KR102312242B1 - 컨볼루션 뉴럴 네트워크 기반 결함 검사를 위한 데이터 증강 - Google Patents
컨볼루션 뉴럴 네트워크 기반 결함 검사를 위한 데이터 증강 Download PDFInfo
- Publication number
- KR102312242B1 KR102312242B1 KR1020197019610A KR20197019610A KR102312242B1 KR 102312242 B1 KR102312242 B1 KR 102312242B1 KR 1020197019610 A KR1020197019610 A KR 1020197019610A KR 20197019610 A KR20197019610 A KR 20197019610A KR 102312242 B1 KR102312242 B1 KR 102312242B1
- Authority
- KR
- South Korea
- Prior art keywords
- images
- image
- wafer
- processor
- cnn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
- G06F18/24143—Distances to neighbourhood prototypes, e.g. restricted Coulomb energy networks [RCEN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/28—Determining representative reference patterns, e.g. by averaging or distorting; Generating dictionaries
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/096—Transfer learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/0008—Industrial image inspection checking presence/absence
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
- H01L22/24—Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/30—Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20021—Dividing image into blocks, subimages or windows
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/06—Recognition of objects for industrial automation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Quality & Reliability (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Multimedia (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Analysis (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201662430925P | 2016-12-07 | 2016-12-07 | |
| US62/430,925 | 2016-12-07 | ||
| US15/720,272 | 2017-09-29 | ||
| US15/720,272 US10402688B2 (en) | 2016-12-07 | 2017-09-29 | Data augmentation for convolutional neural network-based defect inspection |
| PCT/US2017/064947 WO2018106827A1 (en) | 2016-12-07 | 2017-12-06 | Data augmentation for convolutional neural network-based defect inspection |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20190085159A KR20190085159A (ko) | 2019-07-17 |
| KR102312242B1 true KR102312242B1 (ko) | 2021-10-12 |
Family
ID=62243192
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020197019610A Active KR102312242B1 (ko) | 2016-12-07 | 2017-12-06 | 컨볼루션 뉴럴 네트워크 기반 결함 검사를 위한 데이터 증강 |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US10402688B2 (enExample) |
| JP (1) | JP6845327B2 (enExample) |
| KR (1) | KR102312242B1 (enExample) |
| CN (1) | CN110168710B (enExample) |
| IL (1) | IL267040B (enExample) |
| TW (1) | TWI731198B (enExample) |
| WO (1) | WO2018106827A1 (enExample) |
Families Citing this family (69)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2017191501A (ja) * | 2016-04-14 | 2017-10-19 | キヤノン株式会社 | 情報処理装置、情報処理方法及びプログラム |
| US11868804B1 (en) | 2019-11-18 | 2024-01-09 | Groq, Inc. | Processor instruction dispatch configuration |
| US11360934B1 (en) | 2017-09-15 | 2022-06-14 | Groq, Inc. | Tensor streaming processor architecture |
| US11243880B1 (en) | 2017-09-15 | 2022-02-08 | Groq, Inc. | Processor architecture |
| US11170307B1 (en) | 2017-09-21 | 2021-11-09 | Groq, Inc. | Predictive model compiler for generating a statically scheduled binary with known resource constraints |
| EP3489892B1 (en) * | 2017-11-24 | 2022-01-05 | Ficosa Adas, S.L.U. | Determining clean or dirty captured images |
| KR20190084167A (ko) * | 2017-12-21 | 2019-07-16 | 주식회사 고영테크놀러지 | 인쇄 회로 기판 검사 장치, 스크린 프린터의 결함 유형 결정 방법 및 컴퓨터 판독 가능한 기록 매체 |
| WO2019159324A1 (ja) * | 2018-02-16 | 2019-08-22 | パナソニックIpマネジメント株式会社 | 処理方法およびそれを利用した処理装置 |
| US11151711B2 (en) * | 2018-06-06 | 2021-10-19 | Kla-Tencor Corporation | Cross layer common-unique analysis for nuisance filtering |
| CN109001211A (zh) * | 2018-06-08 | 2018-12-14 | 苏州赛克安信息技术有限公司 | 基于卷积神经网络的长输管道焊缝检测系统及方法 |
| KR102745239B1 (ko) | 2018-09-06 | 2024-12-20 | 삼성전자주식회사 | 컨볼루셔널 뉴럴 네트워크를 이용하는 컴퓨팅 장치 및 그 동작 방법 |
| US12340300B1 (en) | 2018-09-14 | 2025-06-24 | Groq, Inc. | Streaming processor architecture |
| US11455370B2 (en) * | 2018-11-19 | 2022-09-27 | Groq, Inc. | Flattened input stream generation for convolution with expanded kernel |
| US11094053B2 (en) * | 2018-10-08 | 2021-08-17 | Kla Corporation | Deep learning based adaptive regions of interest for critical dimension measurements of semiconductor substrates |
| JP7221644B2 (ja) * | 2018-10-18 | 2023-02-14 | 株式会社日立製作所 | 機器故障診断支援システムおよび機器故障診断支援方法 |
| CN109585325B (zh) * | 2018-12-05 | 2021-02-02 | 上海华力集成电路制造有限公司 | 检测晶边洗边边界的方法 |
| US11550309B2 (en) * | 2019-01-08 | 2023-01-10 | Kla Corporation | Unsupervised defect segmentation |
| CN109919907A (zh) * | 2019-01-23 | 2019-06-21 | 华灿光电(浙江)有限公司 | 发光二极管外延片缺陷检测的方法和装置 |
| US10474543B1 (en) * | 2019-01-28 | 2019-11-12 | Stradivision, INC. | Method and device for economizing computing resources to be used during a process of verification of convolutional parameters using test pattern to enhance fault tolerance and fluctuation robustness in extreme situations |
| TWI722383B (zh) * | 2019-02-01 | 2021-03-21 | 國立中正大學 | 應用於深度學習之預特徵萃取方法 |
| US20220138983A1 (en) * | 2019-04-02 | 2022-05-05 | Semiconductor Energy Laboratory Co., Ltd. | Inspection device and inspection method |
| DE102019207575A1 (de) * | 2019-05-23 | 2020-11-26 | Volkswagen Aktiengesellschaft | Verfahren zum Beurteilen einer funktionsspezifischen Robustheit eines Neuronalen Netzes |
| CN110197259A (zh) * | 2019-05-30 | 2019-09-03 | 浙江大学 | 基于小批量数据集与深度学习算法的晶圆缺陷检测方法 |
| US11487998B2 (en) * | 2019-06-17 | 2022-11-01 | Qualcomm Incorporated | Depth-first convolution in deep neural networks |
| TWI738009B (zh) * | 2019-06-20 | 2021-09-01 | 和碩聯合科技股份有限公司 | 物件偵測系統及物件偵測方法 |
| WO2021040779A1 (en) * | 2019-08-23 | 2021-03-04 | Landmark Graphics Corporation | Anomaly detection using hybrid autoencoder and gaussian process regression |
| JP7165633B2 (ja) * | 2019-08-27 | 2022-11-04 | 株式会社日立ハイテク | 荷電粒子ビーム制御装置 |
| US11113827B2 (en) * | 2019-09-23 | 2021-09-07 | Kla Corporation | Pattern-to-design alignment for one-dimensional unique structures |
| JP7344754B2 (ja) * | 2019-10-23 | 2023-09-14 | 株式会社日本製鋼所 | 学習モデル生成方法、コンピュータプログラム、設定値決定装置、成形機及び成形装置システム |
| US11068752B2 (en) | 2019-10-31 | 2021-07-20 | General Electric Company | Inspection systems and methods including image classification module |
| JP2021077756A (ja) | 2019-11-07 | 2021-05-20 | キオクシア株式会社 | 半導体プロセス解析装置および半導体プロセス解析プログラム |
| KR102850134B1 (ko) * | 2019-11-26 | 2025-08-26 | 삼성전자주식회사 | 생성적 적대망들에 기반하여 웨이퍼 맵을 생성하는 프로그램 코드를 저장하는 비일시적 컴퓨터 판독가능 매체 및 컴퓨팅 장치 |
| CN111177970B (zh) * | 2019-12-10 | 2021-11-19 | 浙江大学 | 基于高斯过程和卷积神经网络的多阶段半导体过程虚拟计量方法 |
| WO2021120179A1 (zh) | 2019-12-20 | 2021-06-24 | 京东方科技集团股份有限公司 | 产品制造消息处理方法、设备和计算机存储介质 |
| US12014529B2 (en) | 2020-01-21 | 2024-06-18 | Samsung Electronics Co., Ltd. | Image processing method and apparatus using neural network |
| US11961219B2 (en) | 2020-02-27 | 2024-04-16 | KLA Corp. | Generative adversarial networks (GANs) for simulating specimen images |
| JP7262409B2 (ja) | 2020-03-06 | 2023-04-21 | 株式会社日立ハイテク | 試料観察システム及び画像処理方法 |
| WO2021231888A1 (en) | 2020-05-14 | 2021-11-18 | Cignal Llc | Creating imagery for al model training in security screening |
| WO2021250884A1 (ja) * | 2020-06-12 | 2021-12-16 | 株式会社日立ハイテク | 欠陥検査のための方法、システム、及びコンピューター可読媒体 |
| US20230259120A1 (en) * | 2020-07-17 | 2023-08-17 | Honeywell International Inc. | Intelligent workflow engine for manufacturing process |
| CN114104328B (zh) * | 2020-08-31 | 2023-10-17 | 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) | 基于深度迁移学习的飞行器状态监测方法 |
| US11798828B2 (en) * | 2020-09-04 | 2023-10-24 | Kla Corporation | Binning-enhanced defect detection method for three-dimensional wafer structures |
| CN112202736B (zh) * | 2020-09-15 | 2021-07-06 | 浙江大学 | 基于统计学习和深度学习的通信网络异常分类方法 |
| US20220092388A1 (en) * | 2020-09-18 | 2022-03-24 | The Boeing Company | Machine learning network for screening quantum devices |
| US12443840B2 (en) * | 2020-10-09 | 2025-10-14 | Kla Corporation | Dynamic control of machine learning based measurement recipe optimization |
| US11822345B2 (en) * | 2020-10-23 | 2023-11-21 | Xerox Corporation | Controlling an unmanned aerial vehicle by re-training a sub-optimal controller |
| US11982999B2 (en) * | 2020-10-30 | 2024-05-14 | Beijing Zhongxiangying Technology Co., Ltd. | Defect detection task processing method, device, apparatus and storage medium |
| US11639906B2 (en) * | 2020-11-21 | 2023-05-02 | Samsung Electronics Co., Ltd. | Method and system for virtually executing an operation of an energy dispersive X-ray spectrometry (EDS) system in real-time production line |
| JP7101235B2 (ja) * | 2020-12-17 | 2022-07-14 | 株式会社クボタ | 検査装置及び検査方法 |
| JP7101236B2 (ja) * | 2020-12-17 | 2022-07-14 | 株式会社クボタ | 検査装置及び検査方法 |
| JP6961846B1 (ja) | 2021-01-08 | 2021-11-05 | レーザーテック株式会社 | Euvマスク検査装置、euvマスク検査方法、euvマスク検査プログラム及びeuvマスク検査システム |
| WO2022169420A1 (en) * | 2021-02-05 | 2022-08-11 | Singapore University Of Technology And Design | Anomaly detection system and method for an industrial control system |
| EP4047431B1 (de) * | 2021-02-19 | 2025-11-19 | FactoryPal GmbH | Verfahren und vorrichtung zum automatisierten bestimmen einer optimierten prozesskonfiguration eines prozesses zur herstellung oder bearbeitung von produkten |
| TWI770922B (zh) | 2021-03-31 | 2022-07-11 | 財團法人工業技術研究院 | 低精度神經網路的資料特徵擴增系統及方法 |
| KR20220164099A (ko) * | 2021-06-03 | 2022-12-13 | 주식회사 솔루션에이 | 딥러닝 신경망 모델을 이용한 검사대상 패널의 결함 판정장치 |
| WO2023285538A1 (en) * | 2021-07-14 | 2023-01-19 | Basf Se | System for assessing the quality of a physical object |
| KR102404166B1 (ko) | 2021-07-20 | 2022-06-02 | 국민대학교산학협력단 | 스타일 전이를 활용한 엑스레이 영상의 유체 탐지 방법 및 장치 |
| KR102877633B1 (ko) | 2021-09-01 | 2025-10-28 | 에스케이하이닉스 주식회사 | 반도체 웨이퍼의 불량 분석 방법 및 그 시스템 |
| KR102354681B1 (ko) * | 2021-11-08 | 2022-01-24 | 주식회사 테스트웍스 | 신경망 모델 기반의 이미지 증강 방법, 서버 및 컴퓨터 프로그램 |
| US12111355B2 (en) * | 2021-11-22 | 2024-10-08 | Onto Innovation Inc. | Semiconductor substrate yield prediction based on spectra data from multiple substrate dies |
| CN114283412B (zh) * | 2021-12-22 | 2025-09-19 | 上海蒙帕信息技术有限公司 | 一种数字仪表盘的读数识别方法与系统 |
| US12332615B2 (en) * | 2022-03-31 | 2025-06-17 | Tyco Fire & Security Gmbh | Building equipment control system with automated horizon selection |
| CN116958561A (zh) * | 2022-03-31 | 2023-10-27 | 富士通株式会社 | 检测异常对象的方法、装置和存储介质 |
| CN115060251B (zh) * | 2022-04-28 | 2024-08-16 | 清华大学 | 地理电磁图像数据集的构建方法、装置和计算机设备 |
| US12482091B2 (en) * | 2022-08-10 | 2025-11-25 | Kla Corporation | Detecting defects on specimens |
| US20240126251A1 (en) * | 2022-10-13 | 2024-04-18 | Bingnan Wang | System And Method For Motor Eccentricity Level Prediction Using Topological Data Analysis |
| US20240169514A1 (en) * | 2022-11-21 | 2024-05-23 | Onto Innovation Inc. | Defect detection in manufactured articles using multi-channel images |
| CN117115178B (zh) * | 2023-08-23 | 2024-05-14 | 国网四川省电力公司电力科学研究院 | 一种基于半参数共享的电力红外巡检图像分割、检测方法 |
| WO2025188376A2 (en) * | 2023-11-03 | 2025-09-12 | Niricson, Inc. | Platform for analyzing the condition of infrastructure using automated defect and change detection |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000232138A (ja) | 1999-02-09 | 2000-08-22 | Hitachi Ltd | 半導体装置とそのマーク形成装置,その欠陥検査装置 |
| US20160109381A1 (en) | 2014-10-15 | 2016-04-21 | Sri Rama Prasanna Pavani | Multiple angle computational wafer inspection |
| US20160163035A1 (en) | 2014-12-03 | 2016-06-09 | Kla-Tencor Corporation | Automatic Defect Classification Without Sampling and Feature Selection |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4009409B2 (ja) * | 1999-10-29 | 2007-11-14 | 株式会社日立製作所 | パターン欠陥検査方法及びその装置 |
| JP4542164B2 (ja) * | 2008-03-18 | 2010-09-08 | アドバンスド・マスク・インスペクション・テクノロジー株式会社 | パターン検査装置、パターン検査方法及びプログラム |
| JP5156452B2 (ja) * | 2008-03-27 | 2013-03-06 | 東京エレクトロン株式会社 | 欠陥分類方法、プログラム、コンピュータ記憶媒体及び欠陥分類装置 |
| US8605275B2 (en) * | 2009-01-26 | 2013-12-10 | Kla-Tencor Corp. | Detecting defects on a wafer |
| JP2012145664A (ja) * | 2011-01-11 | 2012-08-02 | Sony Corp | 画像処理装置、撮像装置、画像処理方法およびプログラム。 |
| JP5460662B2 (ja) * | 2011-09-07 | 2014-04-02 | 株式会社日立ハイテクノロジーズ | 領域決定装置、観察装置または検査装置、領域決定方法および領域決定方法を用いた観察方法または検査方法 |
| US9171364B2 (en) * | 2013-06-21 | 2015-10-27 | Kla-Tencor Corp. | Wafer inspection using free-form care areas |
| US9086639B2 (en) * | 2013-09-12 | 2015-07-21 | International Business Machines Corporation | Fabrication of on-product aberration monitors with nanomachining |
| US10127652B2 (en) * | 2014-02-06 | 2018-11-13 | Kla-Tencor Corp. | Defect detection and classification based on attributes determined from a standard reference image |
| US9535010B2 (en) * | 2014-05-15 | 2017-01-03 | Kla-Tencor Corp. | Defect sampling for electron beam review based on defect attributes from optical inspection and optical review |
| SG11201610106SA (en) | 2014-06-10 | 2016-12-29 | Asml Netherlands Bv | Computational wafer inspection |
| JP6337131B2 (ja) * | 2014-09-30 | 2018-06-06 | 富士フイルム株式会社 | 赤外線撮像装置、固定パターンノイズ算出方法、及び固定パターンノイズ算出プログラム |
| US20160110859A1 (en) | 2014-10-17 | 2016-04-21 | Macronix International Co., Ltd. | Inspection method for contact by die to database |
| US9875536B2 (en) * | 2015-03-31 | 2018-01-23 | Kla-Tencor Corp. | Sub-pixel and sub-resolution localization of defects on patterned wafers |
| CN105118044B (zh) * | 2015-06-16 | 2017-11-07 | 华南理工大学 | 一种轮形铸造产品缺陷自动检测方法 |
| CN105184309B (zh) * | 2015-08-12 | 2018-11-16 | 西安电子科技大学 | 基于cnn和svm的极化sar图像分类 |
| US9830526B1 (en) * | 2016-05-26 | 2017-11-28 | Adobe Systems Incorporated | Generating image features based on robust feature-learning |
| US10223615B2 (en) * | 2016-08-23 | 2019-03-05 | Dongfang Jingyuan Electron Limited | Learning based defect classification |
-
2017
- 2017-09-29 US US15/720,272 patent/US10402688B2/en active Active
- 2017-12-06 KR KR1020197019610A patent/KR102312242B1/ko active Active
- 2017-12-06 CN CN201780082757.1A patent/CN110168710B/zh active Active
- 2017-12-06 WO PCT/US2017/064947 patent/WO2018106827A1/en not_active Ceased
- 2017-12-06 JP JP2019530496A patent/JP6845327B2/ja active Active
- 2017-12-06 TW TW106142643A patent/TWI731198B/zh active
-
2019
- 2019-06-02 IL IL267040A patent/IL267040B/en active IP Right Grant
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000232138A (ja) | 1999-02-09 | 2000-08-22 | Hitachi Ltd | 半導体装置とそのマーク形成装置,その欠陥検査装置 |
| US20160109381A1 (en) | 2014-10-15 | 2016-04-21 | Sri Rama Prasanna Pavani | Multiple angle computational wafer inspection |
| US20160163035A1 (en) | 2014-12-03 | 2016-06-09 | Kla-Tencor Corporation | Automatic Defect Classification Without Sampling and Feature Selection |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2018106827A1 (en) | 2018-06-14 |
| US10402688B2 (en) | 2019-09-03 |
| KR20190085159A (ko) | 2019-07-17 |
| IL267040A (en) | 2019-07-31 |
| JP2020501154A (ja) | 2020-01-16 |
| IL267040B (en) | 2021-03-25 |
| TWI731198B (zh) | 2021-06-21 |
| CN110168710B (zh) | 2020-11-06 |
| JP6845327B2 (ja) | 2021-03-17 |
| TW201833819A (zh) | 2018-09-16 |
| US20180157933A1 (en) | 2018-06-07 |
| CN110168710A (zh) | 2019-08-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102312242B1 (ko) | 컨볼루션 뉴럴 네트워크 기반 결함 검사를 위한 데이터 증강 | |
| CN109690749B (zh) | 用于图像融合的以卷积神经网络为基础的模式选择及缺陷分类 | |
| CN111819676B (zh) | 训练用于低分辨率图像中的缺陷检测的神经网络 | |
| US9915625B2 (en) | Optical die to database inspection | |
| US10699926B2 (en) | Identifying nuisances and defects of interest in defects detected on a wafer | |
| US9805462B2 (en) | Machine learning method and apparatus for inspecting reticles | |
| US9767548B2 (en) | Outlier detection on pattern of interest image populations | |
| KR102650301B1 (ko) | 장애물 필터링을 위한 심층 학습 네트워크 | |
| KR20230014684A (ko) | 딥 러닝 방법을 사용한 결함 사이즈 측정 | |
| TWI864254B (zh) | 檢測一半導體晶圓之方法與系統,以及非暫時性電腦可讀儲存媒體 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0105 | International application |
St.27 status event code: A-0-1-A10-A15-nap-PA0105 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
| A201 | Request for examination | ||
| A302 | Request for accelerated examination | ||
| E13-X000 | Pre-grant limitation requested |
St.27 status event code: A-2-3-E10-E13-lim-X000 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| PA0302 | Request for accelerated examination |
St.27 status event code: A-1-2-D10-D17-exm-PA0302 St.27 status event code: A-1-2-D10-D16-exm-PA0302 |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U12-oth-PR1002 Fee payment year number: 1 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 5 |
|
| U11 | Full renewal or maintenance fee paid |
Free format text: ST27 STATUS EVENT CODE: A-4-4-U10-U11-OTH-PR1001 (AS PROVIDED BY THE NATIONAL OFFICE) Year of fee payment: 5 |