 있어서,
    비주기적으로 설정되는 상기 적어도 하나의 CSI-RS에 기반하여, 상기 적어도 하나의 CSI-RS는, 상기 CSI 보고의 시점을 기준으로 상기 간격 정보에 의해 지시되는 시간 인스턴스 이전에 수신되는 비주기적 CSI-RS에 해당하는 방법.
  11. 제1항에 있어서,
    상기 적어도 하나의 CSI-RS의 전송과 관련된 자원 설정 정보(resource setting information)를 상기 기지국으로부터 수신하는 과정을 더 포함하되,
    상기 자원 설정 정보는, i) CSI-RS의 전송을 트리거링하는 트리거링 시점과 ii) CSI-RS의 전송 시점 간의 간격을 지시하는 제1 시간 간격 정보를 포함하며,
    상기 CSI 보고 설정 정보는, i) CSI 보고를 트리거링하는 트리거링 시점과 ii) CSI 보고가 수행되는 시점 간의 간격을 지시하는 제2 시간 간격 정보를 더 포함하는 방법.
  12. 무선 통신 시스템에서 채널 상태 정보(Channel State Information, CSI) 보고를 수행하는 단말에 있어서,
    무선 신호를 송수신하기 위한 적어도 하나의 송수신기,
    적어도 하나의 프로세서, 및
    상기 적어도 하나의 프로세서에 동작 가능하게 접속 가능하고, 상기 적어도 하나의 프로세서에 의해 실행될 때, 동작들을 수행하는 지시(instruction)들을 저장하는 적어도 하나의 메모리를 포함하며,
    상기 동작들은,
    상기 CSI 보고와 관련된 CSI 보고 설정 정보(CSI reporting setting information)를 기지국으로부터 수신하는 단계;
    상기 CSI 보고 설정 정보에 기반하여 채널 상태 정보-참조 신호(CSI-Reference Signal, CSI-RS)를 상기 기지국으로부터 수신하는 단계;
    적어도 하나의 CSI-RS에 기반하여 측정 값을 연산하는 단계; 및
    상기 측정 값에 기반하여 CSI 보고를 수행하는 단계를 포함하되,
    상기 적어도 하나의 CSI-RS는 상기 측정 값의 연산(computation)과 관련된 간격 정보에 기반하여 결정되고,
    상기 간격 정보는 주파수 단위(frequency granularity)에 대한 정보에 기반하여 정의되며,
    상기 간격 정보는 특정 시점과 CSI 보고 시점 사이의 간격을 나타내고,
    상기 측정 값은 상기 특정 시점 전에 수신된 적어도 하나의 CSI-RS에 기반하여 연산되는 단말.
  13. 제12항에 있어서,
    상기 적어도 하나의 CSI-RS의 시점은, 상기 CSI 보고의 시점을 기준으로 상기 간격 정보에 의해 지시되는 시간 인스턴스 이전에 발생되는 단말.
  14. 무선 통신 시스템에서 채널 상태 정보(Channel State Information, CSI) 보고를 수신하는 기지국에 있어서,
    무선 신호를 송수신하기 위한 적어도 하나의 송수신기,
    적어도 하나의 프로세서, 및
    상기 적어도 하나의 프로세서에 동작 가능하게 접속 가능하고, 상기 적어도 하나의 프로세서에 의해 실행될 때, 동작들을 수행하는 지시(instruction)들을 저장하는 적어도 하나의 메모리를 포함하며,
    상기 동작들은,
    상기 CSI 보고와 관련된 CSI 보고 설정 정보(CSI reporting setting information)를 단말로 전송하는 단계;
    상기 CSI 보고 설정 정보에 기반하여 채널 상태 정보-참조 신호(CSI-Reference Signal, CSI-RS)를 상기 단말로 전송하는 단계, 측정 값은 적어도 하나의 CSI-RS에 기반하여 연산되고; 및
    상기 측정 값에 기반하여 CSI 보고를 상기 단말로부터 수신하는 단계를 포함하되,
    상기 적어도 하나의 CSI-RS는 상기 측정 값의 연산(computation)과 관련된 간격 정보에 기반하여 결정되고,
    상기 간격 정보는 주파수 단위(frequency granularity)에 대한 정보에 기반하여 정의되며,
    상기 간격 정보는 특정 시점과 CSI 보고 시점 사이의 간격을 나타내고,
    상기 측정 값은 상기 특정 시점 전에 수신된 적어도 하나의 CSI-RS에 기반하여 연산되는 기지국.
  15. 제14항에 있어서,
    상기 적어도 하나의 CSI-RS의 시점은, 상기 CSI 보고의 시점을 기준으로 상기 간격 정보에 의해 지시되는 시간 인스턴스 이전에 발생되는 기지국.
  16. 제1항에 있어서,
    상기 간격 정보는 CSI 보고 설정(reporting setting)의 수에 기반하여 정의되는 방법.
  17. 제12항에 있어서,
    상기 간격 정보는 CSI 보고 설정(reporting setting)의 수에 기반하여 정의되는 단말.
  18. 제14항에 있어서,
    상기 간격 정보는 CSI 보고 설정(reporting setting)의 수에 기반하여 정의되는 기지국.
KR1020197023520A 2017-02-10 2018-02-09 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치 KR102343281B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762457202P 2017-02-10 2017-02-10
US62/457,202 2017-02-10
PCT/KR2018/001749 WO2018147676A1 (ko) 2017-02-10 2018-02-09 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치

Publications (2)

Publication Number Publication Date
KR20190104204A KR20190104204A (ko) 2019-09-06
KR102343281B1 true KR102343281B1 (ko) 2021-12-24

Family

ID=63107616

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197023520A KR102343281B1 (ko) 2017-02-10 2018-02-09 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치

Country Status (7)

Country Link
US (2) US11184072B2 (ko)
EP (2) EP3582538B1 (ko)
JP (1) JP7001697B2 (ko)
KR (1) KR102343281B1 (ko)
CN (1) CN110495207B (ko)
CA (1) CA3053235C (ko)
WO (1) WO2018147676A1 (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615655A (zh) * 2017-02-28 2021-04-06 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
BR112019017763A2 (pt) * 2017-02-28 2020-03-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Método de comunicação sem fio e dispositivo terminal que compreende uma unidade de transceptor e uma unidade de processamento
US10171144B2 (en) * 2017-03-24 2019-01-01 At&T Intellectual Property I, L.P. Low complexity high performance single codeword MIMO for 5G wireless communication systems
JP7177055B2 (ja) * 2017-07-21 2022-11-22 株式会社Nttドコモ 端末、無線通信方法及びシステム
KR102506475B1 (ko) 2017-08-31 2023-03-06 삼성전자 주식회사 이동 통신 시스템에서의 csi-rs 자원 반복 전송 지원 방법 및 장치
WO2019134099A1 (en) 2018-01-04 2019-07-11 Nec Corporation Methods and apparatuses for channel state information transmission
EP3509343B1 (en) * 2018-01-04 2022-03-09 Comcast Cable Communications, LLC Methods and systems for sp-csi information reporting
CN108683487B (zh) * 2018-01-12 2019-06-11 华为技术有限公司 一种用于终端设备能力传输的方法、装置及系统
CN111165010B (zh) 2018-08-21 2023-06-23 Lg 电子株式会社 无线通信系统中发送和接收信道状态信息的方法及其装置
CN112930656B (zh) * 2018-10-26 2023-07-11 Lg电子株式会社 在无线通信系统中终端接收下行链路信号的方法及其终端
US11356881B2 (en) * 2019-06-20 2022-06-07 Samsung Electronics Co., Ltd. Method and apparatus for aperiodic reference signal transmission and reception
EP4046299A4 (en) * 2019-10-17 2023-11-22 Qualcomm Incorporated CONFIGURATION OF CSI REFERENCE RESOURCE AND CSI TARGET RESOURCE FOR PREDICTIVE ESTIMATION OF CHANNEL STATE INFORMATION
US11743889B2 (en) * 2020-02-14 2023-08-29 Qualcomm Incorporated Channel state information (CSI) reference signal (RS) configuration with cross-component carrier CSI prediction algorithm
CN113517965B (zh) * 2020-04-10 2023-04-25 维沃移动通信有限公司 信道状态信息报告的获取方法及终端
CN116134760A (zh) * 2020-08-17 2023-05-16 高通股份有限公司 多时隙信道质量信息(cqi)报告
US20220085943A1 (en) * 2020-09-14 2022-03-17 Samsung Electronics Co., Ltd. Method and apparatus for timing adjustment in a wireless communication system
US11743750B2 (en) 2020-10-20 2023-08-29 Rohde & Schwarz Gmbh & Co. Kg Measuring device and method for testing CSI type II codebook compliance
CN116671212A (zh) * 2021-04-02 2023-08-29 中兴通讯股份有限公司 使用人工智能进行报告和波束管理的系统和方法
CN117616708A (zh) * 2021-07-15 2024-02-27 Lg 电子株式会社 在无线通信系统中发送或接收信道状态信息的方法和设备
WO2023136553A1 (ko) * 2022-01-11 2023-07-20 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2023133761A1 (zh) * 2022-01-13 2023-07-20 北京小米移动软件有限公司 Csi报告的发送方法、接收方法、装置、设备及介质

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101763751B1 (ko) * 2011-01-11 2017-08-02 삼성전자 주식회사 반송파 집적 기술을 사용하는 무선통신시스템에서 부차반송파의 활성화 및 비활성화 방법 및 장치
JP6290863B2 (ja) * 2012-05-10 2018-03-07 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Csiレポーティングのための方法及び装置
US9681425B2 (en) * 2012-05-11 2017-06-13 Qualcomm Incorporated Rank-specific feedback for improved MIMO support
WO2014014328A1 (ko) * 2012-07-20 2014-01-23 엘지전자 주식회사 무선 통신 시스템에서 측정 보고 방법 및 이를 지원하는 장치
US9173109B2 (en) * 2013-03-15 2015-10-27 Blackberry Limited Radio link quality monitoring
US10116371B2 (en) 2013-10-24 2018-10-30 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and apparatus therefor
US9674727B2 (en) * 2014-01-17 2017-06-06 Qualcomm Incorporated Indication of cell mode and CSI feedback rules for cell on-off procedure
CN106465403B (zh) * 2014-06-24 2019-12-31 瑞典爱立信有限公司 在无线电通信网络中报告信道状态信息(csi)的无线设备、网络节点和其中的方法
CN105991244A (zh) * 2015-01-29 2016-10-05 北京三星通信技术研究有限公司 测量和报告信道状态信息的方法和设备
US9743392B2 (en) * 2015-01-30 2017-08-22 Motorola Mobility Llc Method and apparatus for signaling aperiodic channel state indication reference signals for LTE operation
US10236951B2 (en) * 2015-04-10 2019-03-19 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and device therefor
WO2017027799A1 (en) * 2015-08-13 2017-02-16 Docomo Innovations, Inc. Base station, user. equipment, and method of csi-rs transmission
WO2017128175A1 (en) * 2016-01-28 2017-08-03 Qualcomm Incorporated Energy efficient csi measurement for fd-mimo
NZ747711A (en) * 2016-05-13 2020-03-27 Ericsson Telefon Ab L M Multi-resolution csi feedback
WO2018129311A1 (en) * 2017-01-06 2018-07-12 Docomo Innovations, Inc. Method of acquiring channel state information
US11184787B2 (en) * 2017-01-09 2021-11-23 Telefonaktiebolaget Lm Ericcson (Publ) Systems and methods for reliable dynamic indication for semi-persistent CSI-RS
CN110383740B (zh) * 2017-02-03 2022-10-14 株式会社Ntt都科摩 用户设备和控制信道状态信息(csi)报告的方法
WO2018141090A1 (en) * 2017-02-04 2018-08-09 Qualcomm Incorporated Coupling aperiodic channel state information (csi) reference symbol (rs) (csi-rs) structure with feedback content and reporting timing
CA3030518C (en) * 2017-11-28 2020-09-22 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and apparatus for the same
US11153060B2 (en) * 2017-12-29 2021-10-19 Comcast Cable Communications, Llc Selection of grant and CSI
CN111356171A (zh) * 2018-12-21 2020-06-30 华为技术有限公司 一种信道状态信息csi上报的配置方法和通信装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
3GPP R1-1702023*
3GPP R1-1702455*
3GPP TSG-RAN WG1 Meeting #87, R1-1611236, 2016.11.05.
3GPP TSG-RAN WG1 Meeting #88, R1-1702023, 2017.02.06.
3GPP TSG-RAN WG1 Meeting #88, R1-1702455, 2017.02.07.
3GPP TSG-RAN WG1 Meeting #88, R1-1702609, 2017.02.07.

Also Published As

Publication number Publication date
KR20190104204A (ko) 2019-09-06
EP3582538A4 (en) 2020-12-23
US11784694B2 (en) 2023-10-10
EP3582538B1 (en) 2023-06-21
CN110495207B (zh) 2023-06-20
US11184072B2 (en) 2021-11-23
EP4221307A1 (en) 2023-08-02
JP7001697B2 (ja) 2022-02-10
WO2018147676A1 (ko) 2018-08-16
CA3053235A1 (en) 2018-08-16
US20200036424A1 (en) 2020-01-30
CA3053235C (en) 2023-02-28
CN110495207A (zh) 2019-11-22
US20220045731A1 (en) 2022-02-10
JP2020508005A (ja) 2020-03-12
EP3582538A1 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
KR102343281B1 (ko) 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
KR102207082B1 (ko) 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
KR102521791B1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
JP7132227B2 (ja) 無線通信システムにおいてチャネル状態情報を測定及び報告する方法及びそのための装置
CN110637495B (zh) 无线通信系统中通过波束发送和接收信号的方法及用于该方法的装置
US11121754B2 (en) Method for measuring and reporting channel state information in wireless communication system and device for same
KR102137605B1 (ko) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
KR20190120373A (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
CN112567639B (zh) 用于通信的装置、方法以及存储介质
WO2023097586A1 (en) Bundle size reporting for precoding resource block groups

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant