KR102323206B1 - 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법 및 장치 - Google Patents

자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법 및 장치 Download PDF

Info

Publication number
KR102323206B1
KR102323206B1 KR1020140105432A KR20140105432A KR102323206B1 KR 102323206 B1 KR102323206 B1 KR 102323206B1 KR 1020140105432 A KR1020140105432 A KR 1020140105432A KR 20140105432 A KR20140105432 A KR 20140105432A KR 102323206 B1 KR102323206 B1 KR 102323206B1
Authority
KR
South Korea
Prior art keywords
coil
filtering
magnetic field
magnetic resonance
field induced
Prior art date
Application number
KR1020140105432A
Other languages
English (en)
Other versions
KR20160020288A (ko
Inventor
김경남
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020140105432A priority Critical patent/KR102323206B1/ko
Priority to US15/503,594 priority patent/US10578688B2/en
Priority to PCT/KR2015/008513 priority patent/WO2016024839A1/en
Publication of KR20160020288A publication Critical patent/KR20160020288A/ko
Application granted granted Critical
Publication of KR102323206B1 publication Critical patent/KR102323206B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3642Mutual coupling or decoupling of multiple coils, e.g. decoupling of a receive coil from a transmission coil, or intentional coupling of RF coils, e.g. for RF magnetic field amplification
    • G01R33/3657Decoupling of multiple RF coils wherein the multiple RF coils do not have the same function in MR, e.g. decoupling of a transmission coil from a receive coil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3692Electrical details, e.g. matching or coupling of the coil to the receiver involving signal transmission without using electrically conductive connections, e.g. wireless communication or optical communication of the MR signal or an auxiliary signal other than the MR signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

자기공명영상시스템에서, 송신코일이 전자파 신호를 대상체를 향해 인가하고, 전자파 신호를 인가하는 동안 인가된 전자파 신호에 의해 대상체에서 발생하는 자기공명신호를 획득하는 수신전용코일을 향해 광을 조사하고, 수신전용코일이 조사된 광을 수신하면, 인가된 전자파 신호에 의해 수신전용코일에서 유도되는 자기장을 필터링하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법 및 장치가 개시된다.

Description

자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법 및 장치{THE METHOD AND APPARATUS FOR FILTERING MAGNETIC FIELD INDUCED IN THE COIL OF MAGNETIC RESONANCE IMAGING SYSTEM}
자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치 및 방법에 관한다.
핵자기 공명(Nuclear Magnetic Resonance: NMR) 현상을 이용하는 자기공명 시스템으로서 자기공명영상(Magnetic Resonance Imaging: MRI) 장치, 자기공명 분광(Magnetic Resonance Spectroscopy: MRS) 장치 등이 알려져 있다.
자기공명영상 장치는 핵자기 공명 현상을 이용하여 인체의 단면을 촬영한다. 인체 내에 존재하는 수소(1H), 인(31P), 나트륨(23Na), 탄소동위원소(13C) 등의 원자핵은 핵자기 공명현상에 의해 각기 고유한 회전자계상수를 가진다. 따라서 자기공명영상 장치는 주자기장(main magnetic field)의 방향으로 정렬된 원자핵의 자화 벡터(magnetization vector)에 RF 코일을 이용하여 고주파를 인가하고, 주파수 공명으로 인해 수직평면으로 자화벡터가 재정렬되면서 발생되는 자기공명 신호를 RF 코일이 수신함으로써 인체의 단면 영상을 획득할 수 있다.
자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치 및 방법을 제공한다. 또한 상기 방법을 컴퓨터에서 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록 매체를 제공한다. 해결하고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
일 측면에 따르면, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치에 있어서, 전자파 신호를 대상체를 향해 인가하는 송신코일, 인가된 전자파 신호에 의해 발생하는 자기공명신호를 획득하는 수신전용코일, 송신코일이 전자파 신호를 인가하는 동안 수신전용코일을 향해 광을 조사하는 광조사부, 수신전용코일에 연결되어 조사된 광을 수신하면, 인가된 전자파 신호에 의해 수신전용코일에서 유도되는 자기장을 필터링하는 필터링부 및 송신코일, 수신전용코일 및 광조사부의 구동을 제어하는 제어부를 포함한다.
또한 장치는, 송신코일이 전자파 신호를 인가하는 시점과 광조사부가 광을 조사하는 시점을 일치시키고, 송신코일이 전자파 신호를 인가하지 않는 시점과 광조사부가 광을 조사하지 않는 시점을 일치시키는 동기화부를 더 포함한다.
또한 필터링부는, 직렬로 연결된 인덕터 및 광다이오드를 포함하고, 직렬로 연결된 인덕터 및 광다이오드와 병렬로 연결된 캐패시터를 포함한다.
또한 필터링부는, 광다이오드가 광을 수신하면, 인가된 전자파 신호에 의해 수신전용코일에서 유도되는 자기장을 필터링한다.
또한 필터링부는, 기 설정된 주파수 영역의 전자파 신호를 필터링하여 수신전용코일에서 유도되는 자기장을 필터링한다.
또한 필터링부는, 전자파 신호에 의해 수신전용코일에서 유도되는 자기장의 세기가 기 설정된 세기 이하가 되도록 필터링한다.
또한 장치는, 송신코일이 전자파 신호를 인가하는 시점과 수신전용코일이 자기공명 신호를 획득하는 시점이 중첩되지 않고, 기 설정된 주기로 반복하여 송신코일과 수신전용코일이 동작한다.
또한 광조사부는, 광을 인가하는 광 디바이스 및 광을 증폭시키는 증폭기를 포함한다.
또한 수신전용코일은, 복수개의 채널의 코일을 포함하고, 필터링부는, 복수개의 채널의 코일 각각에 대해서, 인가된 전자파 신호에 의해 유도되는 자기장을 필터링한다.
다른 일 측면에 따르면, 자기공명영상시스템의 코일에서 유도되는 자기장을 제어하는 방법은, 전자파 신호를 대상체를 향해 인가하는 단계, 전자파 신호를 인가하는 시점과 광을 조사하는 시점을 일치시켜 인가된 전자파 신호에 의해 대상체에서 발생하는 자기공명신호를 획득하는 수신전용코일을 향해 광을 조사하는 단계 및 수신전용코일이 조사된 광을 수신하면, 인가된 전자파 신호에 의해 수신전용코일에서 유도되는 자기장을 필터링하는 단계를 포함한다.
또한, 전자파 신호를 인가하는 시점과 광을 조사하는 시점을 일치시키고, 전자파 신호를 인가하지 않는 시점과 광을 조사하지 않는 시점을 일치시키는 단계를 더 포함한다.
또한 필터링하는 단계는, 직렬로 연결된 인덕터 및 광다이오드를 포함하고, 직렬로 연결된 인덕터 및 광다이오드와 병렬로 연결된 캐패시터를 포함하는 회로를 이용하여 필터링한다.
또한 필터링하는 단계는, 광다이오드가 광을 수신하면, 인가된 전자파 신호에 의해 수신전용코일에서 유도되는 자기장을 필터링한다.
또한 필터링하는 단계는, 기 설정된 주파수 영역의 전자파 신호를 필터링하여 수신전용코일에서 유도되는 자기장을 필터링한다.
또한 필터링하는 단계는, 전자파 신호에 의해 수신전용코일에서 유도되는 자기장의 세기가 기 설정된 세기 이하가 되도록 한다.
또한 방법은, 송신코일이 전자파 신호를 인가하는 시점과 수신전용코일이 자기공명 신호를 획득하는 시점이 중첩되지 않고, 기 설정된 주기로 반복하여 송신코일과 수신전용코일이 동작한다.
또한 광을 조사하는 단계는, 광을 인가하는 광 디바이스 및 광을 증폭시키는 증폭기를 포함하는 회로를 이용하여 광을 조사한다.
필터링하는 단계는, 수신전용코일은, 복수개의 채널의 코일을 포함하고, 복수개의 채널의 코일 각각에 대해서, 인가한 전자파 신호에 의해 유도되는 자기장을 필터링한다.
도 1은 자기공명영상시스템의 개략도를 도시한 도면이다.
도 2는 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치를 설명하기 위한 도면이다.
도 3은 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치의 구성도를 도시한 도면이다.
도 4는 다른 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치의 구성도를 도시한 도면이다.
도 5는 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법의 효과를 설명하기 위한 도면이다.
도 6은 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치의 수신전용코일 구성을 설명하기 위한 도면이다.
도 7은 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치의 구성을 설명하기 위한 도면이다.
도 8은 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법의 자기장을 제어하는 장치의 구성을 설명하기 위한 도면이다.
도 9 는 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법의 흐름도를 도시한 도면이다.
도 10은 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법의 흐름도를 도시한 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 발명에 대해 구체적으로 설명하기로 한다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에서 사용되는 "부"라는 용어는 소프트웨어, FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, "부"는 어떤 역할들을 수행한다. 그렇지만 "부"는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. "부"는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 "부"는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 "부"들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 "부"들로 결합되거나 추가적인 구성요소들과 "부"들로 더 분리될 수 있다.
아래에서는 첨부한 도면을 참고하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략한다.
본 명세서에서 "이미지"는 이산적인 이미지 요소들(예를 들어, 2차원 이미지에 있어서의 픽셀들 및 3차원 이미지에 있어서의 복셀들)로 구성된 다차원(multi-dimensional) 데이터를 의미할 수 있다.
또한, 본 명세서에서 "대상체(object)"는 사람 또는 동물, 또는 사람 또는 동물의 일부를 포함할 수 있다. 예를 들어, 대상체는 간, 심장, 자궁, 뇌, 유방, 복부 등의 장기, 또는 혈관을 포함할 수 있다. 또한, "대상체"는 팬텀(phantom)을 포함할 수도 있다. 팬텀은 생물의 밀도와 실효 원자 번호에 아주 근사한 부피를 갖는 물질을 의미하는 것으로, 신체와 유사한 성질을 갖는 구형(sphere)의 팬텀을 포함할 수 있다.
또한, 본 명세서에서 "사용자"는 의료 전문가로서 의사, 간호사, 임상 병리사, 의료 영상 전문가 등이 될 수 있으며, 의료 장치를 수리하는 기술자가 될 수 있으나, 이에 한정되지 않는다.
또한, 본 명세서에서 "자기 공명 영상 (MRI: Magnetic Resonance Imaging)"이란 핵자기 공명 원리를 이용하여 획득된 대상체에 대한 영상을 의미한다.
본 명세서에서 "디튜닝"은, 자기공명영상시스템의 송신코일에서 전자파 신호를 송신하는 동안에, 송신코일에서 발생한 전자파 신호로 인해 수신전용코일에서 유도되는 자기장을 저감시키는 것을 말한다 예를 들어, 자기공명영상시스템의 송신코일에서 출력된 전자파 신호가 자기공명영상시스템의 수신전용코일에 인가됨에 따라, 수신전용코일에서 불필요한 자기장이 유도될 수 있다. 수신전용코일에서 유도된 자기장은 수신전용코일과 송신코일간에 상호인덕턴스 커플링을 발생시킬 수 있으며, 발생된 상호인덕턴스 커플링에 의하여 자기공명영상의 해상도가 저하될 수 있다. 자기공명영상시스템은 수신전용코일에 대하여 디튜닝을 함으로써, 수신전용코일에서 유도된 자기장의 세기를 감소시킬 수 있다.
“디튜닝 회로”는 자기공명영상시스템의 송신코일에서 인가한 전자파로 인해 수신전용코일에서 유도되는 자기장의 세기를 감소시키는 회로를 포함할 수 있다.
디튜닝 회로는 능동적 디튜닝 회로 및 수동적 디튜닝 회로를 포함할 수 있다. 능동적 디튜닝 회로는 핀다이오드가 외부의 직류(DC) 바이어스에 의해 작동되는 회로일 수 있다. 수동적 디튜닝 회로는 스위치 역할을 하는2개의 핀다이오드가, 송신코일에서 인가한 전자파 신호에 의해 유도된 전압에 의해 작동하는 회로일 수 있다.
자기공명영상시스템은 특정 세기의 자기장에서 발생하는 전자파(Radio Frequency) 신호에 대한 자기공명(Magnetic Resonance) 신호의 세기를 명암 대비로 표현하여 대상체의 단층 부위에 대한 이미지를 획득하는 기기이다. 예를 들어, 대상체를 강력한 자기장 속에 눕힌 후 특정의 원자핵(예컨대, 수소 원자핵 등)만을 공명시키는 전자파 신호를 대상체에 순간적으로 조사했다가 중단하면 상기 특정의 원자핵에서 자기공명 신호가 방출되는데, 자기공명영상시스템은 방출된 자기공명 신호를 수신하여 자기공명 이미지를 획득할 수 있다. 자기공명 신호는 대상체로부터 방사되는 RF 신호를 의미한다. 자기공명 신호의 크기는 대상체에 포함된 소정의 원자(예컨대, 수소 등)의 농도, 이완시간 T1, 이완시간 T2 및 혈류 등의 흐름에 의해 결정될 수 있다.
자기공명영상시스템은 다른 이미징 장치들과는 다른 특징들을 포함한다. 이미지의 획득이 감지 하드웨어(detecting hardware)의 방향에 의존하는 CT와 같은 이미징 장치들과 달리, 자기공명영상시스템은 임의의 지점으로 지향된 2D 이미지 또는 3D 볼륨 이미지를 획득할 수 있다. 또한, 자기공명영상시스템은, CT, X-ray, PET 및 SPECT와 달리, 대상체 및 검사자에게 방사선을 노출시키지 않으며, 높은 연부 조직(soft tissue) 대조도를 갖는 이미지의 획득이 가능하여, 비정상적인 조직의 명확한 묘사가 중요한 신경(neurological) 이미지, 혈관 내부(intravascular) 이미지, 근 골격(musculoskeletal) 이미지 및 종양(oncologic) 이미지 등을 획득할 수 있다.
도 1은 자기공명영상시스템의 개략도를 도시한 도면이다. 도 1을 참조하면, 자기공명영상시스템(1)은 디스플레이(10), 갠트리(gantry)(30), 주자석(40), 경사 코일(50), 송신코일(60), 수신전용코일(70) 및 테이블(table)(80)을 포함할 수 있다. 갠트리(30)는 주 자석(40), 경사 코일(50), 송신코일(60) 및 수신전용코일(70) 등에 의하여 생성된 전자파가 외부로 방사되는 것을 차단할 수 있다. 갠트리(30) 내 보어(bore)에는 정자기장 및 경사자장이 형성될 수 있다. 갠트리(30)는 갠트리(30)의 외측에 위치하는 디스플레이(10)와 갠트리(30)의 내측에 위치하는 디스플레이를 더 포함할 수 있다. 갠트리(30)의 내측 및 외측에 위치하는 디스플레이를 통해 자기공명영상시스템(2)은 사용자 또는 대상체에게 소정의 정보를 제공할 수 있다.
주 자석(40), 경사 코일(50), 송신코일(60) 및 수신전용코일(70)은 갠트리(30)의 소정의 방향을 따라 배치될 수 있다. 소정의 방향은 동축 원통 방향 등을 포함할 수 있다. 원통의 수평축을 따라 원통 내부로 삽입 가능한 테이블(table)(70)상에 대상체(20)가 위치될 수 있다.
주 자석(40)은 대상체(20)에 포함된 원자핵들의 자기 쌍극자 모멘트(magnetic dipole moment)의 방향을 일정한 방향으로 정렬하기 위한 정자기장 또는 정자장(static magnetic field)을 생성할 수 있다. 주 자석에 의하여 생성된 자장이 강하고 균일할수록 대상체(20)에 대한 비교적 정밀하고 정확한 자기공명 영상을 획득할 수 있다.
경사 코일(Gradient coil)(50)은 서로 직교하는 X축, Y축 및 Z축 방향의 경사자장을 인가하는 X, Y, Z 코일을 포함한다. 경사 코일(50)은 대상체(20)의 부위 별로 공명 주파수를 서로 다르게 유도하여 대상체(20)의 각 부위의 위치 정보를 제공할 수 있다.
자기공명영상시스템(1)은 송신코일(60) 또는 수신전용코일(70)을 구동시킬 수 있다. 또한 전자파 신호와 자기공명 신호의 송수신 방향을 조절할 수 있다. 예를 들어, 송신 모드 동안에 송신코일(60)을 통하여 대상체(20)로 전자파 신호가 인가되게 하고, 수신 모드 동안에는 수신전용코일(70)을 통하여 대상체(20)로부터의 자기공명 신호가 수신되도록 제어할 수 있다.
송신코일(60)은 대상체에게 전자파 신호를 조사할 수 있고, 수신전용코일(70)은 대상체로부터 방출되는 자기공명 신호를 수신할 수 있다. 구체적으로, 송신코일(60)이, 세차 운동을 하는 원자핵을 향하여 세차운동의 주파수와 동일한 주파수의 전자파 신호를 대상체에게 전송한 후, 전자파 신호의 전송을 중단하면, 수신전용코일(70)은, 대상체로부터 방출되는 자기공명 신호를 수신할 수 있다.
예를 들어, 송신코일(60)은 어떤 원자핵을 낮은 에너지 상태로부터 높은 에너지 상태로 천이시키기 위하여 이 원자핵의 종류에 대응하는 무선 주파수(Radio Frequency)를 갖는 전자파 신호, 예컨대 RF 신호를 생성하여 대상체(20)에 인가할 수 있다. 송신코일(60)에 의해 생성된 전자파 신호가 어떤 원자핵에 가해지면, 이 원자핵은 낮은 에너지 상태로부터 높은 에너지 상태로 천이될 수 있다. 이후에, 송신코일(60)에 의해 생성된 전자파가 사라지면, 전자파가 가해졌던 원자핵은 높은 에너지 상태로부터 낮은 에너지 상태로 천이하면서 라모어 주파수를 갖는 전자파를 방사할 수 있다. 다시 말해서, 원자핵에 대하여 전자파 신호의 인가가 중단되면, 전자파가 가해졌던 원자핵에서는 높은 에너지에서 낮은 에너지로의 에너지 준위의 변화가 발생하면서 라모어 주파수를 갖는 전자파가 방사될 수 있다. 수신전용코일(70)은 대상체(20) 내부의 원자핵들로부터 방사된 전자파 신호를 수신할 수 있다. 또한 자기공명영상시스템(1)은 수신되는 자기공명 신호를 처리하여, 대상체에 대한 자기공명 화상 데이터를 생성할 수 있다.
또한, 이러한 송신코일(60)은 갠트리(30)에 고정된 형태이다. 수신전용코일(70)은 착탈이 가능한 형태일 수 있다. 착탈이 가능한 수신전용코일(70)은 머리 코일, 흉부 코일, 다리 코일, 목 코일, 어깨 코일, 손목 코일 및 발목 코일 등을 포함한 대상체의 일부분에 대한 수신전용코일을 포함할 수 있다. 또한, 송신코일(60) 또는 수신전용코일(70)은 16 채널, 32 채널, 72채널 및 144 채널 등 다양한 채널의 코일을 포함할 수 있다.
도 2는 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치를 설명하기 위한 도면이다. 도 2를 참조하면, 자기공명영상시스템(2)의 코일에 유도되는 자기장을 필터링하는 장치는 주자석(40), 송신코일(60), 테이블(80), 수신전용코일(70), 광조사부(200), 필터링부(210), 제어부(220) 및 동기화부(230)를 포함할 수 있다. 도 2의 자기공명영상시스템(2)은 도 1의 자기공명영상시스템(1)에서 수행하는 기능을 동일하게 수행할 수 있다. 예를 들면, 주자석(40), 송신코일(60), 테이블(80) 및 수신전용코일(70)은 도 1의 자기공명영상시스템(1)에서 설명한 부분과 동일한 기능을 수행할 수 있다.
주자석(40)은 대상체의 양성자를 자기장의 방향으로 정렬시킨다. 테이블(80) 위에 대상체가 놓여있을 수 있다. 제어부(220)는 송신코일(60), 수신전용코일(70) 및 광조사부(200)의 구동을 제어할 수 있다. 송신코일(60)은 전자파 신호를 인가한다. 송신코일(60)이 인가한 전자파 신호에 의해 수신전용코일(70)에서 자기장이 유도될 수 있다. 동기화부(230)는 송신코일(60)이 전자파 신호를 인가한 시점과 광조사부(200)가 광을 조사하는 시점을 동기화할 수 있다. 광조사부(200)는 동기화부(230)가 동기화한 시점에 수신전용코일(70)을 향해 광을 조사할 수 있다. 수신전용코일(70)에 연결된 필터링부(210)는 광조사부(200)가 조사한 광을 수신하면, 수신전용코일에서 유도되는 자기장을 필터링할 수 있다. 이와 함께 일 실시예에 따른 장치의 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치의 동작을 자세하게 설명하기 위해 도 3 및 도4의 블록도를 이용하여 설명하겠다.
도 3은 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치의 구성도를 도시한 도면이다. 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치(3)는 송신코일(60), 수신전용코일(70), 광조사부(200), 필터링부(210) 및 제어부(220)를 포함할 수 있다.
송신코일(60)은 전자파 신호를 발생시킬 수 있다. 전자파 신호는 어떤 원자핵을 낮은 에너지 상태로부터 높은 에너지 상태로 천이시키기 위하여 이 원자핵의 종류에 대응하는 무선 주파수(Radio Frequency)를 포함할 수 있다. 전자파 신호는 대상체를 대상으로 발생시켜 대상체에 인가할 수 있다. 송신코일(60)은 자기공명시스템의 송신코일 또는 송신전용코일을 포함할 수 있다.
수신전용코일(70)은, 전자파 신호에 의해 대상체에서 발생하는 자기공명 신호를 획득할 수 있다. 또한 수신전용코일(70)은 전자파 신호에 의해 여기된(excited) 대상체의 관심 영역으로부터 발생되는 자기공명 신호를 획득할 수 있다. 송신코일(60)과 수신전용코일(70)은 송신코일(60)이 전자파 신호를 인가하는 시점과 수신전용코일(70)이 자기공명 신호를 획득하는 시점이 중첩되지 않고, 기 설정된 주기로 반복하여 동작할 수 있다. 예를 들어 기 설정된 주기가 2초인경우에, 송신코일(60)이 첫번째 주기인 2초동안 전자파 신호를 발생시킬 때, 수신전용코일(70)은 첫번째 주기인 2초동안 자기공명 신호를 획득하지 않을 수 있다. 송신코일(60)은 두번째 주기인 2초동안 전자파 신호를 인가하지 않고, 수신전용코일(70)은 두번째 주기인 2초동안 자기공명 신호를 획득할 수 있다.
광조사부(200)는 송신코일(60)이 전자파 신호를 인가하는 시점과 광을 조사하는 시접을 일치시켜서 수신전용코일(70)을 향해 광을 조사할 수 있다. 예를 들어 t=0(초)일 때, 송신코일(60)이 전자파 신호를 인가하면, 광조사부(200)는 송신코일(60)이 전자파 신호를 인가하는 시점인 t=0(초)에 광을 조사하는 시점을 일치시켜 수신전용코일(70)을 향해 광을 조사할 수 있다. 광조사부(200)는 필터링부(210)에 포함된 광다이오드로 광을 조사할 수도 있다. 또한 광조사부(200)는 수신전용코일(70)의 전체 부분 또는 일부분에 대해 광을 조사할 수도 있다. 광조사부(200)는 광을 인가하는 광 디바이스 및 광을 증폭시키는 증폭기를 포함할 수 있다. 광조사부(200)는 다양한 종류의 광원으로 광을 조사할 수 있다. 예를 들면 광조사부(200)는 LED, 레이저, 텅스텐 램프를 포함할 수 있다. 광조사부(200)는 다양한 파장의 광을 조사할 수 있다. 예를 들면, 광조사부(200)는 마이크로파, 가시광선, 자외선 및 적외선 중 적어도 하나의 파장을 가지는 광을 조사할 수 있다. 광조사부(200)의 구성과 관련하여 자세한 설명은 도 7을 이용하여 설명하도록 하겠다.
도 7은 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치의 구성을 설명하기 위한 도면이다. 광조사부(200)는 광디바이스(700), 광증폭기(710) 및 광원(720)을 포함할 수 있다. 광디바이스(700)는 광을 생성하기 위한 신호를 생성할 수 있다. 예를들어 광을 생성하기 위한 신호는 펄스신호를 포함할 수 있다. 광증폭기(710)는 광디바이스(700)가 생성한 신호의 크기를 증폭시킬 수 있다. 광원(720)은 광증폭기(710)가 증폭시킨 신호에 따라 광을 조사할 수 있다.
다시 도 3에서 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치(3)의 필터링부(210)에 대한 설명을 하겠다. 필터링부(210)는 수신전용코일(70)에 연결되어 조사된 광을 수신하면, 인가된 전자파 신호에 의해 수신전용코일(70)에서 유도되는 자기장을 필터링할 수 있다. 필터링부(210)가 필터링하는 자기장은, 수신전용코일(70)에서 유도되는 자기장을 포함할 수 있다. 필터링부(210)는, 적어도 한 개 이상의 광다이오드를 포함할 수 있다. 필터링부(210)는, 광조사부(200)가 조사한 광을 광다이오드가 수신하면, 인가된 전자파 신호에 의해 수신전용코일(70)에서 유도되는 자기장을 필터링할 수 있다. 예를 들어, 광조사부(200)가 조사한 광을 광 다이오드가 수신하면 광다이오드가 작동한다. 광다이오드가 작동하면, 필터링부(210)는 대역차단필터를 작동하여, 송신코일(60)이 인가한 전자파 신호에 의해 수신전용코일(70)에서 유도되는 자기장의 세기를 감소시킬 수 있다.
필터링부(210)는 기 설정된 주파수 영역의 전자파 신호를 필터링하여 수신전용코일(70)에서 유도되는 자기장의 세기를 감소시킬 수 있다. 자기공명영상시스템에서 운영되는 공진주파수는 다양할 수 있다. 자기공명영상시스템이 3T(tesla)로 운영되는 경우에는 127.74MHz의 공진주파수 에 해당하는 전자파 신호를 송신코일(60)이 발생시킬 수 있다. 자기공명영상시스템이 4.7T로 운영되는 경우에는 200MHz의 공진주파수에 해당하는 전자파 신호를 송신코일(60)이 발생시킬 수 있다. 자기공명영상시스템이 7T로 운영되는 경우에는 300MHz의 공진주파수에 해당하는 전자파 신호를 송신코일(60)이 발생시킬 수 있다. 자기공명영상시스템이 9.4T로 운영되는 경우에는 400MHz의 공진주파수에 해당하는 전자파 신호를 송신코일(60)이 발생시킬 수 있다. 또한 수신전용코일(70)은 송신코일(60)이 인가한 전자파의 공진주파수와 동일한 주파수의 전자파에 의해 자기장이 유도되도록 설정할 수 있다. 예를 들면 자기공명영상시스템(2)이 3T로 운영되는 경우에는 기 설정된 주파수 영역은127.74MHz이 될 수 있다. 따라서 필터링부(210)는 127.74MHz의 전자파 신호를 필터링하여 수신전용코일(70)에서 유도되는 자기장의 세기를 감소시킬 수 있다. 또한 필터링부(210)는 127.74MHz의 전자파 신호를 필터링하는 대역차단필터를 포함할 수 있고, 대역차단필터를 이용하여 수신전용코일(70)에서 유도되는 자기장의 세기를 감소시킬 수 있다.
필터링부(210)는 직렬로 연결된 인덕터 및 광다이오드를 포함할 수 있다. 또한 필터링부(210)는 직렬로 연결된 인덕터 및 광다이오드와 병렬로 연결된 캐패시터를 포함할 수 있다. 필터링부(210)의 광다이오드는 방향성이 없으므로, 광다이오드는 방향에 상관없이 배열될 수 있다. 필터링부(210)는, 광조사부(200)가 조사한 광을 광다이오드가 수신하면, 광다이오드가 동작하여, 인덕터와 병렬로 연결된 캐패시터가 대역차단필터로 작동하게 할 수 있다. 필터링부(210)는 수신전용코일(70) 내부의 코일들과 직렬로 연결될 수 있다. 수신전용코일(70)은, 복수개의 채널의 코일들로 이루어질 수 있다. 예를 들면 수신전용코일(70)은 16 채널, 32 채널, 72채널 및 144 채널 등 다양한 채널의 코일들로 이루어질 수 있다. 필터링부(210)는 복수개의 채널의 코일 각각에 대해서, 인가된 전자파 신호에 의해 유도되는 자기장을 제거할 수 있다.
필터링부(210)는, 전자파 신호에 의해 수신전용코일(70)에서 유도되는 자기장의 세기가 기 설정된 세기 이하가 되도록 유도되는 자기장의 세기를 제어할 수 있다. 예를 들면, 필터링부(210)는 전자파 신호에 의해 수신전용코일(70)에서 유도되는 자기장의 세기를 기 설정된 세기인 50nT로 감소시킬 수 있다. 또한 필터링부(210)는 전자파 신호에 의해 수신전용코일(70)에서 유도되는 자기장의 세기를 기 설정된 세기인 0T로 감소시킬 수 있다. 또한 필터링부(210)는 전자파 신호에 의해 수신전용코일(70)에서 유도되는 자기장의 세기의 감소 비율이 -30dB에 해당하도록 자기장의 세기를 감소시킬 수 있다. 필터링부(210)의 구성과 관련해서 자세한 설명은 도 6을 통해 설명하도록 하겠다.
도 6은 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치의 구성을 설명하기 위한 도면이다. 도 6을 참조하면, 필터링부(210)는 수신전용코일(70)과 연결될 수 있다. 또한 복수개의 필터링부(210)가 수신전용코일(70)과 연결될 수 있다. 예를 들면 한 개의 수신전용코일(70)은 4개의 필터링부(210)를 포함할 수 있다. 또한 수신전용코일(70) 은 복수개의 채널의 코일로 구성될 수 있다. 필터링부(210)는 직렬로 연결된 광다이오드(600)와 인덕터(610)를 포함할 수 있다. 필터링부(210)는 직렬로 연결된 광다이오드(600)와 인덕터(610)와 병렬로 연결된 캐패시터(620)를 포함할 수 있다. 필터링부(210)는 수신전용코일(70) 내의 코일들(630)과 직렬로 연결될 수 있다. 광조사부(200)가 수신전용코일(70)을 향해 광을 조사하면, 수신전용코일(70)에 연결된 필터링부(210)의 광다이오드(600)가 광을 수신할 수 있다. 광다이오드(600)가 광을 수신하면 광다이오드(600)가 동작하여, 필터링부(210)의 인덕터(610)와 캐패시터(620)가 병렬로 연결될 수 있다. 병렬로 연결된 인덕터(610)와 캐패시터(620)는 대역차단필터로 작동할 수 있다. 주자석(40)의 자기장 크기가 7T일 경우, 자기공명영상시스템(2)은 300MHz의 공진주파수로 운영된다. 따라서 사용자는 필터링부(210)가 300MHz영역의 전자파 신호를 차단하는 대역차단필터로 설정할 수 있다. 사용자는 주자석(40)의 크기를 변경할 경우, 대역차단필터가 차단하는 주파수 영역도 다르게 설정할 수 있다. 또한 광다이오드(600)를 이용한 필터링부(210)는 외부의 직류 전원공급이 필요하지 않을 수 있다. 또한 광다이오드(600)를 이용한 필터링부(210)는 직류전원이 코일 내에서 구성되지 않기 때문에 직류에 의한 직류자기장을 형성하지 않아 자기장의 균일도에 영향을 주지 않을 수 있다.
다시 도 3에서 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치(3)의 제어부(220)에 대한 설명을 하겠다. 제어부(220)는 송신코일(60), 수신전용코일(70) 및 광조사부(200)의 구동을 제어할 수 있다. 제어부(220)는 송신코일(60)이 전자파 신호를 인가하는 시점과 수신전용코일(70)이 자기공명 신호를 획득하는 시점이 중첩되지 않고, 기 설정된 주기로 반복하여 송신코일(60)과 수신전용코일(70)이 동작하도록 제어할 수 있다. 제어부(220)가 제어하는 방법에 대한 자세한 설명은 도8을 통해 설명하도록 하겠다.
도 8은 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법의 자기장을 제어하는 장치의 구성을 설명하기 위한 도면이다. 도8을 참조하면, 송신코일(60)과 광조사부(200) 및 수신전용코일(70)의 시간대별 동작을 설명할 수 있다. 송신코일(60)이 전자파 신호를 인가하는 시간(800)과 송신코일(60)이 전자파 신호를 인가하지 않는 시간(810)을 기준으로 광조사부(200)가 광을 조사하는 시간과 수신전용코일(70) 이 자기공명 신호를 획득하는 시간에 대해 설명하겠다. 송신코일(60)이 전자파 신호를 인가하는 시점과 광조사부(200)가 광을 조사하는 시점이 동기화부(230)에 의해 일치된다. 그리고 송신코일(60)이 전자파 신호를 인가하지 않는 시점과 광조사부(200)가 광을 조사하지 않는 시점이 동기화부(230)에 의해 일치된다. 따라서 송신코일(60)과 광조사부(200)는 동일한 시간에 동작이 됨을 알 수 있다.
그러나 수신전용코일(70)은 광조사부(200)가 조사한 광을 수신하는 동안은 자기 공명 신호를 획득하지 않고, 광조사부(200)가 조사한 광을 수신하지 않는 동안에 자기 공명 신호를 획득할 수 있다. 왜냐하면, 자기공명신호는 송신코일(60)이 인가한 전자파 신호를 받은 대상체에게서 발생하는 신호로, 수신전용코일(70)은 송신코일(60)이 전자파 신호를 인가하지 않는 동안에 자기공명신호를 수신하기 때문이다. 따라서 수신전용코일(70)이 자기공명 신호를 획득하는 시점은 송신코일(60)이 전자파 신호를 인가하는 시점이나 광조사부(200)가 광을 조사하는 시점과 중첩되지 않는다.
도 4는 다른 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치의 구성도를 도시한 도면이다.
자기공명영상시스템(2)의 코일에서 유도되는 자기장을 제어하는 장치(3)는 송신코일(60), 수신전용코일(70), 광조사부(200), 필터링부(210) 및 동기화부(230)를 포함할 수 있다. 도 3의 송신코일(60), 광조사부(200) 및 필터링부(210)는 도 4의 송신코일(60), 광조사부(200) 및 필터링부(210)와 동일한 기능을 수행할 수 있다.
동기화부(230)는 송신코일(60)이 전자파 신호를 인가하는 시점과 광조사부(200)가 광을 조사하는 시점을 일치시키고, 송신코일(60)이 전자파 신호를 인가하지 않는 시점과 광조사부(200)가 광을 조사하지 않는 시점을 일치시킬 수 있다. 예를 들어, 송신코일(60)은 0초부터 10초까지 전자파 신호를 인가하고, 10초부터 20초까지는 전자파 신호를 인가하지 않을 수 있다. 이때, 동기화부(230)는 광조사부(200)가 0초부터 10초까지 광을 조사하고, 10초부터 20초까지는 광을 조사하지 않도록할 수 있다. 또한 동기화부(230)는, 송신코일(60)이 전자파 신호를 발생시킬 때, 특정 주파수의 신호를 측정하여 송신코일(60)이 전자파 신호를 인가하는 시간을 측정하는 자기 공명분광기(MR spectrometer)를 포함할 수 있다.
도 5는 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법의 효과를 설명하기 위한 도면이다. 도 5(a)를 참조하면, 수동적 디튜닝 회로에서 핀다이오드가 동작하는데 소요되는 지연시간을 설명할 수 있다. 수동적 디튜닝 회로는 스위치 역할을 하는2개의 핀다이오드가, 송신코일에서 인가한 전자파 신호에 의해 유도된 전압에 의해 작동하는 회로를 포함할 수 있다. 수동적 디튜닝 회로에서, 송신코일(60)에서 인가한 전자파의 전력에 의해 유도된 핀다이오드의 전압이 시간에 따라 변할 수 있다. 핀다이오드의 전압은 SINC함수형태로 표현되며, 도3(a)의 그래프는 SINC함수의 최고점들을 이어서 그린 그래프이다. t=0인 시점은, 송신코일(60)이 전자파 신호를 인가한 시점이다. 핀다이오드의 전압이 0.7V가 되어야 핀다이오드가 작동할 수 있으므로, 핀다이오드는 델타t 만큼의 지연시간동안 작동하지 않는다. 따라서 수동적 디튜닝 회로는, 송신코일(60)에서 전자파 신호를 인가한 시점으로부터 델타 t만큼의 지연시간동안 작동하지 않을 수 있다. 이에 따라, 수동적 디튜닝 회로는, 송신코일(60)이 전자파 신호를 인가한 시점부터 수동적 디튜닝 회로가 구동하기 전까지, 송신코일(60)이 방출한 전자파로 인하여 수신전용코일(70)에 유도된 자기장을 필터링하지 않는다.
도 3(b)는 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법에 따른 지연시간을 설명하기 위한 도면이다. 도 3(b)를 참조하면, t=0일때는, 송신코일(60)이 전자파 신호를 인가하는 시점과 광을 조사하는 시점을 일치시켜 광조사부(200)가 광을 조사한 시점이다. 빛의 속도는 로 광조사부에서 조사한 광이 수신전용코일(70)까지 도달하는데 걸리는 시간은 0초에 가깝다. 수신전용코일(70)에 연결된 필터링부(210)는 광다이오드를 포함할 수 있고. 광다이오드는 광조사부(200)가 조사한 광을 수신할 수 있다. 광다이오드는 응답속도가 빠르기 때문에, 광다이오드가 빛을 수신한 뒤, 광다이오드가 동작하는데까지 걸리는 시간은 0초에 가깝다. 따라서 광다이오드를 이용하여 수신전용코일에 유도되는 자기장을 필터링할 때, 광다이오드가 빛을 수신한 뒤, 광다이오드가 동작하는데 소요되는 시간은 0초에 가깝다. 이에 따라, 일 실시예에 따른 장치(3)는, 송신코일(60)이 방출한 전자파로 인하여 수신전용코일(70)에 유도된 자기장을 필터링하지 않는 시간이 0초에 가까울 수 있다.
도 9 는 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법의 흐름도를 도시한 도면이다. 도 9를 참조하면, 자기공명영상시스템(2)의 코일에서 유도되는 자기장을 제어하는 방법은 도 3에 도시된 장치(3)에서 시계열적으로 처리되는 단계들로 구성된다. 따라서, 이하에서 생략된 내용이라 하더라도 도 3에 도시된 장치(3)에 관하여 이상에서 기술된 내용은 도 9의 방법에도 적용됨을 알 수 있다.
단계 900에서, 송신코일(60)이 전자파 신호를 대상체를 향해 인가할 수 있다.
단계 910에서, 전자파 신호를 인가하는 시점과 광을 조사하는 시점을 일치시켜 인가된 전자파 신호에 의해 대상체에서 발생하는 자기공명신호를 획득하는 수신전용코일을 향해 광을 조사할 수 있다.
단계 920에서, 수신전용코일에 연결된 필터링부에 조사된 광을 수신하면, 인가된 전자파 신호에 의해 수신전용코일에서 유도되는 자기장을 필터링할 수 있다.
도 10은 일 실시예에 따른 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법의 흐름도를 도시한 도면이다. 도 10을 참조하면, 자기공명영상시스템(2)의 코일에서 유도되는 자기장을 제어하는 방법은 도 4에 도시된 장치(3)에서 시계열적으로 처리되는 단계들로 구성된다. 따라서, 이하에서 생략된 내용이라 하더라도 도 4에 도시된 장치(3)에 관하여 이상에서 기술된 내용은 도 10의 방법에도 적용됨을 알 수 있다.
단계 1000에서, 송신코일(60)이 전자파 신호를 대상체를 향해 인가할 수 있다.
단계 1010에서, 송신코일(60)이 전자파 신호를 인가하는 시점과 광조사부(200)가 광을 조사하는 시점을 일치시키고, 송신코일(60)이 전자파 신호를 인가하지 않는 시점과 광조사부(200)가 광을 조사하지 않는 시점을 일치시킬 수 있다.
단계 1020에서, 전자파 신호를 인가하는 시점과 광을 조사하는 시점을 일치시켜 인가된 전자파 신호에 의해 대상체에서 발생하는 자기공명신호를 획득하는 수신전용코일(70)을 향해 광을 조사할 수 있다.
단계 1030에서, 수신전용코일(70)에 연결된 필터링부에 조사된 광을 수신하면, 인가된 전자파 신호에 의해 수신전용코일(70)에서 유도되는 자기장을 필터링할 수 있다.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다.
상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 및 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.
이상과 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (19)

  1. 자기공명영상시스템에 있어서,
    전자파 신호를 대상체를 향해 인가하는 송신코일;
    상기 인가된 전자파 신호에 의해 발생하는 자기공명신호를 획득하는 수신전용코일;
    상기 송신코일이 상기 전자파 신호를 인가하는 동안 상기 수신전용코일을 향해 광을 조사하는 광조사부;
    상기 송신코일이 상기 전자파 신호를 인가하는 시점과 상기 광조사부가 상기 광을 조사하는 시점을 일치시키고, 상기 송신코일이 상기 전자파 신호를 인가하지 않는 시점과 상기 광조사부가 상기 광을 조사하지 않는 시점을 일치시키는 동기화부;
    상기 수신전용코일에 연결되고, 상기 조사된 광을 수신하면, 상기 인가된 전자파 신호에 의해 상기 수신전용코일에서 유도되는 자기장을 필터링하는 필터링부; 및
    상기 송신코일, 상기 수신전용코일 및 상기 광조사부의 구동을 제어하는 제어부를 포함하고,
    상기 동기화부는 기 설정된 주파수를 갖는 신호를 측정하여 상기 송신코일이 상기 전자파 신호를 인가하는 시간을 측정하는 자기 공명분광기(MR spectrometer)를 포함하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치.
  2. 삭제
  3. 제 1항에 있어서,
    상기 필터링부는,
    직렬로 연결된 인덕터 및 광다이오드를 포함하고, 상기 직렬로 연결된 인덕터 및 광다이오드와 병렬로 연결된 캐패시터를 포함하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치.
  4. 제 3항에 있어서,
    상기 필터링부는,
    상기 광다이오드가 상기 광을 수신하면 상기 인가된 전자파 신호에 의해 상기 수신전용코일에서 유도되는 자기장을 필터링하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치.
  5. 제 1항에 있어서,
    상기 필터링부는,
    기 설정된 주파수 영역의 전자파 신호를 필터링하여 상기 수신전용코일에서 유도되는 자기장을 필터링하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치.
  6. 제 1항에 있어서,
    상기 필터링부는,
    상기 전자파 신호에 의해 상기 수신전용코일에서 유도되는 자기장의 세기가 기 설정된 세기 이하가 되도록 필터링하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치.
  7. 제 1항에 있어서,
    상기 제어부는,
    상기 전자파 신호를 인가하는 시점과 상기 자기공명신호를 획득하는 시점이 중첩되지 않고, 기 설정된 주기로 반복하여 상기 송신코일과 상기 수신전용코일이 동작하도록 제어하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치.
  8. 제 1항에 있어서,
    상기 광조사부는,
    상기 광을 인가하는 광 디바이스 및 상기 광을 증폭시키는 증폭기를 포함하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치.
  9. 제 1항에 있어서,
    상기 수신전용코일은, 복수개의 채널의 코일을 포함하고,
    상기 필터링부는,
    상기 복수개의 채널의 코일 각각에 대해서, 상기 인가된 전자파 신호에 의해 유도되는 자기장을 필터링하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 장치.
  10. 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법에 있어서,
    송신코일이 전자파 신호를 대상체를 향해 인가하는 단계;
    상기 전자파 신호를 인가하는 동안, 상기 인가된 전자파 신호에 의해 상기 대상체에서 발생하는 자기공명신호를 획득하는 수신전용코일을 향해 광을 조사하는 단계;
    상기 전자파 신호를 인가하는 시점과 상기 광을 조사하는 시점을 일치시키고, 상기 전자파 신호를 인가하지 않는 시점과 상기 광을 조사하지 않는 시점을 일치시키는 단계; 및
    상기 수신전용코일이 상기 조사된 광을 수신하면, 상기 인가된 전자파 신호에 의해 상기 수신전용코일에서 유도되는 자기장을 필터링하는 단계를 포함하고,
    상기 방법은,
    자기 공명분광기(MR spectrometer)를 이용하여, 기 설정된 주파수를 갖는 신호를 측정하여 상기 송신코일이 상기 전자파 신호를 인가하는 시간을 측정하는 단계를 더 포함하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법.
  11. 삭제
  12. 제 10항에 있어서,
    상기 필터링하는 단계는,
    직렬로 연결된 인덕터 및 광다이오드를 포함하고, 상기 직렬로 연결된 인덕터 및 광다이오드와 병렬로 연결된 캐패시터를 포함하는 회로를 이용하여 필터링하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법.
  13. 제 12항에 있어서,
    상기 필터링하는 단계는,
    상기 광다이오드가 상기 광을 수신하면, 상기 인가된 전자파 신호에 의해 상기 수신전용코일에서 유도되는 자기장을 필터링하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법.
  14. 제 10항에 있어서,
    상기 필터링하는 단계는,
    기 설정된 주파수 영역의 전자파 신호를 필터링하여 상기 수신전용코일에서 유도되는 자기장을 필터링하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법.
  15. 제 10항에 있어서,
    상기 필터링하는 단계는,
    상기 전자파 신호에 의해 상기 수신전용코일에서 유도되는 자기장의 세기가 기 설정된 세기 이하가 되도록 하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법.
  16. 제 10항에 있어서,
    상기 방법은,
    상기 전자파 신호를 인가하는 시점과 상기 자기공명신호를 획득하는 시점이 중첩되지 않고, 기 설정된 주기로 반복하여 상기 송신코일과 상기 수신전용코일이 동작하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법.
  17. 제 10항에 있어서,
    상기 광을 조사하는 단계는,
    상기 광을 인가하는 광 디바이스 및 상기 광을 증폭시키는 증폭기를 포함하는 회로를 이용하여 상기 광을 조사하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법.
  18. 제 10항에 있어서,
    상기 필터링하는 단계는,
    상기 수신전용코일은, 복수개의 채널의 코일을 포함하고,
    상기 복수개의 채널의 코일 각각에 대해서, 상기 인가한 전자파 신호에 의해 유도되는 자기장을 필터링하는, 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법.
  19. 하드웨어와 결합되어 제10항 및 제12항 내지 제 18항 중 어느 한 항의 방법을 실행시키기 위하여 매체에 저장된 컴퓨터 프로그램
KR1020140105432A 2014-08-13 2014-08-13 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법 및 장치 KR102323206B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020140105432A KR102323206B1 (ko) 2014-08-13 2014-08-13 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법 및 장치
US15/503,594 US10578688B2 (en) 2014-08-13 2015-08-13 Method and apparatus for filtering magnetic field induced in coil of MRI system
PCT/KR2015/008513 WO2016024839A1 (en) 2014-08-13 2015-08-13 Method and apparatus for filtering magnetic field induced in coil of mri system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140105432A KR102323206B1 (ko) 2014-08-13 2014-08-13 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20160020288A KR20160020288A (ko) 2016-02-23
KR102323206B1 true KR102323206B1 (ko) 2021-11-08

Family

ID=55304384

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140105432A KR102323206B1 (ko) 2014-08-13 2014-08-13 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법 및 장치

Country Status (3)

Country Link
US (1) US10578688B2 (ko)
KR (1) KR102323206B1 (ko)
WO (1) WO2016024839A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111248911B (zh) * 2020-01-20 2023-09-08 上海东软医疗科技有限公司 磁共振系统及其控制方法、装置
DE102020211776A1 (de) * 2020-09-21 2022-03-24 Siemens Healthcare Gmbh Magnetresonanzvorrichtung mit einer Beleuchtungsvorrichtung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120223709A1 (en) * 2011-02-28 2012-09-06 Schillak Scott M Simultaneous tx-rx for mri systems and other antenna devices

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3192453B2 (ja) * 1991-12-12 2001-07-30 株式会社日立メディコ 磁気共鳴検査装置
US6144205A (en) * 1998-11-19 2000-11-07 General Electric Company Optical control of radio frequency antennae in a magnetic resonance imaging system
US8527046B2 (en) 2000-04-20 2013-09-03 Medtronic, Inc. MRI-compatible implantable device
US7823306B1 (en) * 2000-08-01 2010-11-02 Fonar Corporation Room for conducting medical procedures
WO2003026505A1 (fr) * 2001-09-19 2003-04-03 Hitachi Medical Corporation Outil de traitement et imageur a resonance magnetique
JP2007282735A (ja) 2006-04-14 2007-11-01 Hitachi Medical Corp 磁気共鳴イメージング装置
EP2054733A1 (en) 2006-08-15 2009-05-06 Koninklijke Philips Electronics N.V. Tunable and/or detunable mr receive coil arrangements
JP2008119249A (ja) * 2006-11-13 2008-05-29 Ge Medical Systems Global Technology Co Llc 操作スイッチ装置および磁気共鳴イメージング装置
JP5348870B2 (ja) * 2006-11-24 2013-11-20 株式会社東芝 Mri装置
JP2008229008A (ja) * 2007-03-20 2008-10-02 Toshiba Corp 磁気共鳴イメージング装置
KR20120022356A (ko) * 2010-09-02 2012-03-12 한국과학기술원 Pet-mri 융합 시스템
DE102012211147B4 (de) 2012-06-28 2017-08-31 Siemens Healthcare Gmbh Automatische Verstimmung nicht angeschlossener Sende-Empfangsspulen für MRI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120223709A1 (en) * 2011-02-28 2012-09-06 Schillak Scott M Simultaneous tx-rx for mri systems and other antenna devices

Also Published As

Publication number Publication date
KR20160020288A (ko) 2016-02-23
US10578688B2 (en) 2020-03-03
WO2016024839A1 (en) 2016-02-18
US20170234949A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6951114B2 (ja) 医用画像診断装置及び磁気共鳴イメージング装置
US10310036B2 (en) Magnetic resonance imaging apparatus and method for detecting error of magnetic resonance imaging apparatus
KR101967245B1 (ko) 자기 공명 이미징 시스템 및 자기 공명 이미징 방법
US20160131729A1 (en) Method and apparatus for quantifying properties of an object through magnetic resonance imaging (mri)
US10578691B2 (en) Gradient magnetic field generation module using plurality of coils so as to generate gradient magnetic field
US10042021B2 (en) Method and apparatus for measuring magnetic field
KR20160026298A (ko) 자기 공명 영상 장치, 그 제어 방법, 및 자기 공명 영상 장치용 헤드 코일
US10641847B2 (en) Magnetic resonance imaging scanner with coil serving as inductor of power amplifier
WO2014096997A1 (en) Automated decoupling of rf receive coil elements
KR102323206B1 (ko) 자기공명영상시스템의 코일에 유도되는 자기장을 필터링하는 방법 및 장치
US10317491B2 (en) Navigator-based magnetic resonance method and apparatus to detect non-rigid motion in large joint magnetic resonance imaging
JP2016530020A (ja) 押しボタン式血管壁イメージング
WO2016143460A1 (ja) 磁気共鳴イメージング装置およびrfシミングパラメータの設定方法
US10371770B2 (en) RF receiving coil unit for MRI apparatus
KR101909070B1 (ko) Rf 수신 코일 및 이를 포함하는 국부 코일 장치
US20150374247A1 (en) Method of measuring blood flow velocity performed by medical imaging apparatus, and the medical imaging apparatus
EP3403577A1 (en) Magnetic resonance imaging apparatus and method for shimming of magnetic resonance imaging apparatus
KR102345856B1 (ko) 자기공명영상시스템 내에서 타핵종 핵자기공명신호를 얻을 수 있는 고주파코일장치 및 동작방법
KR102092908B1 (ko) 호흡 움직임 보정을 위한 자기 공명 영상 장치
KR101475686B1 (ko) Mr 스펙트럼 생성 장치 및 이를 이용한 mr 스펙트럼 생성 방법
US10345406B2 (en) Method and apparatus for magnetic resonance imaging
KR20160120649A (ko) 자기 공명 영상 장치 및 그에 따른 자기 공명 영상 획득 방법
US20190223790A1 (en) Magnetic resonance imaging apparatus
US20060170421A1 (en) Moving-target magnetic resonance imaging system and method
KR102306534B1 (ko) 자기 공명 영상 장치 및 그 동작방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant