KR102327874B1 - Method for producing porous ceramic material, porous ceramic material, setter, and firing jig - Google Patents

Method for producing porous ceramic material, porous ceramic material, setter, and firing jig Download PDF

Info

Publication number
KR102327874B1
KR102327874B1 KR1020167015486A KR20167015486A KR102327874B1 KR 102327874 B1 KR102327874 B1 KR 102327874B1 KR 1020167015486 A KR1020167015486 A KR 1020167015486A KR 20167015486 A KR20167015486 A KR 20167015486A KR 102327874 B1 KR102327874 B1 KR 102327874B1
Authority
KR
South Korea
Prior art keywords
porous ceramics
suspension
water
average
pores
Prior art date
Application number
KR1020167015486A
Other languages
Korean (ko)
Other versions
KR20160096613A (en
Inventor
데츠무네 구로무라
마나부 후쿠시마
유이치 요시자와
Original Assignee
미쓰이금속광업주식회사
고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쓰이금속광업주식회사, 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 filed Critical 미쓰이금속광업주식회사
Publication of KR20160096613A publication Critical patent/KR20160096613A/en
Application granted granted Critical
Publication of KR102327874B1 publication Critical patent/KR102327874B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/04Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by dissolving-out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/481Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing silicon, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0074Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

실시형태에 따른 다공질 세라믹스의 제조 방법은, 현탁체를 겔화시키는 공정과, 겔화한 현탁체를 동결시켜서 동결체를 생성하는 공정과, 동결체에 성장한 얼음을 제거해서 기공을 생성하는 공정과, 얼음이 제거된 동결체를 소성하는 공정을 포함한다. 현탁체는, 세라믹스 입자와, 수용성 고분자와, 물을 포함한다. 겔화 전의 현탁체의 20℃에서의 점도η(m㎩·s)와, 세라믹스 입자의 평균 입경d(㎛)가, η≥950×d-0.77의 관계를 갖는다.A method for manufacturing a porous ceramics according to an embodiment includes a step of gelling a suspension, a step of freezing the gelled suspension to form a frozen body, a step of removing ice grown on the frozen body to create pores, and ice and a step of calcining the removed frozen body. The suspension contains ceramic particles, a water-soluble polymer, and water. And the viscosity η (m㎩ · s) at 20 ℃ body before gelation of the suspension, the average particle diameter d (㎛) of ceramic particles, and has a relation d × η≥950 -0.77.

Figure R1020167015486
Figure R1020167015486

Description

다공질 세라믹스의 제조 방법, 다공질 세라믹스, 세터 및 소성 지그{METHOD FOR PRODUCING POROUS CERAMIC MATERIAL, POROUS CERAMIC MATERIAL, SETTER, AND FIRING JIG}The manufacturing method of porous ceramics, porous ceramics, a setter, and a firing jig TECHNICAL FIELD

개시의 실시형태는, 다공질 세라믹스의 제조 방법, 다공질 세라믹스, 세터 및 소성 지그에 관한 것이다.Embodiment of indication relates to the manufacturing method of porous ceramics, porous ceramics, a setter, and a baking jig.

종래, 기체 또는 액체로부터 불순물을 제거하는 필터나 흡착제, 자동차의 배기 가스 정화용 촉매의 담지(擔持) 재료 등, 세라믹스에 많은 기공이 형성된 다공질 세라믹스는 다방면에 미치는 용도로 이용되고 있다.Conventionally, porous ceramics in which many pores are formed in ceramics, such as filters for removing impurities from gases or liquids, adsorbents, and materials for supporting catalysts for exhaust gas purification of automobiles, have been used for various purposes.

이러한 다공질 세라믹스의 제조 방법으로서, 수용성 고분자의 수용액에 세라믹스 입자를 분산시킨 현탁체(슬러리)를 겔화시킨 후, 동결시키는 겔화 동결법을 적용하는 방법이 알려져 있다(예를 들면, 특허문헌 1 참조).As a method for producing such porous ceramics, there is known a method in which a suspension (slurry) in which ceramic particles are dispersed in an aqueous solution of a water-soluble polymer is gelled, followed by applying a gelation freezing method in which it is frozen (see, for example, Patent Document 1).

일본국 특허 제5176198호 공보Japanese Patent No. 5176198

그러나, 특허문헌 1에 기재된 제조 방법에서는, 동결 온도나 세라믹스 입자의 배합량을 변경함으로써 다양한 기공경, 기공률을 갖는 다공질 세라믹스가 얻어지는 한편, 내열충격성 및 굽힘 강도가 우수한 다공질 세라믹스를 제조하는 점에서 개선의 여지가 있다.However, in the manufacturing method described in Patent Document 1, porous ceramics having various pore diameters and porosity are obtained by changing the freezing temperature or the mixing amount of ceramic particles, while improving the porous ceramics having excellent thermal shock resistance and bending strength. There is room.

실시형태의 일 태양은, 상기를 감안해서 이루어진 것으로서, 내열충격성 및 굽힘 강도가 우수한 다공질 세라믹스의 제조 방법, 다공질 세라믹스, 세터 및 소성 지그를 제공하는 것을 목적으로 한다.One aspect of embodiment is made in view of the above, and aims at providing the manufacturing method of porous ceramics excellent in thermal shock resistance and bending strength, porous ceramics, a setter, and a baking jig.

실시형태에 따른 다공질 세라믹스의 제조 방법은, 현탁체를 겔화시키는 공정과, 겔화한 상기 현탁체를 동결시켜서 동결체를 생성하는 공정과, 상기 동결체에 성장한 얼음을 제거해서 기공을 생성하는 공정과, 상기 얼음이 제거된 상기 동결체를 소성하는 공정을 포함한다. 현탁체는, 세라믹스 입자와, 수용성 고분자와, 물을 포함한다. 겔화 전의 상기 현탁체의 20℃에서의 점도η(m㎩·s)와, 상기 세라믹스 입자의 평균 입경d(㎛)가, η≥950×d-0.77의 관계를 갖는다.A method for manufacturing a porous ceramics according to an embodiment includes a step of gelling a suspension, a step of freezing the gelled suspension to form a frozen body, a step of removing ice grown on the frozen body to create pores; , and calcining the frozen body from which the ice has been removed. The suspension contains ceramic particles, a water-soluble polymer, and water. Viscosity η (m㎩ · s) at 20 ℃ of the suspension body before gelation, and the average particle diameter d (㎛) of the ceramic particles, and has a relation d × η≥950 -0.77.

실시형태의 일 태양에 따르면, 내열충격성 및 굽힘 강도가 우수한 다공질 세라믹스의 제조 방법, 다공질 세라믹스, 세터 및 소성 지그를 제공할 수 있다.ADVANTAGE OF THE INVENTION According to one aspect of embodiment, the manufacturing method of porous ceramics excellent in thermal shock resistance and bending strength, porous ceramics, a setter, and a baking jig can be provided.

도 1은, 실시형태에 따른 다공질 세라믹스의 제조 방법의 개요를 설명하는 설명도.
도 2a는, 실시형태에 따른 소성 지그의 구성의 개요를 나타내는 모식 사시도.
도 2b는, 도 2a에 나타내는 소성 지그의 모식 정면도.
도 3은, 실시예 1에 의해 제작한 다공질 세라믹스의 부분 단면도.
도 4a는, 실시예 8에 의해 제작한 다공질 세라믹스의 부분 단면도.
도 4b는, 실시예 8에 의해 제작한 다공질 세라믹스의 부분 단면도.
도 5는, 평균 기공경 및 기공경의 편차의 측정 방법에 대하여 설명하기 위한 도면.
도 6은, 실시형태에 따른 다공질 세라믹스의 제조 방법의 일례를 나타내는 플로 차트.
도 7은, 종래의 다공질 세라믹스의 제조 방법의 개요를 설명하는 설명도.
도 8은, 비교예 1에 의해 제작한 다공질 세라믹스의 부분 단면도.
BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing explaining the outline|summary of the manufacturing method of the porous ceramics which concerns on embodiment.
It is a schematic perspective view which shows the outline|summary of the structure of the baking jig which concerns on embodiment.
Fig. 2B is a schematic front view of the firing jig shown in Fig. 2A.
Fig. 3 is a partial cross-sectional view of the porous ceramics produced in Example 1.
Fig. 4A is a partial cross-sectional view of porous ceramics produced in Example 8;
Fig. 4B is a partial cross-sectional view of the porous ceramics produced in Example 8;
Fig. 5 is a diagram for explaining an average pore diameter and a method for measuring the deviation of the pore diameter;
6 is a flowchart showing an example of a method for manufacturing porous ceramics according to an embodiment.
It is explanatory drawing explaining the outline|summary of the manufacturing method of the conventional porous ceramics.
Fig. 8 is a partial cross-sectional view of the porous ceramics produced in Comparative Example 1.

이하, 첨부 도면을 참조해서, 본원이 개시하는 다공질 세라믹스의 제조 방법, 다공질 세라믹스, 세터 및 소성 지그의 실시형태를 상세히 설명한다. 또, 이하에 나타내는 실시형태에 의해 이 발명이 한정되는 것은 아니다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of the manufacturing method of the porous ceramics disclosed by this application, a porous ceramics, a setter, and a baking jig is described in detail with reference to an accompanying drawing. In addition, this invention is not limited by embodiment shown below.

실시형태에 따른 다공질 세라믹스는, 겔화, 동결, 건조, 탈지 및 소성의 각 공정을 포함하는 제조 방법에 의해 제작할 수 있는 점에서 종래의 다공질 세라믹스와 공통한다. 한편, 실시형태에 따른 다공질 세라믹스의 제조 방법에서는, 겔화 전의 현탁체의 20℃에서의 점도η 및 세라믹스 입자의 평균 입경d가 특정의 관계를 가짐에 의해, 종래의 제조 방법과는 다른 특장을 갖는 다공질 세라믹스가 형성된다. 이하에서는, 실시형태에 따른 다공질 세라믹스 및 다공질 세라믹스의 제조 방법에 대하여, 종래기술과 비교하면서 설명한다.The porous ceramics which concern on embodiment are common with the conventional porous ceramics at the point which can be produced by the manufacturing method including each process of gelation, freezing, drying, degreasing, and baking. On the other hand, in the method for producing porous ceramics according to the embodiment, the viscosity η at 20° C. of the suspension before gelation and the average particle diameter d of the ceramic particles have a specific relationship, so that they have different features from the conventional production method. A porous ceramics is formed. Hereinafter, the porous ceramics which concern on embodiment, and the manufacturing method of porous ceramics are demonstrated, comparing with the prior art.

도 1은, 실시형태에 따른 다공질 세라믹스의 제조 방법의 개요를 설명하는 설명도, 도 7은, 겔화 동결법을 적용한 종래의 다공질 세라믹스의 제조 방법의 개요를 설명하는 설명도이다. 또, 도 1, 7에서는, 상술한 제조 공정 중, 왼쪽에서부터 차례로 겔화, 동결, 및 소성의 각 공정을 도시하고, 건조, 탈지의 각 공정에 대응하는 도시는 생략한다.1 : is explanatory drawing explaining the outline|summary of the manufacturing method of the porous ceramics which concerns on embodiment, FIG. 7 : is explanatory drawing explaining the outline|summary of the conventional manufacturing method of the porous ceramics to which the gelatinization freezing method is applied. In addition, in FIGS. 1 and 7, each process of gelatinization, freezing, and baking is shown sequentially from the left among the manufacturing processes mentioned above, and illustration corresponding to each process of drying and degreasing is abbreviate|omitted.

우선, 겔화 공정에 대하여 설명한다. 겔화 공정은, 세라믹스 입자(1)와, 수용성 고분자(2)와, 물(3)을 포함하며, 세라믹스 입자(1)가 수용성 고분자(2)의 수용액 중에 균일하게 분산된 현탁체(4)를 형틀에 넣어서 겔화시키는 공정이다. 현탁체(4)의 겔화에 의해, 세라믹스 입자(1)가 수용성 고분자(2)의 수용액 중에 분산된 상태에서 일시적으로 고정된 구조체(겔화체)가 형성된다.First, the gelation process is demonstrated. The gelation process includes a ceramic particle (1), a water-soluble polymer (2), and water (3), and a suspension (4) in which the ceramic particles (1) are uniformly dispersed in an aqueous solution of the water-soluble polymer (2). It is a process of gelling by putting it in a mold. By gelation of the suspension 4, a structure (gelling body) in which the ceramic particles 1 are dispersed in an aqueous solution of the water-soluble polymer 2 is temporarily fixed (gelled body) is formed.

다음으로, 동결 공정에 대하여 설명한다. 동결 공정은, 겔화한 현탁체(4)를 냉각해서 동결체(6)를 생성하는 공정이다. 겔화한 현탁체(4)를 냉각하면, 수용성 고분자(2)의 수용액으로부터 분리한 물(3)이 얼음(5)으로 상태 변화해, 결정 구조를 형성하면서 성장한다. 그 결과, 세라믹스 입자(1)와, 수용성 고분자(2)의 수용액의 겔화한 부분(도시하지 않음)과, 결정화한 얼음(5)의 부분을 포함하는 동결체(6)가 얻어진다.Next, the freezing process is demonstrated. The freezing step is a step of cooling the gelled suspension 4 to produce the frozen body 6 . When the gelled suspension 4 is cooled, the water 3 separated from the aqueous solution of the water-soluble polymer 2 changes state to ice 5 and grows while forming a crystal structure. As a result, a frozen body 6 containing the ceramic particles 1, a gelled portion (not shown) of an aqueous solution of the water-soluble polymer 2, and a crystallized portion of the ice 5 is obtained.

종래의 제조 방법에서는, 예를 들면 하면(7a)측에 냉각 장치(12a)를 배치해서 겔화한, 수용성 고분자(2a)를 포함하는 현탁체(4a)를 한쪽 편으로부터 냉각하면, 겔화한 현탁체(4a) 중의 물(3a)이 하면(7a)측으로부터 동결해서 얼음(5a)으로 상태 변화하고, 이 얼음(5a)의 결정이 하면(7a)측으로부터 상면(8a)측을 향해서 성장하려고 한다. 그리고, 얼음(5a)의 결정이 성장할 때에는, 예를 들면 평균 입경이 0.01∼5㎛ 정도인 비교적 작은 세라믹스 입자(1a)를 이동시키는데 충분한 정도의 압압력(押壓力)이 작용한다. 이 때문에, 얼음(5a)의 결정이 성장하려고 하는 방향으로 세라믹스 입자(1a)가 존재하면, 겔화에 의해 일시적으로 고정되어 있던 세라믹스 입자(1a)는, 성장하는 얼음(5a)의 결정의 주위로 배제되도록 이동한다.In the conventional manufacturing method, for example, when the suspension 4a containing the water-soluble polymer 2a gelled by arranging the cooling device 12a on the lower surface 7a side is cooled from one side, the gelled suspension Water 3a in (4a) freezes from the lower surface 7a side and changes state to ice 5a, and the crystals of this ice 5a try to grow from the lower surface 7a side toward the upper surface 8a side. . Then, when the crystals of the ice 5a grow, a pressing force sufficient to move the relatively small ceramic particles 1a having an average particle diameter of, for example, about 0.01 to 5 mu m is applied. For this reason, if the ceramic particles 1a exist in the direction in which the crystals of the ice 5a are going to grow, the ceramic particles 1a temporarily fixed by gelation will move around the growing crystals of the ice 5a. move to be excluded.

이렇게, 도 7에 나타내는 종래의 제조 방법에서는, 겔화한 현탁체(4a)를 일방향으로부터 냉각하면, 일방향측으로부터 타방향측으로 주상(柱狀)으로 성장한 얼음(5a)의 결정을 둘러싸도록 세라믹스 입자(1a)가 재배열되고, 이에 따라 세라믹스 입자(1a)의 분포에 조밀이 생긴 동결체(6a)가 얻어진다.In this way, in the conventional manufacturing method shown in Fig. 7, when the gelled suspension 4a is cooled from one direction, the ceramic particles ( 1a) is rearranged, thereby obtaining a frozen body 6a in which the distribution of the ceramic particles 1a is dense.

이에 대해, 실시형태에 따른 다공질 세라믹스의 제조 방법에서는, 사용하는 세라믹스 입자(1)의 평균 입경d가 작아짐에 따라서 현탁체(4)의 점도η가 커지도록 점성이 조정된 현탁체(4)를 적용한다. 구체적으로는, 겔화 전의 현탁체(4)의 20℃에서의 점도η(m㎩·s)와, 세라믹스 입자(1)의 평균 입경d(㎛)가, η≥950×d-0.77의 관계를 갖는다.On the other hand, in the manufacturing method of the porous ceramics which concerns on embodiment, the viscosity η of the suspension 4 becomes large as the average particle diameter d of the ceramic particle 1 used becomes small, the suspension 4 whose viscosity is adjusted. apply Specifically, the average particle diameter d (㎛) of gelling before suspension body (4) 20 ℃ viscosity η (m㎩ · s), and ceramic particles (1) in a, a relation d × η≥950 -0.77 have

평균 입경d 및 점도η가 이러한 관계를 가지면, 얼음(5)의 결정이 성장해서 세라믹스 입자(1)에 접근 또는 충돌해도, 세라믹스 입자(1)는 그 크기에 상관없이 얼음(5)의 결정의 성장에 수반하는 압압력에 저항할 수 있게 된다. 이 때문에, 이러한 개소에 있어서의 세라믹스 입자(1)는, 동결 공정에 있어서도 거의 이동하지 않고, 겔화체로서 유지된 위치에 머무를 것으로 생각된다.If the average particle diameter d and the viscosity η have such a relationship, even if the crystals of the ice 5 grow and approach or collide with the ceramic particles 1, the ceramic particles 1 are the same as the crystals of the ice 5 regardless of their size. It becomes possible to resist the pressing force accompanying growth. For this reason, it is thought that the ceramic particle 1 in such a location hardly moves also in a freezing process, and remains in the position hold|maintained as a gelled body.

그리고, 얼음(5)은, 세라믹스 입자(1)에 충돌할 때마다 결정의 성장 방향을 바꾸면서, 냉각 장치(12)가 배치된 하면(7)측으로부터 상면(8)측을 향해서 지그재그로 결정을 성장시킨다. 또한, 얼음(5)의 결정이 지그재그로 성장하기 때문에, 경우에 따라서는 근접하는 얼음(5)의 결정끼리가 충돌이나 접촉을 반복하면서 성장할 것으로 생각된다. 이 때문에, 실시형태에 따른 다공질 세라믹스의 제조 방법에서는, 도 1에 나타내는 바와 같이 겔화한 현탁체(4)를 하면(7)측으로부터 냉각해도, 결과적으로 세라믹스 입자(1)의 사이를 얼음(5)이 랜덤한 방향으로 성장한 개소를 갖는 동결체(6)가 얻어진다.Then, the ice 5 changes the crystal growth direction each time it collides with the ceramic particles 1, while forming the crystals in a zigzag manner from the lower surface 7 side where the cooling device 12 is disposed toward the upper surface 8 side. Grow. Further, since the crystals of the ice 5 grow in a zigzag manner, it is considered that, in some cases, adjacent crystals of the ice 5 grow while repeating collisions or contact. For this reason, in the manufacturing method of the porous ceramics which concerns on embodiment, as shown in FIG. 1, even if it cools the gelled suspension 4 from the lower surface 7 side, as a result, between the ceramic particles 1, ice 5 ), a frozen body 6 having a location where it grows in a random direction is obtained.

이렇게, 실시형태에 따른 다공질 세라믹스의 제조 방법에서는, 겔화한 현탁체(4)를 일방향으로부터 냉각한 경우여도, 균일하게 분산된 세라믹스 입자(1)의 사이를 얼음(5)이 랜덤한 방향으로 성장한 개소를 갖는 동결체(6)가 얻어진다. 그리고, 상술한 평균 입경d 및 점도η가 특히 η≥1630×d-0.77의 관계를 가지면, 전체에 걸쳐서 얼음(5)이 랜덤한 방향으로 성장한 동결체(6)가 얻어진다.In this way, in the method for manufacturing porous ceramics according to the embodiment, even when the gelled suspension 4 is cooled from one direction, ice 5 grows in a random direction between the uniformly dispersed ceramic particles 1 . A frozen body 6 having a location is obtained. And, Having a relationship between the average particle diameter d, and the viscosity is particularly η≥1630 × d -0.77 η described above, the freeze throughout the grown ice (5) The random orientation support 6 is obtained.

다음으로, 건조 공정에 대하여 설명한다. 건조 공정은, 동결체(6)에 성장한 얼음(5)을 제거해서 기공(10)을 생성하는 공정이다. 얼음(5)이 성장한 동결체(6)를, 예를 들면 동결 건조에 의해 건조시키면, 얼음(5)의 결정이 승화해서 소실하고, 대신에 기공(10)이 형성된다. 즉, 건조 공정은, 얼음(5)을 기공(10)으로 치환하는 공정이다.Next, a drying process is demonstrated. The drying process is a process of removing the ice 5 grown on the frozen body 6 to generate the pores 10 . When the frozen body 6 on which the ice 5 has grown is dried by, for example, freeze-drying, crystals of the ice 5 sublimate and disappear, and pores 10 are formed instead. That is, the drying step is a step of replacing the ice 5 with the pores 10 .

다음으로, 탈지 공정에 대하여 설명한다. 탈지 공정은, 건조 공정에 있어서 기공(10)을 생성한 동결체(6)로부터 수용성 고분자(2) 등의 유기 성분을 제거하는 공정이다. 구체적으로는, 세라믹스 입자(1)의 종류에 따라서, 미리 정해진 온도 조건 하에서 수용성 고분자(2) 등의 유기 성분을 분해해서 제거하는 처리를 실행한다.Next, the degreasing process is demonstrated. A degreasing process is a process of removing organic components, such as the water-soluble polymer 2, from the frozen body 6 which produced|generated the pore 10 in the drying process. Specifically, a process for decomposing and removing organic components such as the water-soluble polymer 2 under a predetermined temperature condition is performed according to the type of the ceramic particles 1 .

마지막으로, 소성 공정에 대하여 설명한다. 소성 공정은, 얼음(5) 및 수용성 고분자(2) 등의 유기 성분이 제거되고, 기공(10)이 형성된 동결체(6)를 소성해서 다공질 세라믹스(11)를 제작하는 공정이다. 소성에 의해 얻어지는 다공질 세라믹스(11)는, 상술한 건조 공정에 있어서 형성된 기공(10)과, 기공(10)을 둘러싸도록 세라믹스 입자(1)끼리가 결합해서 치밀화한 세라믹스 골격(9)을 갖는다.Finally, the firing step will be described. The firing step is a step of producing the porous ceramics 11 by firing the frozen body 6 from which the ice 5 and organic components such as the water-soluble polymer 2 are removed and the pores 10 are formed. The porous ceramics 11 obtained by firing have the pores 10 formed in the drying step described above, and the ceramic skeleton 9 in which the ceramic particles 1 are bonded to each other so as to surround the pores 10 and are densified.

소성 후에 얻어지는 다공질 세라믹스(11)는, 동결 공정에 있어서 생성한 동결체(6)의 형상의 차이에 의거해서 서로 다른 형상을 갖는다. 즉, 종래의 제조 방법에서는, 도 7에 나타내는 바와 같이 일방향측으로부터 타방향측으로 형성된 주상의 기공(10a)의 주위에 세라믹스 골격(9a)이 형성된 다공질 세라믹스(11a)가 생성된다. 이에 대해, 실시형태에 따른 다공질 세라믹스(11)의 제조 방법에서는, 기공(10)이 랜덤한 방향으로 형성되도록 3차원의 망목상(網目狀)으로 세라믹스 골격(9)이 형성됨에 의해, 내열충격성 및 굽힘 강도가 우수한 다공질 세라믹스(11)가 생성된다(도 3을 참조할 것). 여기에서, 기공(10)이 「랜덤한 방향으로 형성됨」이란, 기공(10)의 평균 어스펙트비가 1∼2, 바람직하게는 1∼1.4인 것을 말한다. 또, 기공(10)의 평균 어스펙트비는, 후술하는 실시예에 기재하는 방법에 의해 측정할 수 있다.The porous ceramics 11 obtained after baking have different shapes based on the difference in the shape of the frozen body 6 produced|generated in the freezing process. That is, in the conventional manufacturing method, as shown in FIG. 7, the porous ceramics 11a in which the ceramic skeleton 9a was formed around the columnar pore 10a formed from one direction side to the other direction side is produced|generated. In contrast, in the method for manufacturing the porous ceramics 11 according to the embodiment, the ceramic skeleton 9 is formed in a three-dimensional network shape so that the pores 10 are formed in a random direction, whereby thermal shock resistance And the porous ceramics 11 excellent in bending strength are produced (refer FIG. 3). Here, the phrase "the pores 10 are formed in a random direction" means that the average aspect ratio of the pores 10 is 1 to 2, preferably 1 to 1.4. Incidentally, the average aspect ratio of the pores 10 can be measured by the method described in Examples to be described later.

실시형태에 따른 다공질 세라믹스(11)의 제조 방법에 있어서, 세라믹스 입자(1)는, 소성 공정에 있어서 적절하게 소성 가능한 것이면 특히 제한은 없다. 구체적으로는, 예를 들면, 지르코니아, 알루미나, 실리카, 티타니아, 탄화규소, 탄화붕소, 질화규소, 질화붕소, 코디어라이트, 하이드록시아파타이트, 사이알론, 지르콘, 티탄산알루미늄 및 뮬라이트 중 1종 이상을 세라믹스 입자(1)로서 적용할 수 있지만, 이들로 한정되지 않는다. 그 중 지르코니아를 세라믹스 입자(1)로서 적용할 경우에는, 산화칼슘, 산화마그네슘 또는 산화이트륨 등을 고용(固溶)시켜서 안정화시킨 완전 안정화 지르코니아를 95질량% 이상 배합시켜서 온도 변화에 대해서 안정성을 향상시키는 것이 바람직하다. 또한, 예를 들면, 알루미나 및 실리카를 적용해서 뮬라이트를 제작하거나, 지르코니아 및 알루미나를 적용해서 복합체를 제작하거나 하는, 원하는 특성에 따라서 복수의 세라믹스 입자(1)를 조합해서 사용할 수 있다.In the manufacturing method of the porous ceramics 11 which concerns on embodiment, there will be no restriction|limiting in particular as long as the ceramic particle 1 can be appropriately baked in a baking process. Specifically, for example, at least one of zirconia, alumina, silica, titania, silicon carbide, boron carbide, silicon nitride, boron nitride, cordierite, hydroxyapatite, sialon, zircon, aluminum titanate, and mullite is used as ceramics. Although applicable as particle 1, it is not limited to these. Among them, when zirconia is applied as the ceramic particles (1), 95% by mass or more of fully stabilized zirconia stabilized by dissolving calcium oxide, magnesium oxide or yttrium oxide in a solid solution is blended to improve stability against temperature change. It is preferable to do In addition, for example, a plurality of ceramic particles 1 can be used in combination according to desired characteristics, such as preparing a mullite by applying alumina and silica, or preparing a composite by applying zirconia and alumina.

또한, 세라믹스 입자(1)는, 실용상, 평균 입경이 100㎛ 이하인 것이 바람직하다. 세라믹스 입자(1)의 평균 입경이 100㎛를 초과하면, 원하는 다공질 세라믹스(11)의 형상이나 크기에 따라서는 세라믹스 입자(1)의 적절한 소성이 곤란한 경우가 있다. 여기에서, 「평균 입경」이란, 레이저 회절식 입도 분포 측정 장치(습식법)에 있어서, 구상당경으로 환산한 체적 기준의 입도 분포에 의거해서 얻어진 메디안경(d50)을 가리킨다. 또, 같은 결과가 얻어지는 것이면, 측정 방법에 제한은 없다.Moreover, it is preferable that the average particle diameter of the ceramic particle 1 is 100 micrometers or less practically. When the average particle diameter of the ceramic particles 1 exceeds 100 µm, appropriate firing of the ceramic particles 1 may be difficult depending on the desired shape and size of the porous ceramics 11 . Here, the "average particle diameter" refers to the median diameter (d50) obtained based on the volume-based particle size distribution converted to the spherical diameter in the laser diffraction type particle size distribution measuring apparatus (wet method). Moreover, as long as the same result is obtained, there is no restriction|limiting in a measuring method.

현탁체(4) 중의 세라믹스 입자(1)의 배합량은, 1∼50vol%의 범위가 바람직하며, 보다 바람직하게는 1∼30vol%이다. 세라믹스 입자(1)의 배합량이 1vol% 미만이면, 예를 들면 건조 공정에 있어서 형상을 유지할 수 없는 경우가 있으며, 또한, 원하는 강도를 갖는 다공질 세라믹스(11)를 제작하는 것이 곤란해진다. 또한, 세라믹스 입자(1)의 배합량이 50vol%를 초과하면, 얻어지는 다공질 세라믹스(11)는 기공률이 낮아져, 다공체로서 소망되는 특징을 충분히 나타내지 못하는 경우가 있다. 여기에서, 「기공률」이란, JISR1634:2008에 규정하는 방법에 의거해, 아르키메데스법에 의해 얻어진 값을 말한다. 이러한 측정에서는, 폐기공(閉氣孔)은 고려되지 않기 때문에, 「겉보기 기공률」이라고도 불린다. 또, 본 실시형태에서는, 폐기공은 거의 형성되지 않기 때문에, 이 「겉보기 기공률」을 「기공률」로서 취급할 수 있다.As for the compounding quantity of the ceramic particle 1 in the suspension 4, the range of 1-50 vol% is preferable, More preferably, it is 1-30 vol%. When the blending amount of the ceramic particles 1 is less than 1 vol%, for example, the shape may not be maintained in the drying step, and it becomes difficult to produce the porous ceramics 11 having a desired strength. Moreover, when the compounding quantity of the ceramic particle 1 exceeds 50 vol%, the porosity of the porous ceramics 11 obtained becomes low, and it may not fully exhibit the characteristic desired as a porous body. Here, "porosity" means the value obtained by the Archimedes method based on the method prescribed|regulated to JISR1634:2008. In this measurement, since the closed pores are not considered, it is also called "apparent porosity". Moreover, in this embodiment, since closed pores are hardly formed, this "apparent porosity" can be handled as a "porosity".

또한, 세라믹스 입자(1)를 적절하게 소성시키기 위하여, 세라믹스 입자(1)의 종류에 따른 1 또는 2종 이상의 소성 조제를 현탁체(4)에 배합해도 된다. 소성 조제의 구체예로서, 알루미나, 탄산칼슘, 이트리아, 탄화붕소, 세리아 등을 들 수 있지만, 이들로 한정되지 않는다. 또, 소성 조제로서 첨가된 탄산칼슘(CaCO3)은, 소성에 의해 분해해, 산화칼슘(CaO)으로서 다공질 세라믹스(11) 중에 잔존한다.In addition, in order to properly bake the ceramic particle 1, you may mix|blend 1 or 2 or more types of baking adjuvant according to the kind of the ceramic particle 1 to the suspension body 4. Specific examples of the calcination aid include, but are not limited to, alumina, calcium carbonate, yttria, boron carbide, and ceria. In addition, calcium carbonate was added as a sintering aid (CaCO 3) is, it is decomposed by the baking, it remains in the as calcium oxide (CaO) oxide porous ceramics (11).

또한, 현탁체(4)를 적절하게 겔화시키기 위하여, 필요하면 수용성 고분자(2)의 종류에 따른 pH조정제나 개시제, 가교제 등의 각종 첨가제를 첨가해도 된다.In addition, in order to gel the suspension 4 properly, you may add various additives, such as a pH adjuster, an initiator, and a crosslinking agent, according to the kind of water-soluble polymer 2, if necessary.

또한, 수용성 고분자(2)로서는, 겔화 공정에서부터 건조 공정까지 세라믹스 입자(1)의 분산을 안정적으로 유지할 수 있으며, 또한, 동결 공정에 있어서 얼음(5)의 성장을 저해하지 않는 것이면 그 종류 및 배합량에 제한은 없다. 구체적으로는, 예를 들면, N-알킬아미드계 고분자, N-이소프로필아크릴아미드계 고분자, 설포메틸화아크릴아미드계 고분자, N-디메틸아미노프로필메타크릴아미드계 고분자, 폴리알킬아크릴아미드계 고분자, 알긴산, 알긴산나트륨, 알긴산암모늄, 폴리에틸렌이민, 카르복시메틸셀룰로오스, 히드록시메틸셀룰로오스, 메틸셀룰로오스, 히드록시에틸셀룰로오스, 히드록시프로필메틸셀룰로오스, 히드록시에틸메틸셀룰로오스, 폴리아크릴산나트륨, 폴리에틸렌글리콜, 폴리에틸렌옥사이드, 폴리비닐알코올, 폴리비닐피롤리돈, 카르복시비닐 폴리머, 전분, 젤라틴, 한천, 펙틴, 글루코만난, 잔탄 검, 로커스트콩 검, 카라기난 검, 구아 검 및 젤란 검 중 1종 이상을 수용성 고분자(2)로서 적용할 수 있지만, 이들로 한정되지 않는다. 이 중, 냉각함으로써 현탁체(4)를 겔화시키는 성질을 갖는 수용성 고분자(2)를 적용할 경우에는, 현탁체(4)의 제작 시의 세라믹스 입자(1) 및 물(3)과의 혼합을 용이하게 하기 위하여, 수용성 고분자(2)의 겔화 온도가 50℃ 이하인 것이 실용상 바람직하다. 또, 이러한 수용성 고분자(2)의 구체예로서, 젤라틴, 한천, 카라기난 검 및 젤란 검을 들 수 있다.In addition, as the water-soluble polymer 2, if the dispersion of the ceramic particles 1 can be stably maintained from the gelation process to the drying process, and does not inhibit the growth of the ice 5 in the freezing process, the type and blending amount There are no restrictions on Specifically, for example, N-alkylamide-based polymer, N-isopropylacrylamide-based polymer, sulfomethylated acrylamide-based polymer, N-dimethylaminopropylmethacrylamide-based polymer, polyalkylacrylamide-based polymer, alginic acid , sodium alginate, ammonium alginate, polyethyleneimine, carboxymethylcellulose, hydroxymethylcellulose, methylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, sodium polyacrylate, polyethylene glycol, polyethylene oxide, poly At least one of vinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, starch, gelatin, agar, pectin, glucomannan, xanthan gum, locust bean gum, carrageenan gum, guar gum and gellan gum is applied as a water-soluble polymer (2) can, but are not limited to. Among these, in the case of applying the water-soluble polymer (2) having a property of gelling the suspension (4) by cooling, mixing of the ceramic particles (1) and water (3) at the time of preparation of the suspension (4) For ease of use, it is practically preferable that the gelation temperature of the water-soluble polymer 2 is 50° C. or less. Moreover, as a specific example of such a water-soluble polymer (2), gelatin, agar, carrageenan gum, and gellan gum are mentioned.

또, 현탁체(4) 중에의 세라믹스 입자(1)의 균일한 분산을 용이하게 하기 위하여, 예를 들면, 폴리카르복시산계 분산제, 말레산계 분산제 등의 분산제를 적용해도 된다. 또한, 현탁체(4)의 점도η를, 세라믹스 입자(1)의 평균 입경d에 따른 원하는 정도로 되도록 조정하기 위하여, 수용성 고분자(2)와 조합해서 사용할 수 있는 수용성의 증점제를 배합해도 된다. 이러한 증점제의 구체예로서, 예를 들면, 증점다당류, 셀룰로오스유도체계, 폴리비닐계, 폴리에스테르계, 폴리아미드계, 폴리글리콜계, 폴리비닐알코올계, 폴리알킬렌옥사이드계, 폴리아크릴계 및 이들이 조합된 화합물 등을 들 수 있지만, 이들로 한정되지 않는다. 또, 예시한 증점제는, 상술한 수용성 고분자(2)와 중복하는 경우가 있지만, 여기에서는 상술한 겔화 공정에서는 겔화하지 않는 성분을 「증점제」로 규정한다.Moreover, in order to facilitate uniform dispersion of the ceramic particles 1 in the suspension 4, a dispersing agent such as a polycarboxylic acid dispersant or a maleic acid dispersant may be applied. In addition, in order to adjust the viscosity η of the suspension 4 to a desired degree according to the average particle diameter d of the ceramic particles 1, a water-soluble thickener that can be used in combination with the water-soluble polymer 2 may be blended. As a specific example of such a thickener, for example, thickening polysaccharide, cellulose-derived system, polyvinyl-based, polyester-based, polyamide-based, polyglycol-based, polyvinyl alcohol-based, polyalkylene oxide-based, polyacrylic-based, and combinations thereof compounds and the like, but are not limited thereto. Moreover, although the illustrated thickener may overlap with the water-soluble polymer (2) mentioned above, here, the component which does not gelatinize in the above-mentioned gelatinization process is prescribed|regulated as a "thickener".

또한, 동결 공정에 있어서, 공지의 냉각 장치(12)를 이용하는 것이 가능하다. 구체적으로는, 현탁체(4)를 겔화시킨 겔화체의 하면(7)측을 예를 들면 냉각한 금속판 등의 고체에 접촉시키는, 냉각한 액체 중에 형틀째로 침지시키는 등, 다양한 냉각 방법을 적용한 냉각 장치(12)를 들 수 있다. 또한, 예를 들면, 소정의 온도로 냉각된 에탄올을, 대면하는 한쪽 편으로부터 다른 쪽 편으로 에탄올의 액면 부근에 정체나 물결침이 생기지 않고 유동하도록 순환시킴으로써 액면 부근의 온도를 일정하게 유지한 에탄올 냉각 장치를 냉각 장치(12)로서 적용해도 된다. 이러한 구성을 갖는 에탄올 냉각 장치를 적용하고, 냉각된 에탄올의 액면에 현탁체(4)가 든 형틀의 저면을 접촉 또는 침지시켜서 유지해, 동결체(6)를 생성함에 의해, 기공경의 편차가 적은 다공질 세라믹스(11)를 제작할 수 있다.Further, in the freezing step, it is possible to use a known cooling device 12 . Specifically, various cooling methods are applied, such as contacting the lower surface 7 side of the gelled body in which the suspension 4 is gelled, with a solid such as a cooled metal plate, and immersing the entire mold in a cooled liquid. The cooling device 12 is mentioned. Further, for example, ethanol cooled to a predetermined temperature is circulated from one side facing to the other so that it flows without stagnation or ripple near the liquid level of the ethanol, thereby maintaining a constant temperature near the liquid level. A cooling device may be applied as the cooling device 12 . An ethanol cooling device having such a configuration is applied, and the bottom surface of the mold containing the suspension 4 is contacted or immersed in the liquid level of the cooled ethanol to hold it, and the frozen body 6 is produced, thereby creating a porous material with little variation in pore diameter. Ceramics 11 can be produced.

또한, 동결 공정에 있어서의 겔화체의 동결 온도는, 겔화체 중의 물(3)이 동결해서 얼음(5)을 생성하는 것이 가능하면 제한은 없다. 또, 수용성 고분자(2)의 종류에 따라서는, 수용성 고분자(2)와 물(3)과의 상호 작용에 의해 -10℃보다도 높은 온도에서는 겔화체가 동결하지 않는 경우가 있기 때문에, -10℃ 이하의 동결 온도가 바람직하다.The freezing temperature of the gelled body in the freezing step is not limited as long as the water 3 in the gelled body can freeze to form ice 5 . Also, depending on the type of the water-soluble polymer 2, the gelled body may not freeze at a temperature higher than -10°C due to the interaction between the water-soluble polymer 2 and water 3, so -10°C or less A freezing temperature of

또한, 건조 공정에 있어서, 동결체(6)의 내외의 건조 속도의 차를 억제하면서, 서서히 얼음(5)을 기공(10)으로 치환함에 의해 균열을 방지하는 건조 방법을 이용하는 것이 가능하다. 구체적으로는, 동결체(6)를 동결 건조, 혹은 수용성 유기 용제나 수용성 유기 용제 수용액 중에의 침지와 풍건에 의해, 얼음(5)을 기공(10)으로 치환할 수 있다.Further, in the drying step, it is possible to use a drying method that prevents cracks by gradually replacing the ice 5 with the pores 10 while suppressing the difference in drying speed between the inside and outside of the frozen body 6 . Specifically, the ice 5 can be replaced with the pores 10 by freeze-drying the frozen body 6 or immersion in a water-soluble organic solvent or aqueous solution of a water-soluble organic solvent and air drying.

예를 들면, 동결체(6)를 수용성 유기 용제나 수용성 유기 용제 수용액 중에 침지하면, 동결체(6) 중의 얼음(5)은 융해해, 수용성 유기 용제와 혼합된다. 이러한 조작을 1회 또는 복수 회 실행함에 의해, 우선, 동결체(6) 중의 얼음(5)이었던 부분은 수용성 유기 용제로 치환된다. 그 후, 내부가 수용성 유기 용제로 치환된 동결체(6)를, 대기중 또는 감압 조건 하에 있어서 건조시키면, 동결 공정에 있어서 얼음(5)이었던 부분이 기공(10)으로 치환된다.For example, when the frozen body 6 is immersed in a water-soluble organic solvent or a water-soluble organic solvent aqueous solution, the ice 5 in the frozen body 6 is melted and mixed with the water-soluble organic solvent. By performing this operation once or a plurality of times, first, a portion of the frozen body 6 that used to be the ice 5 is replaced with a water-soluble organic solvent. Thereafter, when the frozen body 6 , which has been replaced with a water-soluble organic solvent, is dried in the air or under reduced pressure conditions, the portion that used to be the ice 5 in the freezing step is replaced with the pores 10 .

수용성 유기 용제를 이용한 건조 공정에 있어서, 수용성 유기 용제로서는, 수용성 고분자(2)를 침식하지 않으며, 또한 물(3)보다도 휘발성이 높은 것이 적용된다. 구체적으로는, 메탄올, 에탄올, 이소프로필알코올, 아세톤, 아세트산에틸 등을 들 수 있지만, 이들로 한정되지 않는다. 이들 수용성 유기 용제를 단독으로, 또는 복수 종류 병용한 건조를 1회 또는 복수 회 실행함에 의해, 동결체(6) 내에서 얼음(5)이었던 부분에, 기공(10)이 형성된다.In the drying step using the water-soluble organic solvent, the water-soluble organic solvent does not corrode the water-soluble polymer (2) and is more volatile than the water (3). Specific examples thereof include, but are not limited to, methanol, ethanol, isopropyl alcohol, acetone, and ethyl acetate. By drying these water-soluble organic solvents individually or in combination of a plurality of types once or plural times, pores 10 are formed in the portion that used to be ice 5 in the frozen body 6 .

또한, 탈지 공정에 있어서, 예를 들면 300℃∼900℃의 탈지 온도가 적용된다. 이때, 예를 들면, 탄화규소, 질화규소 등의 비산화물 세라믹스를 탈지할 경우에는, 아르곤이나 질소 등의 불활성 가스 분위기 하에서 탈지를 하는 것이 바람직하다. 이에 대해, 예를 들면, 알루미나, 지르코니아, 아파타이트 등의 산화물 세라믹스를 원료로 할 경우에는, 대기 분위기 하에서 탈지를 하는 것이 바람직하다.In the degreasing step, for example, a degreasing temperature of 300°C to 900°C is applied. At this time, for example, when degreasing non-oxide ceramics such as silicon carbide and silicon nitride, it is preferable to degrease in an inert gas atmosphere such as argon or nitrogen. On the other hand, for example, when using oxide ceramics, such as alumina, zirconia, apatite, as a raw material, it is preferable to degrease in an atmospheric condition.

그리고, 소성 공정에서는, 사용하는 세라믹스 입자(1)의 종류나 배합량, 목표로 하는 경도 등에 따라서, 소성 온도, 소성 시간 및 소성 분위기가 적의(適宜) 조정됨에 의해, 내열충격성 및 굽힘 강도가 우수한 다공질 세라믹스(11)가 제작된다.In the firing step, the firing temperature, firing time, and firing atmosphere are appropriately adjusted according to the type and blending amount of the ceramic particles 1 to be used, the target hardness, etc., so that the porous material having excellent thermal shock resistance and bending strength Ceramics 11 are manufactured.

이렇게 해서 얻어지는 다공질 세라믹스(11)의 기공률은, 50%∼99%의 범위가 바람직하며, 보다 바람직하게는 70%∼99%이다. 세라믹스 입자(1)의 기공률이 50% 미만이면, 실시형태에 따른 다공질 세라믹스(11)의 제조 방법을 사용할 필요성이 저감한다. 또한, 세라믹스 입자(1)의 기공률이 99%를 초과하면, 예를 들면 건조 공정에 있어서 형상을 유지할 수 없는 경우가 있으며, 또한, 원하는 강도를 갖는 다공질 세라믹스(11)를 제작하는 것이 곤란해진다.As for the porosity of the porous ceramics 11 obtained in this way, the range of 50 % - 99 % is preferable, More preferably, it is 70 % - 99 %. The necessity of using the manufacturing method of the porous ceramics 11 which concerns on embodiment that the porosity of the ceramic particle 1 is less than 50 % reduces. Further, when the porosity of the ceramic particles 1 exceeds 99%, for example, the shape may not be maintained in the drying step, and it becomes difficult to produce the porous ceramics 11 having a desired strength.

또한, 다공질 세라믹스(11)는, 평균 기공경 10㎛∼300㎛의 연통공(連通孔)을 갖는 것이 실용상 바람직하며, 보다 바람직하게는 10㎛∼100㎛이다. 또, 평균 기공경은, 후술하는 실시예에 기재하는 방법에 의해 측정할 수 있다.In addition, it is preferable practically that the porous ceramics 11 have communicating holes with an average pore diameter of 10 micrometers - 300 micrometers, More preferably, they are 10 micrometers - 100 micrometers. In addition, the average pore diameter can be measured by the method described in the Example mentioned later.

또한, 다공질 세라믹스(11)는, 평균 굽힘 강도가 10㎫ 이상인 것이 실용상 바람직하다. 또한, 다공질 세라믹스(11)는, 내열충격성이 450℃ 이상인 것이 실용상 바람직하며, 보다 바람직하게는 600℃ 이상이다. 또, 평균 굽힘 강도 및 내열충격성은, 후술하는 실시예에 기재하는 방법에 의해 측정할 수 있다.Moreover, it is preferable practically that the average bending strength of the porous ceramics 11 is 10 Mpa or more. Moreover, as for the porous ceramics 11, it is practically preferable that thermal shock resistance is 450 degreeC or more, More preferably, it is 600 degreeC or more. In addition, average bending strength and thermal shock resistance can be measured by the method described in the Example mentioned later.

이렇게 해서 제작된 다공질 세라믹스(11)는, 예를 들면 적층 세라믹스 콘덴서 등의 전자 부품을 제조하는 과정에 포함되는, 전자 부품을 소성하는 공정에서 사용되는 소성 지그로서 이용할 수 있다. 이러한 소성 공정에서는, 피소성물인 전자 부품을 소성 지그에 얹고, 요로(窯爐) 내에서 소성하도록 하고 있다.The porous ceramics 11 produced in this way can be used as a baking jig used in the process of baking an electronic component included in the process of manufacturing electronic components, such as a multilayer ceramic capacitor, for example. In such a baking process, the electronic component which is a to-be-baked object is mounted on a baking jig, and it is trying to bake in a furnace.

이하에, 실시형태에 따른 다공질 세라믹스(11)를 적용할 수 있는 소성 지그에 대하여, 도 2a, 도 2b를 사용해서 설명한다. 또, 도 2a, 도 2b에 있어서는, 설명을 알기 쉽게 하기 위하여, 서로 직교하는 X축 방향, Y축 방향 및 Z축 방향을 규정하고, Z축 정방향을 연직 상향 방향으로 한다.Below, the baking jig which can apply the porous ceramics 11 which concerns on embodiment is demonstrated using FIG. 2A, FIG. 2B. In addition, in FIG. 2A and FIG. 2B, in order to make the explanation easy to understand, the X-axis direction, the Y-axis direction, and the Z-axis direction orthogonal to each other are prescribed|regulated, and let the Z-axis direction be a perpendicularly upward direction.

도 2a는, 실시형태에 따른 소성 지그의 구성의 개요를 나타내는 모식 사시도, 도 2b는, 도 2a에 나타내는 소성 지그를, Y축의 마이너스측으로부터 보았을 때의 모식 정면도이다.Fig. 2A is a schematic perspective view showing the outline of the configuration of the firing jig according to the embodiment, and Fig. 2B is a schematic front view of the firing jig shown in Fig. 2A when viewed from the minus side of the Y-axis.

도 2a, 도 2b에 나타내는 바와 같이, 소성 지그(13)는, 기대(基臺)(14)와, 세터(17)를 구비한다. 그리고, 소성 지그(13)의 세터(17)의 위에는, 피소성물(18)이 재치(載置)되어 있다.2A and 2B , the firing jig 13 includes a base 14 and a setter 17 . And on the setter 17 of the firing jig 13, the to-be-baked object 18 is mounted.

피소성물(18)은, 예를 들면 적층 세라믹스 콘덴서 등의 전자 부품이다. 즉, 상기한 소성 지그(13)는, 전자 부품용의 소성 지그이다. 또, 상기에서는, 피소성물(18)을 적층 세라믹스 콘덴서로 했지만, 이것은 예시이며 한정되는 것은 아니다. 즉, 피소성물(18)은, 예를 들면 칩 인덕터나 반도체 기판 등, 소성이 행해지는 전자 부품이면 어떠한 종류의 것이어도 된다.The to-be-fired object 18 is an electronic component, such as a multilayer ceramic capacitor, for example. That is, the above-described firing jig 13 is a firing jig for electronic components. In addition, although the to-be-baked object 18 was made into the multilayer ceramic capacitor in the above, this is an illustration and is not limited. That is, the to-be-fired object 18 may be of any kind as long as it is an electronic component to which baking is performed, such as a chip inductor and a semiconductor substrate, for example.

소성 지그(13)는, 세터(17)의 상면(17a)에 피소성물(18)이 재치된 상태에서, 도시하지 않는 요로 내에 배치되며, 피소성물(18)을 소성하는 공정이 행해진다.The baking jig 13 is arrange|positioned in the furnace (not shown) in the state in which the to-be-baked object 18 was mounted on the upper surface 17a of the setter 17, and the process of baking the to-be-baked object 18 is performed.

소성 지그(13)의 기대(14)는, 플레이트부(15)와, 지지부(16)를 구비한다. 플레이트부(15)는, 상면에 세터(17)를 얹는 것이 가능한 형상, 구체적으로 예를 들면 대략 평판상이며, 또한 평면시(平面視) 대략 직사각형상으로 된다.The base 14 of the firing jig 13 includes a plate portion 15 and a support portion 16 . The plate part 15 is a shape in which the setter 17 can be mounted on the upper surface, specifically, for example, it is substantially flat-plate shape, and becomes a substantially rectangular shape in planar view.

지지부(16)는, 복수개(예를 들면 4개. 도 2a에서는 1개 보이지 않음) 있으며, 플레이트부(15)의 하면측의 적의 위치에 형성된다. 구체적으로 지지부(16)는, 플레이트부(15)의 하면의 네 귀퉁이 부분으로부터 Z축의 마이너스 방향을 향해서 돌출하도록 형성되며, 플레이트부(15)를 지지한다.There are a plurality of support portions 16 (for example, four, one is not shown in FIG. 2A ), and is formed at an enemy position on the lower surface side of the plate portion 15 . Specifically, the support part 16 is formed so as to protrude from the four corners of the lower surface of the plate part 15 toward the minus direction of the Z-axis, and supports the plate part 15 .

또한, 기대(14)는, 도 2a, 2b에 나타내는 형상으로 한정되는 것은 아니다. 즉, 기대(14)는, 예를 들면 사야(갑발)나 랙 등이어도 되며, 요는 세터(17)를 얹는 것이 가능한 형상이면 된다. 또한, 기대(14)와 세터(17)는, 별체일 필요는 없으며, 일체화하도록 구성해도 된다.In addition, the base 14 is not limited to the shape shown to FIG. 2A, 2B. That is, the base 14 may be, for example, a saya or a rack, and may be any shape in which the setter 17 can be placed on the yaw. In addition, the base 14 and the setter 17 do not need to be separate and may be comprised so that it may be integrated.

또한, 플레이트부(15)의 형상은, 상기한 대략 직사각형상으로 한정되는 것은 아니다. 즉, 플레이트부(15)의 형상은, 예를 들면 정방형이나 삼각형 등의 다각형, 또는 원형이나 타원형 등 그 밖의 형상이어도 된다.In addition, the shape of the plate part 15 is not limited to said substantially rectangular shape. That is, the shape of the plate part 15 may be, for example, other shapes, such as polygons, such as a square or a triangle, or a circle|round|yen, an ellipse.

또한, 본 실시형태에 있어서의 세터(17)는, 평면시에 있어서 대략 직사각형상으로 형성됨과 함께, Z축 방향에 있어서의 두께가 비교적 얇은, 박판상으로 된다. 이렇게, 세터(17)가 박판상으로 됨으로써, 세터(17), 나아가서는 소성 지그(13) 자체를 경량화시킬 수 있다.In addition, while the setter 17 in this embodiment is formed in the substantially rectangular shape in planar view, the thickness in the Z-axis direction becomes comparatively thin and thin plate shape. In this way, when the setter 17 is made into a thin plate shape, the setter 17 and, by extension, the firing jig 13 itself can be reduced in weight.

상기와 같이 구성된 소성 지그(13)로서, 실시형태에 따른 다공질 세라믹스(11)를 적용할 수 있다. 또, 기대(14)를 구성하는 플레이트부(15) 및 지지부(16)는, 일체 성형되어도 되고, 개별로 제작한 플레이트부(15) 및 지지부(16)에 예를 들면 접착, 압착, 소결 그 밖의 각종 접합 방법을 적용해, 기대(14)를 제작해도 된다.As the firing jig 13 configured as described above, the porous ceramics 11 according to the embodiment can be applied. In addition, the plate part 15 and the support part 16 which comprise the base 14 may be integrally molded, and are attached to the plate part 15 and the support part 16 produced individually, for example, bonding, crimping|bonding, sintering, etc. You may produce the base 14 by applying other various joining methods.

또한, 실시형태에 따른 다공질 세라믹스(11)가 소성 지그(13)로서 적용될 경우에는, 다공질 세라믹스(11)는 세라믹스 입자(1)로서 배합되는 완전 안정화 지르코니아에 대해, 0.01∼1.5질량%의 Al2O3 및 0.01∼2.0질량%의 CaO를 포함하는 것이 바람직하다. 실시형태에 따른 다공질 세라믹스(11)가 완전 안정화 지르코니아에 대해서 적량의 Al2O3 및 CaO를 함유하면, 내열충격성 및 굽힘 강도가 더 향상한다.Further, when the porous ceramics 11 according to the embodiment is applied as the firing jig 13 , the porous ceramics 11 contains 0.01 to 1.5% by mass of Al 2 with respect to the fully stabilized zirconia blended as the ceramic particles 1 . O 3, and preferably contains 0.01 to 2.0% by weight of CaO. When the porous ceramic 11 according to the embodiment contains a proper amount of Al 2 O 3 and CaO for a fully stabilized zirconia, the thermal shock resistance and the bending strength further improved.

이렇게, 실시형태에 따른 다공질 세라믹스(11)가 소성 지그(13)로서 적용됨으로써, 피소성물(18)을 소성할 때에 요로 내의 열풍이 피소성물(18)의 하면측에 배치된 기대(14) 및 세터(17)를 통과해 요로의 아래쪽 및 옆쪽에 도달한다. 이 때문에, 요로 내의 온도 불균일을 저감해서 피소성물(18)을 효율 좋게 소성시킬 수 있다. 또한, 피소성물(18)에 배합된 바인더 그 밖의 유기 성분을 제거하는 탈지 시에는, 피소성물(18)로부터 유기 성분을 효율 좋게 제거시킬 수 있다.In this way, when the porous ceramics 11 according to the embodiment is applied as the firing jig 13 , when the to-be-fired object 18 is fired, the hot air in the urinary tract is disposed on the lower surface side of the to-be-fired object 18 and the base 14 and It passes through the setter (17) to reach the lower and lateral sides of the urinary tract. For this reason, the temperature nonuniformity in a urinary path|route can be reduced and the to-be-baked object 18 can be baked efficiently. In addition, at the time of degreasing to remove the binder and other organic components blended in the to-be-fired object 18 , the organic component can be efficiently removed from the to-be-fired object 18 .

또, 도 2a, 2b에서는, 하나의 소성 지그(13)를 나타냈지만, 이것으로 한정되는 것은 아니며, 예를 들면 소성 지그(13)를 Z축 정방향으로 복수단 겹쳐 쌓고, 복수단의 소성 지그(13)에 재치된 다수의 피소성물(18)을 한번에 소성하도록 해도 된다.In addition, in FIGS. 2A and 2B, although one firing jig 13 was shown, it is not limited to this, For example, the firing jig 13 is piled up in multiple stages in the Z-axis positive direction, and a multiple stage firing jig ( You may make it bake the many to-be-fired objects 18 mounted in 13) at once.

또한, 상술에 있어서, 실시형태에 따른 다공질 세라믹스(11)는 기대(14) 및 세터(17)에 적용되는 것으로서 설명했지만, 기대(14) 및 세터(17) 중, 한쪽에만 다공질 세라믹스(11)를 적용해도 된다. 또한, 기대(14)를 구성하는 플레이트부(15) 및 지지부(16) 중, 한쪽에만 실시형태에 따른 다공질 세라믹스(11)를 적용해도 된다.In addition, in the above-mentioned, although the porous ceramics 11 which concern on embodiment demonstrated as what is applied to the base 14 and the setter 17, only one of the base 14 and the setter 17 porous ceramics 11 may be applied. In addition, you may apply the porous ceramics 11 which concern on embodiment only to one of the plate part 15 and the support part 16 which comprise the base 14. As shown in FIG.

다음으로, 실시형태에 따른 다공질 세라믹스(11)를 제조하는 방법에 대하여, 도 6을 사용해서 상세히 설명한다. 도 6은, 실시형태에 따른 다공질 세라믹스(11)를 제조하는 처리 수순을 나타내는 플로 차트이다.Next, the method of manufacturing the porous ceramics 11 which concerns on embodiment is demonstrated in detail using FIG. 6 : is a flowchart which shows the process procedure which manufactures the porous ceramics 11 which concern on embodiment.

도 6에 나타내는 바와 같이, 우선, 세라믹스 입자(1)와, 수용성 고분자(2)와, 물(3)을 혼합해서 현탁체(4)를 조제한다(스텝S101). 소성 조제나 증점제, pH조정제, 개시제, 가교제 등의 각종 첨가제는, 이 타이밍에서 첨가하면 된다. 또, 수용성 고분자(2)는, 세라믹스 입자(1)와 혼합하기 전에 미리 물(3)과 혼합해서 수용액으로 한 것을 사용해도 되며, 또한, 수용성 고분자(2)와 세라믹스 입자(1)를 미리 혼합한 것을 교반 중의 물(3)에 첨가해도 된다. 그리고, 분산제를 사용할 경우에는, 세라믹스 입자(1)와 미리 혼합해 두는 것이 바람직하다.As shown in Fig. 6, first, ceramic particles 1, water-soluble polymer 2, and water 3 are mixed to prepare a suspension 4 (step S101). What is necessary is just to add various additives, such as a baking aid, a thickener, a pH adjuster, an initiator, and a crosslinking agent, at this timing. The water-soluble polymer 2 may be mixed with water 3 before mixing with the ceramic particles 1 to obtain an aqueous solution, and the water-soluble polymer 2 and the ceramic particles 1 are mixed in advance. You may add one thing to the water 3 in stirring. In addition, when using a dispersing agent, it is preferable to mix with the ceramic particle 1 beforehand.

계속해서, 스텝S101에 있어서 조제한 현탁체(4)를 겔화시켜서 겔화체를 형성한다(스텝S102). 현탁체(4)의 겔화를 촉진시키기 위하여, 필요하면 현탁체(4)를 가열해도 된다.Subsequently, the suspension 4 prepared in step S101 is gelled to form a gelled body (step S102). In order to promote gelation of the suspension 4, if necessary, the suspension 4 may be heated.

다음으로, 겔화체를 동결시켜서 얼음(5)의 결정이 랜덤한 방향으로 성장한 개소를 갖는 동결체(6)를 생성한다(스텝S103). 계속해서, 동결체(6)를 건조시켜서 성장한 얼음(5)의 결정을 제거해, 기공(10)을 생성한다(스텝S104).Next, the gelled body is frozen to produce the frozen body 6 having locations where the crystals of the ice 5 grow in random directions (step S103). Subsequently, the crystals of the ice 5 grown by drying the frozen body 6 are removed to form pores 10 (step S104).

추가로, 얼음(5)이 제거되어 기공(10)이 생성된 동결체(6)로부터 수용성 고분자(2) 등의 유기 성분을 제거하는 탈지를 행하고(스텝S105), 계속해서 소성을 행한다(S106). 이상의 각 공정에 의해, 실시형태에 따른 일련의 다공질 세라믹스(11)의 제조가 종료한다.Further, degreasing is performed to remove organic components, such as water-soluble polymer 2, from the frozen body 6 in which the ice 5 is removed and the pores 10 are generated (step S105), followed by firing (S106). ). According to each of the above steps, production of a series of porous ceramics 11 according to the embodiment is completed.

상술해온 바와 같이, 실시형태에 따른 다공질 세라믹스의 제조 방법은, 현탁체를 겔화시키는 공정과, 겔화한 상기 현탁체를 동결시켜서 동결체를 생성하는 공정과, 상기 동결체에 성장한 얼음을 제거해서 기공을 생성하는 공정과, 상기 얼음이 제거된 상기 동결체를 소성하는 공정을 포함한다. 현탁체는, 세라믹스 입자와, 수용성 고분자와, 물을 포함한다. 겔화 전의 상기 현탁체의 20℃에서의 점도η(m㎩·s)와, 상기 세라믹스 입자의 평균 입경d(㎛)가, η≥950×d-0.77의 관계를 갖는다.As described above, the method for manufacturing porous ceramics according to the embodiment includes a step of gelling a suspension, a step of freezing the gelled suspension to form a frozen body, and removing the ice grown on the frozen body to form pores and a step of calcining the frozen body from which the ice has been removed. The suspension contains ceramic particles, a water-soluble polymer, and water. Viscosity η (m㎩ · s) at 20 ℃ of the suspension body before gelation, and the average particle diameter d (㎛) of the ceramic particles, and has a relation d × η≥950 -0.77.

따라서, 실시형태에 따른 다공질 세라믹스의 제조 방법에 따르면, 내열충격성 및 굽힘 강도가 우수한 다공질 세라믹스를 제작할 수 있다.Therefore, according to the manufacturing method of the porous ceramics which concerns on embodiment, the porous ceramics excellent in thermal shock resistance and bending strength can be manufactured.

또, 상술한 실시형태에서는, 현탁체(4)를 겔화시킨 겔화체를 동결시키기 위한 냉각 장치(12)가 겔화체의 일방향측에 배치된 예를 들어서 설명했지만, 이것으로 한정되지 않는다. 예를 들면, 겔화체를 형틀째 소정의 동결 온도로 설정한 냉동실 내에 재치하는 방법이어도 되며, 또한, 상하면을 단열재로 차단해서 측면으로부터 복사 전열로 냉각하는 방법이어도 된다. 즉, 실시형태에 따른 다공질 세라믹스(11)의 제조 방법에 따르면, 냉각 장치(12)의 구성에 상관없이 기공(10)이 랜덤한 방향으로 형성되며, 내열충격성 및 굽힘 강도가 우수한 다공질 세라믹스(11)가 생성된다.Moreover, although the above-mentioned embodiment gave and demonstrated the example in which the cooling device 12 for freezing the gelatinized body which gelled the suspension 4 was arrange|positioned on the one direction side of the gelatinized body, it is not limited to this. For example, the method may be a method in which the gelling body is placed in a freezing chamber set at a predetermined freezing temperature from the first mold, or a method in which the upper and lower surfaces are blocked with an insulating material and cooled by radiant heat from the side surface. That is, according to the manufacturing method of the porous ceramics 11 according to the embodiment, the pores 10 are formed in random directions regardless of the configuration of the cooling device 12, and the porous ceramics 11 having excellent thermal shock resistance and bending strength. ) is created.

또한, 상술한 실시형태에서는, 냉각 장치(12)로서 에탄올 냉각 장치를 예로 들어서 설명했지만, 응고 온도가 낮아, 겔화체를 동결시키기 위하여 원하는 온도까지 액상인 냉매이면 에탄올 이외의 것을 적용해도 된다. 구체적으로는, 메탄올, 이소프로필알코올, 아세톤, 에틸렌글리콜 등을 들 수 있지만, 이들로 한정되지 않는다. 또, 이들 냉매를 단독으로, 또는 복수 종류 병용하며, 또한 필요에 따라서 물과 혼화시켜서 사용할 수 있다.Further, in the above-described embodiment, an ethanol cooling device is used as the cooling device 12 as an example. However, if the solidification temperature is low and the coolant is liquid to a desired temperature in order to freeze the gelled body, a coolant other than ethanol may be applied. Specific examples thereof include, but are not limited to, methanol, isopropyl alcohol, acetone, and ethylene glycol. Moreover, these refrigerants can be used alone or in combination with a plurality of types, and mixed with water as needed.

또한, 상술한 실시형태에서는, 탈지 공정(스텝S105)은 필수의 공정으로서 설명했지만, 수용성 고분자(2)의 종류 및 배합량에 따라서는 생략해도 된다. 이때, 수용성 고분자(2)는 소성 공정(스텝S106)에 있어서 분해, 제거된다.In addition, in the above-mentioned embodiment, although the degreasing process (step S105) was demonstrated as an essential process, you may abbreviate|omit depending on the kind and compounding quantity of the water-soluble polymer (2). At this time, the water-soluble polymer 2 is decomposed and removed in the firing step (step S106).

또, 실시형태에 따른 다공질 세라믹스(11)의 제조 방법에 있어서의, 겔화 전의 현탁체(4)의 20℃에서의 점도η와, 세라믹스 입자(1)의 평균 입경d과의 관계식은, 다음과 같이 해서 얻어진 것이다. 우선, 실시형태에 따른 다공질 세라믹스(11)에 요구되는 특성으로서, 기공(10)의 평균 어스펙트비, 평균 굽힘 강도, 내열충격성에 주목했다. 다음으로, 세라믹스 입자(1)의 평균 입경d(㎛) 및 겔화 전의 현탁체(4)의 20℃에서의 점도η(m㎩·s)의 값을 변경시키면서 다공질 세라믹스(11)를 제작하고, 얻어진 다공질 세라믹스(11)의 상술한 3개의 특성을 측정했다. 추가로, 기공(10)의 평균 어스펙트비 1∼1.4, 평균 굽힘 강도 10㎫ 이상, 및 내열충격성 450℃ 이상의 각 조건을 모두 만족시키는 d 및 η의 값으로부터 상관성을 평가한 바, 관계식η≥1630×d-0.77가 얻어졌다. 그리고, 이 관계식을 만족시키도록 조정한 현탁체(4)를 사용함에 의해, 내열충격성 및 굽힘 강도가 우수한 다공질 세라믹스(11)를 제작할 수 있는 것이 확인되었다.Moreover, in the manufacturing method of the porous ceramics 11 which concerns on embodiment, the relational expression between the viscosity η at 20°C of the suspension 4 before gelation and the average particle diameter d of the ceramic particles 1 is as follows obtained together. First, attention was paid to the average aspect ratio of the pores 10, average bending strength, and thermal shock resistance as characteristics required for the porous ceramics 11 according to the embodiment. Next, while changing the values of the average particle diameter d (μm) of the ceramic particles 1 and the viscosity η (mPa·s) at 20° C. of the suspension 4 before gelation, the porous ceramics 11 are produced, The above-mentioned three characteristics of the obtained porous ceramics 11 were measured. In addition, the correlation was evaluated from the values of d and η that satisfy all the conditions of the pores 10 with an average aspect ratio of 1 to 1.4, an average bending strength of 10 MPa or more, and a thermal shock resistance of 450° C. or more, the relational expression η≥ 1630×d −0.77 was obtained. And it was confirmed that the porous ceramics 11 excellent in thermal shock resistance and bending strength could be produced by using the suspension body 4 adjusted so that this relational expression might be satisfied.

또한, 상술한 점도η 및 평균 입경d가, 950×d-0.77≤η<1630×d-0.77의 관계를 가지면, 기공(10)이 완전하게는 랜덤하게 형성되지 않고, 부분적으로 배향성을 갖도록 형성되지만, 내열충격성 및 굽힘 강도가 우수한 다공질 세라믹스(11)가 생성되는 것도 밝혀졌다.Further, forming the above-described viscosity η and the average particle diameter d, 950 × d -0.77 ≤η Having a relationship of <1630 × d -0.77, pores 10 are formed are not completely at random, in part, to have the orientation However, it was also found that the porous ceramics 11 excellent in thermal shock resistance and bending strength were produced.

[실시예][Example]

(실시예 1)(Example 1)

평균 입경 9㎛의 완전 안정화 지르코니아(YSZ) 입자(세라믹스 입자(1)에 대응) 20vol%와, 소성 조제로서 알루미나 1.5질량%(안정화 지르코니아에 대해서)와, 탄산칼슘 3.5질량%(완전 안정화 지르코니아에 대해서, 산화칼슘 환산으로 2.0질량%)와, 물 80.0vol%를 혼합했다. 이것에 증점제로서 미량의 히드록시프로필메틸셀룰로오스와, 젤라틴(수용성 고분자(2)에 대응) 3.0질량%(물(3)에 대해서)을 첨가해 현탁체(4)를 조제했다. 조제한 현탁체(4)를 형틀에 넣고, 5℃의 냉장고 내에 정치해, 현탁체(4)의 겔화를 행했다.20 vol% of fully stabilized zirconia (YSZ) particles having an average particle diameter of 9 μm (corresponding to ceramic particles (1)), 1.5% by mass of alumina as a firing aid (relative to stabilized zirconia), and 3.5% by mass of calcium carbonate (to fully stabilized zirconia) About 2.0 mass % in conversion of calcium oxide) and 80.0 vol% of water were mixed. As a thickener, a trace amount of hydroxypropylmethylcellulose and 3.0% by mass of gelatin (corresponding to water-soluble polymer (2)) (with respect to water (3)) were added to this to prepare a suspension (4). The prepared suspension 4 was put into a mold, and it left still in a refrigerator at 5 degreeC, and the suspension 4 was gelatinized.

다음으로, 겔화한 현탁체(4)가 든 형틀을 -15℃의 냉동고에 넣어서 냉각해, 동결체(6)를 생성시켰다. 계속해서 동결체(6)를 형틀로부터 취출하고, 동결 건조 장치로 24시간 건조했다. 추가로, 대기 분위기 하의 전기로에서 600℃에서 2시간 탈지한 후, 1600℃에서 2시간 소성함에 의해, 연직 방향의 두께c=9㎜의 다공질 세라믹스(11)가 얻어지고, 추가로 수평 방향의 폭을 균등하게 가지런히 하는 가공을 실시함에 의해, a×b×c=100㎜×100㎜×9㎜로 했다(도 5 참조). 또, 가공을 실시하기 전의 다공질 세라믹스(11)의 수평 방향의 폭a×b는, (104∼106)㎜×(104∼106)㎜ 정도로 된다. 겔화 전의 현탁체(4)의 20℃에서의 점도η, 얻어진 다공질 세라믹스(11)의 기공률, 평균 기공경, 기공(10)의 평균 어스펙트비, 내열충격성, 및 평균 굽힘 강도를 표 1에, 다공질 세라믹스(11)의 기공경의 편차를 표 2에, 각각 나타낸다. 또한, 본 실시예에서 제작한 다공질 세라믹스(11)의 부분 종단면도를 도 3에 나타낸다.Next, the mold containing the gelled suspension 4 was put in a -15 degreeC freezer and cooled, and the frozen body 6 was produced|generated. Subsequently, the frozen body 6 was taken out from the mold and dried for 24 hours with a freeze drying apparatus. Furthermore, after degreasing at 600°C for 2 hours in an electric furnace under an atmospheric atmosphere, by baking at 1600°C for 2 hours, the porous ceramics 11 having a thickness c = 9 mm in the vertical direction is obtained, and further, the width in the horizontal direction By performing processing to align the , a × b × c = 100 mm × 100 mm × 9 mm (refer to Fig. 5). Moreover, the width a x b in the horizontal direction of the porous ceramics 11 before processing is set to about (104-106) mm x (104-106) mm. The viscosity η at 20° C. of the suspension 4 before gelation, the porosity of the obtained porous ceramics 11, the average pore diameter, the average aspect ratio of the pores 10, thermal shock resistance, and average bending strength are shown in Table 1, Table 2 shows variations in the pore diameter of the porous ceramics 11, respectively. Fig. 3 is a partial longitudinal sectional view of the porous ceramics 11 produced in the present Example.

여기에서, 「현탁체(4)의 점도η」는, B형 점도계(브룩필드사제 디지털 점도계, 형식(DV1, PRIME))로 스핀들 No.SC4-34, 회전수 20rpm으로 현탁체(4)의 점도를 측정한 값이다. 또한, 「평균 굽힘 강도」는, JISR1601:2008에 규정하는 3점 굽힘 시험에 의거해서 측정한 값이다.Here, "viscosity η of the suspension 4" is a B-type viscometer (digital viscometer manufactured by Brookfield, model (DV1, PRIME)), spindle No. SC4-34, rotation speed of the suspension 4 at 20 rpm. Viscosity is the measured value. In addition, "average bending strength" is a value measured based on the 3-point bending test prescribed|regulated to JISR1601:2008.

또한, 「기공(10)의 어스펙트비」는, 도 3에 나타내는 부분 종단면도의 화상 해석에 의거해서 산출할 수 있다. 즉, 기공(10)의 단면부를 타원체에 근사하고, 면적, 장경 및 단경을 측정했을 때의 장경(長徑)으로부터 단경(短徑)을 나눈 값을 「기공(10)의 어스펙트비」라 한다. 그리고, 임의로 선택한 50개의 기공(10)의 어스펙트비의 평균값을, 「기공(10)의 평균 어스펙트비」로 규정한다.In addition, "the aspect-ratio of the pore 10" is computable based on the image analysis of the partial longitudinal sectional view shown in FIG. That is, the value obtained by dividing the minor axis from the major axis when the cross-section of the pores 10 is approximated to an ellipsoid and measuring the area, major axis, and minor axis is called “aspect ratio of pores 10” do. Then, an average value of the aspect ratios of 50 arbitrarily selected pores 10 is defined as “average aspect ratio of pores 10”.

또한, 「내열충격성」은, 이하와 같이 해서 측정했다. 우선, 100㎜□×두께 3㎜의 시료를 제작했다. 다음으로, 같은 사이즈의 연와질(煉瓦質) 세터의 네 귀퉁이에 배치한 지주를 개재해서 이 시료를 상하 방향으로부터 끼우고, 전기로에서 고온 가열해서 1시간 이상 원하는 온도로 유지한 후에, 전기로로부터 취출해서 실온에 노출시키고, 육안으로 샘플의 갈라짐의 유무를 평가했다. 설정 온도를 350℃ 내지 700℃까지 50℃씩 승온시키면서 변경해, 갈라짐이 생기지 않은 온도의 상한을 「내열충격성」으로 했다.In addition, "thermal shock resistance" was measured as follows. First, a sample of 100 mm square x thickness 3 mm was produced. Next, this sample is sandwiched from the vertical direction through the posts arranged at the four corners of the soft cortex setter of the same size, heated in an electric furnace at a high temperature and maintained at the desired temperature for at least 1 hour, and then taken out from the electric furnace Then, it exposed to room temperature and visually evaluated the presence or absence of the crack of a sample. The set temperature was changed from 350°C to 700°C by 50°C, and the upper limit of the temperature at which cracks did not occur was defined as “thermal shock resistance”.

또한, 다공질 세라믹스(11)의 「평균 기공경」 및 「기공경의 편차」는, 다음과 같이 해서 산출했다. 우선, 제작된 다공질 세라믹스(11)를, 도 5에 나타내는 바와 같이 폭a1×b1=15㎜×15㎜, 두께c=9㎜의 시료편으로 해서 중앙(α)과 단부(端部)(β, γ, δ, ε)의 합계 5개소로부터 각각 잘라냈다. 다음으로, 이 5개의 시료편에 대하여 각각 평균 기공경을 산출했다. 여기에서, 각 시료편의 「평균 기공경」이란, 접촉각 140도로 수은 압입법을 사용해서 각 시료편에 대하여 각각 측정하고, 기공(10)을 원주 근사했을 때의 기공 분포에 의거해서 얻어진 메디안경(d50)을 말한다.In addition, "average pore diameter" and "variation in pore diameter" of the porous ceramics 11 were computed as follows. First, as shown in FIG. 5, the produced porous ceramics 11 was made into a sample piece of width a 1 x b 1 =15 mm x 15 mm, and thickness c = 9 mm, and the center (alpha) and the edge part were made into it. (β, γ, δ, ε) were cut out from a total of 5 locations, respectively. Next, the average pore diameter was calculated for each of these five sample pieces. Here, the "average pore diameter" of each sample piece is measured for each sample piece using a mercury intrusion method at a contact angle of 140 degrees, and the median diameter ( d50).

그리고, 각 평균 기공경 중, 최대값과 최소값과의 차를 구하고, 이 값((최대값)-(최소값))을 각 평균 기공경의 평균값으로 나눈 값의 백분율을 「기공경의 편차」(%)로 했다. 또한, 시료편마다 얻어진 평균 기공경의 평균값을, 다공질 세라믹스(11)의 「평균 기공경」으로 규정한다.Then, among the average pore diameters, the difference between the maximum value and the minimum value is calculated, and the percentage of the value obtained by dividing this value ((maximum value)-(minimum value)) by the average value of each average pore diameter is "variation of pore diameter" (%) did with In addition, the average value of the average pore diameter obtained for each sample piece is prescribed|regulated as "average pore diameter" of the porous ceramics 11. As shown in FIG.

(실시예 2)(Example 2)

평균 입경 0.5㎛의 알루미나 입자(세라믹스 입자(1)에 대응) 10vol%와, 물 90vol%와, 미량의 폴리카르복시산계 분산제를 혼합했다. 이것에 증점제로서 미량의 히드록시에틸메틸셀룰로오스와, 젤라틴(수용성 고분자(2)에 대응) 3질량%(물(3)에 대해서)를 첨가해 현탁체(4)를 조제했다. 조제한 현탁체(4)를 형틀에 넣어서 정치해, 현탁체(4)의 겔화를 행했다.10 vol% of alumina particles (corresponding to ceramic particles (1)) having an average particle diameter of 0.5 µm, 90 vol% of water, and a trace amount of a polycarboxylic acid-based dispersant were mixed. As a thickener, a trace amount of hydroxyethylmethylcellulose and 3% by mass of gelatin (corresponding to water-soluble polymer (2)) (with respect to water (3)) were added to this to prepare a suspension (4). The prepared suspension 4 was placed in a mold, left still, and the suspension 4 was gelled.

다음으로, 겔화한 현탁체(4)가 든 형틀을 -15℃의 동결조에 담가서 냉각해, 동결체(6)를 생성시켰다. 계속해서 동결체(6)를 형틀로부터 취출하고, 메탄올을 사용해서 건조했다. 계속해서, 대기 분위기 하의 전기로에서 1600℃에서 2시간 소성함에 의해, 다공질 세라믹스(11)를 얻었다. 실시예 1과 마찬가지로 해서 얻어진, 겔화 전의 현탁체(4)의 20℃에서의 점도η, 얻어진 다공질 세라믹스(11)의 기공률, 평균 기공경, 기공(10)의 평균 어스펙트비, 내열충격성, 및 평균 굽힘 강도를 표 1에 나타낸다.Next, the mold containing the gelled suspension (4) was immersed in a freezing bath at -15°C and cooled to produce a frozen body (6). Subsequently, the frozen body 6 was taken out from the mold and dried using methanol. Then, the porous ceramics 11 were obtained by baking at 1600 degreeC for 2 hours in the electric furnace in atmospheric condition. Viscosity η at 20°C of the suspension 4 before gelation obtained in the same manner as in Example 1, porosity of the obtained porous ceramics 11, average pore diameter, average aspect ratio of pores 10, thermal shock resistance, and The average bending strength is shown in Table 1.

(실시예 3)(Example 3)

완전 안정화 지르코니아(YSZ) 입자(세라믹스 입자(1)에 대응)의 평균 입경을 1.5㎛로 변경하고, vol% 단위로 나타낸 세라믹스 입자(1)와 물(3)과의 혼합비를 15:85로 함과 함께, 겔화한 현탁체(4)를 형틀째 -15℃로 냉각한 구리판의 위에 2시간 재치해서 동결체(6)를 생성시킨 것을 제외하고, 실시예 1과 마찬가지의 방법에 의해 다공질 세라믹스(11)를 제작했다. 실시예 1과 마찬가지로 해서 얻어진, 겔화 전의 현탁체(4)의 20℃에서의 점도η, 얻어진 다공질 세라믹스(11)의 기공률, 평균 기공경, 기공(10)의 평균 어스펙트비, 내열충격성, 및 평균 굽힘 강도를 표 1에 나타낸다. 또한, 다공질 세라믹스(11)의 기공경의 편차를 표 2에 나타낸다.The average particle diameter of the fully stabilized zirconia (YSZ) particles (corresponding to the ceramic particles (1)) was changed to 1.5 μm, and the mixing ratio of the ceramic particles (1) and water (3) expressed in vol% was 15:85 In the same manner as in Example 1, the porous ceramics ( 11) was produced. Viscosity η at 20°C of the suspension 4 before gelation obtained in the same manner as in Example 1, porosity of the obtained porous ceramics 11, average pore diameter, average aspect ratio of pores 10, thermal shock resistance, and The average bending strength is shown in Table 1. Table 2 shows variations in the pore diameter of the porous ceramics 11 .

(실시예 4)(Example 4)

평균 입경 5.8㎛의 완전 안정화 지르코니아(YSZ) 입자를 사용함과 함께, 냉각한 구리판 대신에 후술하는 냉각 장치(12)를 적용한 것을 제외하고, 실시예 3과 마찬가지의 방법에 의해 다공질 세라믹스(11)를 제작했다. 냉각 공정에서는, 대면하는 한쪽 편으로부터 다른 쪽 편으로 에탄올의 액면 부근에 정체나 물결침이 생기지 않고 유동하도록 순환시켜서 액면 부근의 온도를 -15℃로 유지한 에탄올 냉각 장치를 냉각 장치(12)로서 적용하고, 겔화한 현탁체(4)가 든 형틀의 저면을 액면에 닿게 해서 20분간 유지해, 냉각했다. 실시예 1과 마찬가지로 해서 얻어진, 겔화 전의 현탁체(4)의 20℃에서의 점도η, 얻어진 다공질 세라믹스(11)의 기공률, 평균 기공경, 기공(10)의 평균 어스펙트비, 내열충격성, 및 평균 굽힘 강도를 표 1에 나타낸다.The porous ceramics 11 were prepared in the same manner as in Example 3, except that fully stabilized zirconia (YSZ) particles having an average particle diameter of 5.8 μm were used and a cooling device 12 described later was applied instead of the cooled copper plate. made In the cooling process, an ethanol cooling device in which the temperature near the liquid level is maintained at -15°C by circulating so that ethanol flows without stagnation or ripple near the liquid level near the liquid level is used as the cooling apparatus 12 from one facing to the other side. It was applied, and the bottom of the mold containing the gelled suspension 4 was brought into contact with the liquid level, held for 20 minutes, and cooled. Viscosity η at 20°C of the suspension 4 before gelation obtained in the same manner as in Example 1, porosity of the obtained porous ceramics 11, average pore diameter, average aspect ratio of pores 10, thermal shock resistance, and The average bending strength is shown in Table 1.

(실시예 5)(Example 5)

평균 입경 0.7㎛의 탄화규소(세라믹스 입자(1)에 대응) 10vol%와, 소성 조제로서 미량의 카본 및 탄화붕소와, 물 90vol%를 혼합하고, 추가로, 한천(수용성 고분자(2)에 대응) 1.0질량%(물(3)에 대해서)를 첨가해 현탁체(4)를 조제했다.10 vol% of silicon carbide (corresponding to ceramic particles (1)) having an average particle diameter of 0.7 µm, trace amounts of carbon and boron carbide as a calcination aid, and 90 vol% of water are mixed, and further, agar (corresponding to water-soluble polymer (2)) ) 1.0 mass % (with respect to water (3)) was added, and the suspension (4) was prepared.

다음으로, 조제한 현탁체(4)를 형틀에 넣어서 냉장고 내에 방치해, 형틀에 넣은 현탁체(4)를 겔화시켰다. 겔화한 현탁체(4)가 든 형틀을 -15℃의 동결조에 담가서 냉각해, 동결체(6)를 생성했다. 계속해서 동결체(6)를 형틀로부터 취출하고, 메탄올을 사용해서 건조했다. 계속해서, 아르곤 분위기 하의 전기로에서 2100℃에서 2시간 소성했다. 실시예 1과 마찬가지로 해서 얻어진, 겔화 전의 현탁체(4)의 20℃에서의 점도η, 얻어진 다공질 세라믹스(11)의 기공률, 평균 기공경, 기공(10)의 평균 어스펙트비, 내열충격성, 및 평균 굽힘 강도를 표 1에 나타낸다.Next, the prepared suspension 4 was placed in a mold, left to stand in a refrigerator, and the suspension 4 placed in the mold was gelled. The mold containing the gelled suspension (4) was immersed in a freezing bath at -15°C and cooled to produce a frozen body (6). Subsequently, the frozen body 6 was taken out from the mold and dried using methanol. Then, it baked at 2100 degreeC in the electric furnace under argon atmosphere for 2 hours. Viscosity η at 20°C of the suspension 4 before gelation obtained in the same manner as in Example 1, porosity of the obtained porous ceramics 11, average pore diameter, average aspect ratio of pores 10, thermal shock resistance, and The average bending strength is shown in Table 1.

(실시예 6)(Example 6)

평균 입경 2.1㎛의 질화규소(세라믹스 입자(1)에 대응) 10vol%와, 소성 조제로서 미량의 알루미나 및 이트리아와, 물 90vol%를 혼합했다. 이것에 증점제로서 미량의 히드록시프로필메틸셀룰로오스와, 폴리에틸렌이민(수용성 고분자(2)에 대응) 5질량%(물(3)에 대해서)와, 가교제(디글리세롤글리시딜에테르) 2.5질량%(물(3)에 대해서)를 첨가해서 더 혼합해, 현탁체(4)를 조제했다.10 vol% of silicon nitride (corresponding to the ceramic particles 1) having an average particle diameter of 2.1 µm, trace amounts of alumina and yttria as a firing aid, and 90 vol% of water were mixed. To this, a trace amount of hydroxypropylmethylcellulose as a thickener, 5% by mass of polyethyleneimine (corresponding to water-soluble polymer (2)) (relative to water (3)), and 2.5% by mass of a crosslinking agent (diglycerol glycidyl ether) ( Water (3) was added and further mixed to prepare a suspension (4).

다음으로, 조제한 현탁체(4)를 형틀에 넣어서 20℃에서 6시간 정치해, 현탁체(4)를 겔화시켰다. 겔화한 현탁체(4)가 든 형틀을 -15℃의 동결조에 담가서 냉각해, 동결체(6)를 생성했다. 계속해서 동결체(6)를 형틀로부터 취출하고, 동결 건조 장치로 24시간 건조했다. 계속해서, 질소 분위기 하의 전기로에서 1700℃에서 2시간 소성했다. 실시예 1과 마찬가지로 해서 얻어진, 겔화 전의 현탁체(4)의 20℃에서의 점도η, 얻어진 다공질 세라믹스(11)의 기공률, 평균 기공경, 기공(10)의 평균 어스펙트비, 내열충격성, 및 평균 굽힘 강도를 표 1에 나타낸다.Next, the prepared suspension (4) was placed in a mold, left still at 20°C for 6 hours, and the suspension (4) was gelled. The mold containing the gelled suspension (4) was immersed in a freezing bath at -15°C and cooled to produce a frozen body (6). Subsequently, the frozen body 6 was taken out from the mold and dried for 24 hours with a freeze drying apparatus. Then, it baked at 1700 degreeC in the electric furnace under nitrogen atmosphere for 2 hours. Viscosity η at 20°C of the suspension 4 before gelation obtained in the same manner as in Example 1, porosity of the obtained porous ceramics 11, average pore diameter, average aspect ratio of pores 10, thermal shock resistance, and The average bending strength is shown in Table 1.

(실시예 7)(Example 7)

소성 조제를 사용하지 않는 것을 제외하고, 실시예 3과 마찬가지의 방법에 의해 다공질 세라믹스(11)를 제작했다. 실시예 1과 마찬가지로 해서 얻어진, 겔화 전의 현탁체(4)의 20℃에서의 점도η, 얻어진 다공질 세라믹스(11)의 기공률, 평균 기공경, 기공(10)의 평균 어스펙트비, 내열충격성, 및 평균 굽힘 강도를 표 1에 나타낸다.The porous ceramics 11 were produced by the method similar to Example 3 except not using a baking aid. Viscosity η at 20°C of the suspension 4 before gelation obtained in the same manner as in Example 1, porosity of the obtained porous ceramics 11, average pore diameter, average aspect ratio of pores 10, thermal shock resistance, and The average bending strength is shown in Table 1.

(실시예 8)(Example 8)

증점제의 첨가량을 조정해서 점성을 저하시킨 것을 제외하고, 실시예 3과 마찬가지의 방법에 의해 다공질 세라믹스(11)를 제작했다. 실시예 1과 마찬가지로 해서 얻어진, 겔화 전의 현탁체(4)의 20℃에서의 점도η, 얻어진 다공질 세라믹스(11)의 기공률, 평균 기공경, 기공(10)의 평균 어스펙트비, 내열충격성, 및 평균 굽힘 강도를 표 1에 나타낸다. 또한, 본 실시예에서 제작한 다공질 세라믹스(11)의 부분 종단면도를 도 4a, 도 4b에 나타낸다.A porous ceramics 11 was produced in the same manner as in Example 3, except that the viscosity was reduced by adjusting the amount of the thickener added. Viscosity η at 20°C of the suspension 4 before gelation obtained in the same manner as in Example 1, porosity of the obtained porous ceramics 11, average pore diameter, average aspect ratio of pores 10, thermal shock resistance, and The average bending strength is shown in Table 1. In addition, the partial longitudinal sectional views of the porous ceramics 11 produced in this Example are shown to FIG. 4A, FIG. 4B.

(실시예 9)(Example 9)

증점제의 첨가량을 조정해서 점성을 저하시킨 것을 제외하고, 실시예 4와 마찬가지의 방법에 의해 다공질 세라믹스(11)를 제작했다. 실시예 1과 마찬가지로 해서 얻어진, 겔화 전의 현탁체(4)의 20℃에서의 점도η, 얻어진 다공질 세라믹스(11)의 기공률, 평균 기공경, 기공(10)의 평균 어스펙트비, 내열충격성, 및 평균 굽힘 강도를 표 1에 나타낸다.A porous ceramics 11 was produced in the same manner as in Example 4, except that the viscosity was reduced by adjusting the amount of the thickener added. Viscosity η at 20°C of the suspension 4 before gelation obtained in the same manner as in Example 1, porosity of the obtained porous ceramics 11, average pore diameter, average aspect ratio of pores 10, thermal shock resistance, and The average bending strength is shown in Table 1.

(비교예 1)(Comparative Example 1)

평균 입경 1.5㎛의 완전 안정화 지르코니아(YSZ) 입자를 사용함과 함께, 증점제를 첨가하지 않는 것을 제외하고, 실시예 4와 마찬가지의 방법에 의해 다공질 세라믹스(11)를 제작했다. 실시예 1과 마찬가지로 해서 얻어진, 겔화 전의 현탁체(4)의 20℃에서의 점도η, 얻어진 다공질 세라믹스(11)의 기공률, 평균 기공경, 기공(10)의 평균 어스펙트비, 내열충격성, 및 평균 굽힘 강도를 표 1에, 다공질 세라믹스(11)의 기공경의 편차를 표 2에, 각각 나타낸다. 또한, 본 비교예에서 제작한 다공질 세라믹스(11)의 부분 종단면도를 도 8에 나타낸다.The porous ceramics 11 were produced by the method similar to Example 4 except not adding a thickener while using fully stabilized zirconia (YSZ) particle|grains with an average particle diameter of 1.5 micrometers. Viscosity η at 20°C of the suspension 4 before gelation obtained in the same manner as in Example 1, porosity of the obtained porous ceramics 11, average pore diameter, average aspect ratio of pores 10, thermal shock resistance, and The average bending strength is shown in Table 1, and the variation in the pore diameter of the porous ceramics 11 is shown in Table 2, respectively. In addition, the partial longitudinal sectional view of the porous ceramics 11 produced by this comparative example is shown in FIG.

(비교예 2)(Comparative Example 2)

증점제를 첨가하지 않는 것을 제외하고, 실시예 4와 마찬가지의 방법에 의해 다공질 세라믹스(11)를 제작했다. 실시예 1과 마찬가지로 해서 얻어진, 겔화 전의 현탁체(4)의 20℃에서의 점도η, 얻어진 다공질 세라믹스(11)의 기공률, 평균 기공경, 기공(10)의 평균 어스펙트비, 내열충격성, 및 평균 굽힘 강도를 표 1에 나타낸다.The porous ceramics 11 were produced by the method similar to Example 4 except not adding a thickener. Viscosity η at 20°C of the suspension 4 before gelation obtained in the same manner as in Example 1, porosity of the obtained porous ceramics 11, average pore diameter, average aspect ratio of pores 10, thermal shock resistance, and The average bending strength is shown in Table 1.

(비교예 3)(Comparative Example 3)

평균 입경 0.5㎛의 완전 안정화 지르코니아(YSZ) 입자를 사용함과 함께, 증점제를 첨가하지 않는 것을 제외하고, 실시예 7과 마찬가지의 방법에 의해 다공질 세라믹스(11)를 제작했다. 실시예 1과 마찬가지로 해서 얻어진, 겔화 전의 현탁체(4)의 20℃에서의 점도η, 얻어진 다공질 세라믹스(11)의 기공률, 평균 기공경, 기공(10)의 평균 어스펙트비, 내열충격성, 및 평균 굽힘 강도를 표 1에 나타낸다.The porous ceramics 11 were produced by the method similar to Example 7 except not adding a thickener while using fully stabilized zirconia (YSZ) particle|grains with an average particle diameter of 0.5 micrometer. Viscosity η at 20°C of the suspension 4 before gelation obtained in the same manner as in Example 1, porosity of the obtained porous ceramics 11, average pore diameter, average aspect ratio of pores 10, thermal shock resistance, and The average bending strength is shown in Table 1.

실시예 1∼비교예 3에 있어서 사용한 세라믹스 입자(1) 및 제작한 다공질 세라믹스(11)에 대하여, 표 1에 정리해서 나타낸다.About the ceramic particle 1 used in Examples 1-3 and the comparative example 3, and the produced porous ceramics 11, Table 1 puts together and shows.

[표 1] [Table 1]

Figure 112019079570417-pct00014
Figure 112019079570417-pct00014

표 1에 나타나는 바와 같이, 세라믹스 입자(1)의 평균 입경d에 대해, 겔화 전의 현탁체(4)의 20℃에서의 점도η가 특정의 관계, 즉 관계식η≥1630×d- 0.77를 갖도록 현탁체(4)의 점성을 조제해서 얻어진 다공질 세라믹스(11)(실시예 1∼7)는 모두, 기공(10)의 평균 어스펙트비가 1.4 이하이다. 그리고, 실시예 1∼7에 따르면, 랜덤한 방향으로 연통하는 기공(10)이 형성된 다공질 세라믹스(11)가 제작되어 있는 것은 화상 해석으로부터 시각적으로 명확하다(도 3 참조).As shown in Table 1, with respect to the average particle diameter d of the ceramic particles (1), the viscosity at 20 ℃ of the suspension unit 4 before gelation η is the specific relationship, i.e., the relation d × η≥1630 of-suspending so as to have a 0.77 All of the porous ceramics 11 (Examples 1 to 7) obtained by adjusting the viscosity of the sieve 4 had an average aspect ratio of the pores 10 of 1.4 or less. And according to Examples 1-7, it is visually clear from image analysis that the porous ceramics 11 in which the pores 10 communicating in random directions were formed are produced (refer FIG. 3).

또한, 상술한 점도η 및 평균 입경d가, 950×d-0.77≤η<1630×d-0.77의 관계를 갖도록 현탁체(4)의 점성을 조제해서 얻어진 다공질 세라믹스(11)(실시예 8, 9)는 모두, 기공(10)의 평균 어스펙트비가 1.4를 초과하며, 2.0 이하이다. 그리고, 실시예 8, 9에 따르면, 형성된 기공(10)이 랜덤한 방향으로 연통하는 부분(도 4a 참조)과, 이방성을 갖도록 배향해서 연통하는 부분(도 4b 참조)을 갖는 다공질 세라믹스(11)가 제작되어 있는 것은 화상 해석으로부터 시각적으로 명확하다.Further, the above-described viscosity η and the average particle diameter d, 950 × d -0.77 ≤η < 1630 × d -0.77 porous ceramics (11) thus obtained to prepare a viscosity of the suspension member 4 so as to have a relation of (Example 8, In all of 9), the average aspect ratio of the pores 10 is greater than 1.4 and less than or equal to 2.0. And, according to Examples 8 and 9, porous ceramics 11 having a portion in which the formed pores 10 communicate in a random direction (see FIG. 4A ) and a portion in communication with an anisotropic orientation (see FIG. 4B ) (see FIG. 4B ). It is visually clear from the image analysis that is produced.

또, 상술한 바와 같이 관계식 950×d-0.77≤η<1630×d- 0.77를 만족시키도록 현탁체(4)의 점성을 조제해서 얻어진 다공질 세라믹스(11)(실시예 8, 9)에 있어서의 기공(10)의 평균 어스펙트비는, 측정 개소마다의 기공(10)의 배향성의 편차를 고려해, 다음과 같이 해서 산출했다. 즉, 얻어진 다공질 세라믹스(11)를 5분할하고, 각각의 개소에서 도 3에 나타내는 부분 종단면도와 마찬가지로 해서 SEM 사진을 촬영했다. 다음으로, 얻어진 각 SEM 사진에 대하여 화상 해석을 행하고, 각 화상으로부터 임의로 선택한 10개, 합계 50개의 기공(10)의 어스펙트비를 산출하고, 그 평균값을 「기공(10)의 평균 어스펙트비」로 했다.The relational expression 950 × d -0.77 ≤η <1630 × d as described above - in the porous ceramic 11 is obtained by preparing the viscosity of the suspension so as to satisfy body 4 to 0.77 (Examples 8 and 9) The average aspect-ratio of the pores 10 was calculated as follows in consideration of the variation in the orientation of the pores 10 at each measurement location. That is, the obtained porous ceramics 11 was divided into 5, and the SEM photograph was image|photographed similarly to the partial longitudinal sectional view shown in FIG. 3 at each location. Next, image analysis is performed on each obtained SEM photograph, the aspect ratio of 10 arbitrarily selected from each image, a total of 50 pores 10 is calculated, and the average value is defined as "average aspect ratio of pores 10". ' did.

한편, 비교예 1∼3과 같이 제작된 다공질 세라믹스(11)는, 기공(10)의 평균 어스펙트비가 2.0을 초과해 있으며, 실시예 1∼9에서 제작된 다공질 세라믹스(11)와 비교해서 기공(10)이 이방성을 갖도록 형성되어 있는 것을 알 수 있다. 또한, 이것은, 화상 해석으로부터도 명확하다(도 8 참조).On the other hand, in the porous ceramics 11 produced as in Comparative Examples 1 to 3, the average aspect ratio of the pores 10 exceeded 2.0, and compared with the porous ceramics 11 produced in Examples 1 to 9, pores It can be seen that (10) is formed to have anisotropy. Moreover, this is also clear from image analysis (refer FIG. 8).

그리고, 표 1에 나타나는 바와 같이, 기공(10)이 랜덤한 방향으로 형성된 부분을 갖는 다공질 세라믹스(11)에서는, 전체에 걸쳐서 기공(10)이 이방성을 갖도록 형성된 다공질 세라믹스(11)와 비교해서, 내열충격성 및 평균 굽힘 강도가 모두 높다. 즉, 실시형태에 따른 다공질 세라믹스(11)의 제조 방법에 따르면, 내열충격성 및 굽힘 강도가 우수한 다공질 세라믹스(11)를 제작할 수 있다.And, as shown in Table 1, in the porous ceramics 11 having a portion in which the pores 10 are formed in a random direction, the pores 10 are formed to have anisotropy over the whole compared to the porous ceramics 11, Both thermal shock resistance and average bending strength are high. That is, according to the manufacturing method of the porous ceramics 11 which concerns on embodiment, the porous ceramics 11 excellent in thermal shock resistance and bending strength can be produced.

다음으로, 실시예 1∼비교예 3 중, 실시예 1, 실시예 3 및 비교예 1에 있어서 현탁체(4)의 조제 시에 사용한 증점제의 유무 및 제작한 다공질 세라믹스(11)의 기공경의 편차에 대하여, 대표예로서 표 2에 정리해서 나타낸다.Next, among Examples 1 to 3, in Example 1, Example 3, and Comparative Example 1, the presence or absence of a thickener used in the preparation of the suspension 4, and variation in the pore diameter of the produced porous ceramics 11 About this, it is put together in Table 2 as a representative example, and is shown.

[표 2] [Table 2]

Figure 112016055884304-pct00002
Figure 112016055884304-pct00002

표 2에 나타나는 바와 같이, 증점제를 첨가한 현탁체(4)를 적용해서 제작된 다공질 세라믹스(11)에서는 모두, 기공경의 편차가 10% 이하라는, 기공경의 편차가 적은 기공(10)이 형성된다. 이 이유는, 증점제의 첨가에 의해 얼음(5)의 성장이 억제되며, 얼음(5)의 성장 속도를 균질화시키기 때문인 것으로 생각된다.As shown in Table 2, in all of the porous ceramics 11 produced by applying the suspension 4 to which the thickener was added, the pore size variation is 10% or less, and pores 10 with small variation in pore diameter are formed. . The reason for this is considered to be that the growth of the ice 5 is suppressed by the addition of the thickener, and the growth rate of the ice 5 is homogenized.

추가적인 효과나 변형예는, 당업자에 의해서 용이하게 도출할 수 있다. 이 때문에, 본 발명의 보다 광범위한 태양은, 이상과 같이 나타내며 또한 기술한 특정의 상세 및 대표적인 실시형태로 한정되는 것은 아니다. 따라서, 첨부한 특허청구범위 및 그 균등물에 의해서 정의되는 총괄적인 발명의 개념의 정신 또는 범위로부터 일탈하지 않고, 다양한 변경이 가능하다.Additional effects and modifications can be easily derived by those skilled in the art. For this reason, the broader aspect of this invention is not limited to the specific detail and typical embodiment shown and described as mentioned above. Accordingly, various modifications are possible without departing from the spirit or scope of the overall inventive concept defined by the appended claims and their equivalents.

1, 1a : 세라믹스 입자 2, 2a : 수용성 고분자
3, 3a : 물 4, 4a : 현탁체
5, 5a : 얼음 6, 6a : 동결체
7, 7a : 하면 8, 8a : 상면
9, 9a : 세라믹스 골격 10, 10a : 기공
11, 11a : 다공질 세라믹스 12, 12a : 냉각 장치
13 : 소성 지그 14 : 기대
15 : 플레이트부 16 : 지지부
17 : 세터 17a : 상면
18 : 피소성물
1, 1a: ceramic particles 2, 2a: water-soluble polymer
3, 3a: water 4, 4a: suspension
5, 5a: ice 6, 6a: frozen body
7, 7a: lower surface 8, 8a: upper surface
9, 9a: ceramic skeleton 10, 10a: pores
11, 11a: porous ceramics 12, 12a: cooling device
13: firing jig 14: expectation
15: plate part 16: support part
17: setter 17a: upper surface
18: burned object

Claims (17)

세라믹스 입자와, 수용성 고분자와, 물을 포함하는 현탁체를 겔화시키는 공정과,
겔화한 상기 현탁체를 동결시켜서 동결체를 생성하는 공정과,
상기 동결체에 성장한 얼음을 제거해서 기공을 생성하는 공정과,
상기 얼음이 제거된 상기 동결체를 소성하는 공정
을 포함하고.
겔화 전의 상기 현탁체의 20℃에서의 점도η(m㎩·s)와, 상기 세라믹스 입자의 평균 입경d(㎛)가,
η≥950×d-0.77
의 관계를 갖는 것을 특징으로 하는 다공질 세라믹스의 제조 방법.
A step of gelling a suspension containing ceramic particles, a water-soluble polymer, and water;
Freezing the gelled suspension to produce a frozen body;
removing the ice grown on the frozen body to create pores;
The process of calcining the frozen body from which the ice has been removed
including
The viscosity η (mPa·s) at 20° C. of the suspension before gelation, and the average particle diameter d (μm) of the ceramic particles,
η≥950 -0.77 × d
A method for producing porous ceramics, characterized in that it has a relationship of
제1항에 있어서,
상기 점도η와, 상기 평균 입경d가,
η≥1630×d-0.77
의 관계를 갖는 것을 특징으로 하는 다공질 세라믹스의 제조 방법.
According to claim 1,
The viscosity η and the average particle size d are,
η≥1630 -0.77 × d
A method for producing porous ceramics, characterized in that it has a relationship of
제1항에 있어서,
상기 수용성 고분자는, N-알킬아미드계 고분자, N-이소프로필아크릴아미드계 고분자, 설포메틸화아크릴아미드계 고분자, N-디메틸아미노프로필메타크릴아미드계 고분자, 폴리알킬아크릴아미드계 고분자, 알긴산, 알긴산나트륨, 알긴산암모늄, 폴리에틸렌이민, 카르복시메틸셀룰로오스, 히드록시메틸셀룰로오스, 메틸셀룰로오스, 히드록시에틸셀룰로오스, 히드록시프로필메틸셀룰로오스, 히드록시에틸메틸셀룰로오스, 폴리아크릴산나트륨, 폴리에틸렌글리콜, 폴리에틸렌옥사이드, 폴리비닐알코올, 폴리비닐피롤리돈, 카르복시비닐 폴리머, 전분, 젤라틴, 한천, 펙틴, 글루코만난, 잔탄 검, 로커스트콩 검, 카라기난 검, 구아 검 및 젤란 검 중 1종 이상을 포함하는 것을 특징으로 하는 다공질 세라믹스의 제조 방법.
According to claim 1,
The water-soluble polymer is an N-alkylamide-based polymer, N-isopropylacrylamide-based polymer, sulfomethylated acrylamide-based polymer, N-dimethylaminopropylmethacrylamide-based polymer, polyalkylacrylamide-based polymer, alginic acid, sodium alginate , ammonium alginate, polyethyleneimine, carboxymethylcellulose, hydroxymethylcellulose, methylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, sodium polyacrylate, polyethylene glycol, polyethylene oxide, polyvinyl alcohol, Preparation of porous ceramics comprising at least one of polyvinylpyrrolidone, carboxyvinyl polymer, starch, gelatin, agar, pectin, glucomannan, xanthan gum, locust bean gum, carrageenan gum, guar gum and gellan gum Way.
제1항에 있어서,
상기 세라믹스 입자는, 지르코니아, 알루미나, 실리카, 티타니아, 탄화규소, 탄화붕소, 질화규소, 질화붕소, 코디어라이트, 하이드록시아파타이트, 사이알론, 지르콘, 티탄산알루미늄 및 뮬라이트 중 1종 이상을 포함하는 것을 특징으로 하는 다공질 세라믹스의 제조 방법.
According to claim 1,
The ceramic particles, characterized in that it comprises at least one of zirconia, alumina, silica, titania, silicon carbide, boron carbide, silicon nitride, boron nitride, cordierite, hydroxyapatite, sialon, zircon, aluminum titanate and mullite A method for producing porous ceramics.
제1항에 있어서,
다공질 세라믹스의 기공률이 50%∼99%인 것을 특징으로 하는 다공질 세라믹스의 제조 방법.
According to claim 1,
A method for producing porous ceramics, wherein the porosity of the porous ceramics is 50% to 99%.
제1항에 있어서,
기공의 평균 어스펙트비가 1∼2인 것을 특징으로 하는 다공질 세라믹스의 제조 방법.
According to claim 1,
A method for producing porous ceramics, characterized in that the average aspect ratio of the pores is 1 to 2.
제1항에 있어서,
다공질 세라믹스의 평균 굽힘 강도가 10㎫ 이상인 것을 특징으로 하는 다공질 세라믹스의 제조 방법.
According to claim 1,
The average bending strength of porous ceramics is 10 MPa or more, The manufacturing method of porous ceramics characterized by the above-mentioned.
제1항에 있어서,
다공질 세라믹스의 내열충격성이 450℃ 이상인 것을 특징으로 하는 다공질 세라믹스의 제조 방법.
According to claim 1,
A method for producing porous ceramics, wherein the porous ceramics have a thermal shock resistance of 450°C or higher.
기대와, 상기 기대의 위에 재치되는 세터를 구비하고,
상기 세터는, 다공질 세라믹스를 갖고,
상기 다공질 세라믹스는,
완전 안정화 지르코니아를 95질량% 이상 포함하고.
기공률이 50%∼99%이고, 기공의 평균 어스펙트비가 1∼2이며, 평균 기공경이 10㎛∼100㎛이고,
평균 굽힘 강도가 10㎫ 이상 26.8㎫ 이하인
것을 특징으로 하는 소성 지그.
a base; and a setter mounted on the base;
The setter has porous ceramics,
The porous ceramics,
95 mass % or more of fully stabilized zirconia is included.
The porosity is 50% to 99%, the average aspect ratio of the pores is 1 to 2, the average pore diameter is 10㎛ to 100㎛,
An average bending strength of 10 MPa or more and 26.8 MPa or less
A firing jig, characterized in that.
삭제delete 제9항에 있어서,
상기 다공질 세라믹스는 내열충격성이 450℃ 이상인 것을 특징으로 하는 소성 지그.
10. The method of claim 9,
The porous ceramics are a firing jig, characterized in that the thermal shock resistance is 450 ℃ or more.
제9항에 있어서,
상기 다공질 세라믹스는 평균 기공경의 편차가 10% 이하인 것을 특징으로 하는 소성 지그.
10. The method of claim 9,
The porous ceramic is a firing jig, characterized in that the deviation of the average pore diameter is 10% or less.
제9항, 제11항 또는 제12항에 있어서,
상기 다공질 세라믹스가, 상기 완전 안정화 지르코니아에 대해서, 0.01∼1.5질량%의 Al2O3 및 0.01∼2.0질량%의 CaO를 더 포함하는
것을 특징으로 하는 소성 지그.
13. The method of claim 9, 11 or 12,
The said porous ceramics further contain 0.01-1.5 mass % of Al 2 O 3 and 0.01-2.0 mass % of CaO with respect to the said fully stabilized zirconia.
A firing jig, characterized in that.
삭제delete 제1항 내지 제8항 중 어느 한 항에 기재된 다공질 세라믹스의 제조 방법에 의해 제작된 것을 특징으로 하는 다공질 세라믹스.It was produced by the manufacturing method of the porous ceramics in any one of Claims 1-8, The porous ceramics characterized by the above-mentioned. 제15항에 기재된 다공질 세라믹스를 갖고,
상기 다공질 세라믹스가, 상기 완전 안정화 지르코니아에 대해서, 0.01∼1.5질량%의 Al2O3 및 0.01∼2.0질량%의 CaO를 더 포함하는
것을 특징으로 하는 세터.
Having the porous ceramics according to claim 15,
The said porous ceramics further contain 0.01-1.5 mass % of Al 2 O 3 and 0.01-2.0 mass % of CaO with respect to the said fully stabilized zirconia.
Setter, characterized in that.
기대(基臺)와,
상기 기대의 위에 재치(載置)되는 제16항에 기재된 세터
를 구비하는
것을 특징으로 하는 소성 지그.
expectations and
The setter according to claim 16 placed on top of said base.
to have
A firing jig, characterized in that.
KR1020167015486A 2013-12-13 2014-11-18 Method for producing porous ceramic material, porous ceramic material, setter, and firing jig KR102327874B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2013-258616 2013-12-13
JP2013258616A JP6261316B2 (en) 2013-12-13 2013-12-13 Porous ceramic manufacturing method, porous ceramic, setter, and firing jig
PCT/JP2014/080524 WO2015087664A1 (en) 2013-12-13 2014-11-18 Method for producing porous ceramic material, porous ceramic material, setter, and firing jig

Publications (2)

Publication Number Publication Date
KR20160096613A KR20160096613A (en) 2016-08-16
KR102327874B1 true KR102327874B1 (en) 2021-11-18

Family

ID=53370978

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167015486A KR102327874B1 (en) 2013-12-13 2014-11-18 Method for producing porous ceramic material, porous ceramic material, setter, and firing jig

Country Status (5)

Country Link
JP (1) JP6261316B2 (en)
KR (1) KR102327874B1 (en)
CN (1) CN105814006B (en)
TW (1) TWI642646B (en)
WO (1) WO2015087664A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106083038A (en) * 2016-06-16 2016-11-09 兰州理工大学 A kind of Y TZP slurry preparation method for freeze forming
TWI612024B (en) * 2016-06-29 2018-01-21 丸十股份有限公司 Burning jig for ceramic compact
CN106146000A (en) * 2016-07-05 2016-11-23 天津大学 The preparation method of mullite fiber porous heat insulation material
CN106187089A (en) * 2016-07-22 2016-12-07 曹晓宏 A kind of environment-friendly type building pottery and preparation method thereof
CN106187090A (en) * 2016-07-22 2016-12-07 曹晓宏 A kind of architectural pottery utilizing granite waste material wet moulding and preparation method thereof
CN106187135A (en) * 2016-07-23 2016-12-07 曹晓宏 A kind of architectural pottery of high green wet cast molding and preparation method thereof
WO2018037707A1 (en) * 2016-08-26 2018-03-01 日本碍子株式会社 Heat-insulating member
CN110167902B (en) * 2017-01-10 2022-03-11 京瓷株式会社 Placing part for heat treatment
JP6409152B1 (en) * 2017-03-29 2018-10-17 日本碍子株式会社 Porous ceramic particles and porous ceramic structure
CN107511770B (en) * 2017-09-29 2019-08-16 衢州学院 A kind of melting of high temperature Asia is from adhesion abrasive grain abrasive tools preparation method
CN108558415A (en) * 2017-12-08 2018-09-21 湖南仁龙特种陶瓷有限公司 Energy saving kiln furnitures and preparation method thereof
CN108083820A (en) * 2017-12-08 2018-05-29 湖南仁龙特种陶瓷有限公司 Energy saving kiln furniture material and the preparation method of energy saving kiln furnitures is prepared using it
US20200308062A1 (en) * 2019-03-28 2020-10-01 Ut-Battelle, Llc Slurry Mixtures for 3-D Slurry Extrusion of Artifacts
JP7189842B2 (en) * 2019-05-31 2022-12-14 京セラ株式会社 Thermal shock resistant container
KR102156574B1 (en) * 2020-01-23 2020-09-17 주식회사 화인테크 Machinable ceramic composite material and manufacturing method thereof
KR102156575B1 (en) * 2020-01-23 2020-09-17 주식회사 화인테크 Machinable ceramic composite material having a low coefficient of thermal expansion and manufacturing method thereof
WO2021243522A1 (en) * 2020-06-01 2021-12-09 苏州君诺新材科技有限公司 Method for manufacturing fluorescent ceramic containing pores
CN115867493A (en) 2020-06-30 2023-03-28 京瓷株式会社 Heat-resistant container
CN112195512A (en) * 2020-10-10 2021-01-08 哈尔滨科友半导体产业装备与技术研究院有限公司 Preparation method of porous raw material for aluminum nitride crystal growth
CN113800917A (en) * 2021-08-17 2021-12-17 航天特种材料及工艺技术研究所 Preparation method of homogenized large-size silicon nitride ceramic flat plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315293A (en) * 2003-04-16 2004-11-11 Nitsukatoo:Kk Zirconia member for heat treatment and method for manufacturing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923830A (en) * 1989-09-18 1990-05-08 Swiss Aluminum Ltd. Ceramic bodies formed from partially stabilized zirconia
JPH0653626B2 (en) * 1990-09-12 1994-07-20 品川白煉瓦株式会社 Zirconia composite fireproof insulation
JP3033309B2 (en) 1991-12-25 2000-04-17 松下電器産業株式会社 Gradation correction device
JPH08178549A (en) * 1994-12-27 1996-07-12 Ngk Insulators Ltd Zirconia setter for baking electronic material
JP4844932B2 (en) * 2007-03-20 2011-12-28 株式会社クラレ Method for producing porous ceramic material
JP5091519B2 (en) * 2007-03-28 2012-12-05 公益財団法人鉄道総合技術研究所 Geopolymer composition and method for producing the same
JP5066766B2 (en) * 2007-03-31 2012-11-07 地方独立行政法人山口県産業技術センター Geopolymer high-strength cured product containing calcined kaolin as active filler and method for producing the same
CN102898174B (en) * 2011-07-29 2015-03-11 深圳光启高等理工研究院 Porous ceramic microsphere material and preparation method thereof
CN103011883A (en) * 2013-01-07 2013-04-03 中钢集团洛阳耐火材料研究院有限公司 Preparation method of superhigh-temperature light-weight zirconium oxide heat-insulating material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315293A (en) * 2003-04-16 2004-11-11 Nitsukatoo:Kk Zirconia member for heat treatment and method for manufacturing the same

Also Published As

Publication number Publication date
TWI642646B (en) 2018-12-01
WO2015087664A1 (en) 2015-06-18
CN105814006A (en) 2016-07-27
CN105814006B (en) 2018-06-15
TW201529529A (en) 2015-08-01
JP2015113272A (en) 2015-06-22
KR20160096613A (en) 2016-08-16
JP6261316B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
KR102327874B1 (en) Method for producing porous ceramic material, porous ceramic material, setter, and firing jig
US8262957B2 (en) Ceramic porous body with communication macropores and process for producing the ceramic porous body
CN106588074B (en) Method for preparing gradient porous ceramic by slip casting combined with vacuum foaming process
JP2019218261A (en) Ceramic grating body
CN108698942B (en) Ceramic grid body
CN104098339B (en) Composite refractory and manufacturing method for composite refractory
JP2006298745A (en) Method for manufacturing honeycomb structure and honeycomb structure
JP6360402B2 (en) Method for producing porous ceramics
JP5036008B2 (en) Cordierite formation
JP2018193274A (en) Ceramic lattice body
JP2018193287A (en) Ceramic lattice body
CN104671751B (en) The preparation method of the closed pore alumina-based ceramic that a kind of aperture is controlled
JP2016534001A (en) Cross-linked starch for pore formation in ceramics
CN104108938A (en) Preparation method for Sialon ceramic
KR101928998B1 (en) Ceramic plate-shaped body and method for producing same
JP6266972B2 (en) Porous ceramic for firing jig, method for producing porous ceramic for firing jig, and cooling device
KR101118607B1 (en) Silicon carbide ceramic compositions added strontium carbonate for high temperature filtration filters and preparing method of high temperature filtration filters using the same
JP6888087B2 (en) Composite ceramic materials, articles, and manufacturing methods
KR20130132983A (en) Alumina conjugate and bonding method for alumina sintered bodies
JP2011084451A (en) Method for producing electroconductive silicon carbide porous body
JP6666990B2 (en) Ceramic lattice
WO2019026645A1 (en) Method for producing honeycomb structure, and honeycomb structure
JP7112212B2 (en) Manufacturing method of honeycomb structure
KR20170060970A (en) Porous silicon nitride sintered body and method for manufacturing the same
JP5508938B2 (en) Zirconia-based setter and method for producing the same

Legal Events

Date Code Title Description
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)