KR102312776B1 - 연료 전지 시스템을 위한 연료 공급 장치 및 연료 전지 시스템 - Google Patents

연료 전지 시스템을 위한 연료 공급 장치 및 연료 전지 시스템 Download PDF

Info

Publication number
KR102312776B1
KR102312776B1 KR1020197015148A KR20197015148A KR102312776B1 KR 102312776 B1 KR102312776 B1 KR 102312776B1 KR 1020197015148 A KR1020197015148 A KR 1020197015148A KR 20197015148 A KR20197015148 A KR 20197015148A KR 102312776 B1 KR102312776 B1 KR 102312776B1
Authority
KR
South Korea
Prior art keywords
fuel
pressure
fuel supply
duct
injection nozzle
Prior art date
Application number
KR1020197015148A
Other languages
English (en)
Other versions
KR20190096338A (ko
Inventor
퀴린 메데어
Original Assignee
프로톤 모터 퓨얼 셀 게임베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 프로톤 모터 퓨얼 셀 게임베하 filed Critical 프로톤 모터 퓨얼 셀 게임베하
Publication of KR20190096338A publication Critical patent/KR20190096338A/ko
Application granted granted Critical
Publication of KR102312776B1 publication Critical patent/KR102312776B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

연료 전지 시스템(1)을 위한 연료 공급 장치(10)는 연료 제공 포트(11)와 연료 공급 포트(12) 사이에 정렬되고, 연료 저장조(2)로부터 연료 전지 어셈블리(3)로 연료를 공급하기 위한 연료 공급 덕트(13)와, 연료 전지 어셈블리(3)로부터 연료 공급 덕트(13)로 소비되지 않은 연료(42)를 돌려보내기 위해 연료 공급 덕트(13)에 연결된 연료 순환 덕트(14)를 포함한다. 연료 공급 덕트(13) 내의 패시브 분사 노즐 어셈블리(15)는 음의 유압을 사용하고, 따라서 연료 순환 덕트(14)로부터 소비되지 않은 연료(42)를 이끌어내거나 흡입하며, 이를 연료 공급 덕트(13)로 혼합시키도록 구성된다. 분사 노즐 어셈블리(15)와 병렬로 연료 공급 덕트(13)에 연결된 우회 덕트(30)는 연료 공급 덕트(13)에서 분사 노즐 어셈블리(15)를 우회시키는 역할을 한다. 연료 제공 포트(11)와 분사 노즐 어셈블리(15) 사이에서 연료 공급 덕트(13) 내에 정렬되고, 연료 공급 덕트(15) 내의 압력을 모니터링하도록 구성된 압력 모니터링 장치(19)는, 압력이 특정 압력값 밑으로 떨어질 때 적어도 하나의 출력 신호(191, 192)를 출력한다. 활성화 장치(17, 31)는, 출력 신호(191)에 응답하여, 연료 전지 어셈블리(3)로의 연료의 공급을 위해 분사 노즐 어셈블리(15)를 우회시키도록 우회 덕트(30)를 활성화한다.

Description

연료 전지 시스템을 위한 연료 공급 장치 및 연료 전지 시스템
본 발명은 연료를 저장하기 위한 연료 저장 용기에 연결하기 위한 연료 제공 포트와, 전기 에너지를 발생시키기 위한 연료 전지 어셈블리에 연결하기 위한 연료 공급 포트를 포함하는 연료 전지 시스템을 위한 연료 공급 장치에 관한 것이다. 연료 공급 덕트는 연료 저장조로부터 연료 전지 어셈블리로 연료를 공급하는 역할을 하며, 연료 제공 포트와 연료 공급 포트 사이에 배치된다. 또한, 상기 연료 공급 덕트에 연결되어 소비되지 않은 연료를 연료 전지 어셈블리로부터 연료 공급 덕트 속으로 돌려보내는 연료 순환 덕트가 제공된다. 또한, 연료 공급 덕트 내에 배치되고, 음의 유압을 이용하여 연료 순환 덕트로부터 소비되지 않은 연료를 유도 또는 흡입하고 이를 연료 전지 어셈블리로 공급하기 위해 연료 공급 덕트 내에서 혼합시키도록 구성되는 패시브 분사 노즐 어셈블리가 제공된다.
이러한 장치로 동작되는 연료 전지는 연료 특히, 수소와, 산화제 특히, 산소로부터 전기 에너지를 생성한다. 산소는 일반적으로 기체의 형태로 공급되고, 수소는 저장조로부터 공급되거나 또는 예컨대 메탄올로부터 국지적으로 생성된다. 이동식 및 고정식 연료 전지 시스템의 일반적인 변형은 고압 탱크에서의 수소 공급이다. 고압 탱크에서 수소는 최대 80 MPa(800 bar)의 압력 하에 저장된다. 하나 이상의 고압 탱크가 탱크 모듈을 형성할 수 있다. 탱크 모듈의 출구에서 압력은 감압기에 의해 매니폴드 압력 레벨로 감소된다. 이 중간 압력 범위에서, 압력은 전형적으로 약 0.5 내지 1.2 MPa(5-12 bar)이다.
연료 전지는, 가령 이들이 없다면 연료 전지의 동작이 가능하지 않을 수 있는 이러한 동작 매체, 센서, 밸브, 레귤레이터 등을 위한 처리 설비와 함께 사용된 동작 기체 및 냉각수의 배출 및/또는 재순환을 위해, 깨끗한 동작 기체 및 냉각수를 위한 라인과 같은 일반적으로 다수의 주변 요소들과 함께 하나 이상의 연료 전지 스택으로 조합되고, 하나 이상의 연료 전지 모듈 내에 종종 통합되는 연료 전지 시스템을 구성한다. 공급 라인은 탱크 모듈을 연료 전지 모듈, 즉 하우징에 설치된 연료 전지 및 요구되는 주변 요소들로 연결한다.
이러한 장치는 예컨대, DE 102 51 878 A1 및 DE 10 2006 037 799 A1의 예시로부터 공지되어 있다. 연료 펌프가 에너지 소비의 가능한 컨트롤/규제 동작에서 스로틀될 수 있고, 이것과 함께, 연료 순환 흐름 속도는, 연료 전지의 성능이 변화하는 시각에 보장될 수 있는 연료 전지 시스템의 연료 회로는, 연료와 산화물이 제공됨으로써 전기 에너지를 생성하는 연료 전지, 연료를 연료 전지로 공급하기 위한 연료 공급 덕트, 연료 전지로부터 배출된 소비되지 않은 연료로 하여금 재활용을 위해 연료 공급 덕트 내로 흐르도록 야기하는 연료 순환 덕트, 소비되지 않은 연료를 유도하거나 빨아들이고 방출하는 연료 펌프(수소 펌프), 및 연료가 흐를 때 생성되는 음의 압력을 사용함으로써 소비되지 않은 연료를 빨아들이거나 이끌어내고, 이것이 이후 연료 전지로 공급되는 연료와 함께 혼합되도록 야기하는 방출기(분사 노즐로도 종종 지칭됨)를 포함한다.
연료 전지의 안정된 동작을 보장하기 위해서는 일반적으로 수소 측의 유량을 특정값(약 3m/s) 이상으로 유지할 필요가 있다. 이것은 펌프의 사용을 통해 (구동 에너지를 사용하여) 액티브하게 가능하거나 분사 노즐을 통해 패시브하게 가능하다. 분사 노즐은 전기 에너지를 사용하지 않고 연료 순환 덕트 내에서 연료를 순환시키고, 마모 부품이 없고, 소음 방출이 거의 발생하지 않는다는 점에서 펌프보다 유리한 장점을 가진다. 패시브 분사 노즐은 흡입 측에 진공이나 음의 압력을 생성하도록 구동 압력과 출구 압력 사이의 압력 차를 사용하고 따라서 흐름을 생성한다.
이는 연료 저장소(예컨대, 연료 저장조)를 가능한 효율적으로 사용할 경우 단점이 될 수 있다. 일적용례로, 최대 동작점에서의 구동 압력은 분사 노즐을 효율적으로 동작시키기 위해서는 대략 8 내지 9 bar이어야 한다. 하지만 저장소를 최대한 효율적으로 사용할 수 있으려면 가능한 가장 낮은 압력(대기압 근처)으로 배출하는 것이 가능해야 한다. 분사 노즐을 사용할 때, 이는 더 높은 동작 압력에서 동작되어야 하거나, 또는 시스템이 전제 성능 범위에서 전체 저장 내용물을 넘어서서 사용될 수 없기 때문에 각 저장소가 이용될 수 있는 결과로 이어진다. 반대로, 이는 전체 저장소 내용물을 사용하려면 시스템을 분사 노즐을 통해 순환시킬 수 없지만 연료 펌프를 사용해야 하므로 다른 것들과의 효율성이 감소된다는 것을 의미한다.
본 발명의 목적은 초기에 언급된 유형의 연료 전지 시스템을 위한 연료 공급 장치를 나타내는 것이고, 이는 연료 저장조와 분사 노즐을 사용하고, 상대적으로 큰 동작 범위에서 효율적으로 동작될 수 있다.
본 발명은 청구항 제1항에 따른 연료 전지 시스템을 위한 연료 공급 장치에 관한 것이다. 또한, 본 발명은 이러한 연료 공급 장치와 연료 전지 어셈블리를 포함하는 연료 전지 시스템에 관한 것이다.
일양태에 따르면, 본 발명은 연료 전지 시스템을 위한 연료 공급 장치에 관한 것으로서, 상기 연료 공급 장치는: 연료를 저장하기 위한 연료 저장조로 연결하기 위한 연료 제공 포트와 전기 에너지를 생성하기 위해 연료 전지 어셈블리로 연결하기 위한 연료 공급 포트, 연료 저장조로부터 연료 전지 어셈블리로의 연료의 공급을 위한 연료 공급 덕트로서, 상기 연료 공급 덕트는 연료 제공 포트와 연료 공급 포트 사이에 배치되고, 연료 전지 어셈블리로부터 연료 공급 덕트로 소비되지 않은 연료를 돌려보내기 위해 연료 공급 덕트에 연결된 연료 순환 덕트, 및 음의 유압을 사용하여 연료 순환 덕트로부터 소비되지 않은 연료를 흡입 또는 이끌어내며, 이를 연료 전지 어셈블리로의 공급을 위해 연료 공급 덕트로 혼합시키도록 구성되고 연료 공급 덕트에 배치되는 패시브 분사 노즐 어셈블리를 포함한다. 우회 덕트는 연료 공급 덕트에서 분사 노즐 어셈블리를 브리징하거나 우회하기 위해 분사 노즐 어셈블리와 평행으로 연료 공급 덕트에 연결된다. 연료 제공 포트와 분사 노즐 어셈블리 사이에서 연료 공급 덕트에 배치되는 압력 모니터링 장치는, 연료 공급 덕트의 압력을 모니터하고 압력이 특정 압력값 밑으로 떨어질 때 적어도 하나의 출력 신호를 출력하도록 구성된다. 압력 모니터링 장치에 연결된 활성화 장치는 연료 전지 어셈블리로의 연료의 공급을 위해 분사 노즐 어셈블리를 우회하기 위한 압력 모니터링 장치의 출력 신호에 응답하여 우회 덕트를 활성화하도록 구성된다.
본 발명은, 비어가는 연료 저장조의 결과로서 유압이 떨어질 때 분사 노즐 어셈블리가 연료 공급 덕트에서 브리지되거나 우회되어서 이러한 동작 영역에서 감소되는 동작 압력의 경우에 제약이 없도록 하는 이점을 제공한다. 연료 순환 덕트 내의 순환이 유지되는 경우에, 분사 노즐 어셈블리 대신에 이것을 실현하도록 구성된 연료 펌프가 제공될 수 있다. 따라서, 이 경우 연료 펌프를 위한 추가적인 구동 에너지는, 연료 공급 덕트 내의 유압이 특정 압력값보다 아래로 감소하고, 연료 순환 덕트 내의 순환이 유지되는 동작 범위 내에서만 요구된다. 이것은 연료 저장조를 상당히 또는 거의 완전히 비울 가능성을 제공함과 동시에 매우 효율적인 작동을 가능하게 한다.
본 발명의 일실시예에 따르면, 연료 공급 장치는 연료 순환 덕트로부터 소비되지 않은 연료를 흡입 또는 이끌어내고, 이를 연료 전지 어셈블리로의 공급을 위해 연료 공급 덕트 내로 혼합하기 위해 연료 순환 덕트와 연료 공급 덕트 사이에서 분사 노즐 어셈블리에 평행하게 연결되고 연료 순환 덕트에 연결된 연료 펌프를 더 포함한다. 연료 펌프는 압력 모니터링 장치에 연결되고, 특히 압력 모니터링 장치의 출력 신호에 응답하여 펌핑 동작을 위해 활성화되도록, 펌핑 모드에서 동작되도록 구성된다.
효율적인 동작을 위해, 이것은 연료 펌프가 비활성 상태로 전환되는 경우, 압력 모니터링 장치가 압력이 특정 압력값 밑으로 떨어지지 않았음을 나타내는 때, 연료 공급 덕트 내의 압력이 따라서, 압력값보다 높은 때에 유익하다. 이 경우, 오로지 분사 노즐 어셈블리만이 소비되지 않은 연료의 혼합을 위해 활성화된다.
이는 예컨대, 8 내지 9 bar의 요구되는 구동 압력 이하로 감소하는 저장 압력의 추가 과정에서, 연료의 재순환이 연료 펌프에 의해 유지될 수 있기 때문에 연료 전지 시스템의 전력이 감소될 필요가 없는 상황에 반응할 가능성을 제공한다. 연료 전지 시스템의 효율적인 동작을 위해, 연료 펌프는 유리하게는 그렇지 않다면 비활성된다.
일실시예에서, 연료 공급 장치는 분사 노즐 어셈블리의 흡입 측의 상류에 연료 순환 덕트에 배치되고, 연료 펌프가 펌핑 모드에 있을 때 연료 순환 덕트로 분사 노즐 어셈블리를 가로지르는 연료의 역류를 방지하도록 구성되는 확인 또는 비-회귀 장치를 더 포함한다. 따라서, 활성 펌핑 모드에서 연료 펌프가 분사 노즐을 가로질러 반대 방향으로 연료를 순환시키는 것이 방지될 수 있다.
특히, 확인 장치는 비-회귀 밸브 또는 확인 밸브를 포함한다.
일실시예로, 연료 공급 장치는, 분사 노즐 어셈블리의 상류의 연료 공급 덕트에 배치되고, 제1 전환 위치에서 연료 저장조로부터 분사 노즐 어셈블리 내로 연료의 흐름을 허용하고, 제2 전환 위치에서 연료 저장조로부터 우회 덕트로의 연료의 흐름을 허용하는 방향 컨트롤 밸브를 포함한다. 여기서, 방향 컨트롤 밸브는 압력 모니터링 장치의 출력 신호에 응답하여 제1 전환 위치로부터 제2 전환 위치로 전환되도록 배치된다. 따라서, 연료 공급 덕트 내의 압력이 설정값 이하로 떨어지면, 방향 제어 밸브, 특히 3/2-방향 밸브가 자동으로 전환되고 그에 따라 분사 노즐이 우회 덕트를 통해 우회되도록 하는 것을 달성할 수 있다.
추가 실시예에 따르면, 연료 공급 장치는 우회 덕트에 배치되고, 제1 전환 위치에서 우회 덕트에서의 연료의 흐름을 방지하고, 제2 전환 위치에서 우회 덕트에서의 연료의 흐름을 허용하는 밸브를 포함하고, 상기 밸브는 압력 모니터링 장치의 출력 신호에 응답하여 제1 전환 위치로부터 제2 전환 위치로 전환하도록 구성된다. 따라서, 연료 공급 덕트 내의 압력이 설정된 값 아래로 떨어질 때, 우회 덕트 내의 밸브, 특히 2/2 방향 밸브가 자동으로 전환되고, 따라서 우회 덕트가 차단되거나 개방되며, 후자의 경우 분사 노즐은 (분사 노즐보다 더 낮은 유동 저항을 나타내는) 개방된 우회 덕트를 통해 우회되는 것이 달성될 수 있다.
 일실시예에 따르면, 압력 모니터링 장치는 연료 공급 덕트 내의 압력을 모니터링하고 출력 신호를 트리거하도록 구성되는 압력 스위치 또는 압력 트랜스미터를 포함한다.
 일실시예로, 압력 모니터링 장치는 압력이 8 및 9 bar의 범위 내의 압력 값 아래로 떨어질 때 출력 신호를 출력하도록 구성된다. 따라서, 공급 압력은 8 내지 9 bar(g)(외부 환경에 대한 상대적 압력)의 값으로 모니터링될 수 있다.
 특히, 압력 모니터링 장치는 목표 설정에 따라 연료 공급 포트에 예압(pre-pressure)을 설정하도록 구성된 감압기의 상류에 배치된다. 컨트롤 동작 동안에 가능한 피드백 상황을 감소시키기 위해, 감압기는 조정가능한 위치에 따라 연속적으로 또는 몇몇 단계에서 비례하여 연료 흐름 부피를 설정할 수 있는 비례 감압기를 갖는 것이 유리하다.
본 발명의 내용 중에 포함되어 있다.
본 발명은 첨부된 도면을 참조하여 이하에서 더 상세히 설명될 것이다:
도 1은 본 발명에 따른 연료 저장조를 포함하는 연료 전지 시스템의 일실시예, 본 발명에 따른 연료 공급 장치 및 예컨대, 소위 연료 전지 스택과 같은 연료 공급 장치에 의해 공급되는 연료 전지 어셈블리의 일실시예를 도시한다.
도 2는 본 발명에 따른 연료 저장조를 포함하는 연료 전지 시스템의 추가 실시예, 본 발명에 따른 연료 공급 장치 및 이로부터 공급되는 연료 전지 어셈블리의 추가 실시예를 도시한다.
도 1은 연료 저장조(2)를 포함하는 본 발명에 따른 연료 전지 시스템(1)의 일실시예, 본 발명에 따른 연료 공급 장치(10) 및 이에 의해 공급되는 연료 전지 어셈블리(3)(예컨대, 연료 전지 모듈이나 연료 전지 스택)의 일실시예를 개략적으로 도시한다. 후자는 연료 전지의 알려진 원리에 따라 연료, 여기서는 수소와 산화제, 특히 산소의 반응으로부터 전기 에너지를 생성하는 역할을 한다. 예컨대, 연료 전지 시스템(1)은 탱크 모듈(2)(원칙상 임의의 유형의 적절한 연료 저장조가 사용될 수 있음) 및 연료 전지 스택(3)을 포함하고, 수소(40)는 탱크 모듈(2)로부터 연료 공급 장치(10)를 통해 연료 전지 스택(3)으로 흘러갈 수 있다.
이러한 목적을 위해, 연료 공급 장치(10)는 탱크 모듈(2)로의 연결을 위한 연료 제공 포트(11)와, 연료 전지 스택(3)으로의 연결을 위한 연료 공급 포트(12)를 가진다. 연료 공급 장치(10)는 모듈 형태로 제공될 수 있고, 탱크 모듈(2) 및/또는 연료 전지 스택(3)과 별개로 제공 및 연결될 수 있거나, 또는 연료 전지 스택(3)과 함께 공통 연료 전지 모듈 하우징 내에 통합될 수 있다. 또한, 탱크 모듈(2)은 이러한 하우징에 통합될 수 있거나, 그로부터 별도로 제공될 수 있다. 연료 공급 덕트(13)은 탱크 모듈(2)로부터 공급 라인(4)을 통해 연료 전지 스택(3)으로 연료를 공급하는 역할을 하며, 연료 제공 포트(11)와 연료 공급 포트(12) 사이에 배치된다.
수소(40)는 수소 라인의 연료 제공 포트(11)를 통해 탱크 모듈(2)로부터 감압기(18)로 흐를 수 있다. 감압기(18)는, 공급 라인(4)에서 가스 혼합물의 압력을 결정하고, 압력을 계속하여 측정하며, 대응하는 신호(201)를 출력하는 압력 센서(20)와 협력하여, 연료 공급 포트(12)에서의 압력을 목표 설정과 비교하고, 매체가 상기 압력을 유지하게 흐르도록 허용한다. 바람직하게는, 이러한 목적을 위한 감압기(18)는 비례 감압기를 포함한다. 연료 공급 포트(12)에서, 공급 라인(4)은 연료 전지 스택(3)에 연결된다. 압력 스위치(21)는 공급 라인(4) 내의 수소의 압력을 모니터하고, 최대 압력이 초과될 때 안전 회로를 통해 시스템을 안전 상태로 전환하지만, 기체 혼합물의 압력이 최대 압력을 넘어서 상승할 때의 장애의 경우에만 그러하다. 대안으로 또는 추가로(예컨대, 압력 스위치(21)에 대한 리던던시로서), 공급 라인(4)에서 수소의 압력을 유사하게 모니터링하고 최대 압력이 초과될 때 안전 회로를 통해 안전 상태로 전환하는 압력 스위치(22)가 제공될 수 있으나, 이는 다시 기체 혼합물 내의 압력이 최대 압력을 넘어서 상승하는 장애의 경우에만 그러하다. 연료 공급 포트(12)로부터, 수소(41)는 수소 공급 라인을 통해 연료 전지 어셈블리(3)로 흐른다.
또한, 소비되지 않은 수소(42)를 포함할 수 있는 애노드 배기 가스는 애노드(71)의 애노드 배기 가스 라인을 통해 연료 전지 어셈블리(3)를 떠나 연료 순환 덕트(14)으로 향하게 된다. 후자는 연료 전지 어셈블리(3)로의 새로운 공급을 위해 소비되지 않은 수소(42)를 연료 공급 덕트(13)으로 혼합하는 역할을 한다. 캐소드 동작 가스(특히, 산소)는 공기 공급 라인(51)을 통해 연료 전지 어셈블리(3)에 들어가고 다시 캐소드(72)의 캐소드 배기 가스 라인(52)을 통해 이를 떠나게 된다. 냉각수는 냉각 장치(60)의 냉각수 공급 라인(61)을 통해 연료 전지 어셈블리(3)에 들어가고 냉각수 배출 라인(62)을 통해 이를 떠나게 된다.
연료 순환 덕트(14)으로 향하는 애노드 배기 가스는, 가스 스트림으로부터 액체인 물을 분리하고, 액체인 물이 유동 가스 혼합물에 포함되자 마자 이를 수집하는 물 분리기(23)를 가로질러 통과된다. 레벨 스위치(26)는 물 분리기(23)의 충전 수준을 모니터링하고 최대 충전 레벨에 도달 할 때 물 분리기(23)의 물이 스위치를 적시자마자 배수 밸브(24)를 개방한다. 레벨 스위치(26)가 전환되면, 배수 밸브(24)가 개방되고 물은 물 분리기(23)로부터 배출된다. 배수 밸브(24)는 기결정된 시간 후에 닫히고, 그 후에 충분한 물이 물 분리기(23)로부터 배출되지만, 가스는 배수 밸브에 아직 존재하지 않는다. 가스 배출 밸브(25)는 가스를 시스템으로부터 대기 중으로 배출하는 역할을 한다. 대부분 주기적인 개방은 동작 중에 수행된다.
또한, 패시브 분사 노즐 어셈블리(15)가 제공되는데, 이는 연료 공급 덕트(13)에 배치되고 음의 유압을 사용함으로써 연료 순환 덕트(14)으로부터 소비되지 않은 연료(42)를 흡입 또는 이끌어내고, 연료 전지 어셈블리(3)에 공급하기 위해 이를 연료 공급 덕트(13) 내로 혼합시키도록 구성된다. 연료 전지의 안정된 동작을 보장하기 위해, 수소 측의 유량을 특정값(약 3m/s) 이상으로 유지하는 것이 일반적으로 필요하다. 이는 연료 펌프를 사용하여 액티브하게 또는 분사 노즐 어셈블리를 통해 패시브하게 가능하다.
특히, 분사 노즐 어셈블리는 특히, 패시브 분사 노즐인 분사 노즐을 포함한다. 이 노즐은 특히 알려진 구조로 되어있다. 분사 노즐 어셈블리는, 분사 노즐에 추가로, 추가적인 연관 컴포넌트, 가령 밸브나 이와 유사한 것을 가질 수 있다. 분사 노즐은 펌프에 비해 많은 이점을 가지고 있으며, 전기 에너지를 사용하지 않고 순환을 제공하며, 마모 부품이 없고 소음을 거의 발생시키지 않는다. 패시브 분사 노즐은 흡입측에 진공이나 음의 압력을 생성하고 따라서 흐름을 생성하기 위해 구동 압력과 출구 압력 사이의 압력 차이를 이용한다. 하지만, 이것은, 최대 동작점에서의 구동 압력이 대략 8 내지 9 bar(g)가 되어야 할 때 가능한 연료 저장조의 효율적인 사용의 경우에 단점이 될 수 있다. 가능한 한 효율적으로 저장소를 사용할 수 있도록 하기 위해 가능한 가장 낮은 압력(대기압 근처)으로 배출하는 것이 가능해야만 한다. 분사 노즐이 사용되는 경우, 이것은 저장소가 완전히 이용될 수 없거나, 시스템이 그것의 전체 성능 범위에서 전체 저장 내용물을 넘어서 사용될 수 없거나, 또는 시스템이 전체 저장 내용물이 이용되는 경우 분사 노즐에 의해 순환될 수 없는 효과를 필연적으로 가진다.
본 발명은 이러한 관점에서, 연료 제공 포트(11)와 분사 노즐 어셈블리(15) 사이의 연료 공급 덕트(13) 내에 압력 모니터링 장치(19)를 제공함으로써 해결책을 제공한다. 이 장치는 연료 공급 덕트(13), 특히 공급 라인(4), 바람직하게는 감압기(18)의 상류에서 압력을 모니터링하고, 압력이 특정 압력값 아래로 떨어질 때 적어도 하나의 출력 신호(본 실시예에서는, 2개의 출력 신호(191, 192))를 출력한다. 선호되는 실시예로, 이것은 압력이 8과 9 bar 사이의 범위 내에서 압력 값 밑으로 떨어질 때 발생된다. 압력값은 기정의되거나 기설정될 수 있거나, 및/또는 예컨대, 부하 요구사항에 따라 동적으로 설정되거나 조정될 수 있다.
또한, 연료 공급 덕트(13)에서 분사 노즐 어셈블리(15)를 우회시키기 위해 분사 노즐 어셈블리(15)와 병렬로 연료 공급 덕트(13)에 연결되는 우회 덕트(30)이 제공된다. 특히, 우회 덕트(30)은 입력 측에서 입력에 그리고 출력 측에서 분사 노즐 어셈블리(15)의 출력에 연결된다. 특정 적용례에 따라, 다른 요소, 가령 분사 노즐 어셈블리의 일부이거나 이와 연관되는 밸브나 이와 유사한 것들이 또한, 우회 덕트(30)에 의해 브리지되거나 우회될 수 있다.
도 1의 실시예에서, 분사 노즐 어셈블리(15)의 상류에서 연료 공급 덕트(13) 내에 배치되는 방향 컨트롤 밸브(17)가 더 제공된다. 방향 컨트롤 밸브(17)는 특히 3/2-방향 밸브이다. 제1 전환 위치에서, 방향 컨트롤 밸브(17)는 연료 저장조(2)로부터, 따라서 연료 제공 포트(11)로부터 분사 노즐 어셈블리(15) 내부로의 연료의 흐름을 허용한다. 우회 덕트(30)은 이 경우 방향 컨트롤 밸브(17)에 의해 폐쇄된다. 제2 전환 위치에서, 방향 컨트롤 밸브(17)는 연료 저장조(2)로부터 우회 덕트(30) 내로 연료의 흐름을 허용한다. 분사 노즐 어셈블리(15)를 통과하는 연료 공급 덕트(13)은 방향 컨트롤 밸브(17)에 의해 이 경우 폐쇄된다. 따라서, 방향 컨트롤 밸브(17)는 압력 모니터링 장치(19)의 출력 신호(191)에 응답하여 제1 전환 위치로부터 제2 전환 위치로 그에 따라 전환된다. 예컨대, 압력 모니터링 장치(19)는, 연료 공급 덕트(13), 특히 공급 라인(4) 내의 압력을 모니터링하고, 압력이 설정된 압력값에 도달할 때 또는 그 밑으로 떨어질 때 출력 신호(들)(191, 192)를 트리거하도록 구성되고 배치되는 압력 트랜스미터 또는 압력 스위치이거나 이들을 포함한다. 예컨대, 압력 스위치 또는 압력 트랜스미터는 비동작 상태에서 그리고 안전의 경우 폐쇄된다(이 경우 출력 신호가 존재하지 않는다). 다른 유형의 측정 트랜스듀서가 또한, 사용될 수 있다.
즉, 연료 공급 덕트(13) 내의 공급 압력을 모니터링하는 압력 모니터링 장치(19)가 제공된다. 이 공급 압력은 예컨대, 8 내지 9 bar(g)의 값으로 설정되거나 모니터링된다. 압력이 설정된 값 밑으로 떨어질 때, 즉각적인 경우 흐름의 방향에서 감압기(18)의 하류에 배치되는 방향 컨트롤 밸브(17)가 자동으로 전환되고, 따라서 분사 노즐 어셈블리(15)가 우회된다. 따라서, 방향 컨트롤 밸브(17)는 압력 모니터링 장치(19)에 연결된 활성 장치로 기능하고, 압력 모니터링 장치(19)의 출력 신호(191)에 응답하여, 연료 전지 장치(3)로의 연료의 공급을 위해 분사 노즐 어셈블리(15)를 우회시키기 위해 우회 덕트(30)을 활성화시킨다.
따라서, 연료 전지 시스템(1)은 분사 노즐 어셈블리(15)에 의해 충전된 연료 저장조(2)의 경우에 에너지를 절약하고 효율적인 방식으로 동작될 수 있다. 하지만, 전력이 대략 8 내지 9 bar(g)의 요구되는 구동 압력 아래로 감소하는 저장 압력의 추가 과정에서 감소시킬 필요가 없게 하기 위해서는, 연료 펌프(16)가 추가로 제공되며, 이는 연료 순환 덕트(14)에 연결되고, 연료 순환 덕트(14)과 연료 공급 덕트(12) 사이에서 분사 노즐 어셈블리(15)에 평행으로 연결된다. 액티브 동작(펌핑 동작)에서, 연료 펌프(16)는 연료 순환 덕트(14)으로부터 소비되지 않은 연료(42)를 흡입하거나 이끌어내고, 연료 전지 어셈블리(3)로의 공급을 위해 분사 노즐 어셈블리(15)의 연료 공급 덕트(13) 하류에 이를 혼합한다. 연료 전지 시스템(1)의 가능한 에너지를 절약하고 효율적인 동작을 만들어내기 위해서, 연료 펌프(16)는 오로지 일시적으로만 동작한다. 본 발명에 따르면, 이러한 관점에서 연료 펌프(16)가 압력 모니터링 장치(19)로 연결되고, 출력 신호(191)와 동일하거나 이에 대응하거나 또는 신호 기술과 관련하여 동일한 것과는 상이할 수도 있는 이것의 출력 신호(192)를 수신하도록 제공된다. 출력 신호(191)와 같은 출력 신호(192)는, 압력이 연료 공급 덕트(13) 내에서 특정 압력값 밑으로 떨어질 때 그리고, 이것이 압력 모니터링 장치(19)에 의해 감지될 때 출력된다.
연료 펌프(16)는 압력 모니터링 장치(19)의 출력 신호(192)에 응답하여 펌핑 모드로 동작되도록 구성된다. 특히, 연료 펌프(16)가 비활성화되거나, 충전된 연료 저장조(2)의 경우로 동작불능 상태인 이벤트에서는, 연료 펌프(16)가 출력 신호(192)에 응답하여 펌핑 동작을 위해 활성화된다. 즉, 압력 모니터링 장치(19)의 위치에서 연료 공급 덕트(13) 내의 압력이 설정된 값 아래로 떨어질 때, 분사 노즐 어셈블리(15)는 설명된 바와 같이 브리지되거나 우회되고, 동시에 분사 노즐 어셈블리(15)와 병렬로 연관된 연료 펌프(16)가 활성화된다. 따라서, 연료 전지 시스템(1)의 성능은 심지어 감소되는 저장소 압력과 함께 유지될 수 있고, 효율적인 동작은, 연료 펌프(16)가 오로지 필요에 따라 일시적으로 동작되기 때문에 동시에 가능하게 만들어질 수 있다.
따라서, 원칙적으로 본 발명은 이하의 동작 모드의 유익한 조합을 가능하게 만든다:  
충분한 공급 압력(즉, 연료 공급 덕트(13) 내의 압력이 모니터링되는 압력값 이상이고; 압력 모니터링 장치(19)가 압력이 특정 압력값 아래로 떨어지지 않았다고 표시함)의 경우 "활성 분사 노즐(우회 덕트는 비활성) 및 비활성 연료 펌프" 및
불충분한 공급 압력(즉, 연료 공급 덕트(13) 내의 압력이 따라서 모니터링되는 압력값 이하이고; 압력 모니터링 장치(19)가 압력이 특정 압력값 아래로 떨어졌다고 표시함)의 경우 "활성 우회 덕트(분사 노즐은 비활성) 및 활성 연료 펌프".
연료 펌프(16)가 활성 상태에서 분사 노즐 어셈블리(15)를 가로질러 거꾸로 수소를 순환시키는 것을 방지하기 위해, 이를 방지하는 분사 노즐의 흡입 측의 상류에 확인 또는 비-회귀 장치(32)가 제공된다. 확인 장치(32)는 분사 노즐 어셈블리(15)의 흡입 측의 상류에 연료 순환 덕트(14) 내에 배치되고, 연료 펌프(16)가 펌핑 동작 중일 때 연료 순환 덕트(14) 내로 분사 노즐 어셈블리(15)를 가로지르는 연료의 역류를 방지하도록 구성된다. 예컨대, 확인 장치(32)는 비-회귀 밸브 또는 확인 밸브를 포함한다.
도 2는 본 발명에 따른 연료 저장조를 포함하는 연료 전지 시스템의 추가 실시예와, 본 발명에 따른 연료 공급 장치 및 그에 의해 공급되는 연료 전지 어셈블리의 추가 실시예를 도시한다. 도 2에 따른 실시예는 도 1에 따른 실시예와 대부분 유사하며, 그에 따라 동일한 참조 번호가 사용되었으므로, 이러한 관점에서 연료 전지 시스템(1)과 연료 공급 장치(10)의 구조와 동작은 다시 설명되지 않을 것이다. 이와 관련하여, 도 1에 대응하는 설명이 참조된다. 그렇지 않으면, 본 실시예는 도 1의 실시예와 관련하여 전술된 것과 동일한 동작 및 이점을 허용한다.
도 1의 실시예와는 대조적으로, 도 2의 실시예는 우회 덕트(30), 특히 2/2-방향 밸브에 제공된 밸브(31)를 갖는다. 이는 도 1의 3/2-방향 밸브(17) 대신에 도 2에서 제공된다. 제1 전환 위치에서, 밸브(31)는 우회 덕트(30)에서 연료의 흐름을 방지하고, 제2 전환 위치에서 밸브(31)는 우회 덕트(30)에서 연료의 흐름을 허용한다. 밸브(31)는 압력 모니터링 장치(19)의 출력 신호(191)를 수신하고, 압력 모니터링 장치(19)의 출력 신호(191)에 응답하여 제1 전환 위치로부터 제2 전환 위치로 전환하도록 구성된다.
따라서, 도 2의 실시예에 따르면, 연료 공급 덕트(13) 내의 공급 압력을 모니터링하는 압력 모니터링 장치(19)가 또한, 제공된다. 이 압력은 예컨대, 8 내지 9 bar(g)의 값으로 조정되거나 설정된다. 압력이 설정값 아래로 떨어지면, 우회 덕트(30)의 밸브(31)는 자동적으로 전환되어 이를 통과하는 흐름을 허용하고, 따라서, 분사 노즐 어셈블리(15)를 우회한다(개방된 우회 덕트(30)은 분사 노즐보다 더 낮은 흐름 저항을 나타낸다). 따라서, 밸브(31)는 압력 모니터링 장치(19)에 연결된 활성화 장치로 기능하고, 압력 모니터링 장치(19)의 출력 신호(191)에 응답하여, 연료 전지 어셈블리(3)로 연료를 공급하기 위해 분사 노즐 어셈블리(15)를 우회하기 위해서 우회 통로(30)를 활성화시킨다. 연료 펌프(16)가 제공될 때, 도 1을 참조하여 이미 설명된 바와 같이 출력 신호(192)를 통해 동일한 방식으로 구동된다.

Claims (12)

  1. 연료 전지 시스템(1)을 위한 연료 공급 장치(10)로서,
    - 연료(40)를 저장하기 위해 연료 저장조(2)로의 연결을 위한 연료 제공 포트(11) 및 전기 에너지를 생성하기 위해 연료 전지 어셈블리(3)로의 연결을 위한 연료 공급 포트(12),
    - 연료 제공 포트(11)와 연료 공급 포트(12) 사이에 정렬되고, 연료 저장조(2)로부터 연료 전지 어셈블리(3)로의 연료의 공급을 위한 연료 공급 덕트(13),
    - 연료 전지 어셈블리(3)로부터 연료 공급 덕트(13)로 소비되지 않은 연료(42)를 돌려보내기 위한, 연료 공급 덕트(13)에 연결된 연료 순환 덕트(14),
    - 음의 유압을 사용하여 연료 순환 덕트(14)로부터 소비되지 않은 연료(42)를 흡입하고, 연료 전지 어셈블리(3)로의 공급을 위해 연료를 연료 공급 덕트(13) 내에서 혼합시키도록 구성되며, 연료 공급 덕트(13)에 배치된 패시브 분사 노즐 어셈블리(15),
    - 연료 공급 덕트(13)에서 분사 노즐 어셈블리(15)를 우회시키기 위해 분사 노즐 어셈블리(15)와 평행으로 연료 공급 덕트(13)에 연결된 우회 덕트(30),
    - 연료 제공 포트(11)와 분사 노즐 어셈블리(15) 사이에서 연료 공급 덕트(13) 내에 배치되고, 연료 공급 덕트(13) 내의 압력을 모니터링하고 압력이 특정 압력값 밑으로 떨어질 때 적어도 하나의 출력 신호(191, 192)를 출력하도록 구성되는 압력 모니터링 장치(19),
    - 압력 모니터링 장치(19)에 연결되고, 연료 전지 어셈블리(3)로의 연료의 공급을 위해 분사 노즐 어셈블리(15)를 우회시키기 위해서 압력 모니터링 장치(19)의 출력 신호(191)에 응답하여, 우회 덕트(30)를 활성화하도록 구성되는 활성화 장치(17, 31), 및
    - 연료 순환 덕트(14)에 연결되고, 연료 순환 덕트(14)로부터 소비되지 않은 연료(42)를 흡입하고, 연료 전지 어셈블리(3)로의 공급을 위해 연료를 연료 공급 덕트(13) 내에서 혼합하기 위해 연료 순환 덕트(14)와 연료 공급 포트(12) 사이에서 분사 노즐 어셈블리(15)에 평행하게 연결되는 연료 펌프(16)를 포함하고,
    - 상기 연료 펌프(16)는 압력 모니터링 장치(19)에 연결되고, 압력 모니터링 장치(19)의 적어도 하나의 출력 신호(192)에 응답하여 펌핑 모드에서 동작하도록 구성되는 것인 연료 공급 장치(10).
  2. 제 1 항에 있어서,
    상기 연료 펌프(16)는 압력 모니터링 장치(19)의 적어도 하나의 출력 신호(192)에 응답하여 펌핑 동작을 위해 활성화되는 것인 연료 공급 장치(10).
  3. 제 1 항에 있어서,
    연료 펌프(16)는, 압력 모니터링 장치(19)가 압력이 특정 압력값 아래로 떨어지지 않았다고 나타낼 때 비활성 상태로 전환되는 연료 공급 장치(10).
  4. 제 1 항에 있어서,
    분사 노즐 어셈블리(15)의 흡입 측의 상류에서 연료 순환 덕트(14) 내에 배치되고, 연료 펌프(16)가 펌핑 모드에 있을 때 분사 노즐 어셈블리(15)를 가로질러 연료 순환 덕트(14) 내로 향하는 연료의 역류를 방지하도록 구성되는 확인 장치(32)를 더 포함하는 연료 공급 장치(10).
  5. 제 4 항에 있어서,
    확인 장치(32)는 확인 밸브 또는 비-회귀 밸브를 포함하는 연료 공급 장치(10).
  6. 제 1 항에 있어서,
    - 분사 노즐 어셈블리(15)의 상류에서 연료 공급 덕트(13) 내에 배치되고, 제1 전환 위치에서, 연료 저장조(2)로부터 분사 노즐 어셈블리(15) 안으로의 연료의 흐름을 허용하고, 제2 전환 위치에서, 연료 저장조(2)로부터 우회 덕트(30) 안으로의 연료의 흐름을 허용하는 방향 컨트롤 밸브(17)를 포함하고,
    - 상기 방향 컨트롤 밸브(17)는 압력 모니터링 장치(19)의 출력 신호(191)에 응답하여 제1 전환 위치로부터 제2 전환 위치로 전환하도록 구성되는 연료 공급 장치(10).
  7. 제 1 항에 있어서,
    - 우회 덕트(30) 내에 배치되고, 제1 전환 위치에서, 우회 덕트(3) 내의 연료의 흐름을 방지하고, 제2 전환 위치에서, 우회 덕트(30) 내의 연료의 흐름을 허용하는 밸브(31)를 포함하고,
    - 상기 밸브(31)는 압력 모니터링 장치(19)의 출력 신호(191)에 응답하여 제1 전환 위치로부터 제2 전환 위치로 전환하도록 구성되는 연료 공급 장치(10).
  8. 제 1 항에 있어서,
    압력 모니터링 장치(19)는, 연료 공급 덕트(13) 내의 압력을 모니터링하고 적어도 하나의 출력 신호(191, 192)를 트리거하도록 구성되는, 압력 스위치 또는 압력 트랜스미터를 포함하는 연료 공급 장치(10).
  9. 제 1 항에 있어서,
    압력 모니터링 장치(19)는, 압력이 8과 9 bar 사이의 범위 내의 압력값 아래로 떨어질 때 적어도 하나의 출력 신호(191, 192)를 출력하도록 구성되는 연료 공급 장치(10).
  10. 제 1 항에 있어서,
    압력 모니터링 장치(19)는, 목표 설정에 따라 연료 공급 포트(12)에서 예압(pre-pressure)을 설정하도록 구성되는 감압기(18)의 상류에 정렬되는 연료 공급 장치(10).
  11. 제 10 항에 있어서,
    감압기(18)는 비례 감압기를 포함하는 연료 공급 장치(10).
  12. 제 1 항 내지 제 11 항 중 어느 한 항에 따른 연료 공급 장치(10)와, 연료 공급 장치의 연료 공급 포트(12)에 연결되고, 전기 에너지를 생성하기 위한 연료 전지 어셈블리(3)를 포함하는 연료 전지 시스템(1).
KR1020197015148A 2016-12-21 2017-12-14 연료 전지 시스템을 위한 연료 공급 장치 및 연료 전지 시스템 KR102312776B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016125165.8A DE102016125165A1 (de) 2016-12-21 2016-12-21 Brennstoffzuführanordnung für ein Brennstoffzellensystem und Brennstoffzellensystem
DE102016125165.8 2016-12-21
PCT/EP2017/082905 WO2018114623A1 (de) 2016-12-21 2017-12-14 Brennstoffzuführanordnung für ein brennstoffzellensystem und brennstoffzellensystem

Publications (2)

Publication Number Publication Date
KR20190096338A KR20190096338A (ko) 2019-08-19
KR102312776B1 true KR102312776B1 (ko) 2021-10-14

Family

ID=60915492

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197015148A KR102312776B1 (ko) 2016-12-21 2017-12-14 연료 전지 시스템을 위한 연료 공급 장치 및 연료 전지 시스템

Country Status (9)

Country Link
US (1) US20190348696A1 (ko)
EP (1) EP3560016B1 (ko)
JP (1) JP6912573B2 (ko)
KR (1) KR102312776B1 (ko)
CN (1) CN110462904B (ko)
CA (1) CA3047642A1 (ko)
DE (1) DE102016125165A1 (ko)
ES (1) ES2884037T3 (ko)
WO (1) WO2018114623A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019214654A1 (de) * 2019-09-25 2021-03-25 Robert Bosch Gmbh Fördereinrichtung für ein Brennstoffzellen-System zur Förderung und/oder Rezirkulation eines gasförmigen Mediums
KR20210077049A (ko) 2019-12-16 2021-06-25 현대자동차주식회사 이젝터 노즐과 이를 포함한 이젝터
US11302941B2 (en) * 2020-01-14 2022-04-12 GM Global Technology Operations LLC Automated mobile compressed hydrogen fuel source management for mobile power generation applications
KR102536133B1 (ko) * 2020-10-15 2023-05-30 한국기계연구원 수소의 분리 및 저장이 효율적으로 가능한 양방향 수전해 시스템
KR102543442B1 (ko) * 2020-10-15 2023-06-19 한국기계연구원 스팀을 이용하여 시스템의 안정적인 운전을 위한 양방향수전해 시스템
KR102500283B1 (ko) * 2020-10-15 2023-02-20 한국기계연구원 연료전지로부터 생성된 수소를 이용하여 부압의 발생을 방지하기 위한 양방향수전해 시스템
FR3118322B1 (fr) * 2020-12-21 2023-07-14 Naval Group Dispositif de purge de compartiment anodique d'une pile a combustible

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014154385A (ja) * 2013-02-08 2014-08-25 Aisan Ind Co Ltd 燃料電池システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3620437B2 (ja) * 2000-11-09 2005-02-16 日産自動車株式会社 燃料電池システム
JP3601493B2 (ja) * 2001-09-25 2004-12-15 日産自動車株式会社 燃料電池システム及びエゼクタ循環装置
JP3588776B2 (ja) 2001-11-09 2004-11-17 本田技研工業株式会社 燃料循環式燃料電池システム
JP3671898B2 (ja) * 2001-11-16 2005-07-13 日産自動車株式会社 燃料電池システム
JP3951885B2 (ja) * 2002-10-22 2007-08-01 日産自動車株式会社 燃料電池システム
JP4334851B2 (ja) * 2002-10-29 2009-09-30 本田技研工業株式会社 燃料電池システム
DE102005009674A1 (de) * 2005-02-28 2006-08-31 Robert Bosch Gmbh Brennstoffzellenanlage mit einem rezirkulierenden Betriebsstoff
US8092943B2 (en) * 2006-04-19 2012-01-10 Daimler Ag Fuel cell system with improved fuel recirculation
DE102006037799B4 (de) 2006-08-12 2019-01-03 Daimler Ag Vorrichtung zur Rezirkulation von Anodenabgasen einer Brennstoffzelle
WO2012036143A1 (ja) * 2010-09-17 2012-03-22 日産自動車株式会社 燃料電池システム
CN103329325B (zh) * 2010-11-22 2015-11-25 日产自动车株式会社 燃料电池系统
JP2013065567A (ja) * 2012-11-26 2013-04-11 Honda Motor Co Ltd 燃料電池の運転方法
EP3050148B1 (en) * 2013-09-23 2017-08-02 Convion Oy A recirculation arrangement and method for a high temperature cell system
DE102014212835A1 (de) * 2014-07-02 2016-01-07 Volkswagen Aktiengesellschaft Brennstoffzellenvorrichtung mit Wasser übertragendem Anodengaspfad und Verfahren zum Betreiben einer Brennstoffzelle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014154385A (ja) * 2013-02-08 2014-08-25 Aisan Ind Co Ltd 燃料電池システム

Also Published As

Publication number Publication date
EP3560016A1 (de) 2019-10-30
DE102016125165A1 (de) 2018-06-21
JP2020514955A (ja) 2020-05-21
CN110462904B (zh) 2022-08-19
KR20190096338A (ko) 2019-08-19
CA3047642A1 (en) 2018-06-28
JP6912573B2 (ja) 2021-08-04
EP3560016B1 (de) 2021-06-30
US20190348696A1 (en) 2019-11-14
CN110462904A (zh) 2019-11-15
ES2884037T3 (es) 2021-12-10
WO2018114623A1 (de) 2018-06-28

Similar Documents

Publication Publication Date Title
KR102312776B1 (ko) 연료 전지 시스템을 위한 연료 공급 장치 및 연료 전지 시스템
JP2011517020A (ja) 燃料電池装置及び燃料電池装置の作動方法
US8865369B2 (en) Apparatus for recirculation of anode exhaust gases of a fuel cell
WO2007064317A1 (en) Fuel cell power plant diverting air in response to low demand
JP2006310000A (ja) 燃料電池システム
CN103079988A (zh) 产业用车辆
JP2008196401A (ja) エジェクタを備えたシステム
JP2013239250A (ja) 燃料電池システム及びその運転方法
US10236524B2 (en) Method for purging a fuel cell and device for carrying out said method
KR102226304B1 (ko) 연료전지 차량용 이젝터
JP2018018682A (ja) 燃料電池システムの制御方法
JP2002352825A (ja) 燃料電池システム
US20030217773A1 (en) Hydrogen supply system and control method therefor
JP2006100101A (ja) 燃料電池システムおよびその制御方法並びに移動体
JP2014154386A (ja) 燃料電池システム
US20140356650A1 (en) Fuel cell system
JP2009199760A (ja) 燃料電池システム
JP2007085251A (ja) エンジンの燃料供給装置
CN218447992U (zh) 燃料电池的供气系统和具有其的燃料电池
JP7476559B2 (ja) 燃料電池システム
CN218918964U (zh) 燃料电池系统
CN114709450B (zh) 燃料电池的空气系统和车辆
CN117981129A (zh) 用于在燃料电池系统的阳极回路中再循环阳极气体的装置和方法、燃料电池系统
JP4603337B2 (ja) 燃料電池システム
KR20240055079A (ko) 연료 전지 시스템의 애노드 회로 내의 애노드 기체를 재순환하기 위한 장치 및 방법, 연료 전지 시스템

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant