KR102304205B1 - Mtc를 위한 반복된 전송의 조기 종료 - Google Patents
Mtc를 위한 반복된 전송의 조기 종료 Download PDFInfo
- Publication number
- KR102304205B1 KR102304205B1 KR1020177010882A KR20177010882A KR102304205B1 KR 102304205 B1 KR102304205 B1 KR 102304205B1 KR 1020177010882 A KR1020177010882 A KR 1020177010882A KR 20177010882 A KR20177010882 A KR 20177010882A KR 102304205 B1 KR102304205 B1 KR 102304205B1
- Authority
- KR
- South Korea
- Prior art keywords
- message
- dci
- harq
- data
- block data
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1864—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1896—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/189—Transmission or retransmission of more than one copy of a message
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0006—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
- H04L1/0007—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0027—Scheduling of signalling, e.g. occurrence thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1858—Transmission or retransmission of more than one copy of acknowledgement message
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1861—Physical mapping arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
Abstract
반복된 전송의 조기 종료를 수반한 머신-타입 통신(MTC)을 위한 시스템, 장치, 사용자 장비(UE), 진화된 노드 B(eNB), 및 방법들이 설명된다. 좁은 대역폭을 갖는 MTC 구현에서, 상당수의 재전송이 채널 품질 측정치에 기초하여 스케줄링될 수 있다. 상당수의 재전송이 남아 있는 동안 수신 디바이스에서 데이터가 성공적으로 디코딩된다면, 시스템 자원은 낭비된다. 따라서, 여기서 설명된 실시예들은, 반복된 전송의 조기 종료 메시지를 위해 다운링크 제어 메시징 또는 중간 하이브리드 자동 반복 요청(HARQ) 메시징을 이용한다.
Description
우선권 주장
본 출원은, 참조로 그 전체가 본 명세서에 포함되는, 2014년 11월 6일 출원된 발명의 명칭이 "METHODS FOR SUPPORT OF EARLY TERMINATION OF REPEATED TRANSMISSIONS FOR MTC UES IN ENHANCED COVERAGE MODE"인 미국 가출원 제62/076,198호의 우선권을 주장한다.
기술 분야
실시예들은, 무선 통신을 위한 시스템, 방법, 및 컴포넌트 디바이스에 관한 것으로, 특히 머신 타입 통신(MTC; machine type communication)에서 반복된 전송의 조기 종료의 이용에 관한 것이다.
MTC는 "사물 인터넷(Internet of Things)(IoT)"의 개념에 관련된 부상하고 있는 기술이다. 기존의 모바일 광대역 네트워크는 주로 인간 통신에 대한 성능을 최적화하도록 설계되었고 그에 따라 MTC-관련된 요건을 충족하도록 설계되거나 최적화되지 않았다.
도 1은, 특정 실시예에 따른, MTC에서 동작할 수 있는 진화된 노드 B(evolved node B)(eNB)와 사용자 장비(user equipment)(UE)를 포함하는 시스템의 블록도이다.
도 2는, 특정 실시예에 따른, MTC 통신에서 반복된 전송의 조기 종료를 수반한 시스템 동작의 양태를 나타낸다.
도 3은, 일부 예시적인 실시예에 따른, 반복된 전송의 조기 종료를 위한 방법을 설명한다.
도 4는, 일부 예시적인 실시예에 따른, 반복된 전송의 조기 종료를 위한 방법을 설명한다.
도 5는, 특정 실시예에 따른, MTC 통신에서 반복된 전송의 조기 종료를 수반한 시스템 동작의 양태를 나타낸다.
도 6a는, 특정 실시예에 따른, 반복된 전송의 조기 종료를 수반한 시스템에서의 중간 하이브리드 자동 반복 요청(HARQ) 확인응답(HARQ-ACK) 동작의 양태를 나타낸다.
도 6b는, 특정 실시예에 따른, 반복된 전송의 조기 종료를 수반한 시스템에서의 중간 HARQ-ACK 동작의 양태를 나타낸다.
도 7은, 일부 예시적인 실시예에 따른, 반복된 전송의 조기 종료를 위한 방법을 설명한다.
도 8은, 일부 예시적인 실시예에 따른, 반복된 전송의 조기 종료를 위한 방법을 설명한다.
도 9는, 특정 실시예에 따른, 반복된 전송의 조기 종료를 수반한 시스템에서의 중간 HARQ-ACK 동작의 양태를 나타낸다.
도 10은 일부 예시적 실시예에 따른 컴퓨팅 머신의 양태를 나타낸다.
도 11은 일부 예시적 실시예에 따른 UE의 양태를 나타낸다.
도 12는 여기서 설명된 다양한 실시예와 연관하여 이용될 수 있는 예시적인 컴퓨터 시스템 머신을 나타내는 블록도이다.
도 2는, 특정 실시예에 따른, MTC 통신에서 반복된 전송의 조기 종료를 수반한 시스템 동작의 양태를 나타낸다.
도 3은, 일부 예시적인 실시예에 따른, 반복된 전송의 조기 종료를 위한 방법을 설명한다.
도 4는, 일부 예시적인 실시예에 따른, 반복된 전송의 조기 종료를 위한 방법을 설명한다.
도 5는, 특정 실시예에 따른, MTC 통신에서 반복된 전송의 조기 종료를 수반한 시스템 동작의 양태를 나타낸다.
도 6a는, 특정 실시예에 따른, 반복된 전송의 조기 종료를 수반한 시스템에서의 중간 하이브리드 자동 반복 요청(HARQ) 확인응답(HARQ-ACK) 동작의 양태를 나타낸다.
도 6b는, 특정 실시예에 따른, 반복된 전송의 조기 종료를 수반한 시스템에서의 중간 HARQ-ACK 동작의 양태를 나타낸다.
도 7은, 일부 예시적인 실시예에 따른, 반복된 전송의 조기 종료를 위한 방법을 설명한다.
도 8은, 일부 예시적인 실시예에 따른, 반복된 전송의 조기 종료를 위한 방법을 설명한다.
도 9는, 특정 실시예에 따른, 반복된 전송의 조기 종료를 수반한 시스템에서의 중간 HARQ-ACK 동작의 양태를 나타낸다.
도 10은 일부 예시적 실시예에 따른 컴퓨팅 머신의 양태를 나타낸다.
도 11은 일부 예시적 실시예에 따른 UE의 양태를 나타낸다.
도 12는 여기서 설명된 다양한 실시예와 연관하여 이용될 수 있는 예시적인 컴퓨터 시스템 머신을 나타내는 블록도이다.
실시예들은, 무선 통신을 향상시키기 위한 시스템, 디바이스, 장치, 어셈블리, 방법, 및 컴퓨터 판독가능한 매체에 관한 것으로, 특히 머신 타입 통신(MTC) 또는 확장된 머신 타입 통신에서 반복된 전송의 조기 종료의 이용에 관한 것이다. 이하의 설명과 도면들은 특정한 실시예들을 예시하여 본 기술분야의 통상의 기술자가 이들을 실시할 수 있게 한다. 다른 실시예들은, 구조적, 논리적, 전기적, 프로세스 및 기타의 변경을 포함할 수 있다. 일부 실시예들의 부분들 및 피쳐(feature)들은, 다른 실시예들의 부분들 및 피쳐들에 포함되거나 이들로 대체될 수 있으며, 설명된 요소들의 모든 이용가능한 균등물을 포괄하도록 의도된다.
도 1은 일부 실시예들에 따른 무선 네트워크(100)를 나타낸다. 무선 네트워크(100)는, 에어 인터페이스(air interface, 190)를 통해 접속된 UE(101)와 eNB(150)를 포함한다.
여기서 설명된 일부 실시예들에서, UE(101) 또는 UE(101)의 컴포넌트는, 다운링크 제어 정보(DCI; Downlink Control Information) 통신을 통해 수신된 표시를 이용하여 업링크 재전송의 조기 종료를 지원하거나 지원하도록 구성된다.
여기서 설명된 일부 실시예들에서, eNB(150) 또는 eNB(150)의 컴포넌트는 DCI 통신들을 이용하여 업링크 재전송의 조기 종료를 수행하거나 이를 위해 구성된다.
여기서 설명된 일부 실시예에서, UE(101) 또는 UE(101)의 컴포넌트는 중간 하이브리드 자동 반복 요청(HARQ) 확인응답(HARQ-ACK) 통신을 이용하여 다운링크 재전송의 조기 종료를 수행하거나 이를 위해 구성된다.
여기서 설명된 일부 실시예들에서, eNB(150) 또는 eNB(150)의 컴포넌트는 중간 HARQ-ACK 통신을 이용하여 다운링크 재전송의 조기 종료를 수행하거나 이를 위해 구성된다.
여기서 설명된 일부 실시예들에서, UE(101) 또는 UE(101)의 컴포넌트는 중간 하이브리드 자동 반복 요청(HARQ) 확인응답(HARQ-ACK) 통신을 이용하여 업링크 재전송의 조기 종료를 수행하거나 이를 위해 구성되고, 여기서, HARQ-ACK 통신은 DCI 통신을 이용하여 전달될 수 있다.
여기서 설명된 일부 실시예들에서, eNB(150) 또는 eNB(150)의 컴포넌트는 중간 HARQ-ACK 통신을 이용하여 업링크 재전송의 조기 종료를 수행하거나 이를 위해 구성되고, 여기서, HARQ-ACK 통신은 DCI 통신을 이용하여 전달될 수 있다.
이러한 실시예들 및 추가 실시예들의 추가적인 상세사항이 이하에서 설명된다.
시스템 내의 UE(101)와 기타 임의의 UE는, 예를 들어, 랩탑 컴퓨터, 스마트폰, 태블릿 컴퓨터, 프린터, 스마트 계측기 또는 건강 모니터링을 위한 전문화된 디바이스 등의 머신-타입 디바이스, 원격 보안 감시, 지능형 수송 시스템, 또는 사용자 인터페이스를 갖추거나 갖추지 않은 기타 임의의 무선 디바이스일 수 있다. eNB(150)는, eNB(150)에 의해 제공되는 eNB 서비스 영역에서 에어 인터페이스(190)를 통해 더 넓은 네트워크(도시되지 않음)로의 네트워크 접속성을 UE(101)에 제공한다. 일부 실시예들에서, 이러한 더 넓은 네트워크는 셀룰러 네트워크 제공자에 의해 운영되는 광역 네트워크이거나, 인터넷일 수 있다. eNB(150)와 연관된 각각의 eNB 서비스 영역은 eNB(150)에 통합된 안테나에 의해 지원된다. 서비스 영역들은 소정의 안테나들과 연관된 다수의 섹터들로 분할된다. 이러한 섹터들은 고정된 안테나들과 물리적으로 연관되거나, 신호를 특정한 섹터로 지향시키는데 이용되는 빔포밍 프로세스(beamforming process)에서 조절가능한 안테나 설정이나 튜닝가능한 안테나를 갖춘 물리적 영역에 할당될 수 있다. eNB(150)의 한 실시예는, 예를 들어, 3개의 섹터를 포함하고, 각각의 섹터는 120도 영역을 커버하며, 각각의 섹터로 향하는 안테나 어레이에 의해 eNB(150) 주변에 360도 커버리지를 제공한다.
UE(101)는 전송 회로(110) 및 수신 회로(115)와 결합된 제어 회로(105)를 포함한다. 전송 회로(110) 및 수신 회로(115) 각각은 하나 이상의 안테나와 결합될 수 있다. 제어 회로(105)는 MTC와 연관된 동작을 수행하도록 적합화될 수 있다. 일부 실시예에서, UE(101)의 제어 회로(105)는 계산을 수행하거나 에어 인터페이스(190)와 연관된 측정을 개시하여 eNB(150)에 대한 이용가능한 접속의 채널 품질을 결정할 수 있다. 이들 계산은 eNB(150)의 제어 회로(155)와 연계하여 수행될 수 있다. 전송 회로(110) 및 수신 회로(115)는, 각각, 데이터를 전송 및 수신하도록 적합화될 수 있다. 제어 회로(105)는, UE에 관련된 본 개시내용의 다른 곳에서 설명되는 것들과 같은 다양한 동작을 수행하도록 적합화되거나 구성될 수 있다. 전송 회로(110)는 복수의 멀티플렉싱된 업링크 물리적 채널들을 전송할 수 있다. 복수의 업링크 물리적 채널은 시분할 멀티플렉싱(TDM) 또는 주파수 분할 멀티플렉싱(FDM)에 따라 멀티플렉싱될 수 있다. 전송 회로(110)는 에어 인터페이스(190)를 통한 전송을 위해 제어 회로(105)로부터 블록 데이터를 수신하도록 구성될 수 있다. 유사하게, 수신 회로(115)는 에어 인터페이스(190)로부터 복수의 멀티플렉싱된 다운링크 물리적 채널을 수신하고 그 물리적 채널을 제어 회로(105)에 중계할 수 있다. 복수의 업링크 및 다운링크 물리적 채널은 TDM 또는 FDM에 따라 멀티플렉싱될 수 있다. 전송 회로(110) 및 수신 회로(115)는, 물리적 채널에 의해 운반되는 데이터 블록 내의 구조화된 제어 데이터와 콘텐츠 데이터(예를 들어, 메시지, 이미지, 비디오 등) 양쪽 모두를 전송 및 수신할 수 있다.
도 1은 또한, 다양한 실시예에 따른 eNB(150)를 나타낸다. eNB(150)는 전송 회로(160) 및 수신 회로(165)와 결합된 제어 회로(155)를 포함할 수 있다. 전송 회로(160) 및 수신 회로(165) 각각은 에어 인터페이스(190)를 통한 통신을 가능하게 하는데 이용될 수 있는 하나 이상의 안테나와 결합될 수 있다.
제어 회로(155)는 MTC와 연관된 동작을 수행하도록 적합화될 수 있다. 전송 회로(160) 및 수신 회로(165)는, 사람 대 사람 통신을 위해 구성된 표준 대역폭보다 좁은 시스템 대역폭 내에서, 각각, 데이터를 전송 및 수신하도록 적합화될 수 있다. 일부 실시예들에서, 예를 들어, 전송 대역폭은 1.4MHz 또는 그 부근에 설정될 수 있다. 다른 실시예들에서, 다른 대역폭이 이용될 수도 있다. 제어 회로(155)는, eNB에 관련된 본 개시내용의 다른 곳에서 설명되는 것들과 같은 다양한 동작을 수행할 수 있다.
좁은 시스템 대역폭 내에서, 전송 회로(160)는 복수의 멀티플렉싱된 다운링크 물리적 채널을 전송할 수 있다. 복수의 다운링크 물리적 채널은 TDM 또는 FDM에 따라 멀티플렉싱될 수 있다. 전송 회로(160)는 복수의 다운링크 서브프레임으로 구성된 다운링크 수퍼프레임에서 복수의 멀티플렉싱된 다운링크 물리적 채널을 전송할 수 있다.
좁은 시스템 대역폭 내에서, 수신 회로(165)는 복수의 멀티플렉싱된 업링크 물리적 채널을 수신할 수 있다. 복수의 업링크 물리적 채널은 TDM 또는 FDM에 따라 멀티플렉싱될 수 있다. 수신 회로(165)는 복수의 업링크 서브프레임으로 구성된 업링크 수퍼프레임에서 복수의 멀티플렉싱된 업링크 물리적 채널을 수신할 수 있다.
이하에서 더 설명되는 바와 같이, 제어 회로들(105 및 155)은 에어 인터페이스(190)에 대한 채널 품질의 측정과 관련될 수 있다. 채널 품질은, 예를 들어, UE(101)와 eNB(150) 사이의 물리적 장애물, 다른 소스들로부터의 전자기 신호 간섭, UE(101)와 eNB(150) 사이의 반사 또는 간접 경로, 또는 기타의 이러한 신호 잡음 소스에 기초할 수 있다. 채널 품질에 기초하여, 전송 회로(110)가 동일한 데이터의 사본을 복수회 전송하고 수신 회로(115)가 동일한 데이터의 복수의 사본을 복수회 수신할 수 있도록, 데이터 블록은 복수회 재전송되도록 스케줄링될 수 있다.
데이터가 정확하게 수신되는 것을 보장하기 위해 데이터 블록의 반복된 전송이 이용될 수 있지만, 반복된 전송은 상당한 자원을 소비할 수 있다. 일부 실시예들에서, 예를 들어, 각각의 데이터 블록은, 에어 인터페이스(190)를 통해 측정된 채널 품질에 기초하여 50 또는 100회의 재전송을 위해 스케줄링될 수 있다. 불필요한 전송을 감소시키는 것은 MTC 통신의 성능을 향상시키는 방법 중 하나이며, 특히 LTE(Long Term Evolution) 및 LTE-Advanced 등의 현재의 및 차세대 모바일 광대역 네트워크에 통합에서 유익하다.
기존의 모바일 광대역 네트워크는 주로 인간 통신에 대한 성능을 최적화하도록 설계되었고 그에 따라 MTC-관련된 고려사항을 충족하도록 설계되거나 최적화되지 않았다. 일부 MTC 시스템들은, 인간 통신 양태를 낮추고 대신에 더 낮은 디바이스 비용, 향상된 커버리지, 및 감소된 전력 소비에 초점을 맞추도록 구성된다. 여기서 설명된 실시예들은 비용 및 전력 소비를 감소시키도록 동작한다. 여기서 설명된 실시예들의 일부 구현에서, MTC 시스템에 대한 대역폭은, 예를 들어, LTE 시스템에 대한 최소 대역폭인 1.4MHz로 감소된다. 이러한 구현에서, 제어 및 데이터 채널 양쪽 모두에 대한 전송 대역폭은 1.4MHz로 감소될 수 있다. 일부 실시예에서, 많은 수의 MTC 디바이스가 하나의 셀 내의 특정한 서비스를 위해 시스템에 배치될 것이다. 이러한 방대한 수의 MTC 디바이스가 네트워크에 액세스하여 통신을 시도할 때, 1.4MHz 대역폭을 갖는 복수의 MTC 영역들이 eNB에 의해 할당될 수 있다. 다른 실시예들에서, 다른 대역폭이 이용될 수도 있다.
일부 실시예들에서, 커버리지 향상은, 다양한 물리적 채널에 대해 복수의 서브프레임들에 걸친 데이터의 반복과 감소된 대역폭을 수반하여 구현됨으로써, 에너지가 수신기 측에서 축적될 수 있게 할 수 있다. 그러나, 복수의 서브프레임들에 걸친 많은 수의 반복된 전송을 이용하는 것은, 시스템 자원 이용 비효율성을 증가시킴으로써, 시스템 스펙트럼 효율을 감소시킨다. MTC UE 전력 소모는 재전송 횟수가 증가함에 따라 증가하며, 이것은, 3GPP 향상 목표인 MTC UE 전력 소비 감소 목표에 위배된다. 일부 실시예들에서, 예를 들어 수신기에서의 정확한 디코딩을 달성하기 위하여 단일의 데이터 블록이 50회 또는 100회 재전송될 수 있다.
따라서 여기서 설명된 실시예들은, UE-특유의 방식으로 상이한 채널들 및 신호들에 대해 특별히 목표된 방식으로 서브프레임들에 걸친 다수의 반복에서의 자원 이용률을 개선하도록 동작한다. 여기서 설명된 실시예들에서, 순간적 채널 조건들에 의존하여, 수신기는, 전송기 측에서 이용된 반복된 전송의 횟수보다 적은 횟수의 초기 전송 또는 재전송에 대한 반복된 전송을 이용하여 전송된 트랜스포트 블록들을 성공적으로 디코딩할 수 있다. 자원 이용률을 개선하기 위해, 여기서 설명된 실시예들은 물리적 채널의 전송의 조기 종료를 이용하고, 전송기는 설정된 재전송 횟수가 발생하기 전에 데이터가 성공적으로 디코딩되었다는 것을 통보받는다. 그러면, 전송기는, 장기적 채널 조건들에 기초하여 원래 의도한 실제 반복 횟수 또는 주어진 물리적 채널에 대해 특정한 UE에게 필요한 향상된 커버리지 레벨 이전에 초기 전송 또는 재전송의 스케줄링된 반복된 전송을 종료한다.
여기서 설명된 실시예들은 반복된 전송의 조기 종료의 상기 개념을 실현한다. 실시예들은 주로 업링크 및 다운링크 공유 채널의 정황에서 설명되지만, 상이한 실시예에서는 상이한 채널과 이용될 수 있다. 여기서 설명된 실시예들은, 특히, 유사한 SPS 릴리스에 의해 지원되는 방식으로 다운링크 제어 정보(DCI) 포맷 0을 이용하여 eNodeB(150)로부터의 계층 1 제어 시그널링에 기초해 UE(101)로부터의 물리적 업링크 공유 채널(PUSCH) 반복을 조기 종료하는 것을 포함할 수 있다. 여기서 설명된 추가적인 실시예들은, 향상된 HARQ 피드백 방식에 기초한 물리적 다운링크 공유 채널(PDSCH) 및 PUSCH 반복의 조기 종료를 구현하며, 여기서, 향상된 커버리지(EC; enhanced coverage) 모드의 MTC UE(110)는 반복된 전송 시간 윈도우 내의 중간 HARQ-ACK 피드백 기회에서 HARQ-ACK 피드백을 전송한다. HARQ-ACK 피드백을 이용한 조기 종료는, UE(101)로부터 eNB(150)로의 업링크 전송 및 eNB(150)로부터 UE(101)로의 다운링크 전송 양쪽 모두를 종료하는데 이용될 수 있다.
이러한 실시예들은, 물리적 하이브리드 ARQ 표시자 채널(PHICH; Physical Hybrid ARQ Indicator Channel) 시그널링 PUSCH 전송을 이용하는 것 이상의 이점을 포함한다. 특히, PHICH는, 어느 PUSCH 트랜스포트 블록이 조기 종료가 의도된 것인지를 시스템이 알지 못하므로, 조기 종료를 위해 직접 이용될 때 여기서 설명된 조기 종료에는 적합하지 않다. 특히, PHICH를 통해 전송된 조기 종료의 부재시에 예상된 HARQ-ACK 피드백 이전에 전송되는 중간 HARQ-ACK 피드백은, 특정한 HARQ-ACK 메시지가 어떤 PUSCH 트랜스포트 블록과 연관되어 있는지에 대해 혼란을 일으킬 수 있다.
따라서, 상기에 따르면, 일부 실시예들에서, 전송 회로(110) 및 수신 회로(115)는, 미리 결정된 HARQ 메시지 스케줄에 따라 에어 인터페이스(190)를 통해 표준 HARQ-ACK 및/또는 NACK 메시지에 추가하여 전송의 조기 종료와 연관된 초기 또는 중간 HARQ-ACK 메시지들을 각각 전송 및 수신할 수 있다. 유사하게, 전송 회로(160) 및 수신 회로(165)는, 에어 인터페이스(190)를 통해 표준 HARQ-ACK 및/또는 NACK 메시지뿐만 아니라 조기 또는 중간 HARQ-ACK 메시지를 각각 전송 및 수신할 수 있다. 표준 HARQ-ACK 메시지에 대한 미리 결정된 HARQ 메시지 스케줄은, HARQ-ACK 및/또는 NACK 메시지가 나타날 업링크 및/또는 다운링크 프레임을 표시할 수 있다. 그러나, 중간 HARQ-ACK 메시지들은, 이하에서 더 설명되는 다양한 실시예들에서, 상이한 스케줄, 또는 선택사항적 타이밍과 연관되거나 아무런 스케줄과도 연관되지 않을 수도 있다.
따라서, MTC는 UE(101) 및 eNB(150)의 회로를 이용하여 에어 인터페이스(190)를 통해 구현된다. MTC는 디바이스들이 서로 효율적으로 통신할 수 있게 하는 유비쿼터스 컴퓨팅 환경을 가능케한다. IoT 서비스 및 애플리케이션은, 제3대 파트너쉽 프로젝트(3GPP) 표준(예를 들어, 3GPP LTE Evolved Universal Terrestrial Radio Access (E-UTRA) Physical Layer Procedures (Release 12) September 26, 2014)에 따라 동작하는 롱텀 에볼루션(LTE) 및 LTE-Advanced 통신 시스템 등의 현재 및 차세대 모바일 광대역 네트워크 내에 원활하게 통합되도록 MTC 디바이스들의 설계와 개발을 자극한다. 앞서 언급된 바와 같이, 여기서 설명된 조기 종료 실시예들은, 이러한 표준의 최상부에 통합되거나, 다양한 상이한 실시예들에서 이러한 표준에 대한 사소한 변경을 수반하여 구현될 수 있다.
여기서 설명되는 실시예들은 특히, 대략적으로 기존의 LTE 설계의 단일 물리적 자원 블록(PRB; Physical Resource Block)에 대응하는 시스템 대역폭을 감소시킴으로써 비용과 전력 소비를 감소시킨다. 감소된 시스템 대역폭을 이용하는 이 셀룰러 IoT는, 잠재적으로, LTE 캐리어의 보호 대역 또는 전용 스펙트럼 내에서, 재할당된 GSM(global system for mobile communications) 스펙트럼에서 동작할 수 있다.
이하에서 설명된 실시예들은 1.4 MHz 대역폭을 이용하지만, 설계는 다른 좁은 대역폭(예를 들어, 1.5 MHz, 1MHz, 2MHz, 200KHz, 180KHz 등)으로 확장될 수 있다. 추가로, MTC는 제안된 실시예들에 대한 초기 타겟 애플리케이션으로서 이용되지만, 실시예들은 다른 협대역 배치된 애플리케이션들(예를 들어, 디바이스-대-디바이스 통신, 하이브리드 IoT 네트워크 등)로 확장될 수 있다는 것은 명백할 것이다.
에어 인터페이스(190)를 통한 다운로드 및 업로드 경로 양쪽 모두에 대한 상이한 채널들을 포함한, 다양한 물리적 채널이 이러한 MTC의 일부로서 이용될 수 있다. 이들 물리적 채널들은, 동기화 채널(SCH; synchronization channel), 물리적 브로드캐스트 채널(PBCH; physical broadcast channel), 제어 채널, 물리적 다운링크 공유 채널(PDSCH; physical downlink shared channel), 물리적 랜덤 액세스 채널(M-PRACH; physical random access channel), 물리적 업링크 제어 채널(PUCCH; physical uplink control channel), 및 물리적 업링크 공유 채널(PUSCH; physical uplink shared channel)을 포함하지만, 이것으로 제한되지 않는다. 이들 채널들 및 다른 잠재적 채널들이 이하에서 설명된다. MTC 동기화 채널(SCH)은 MTC 1차 동기화 신호(PSS) 및/또는 MTC 2차 동기화 신호(SSS)를 포함할 수 있다. 이것은 시간 및 주파수 동기화를 지원하고 UE에게 셀의 물리층 신원과 주기적 전치부호 길이(cyclic prefix length)를 제공하는데 이용될 수 있다. TDD가 일부 MTC 시스템에서는 지원되지 않을 수도 있지만, SCH는 주파수 분할 듀플렉스(FDD) 및 시분할 듀플렉스(TDD) 시스템을 구별하는데 이용되거나 이용되지 않을 수도 있다는 점에 유의한다. MTC 물리적 브로드캐스트 채널(PBCH)은, 셀로의 초기 액세스를 위한 제한된 개수의 가장 빈번하게 전송된 파라미터들로 구성된 MTC 마스타 정보 블록(Master Information Block)(MIB)을 운반한다. MTC 제어 채널은, LTE 물리적 다운링크 제어 채널(PDCCH) 또는 향상된 물리적 다운링크 제어 채널(EPDCCH) 설계에 기초할 수 있는 MTC 물리적 다운링크 제어 채널(M-PDCCH)을 포함한다. PRACH는 랜덤 액세스 프리앰블(random access preamble)을 전송하는데 이용된다. 초기 액세스의 경우, 이것은 업링크 동기화를 달성하는데 이용된다. PUCCH는 UCI를 운반하는데 이용된다. 특히, 수신된 SCH 트랜스포트 블록에 대한 스케줄링 요청 및 HARQ 확인응답은 PUCCH 전송에서 지원될 수 있다. MTC 물리적 멀티캐스트 채널(PMCH)은 멀티미디어 브로드캐스트 및 멀티캐스트 서비스(MBMS; Multimedia Broadcast and Multicast Service)를 지원하는데 이용된다.
PDSCH는, 에어 인터페이스(190)를 통해 UE(101)와 eNB(150) 사이에서 전송되는 모든 사용자 데이터뿐만 아니라 PBCH 상에서 운반되지 않는 브로드캐스트 시스템 정보 및 페이징 메시지를 위해 이용된다. PUSCH는 업링크 데이터 전송에 이용된다. 전술된 바와 같이, 여기서 설명된 실시예들은 주로, 데이터에 대한 1차 물리적 채널로서 PDSCH 및 PUSCH를 통해 전송된 데이터 블록에 대한 재전송의 조기 종료에 관련된다. 다른 실시예들에서, 위에서 언급된 임의의 채널, 또는 다른 시스템들에서의 다른 채널들은, 여기서 설명된 재전송의 조기 종료를 이용할 수도 있다.
도 2는, 특정 실시예에 따른, MTC 통신에서 반복된 전송의 조기 종료를 수반한 시스템 동작의 양태를 나타낸다. 특히, 도 2는 DCI 계층 1 제어 시그널링을 이용한 UE(201)로부터 eNB(250)로의 업링크 통신의 조기 종료를 도시한다.
PUSCH 반복의 조기 종료는, 초기 전송 또는 임의의 재전송을 위한 PUSCH 반복 윈도우 이전에도 UE(201)에게 PUSCH 전송의 성공적인 수신을 통보함으로써 실현될 수 있다. eNB(250)는 계층 1 다운링크 제어 시그널링을 이용하여 UE(201)에게 주어진 트랜스포트 블록에 대한 반복된 전송을 종료할 것을 통보할 수 있다. 일부 실시예에서, 이것은 DCI 포맷 0을 재사용함으로써 달성된다. 다른 실시예들에서, 새로이 설계된 DCI 포맷들이 이용된다. 본 발명에서, "DCI 포맷 0"에 대한 언급은, 업링크 스케줄링 정보(업링크 그랜트)를 MTC UE들에 운반하는데 이용되는 DCI 포맷의 이용을 암시하고자 하는 것이다 ― 이것은 DCI 포맷 0에 기초하여 설계된 MTC UE를 위해 설계된 새로운 DCI 포맷일 수 있다. 대조적으로, "새로이 설계된 DCI 포맷"이란, 후속해서 상세히 설명되는 바와 같이, HARQ-ACK 또는 일반적으로 조기 종료 표시 정보를 운반하도록 맞춤화된 DCI 포맷의 설계를 말한다.
따라서, 도 2는, UE(201)와 eNB(250) 사이에서 채널 조건들 및 성능이 평가되는 동작 210에서 시작한다. 동작 210에서 측정된 채널 성능의 결과에 기초하여, 동작 212에서, 정보가 UE(201)로부터 eNB(250)로 전달되도록 설정되면, UE(201)로부터 eNB(250)로의 업링크 데이터의 반복된 전송이 설정되고 스케줄링된다. 이것은 본질적으로 재전송 윈도우(255)를 설정한다. 재전송 윈도우(255)는 스케줄링 시간(예를 들어, 10 밀리초, 50 밀리초 등)에 기초하거나, 설정된 재전송 횟수(예를 들어, 10, 50, 100 등)와 직접 연관될 수 있다. 데이터의 초기 전송은 동작 214에서 발생하고, 동작 216A 내지 216N에서 동일한 데이터의 사본들의 재전송이 발생한다. 일부 실시예들에서, 이러한 재전송 통신은 UE(201)와 eNB(250) 사이의 링크 상의 유일한 통신이 아니라, PUSCH 또는 전술된 기타 임의의 채널 상의 다른 데이터 전송 또는 제어 채널 전송 사이에서 발생하는 전송일 수 있다. 일부 실시예들에서, 예를 들어, 채널 상태 및 미래의 PUSCH 재전송에 대한 스케줄링이 변경되거나 UE(201) 및 eNB(250) 통신의 다른 양태들이 조정되도록, 동작들 216A-N이 발생하는 동안 추가적인 채널 측정 통신이 이루어질 수 있다. 결국, eNB(250)는 동작 218에서 PUSCH 재전송으로부터의 데이터를 성공적으로 디코딩한다. 재전송의 조기 종료가 없는 시스템에서, UE(201)는 단순히, 설정된 횟수의 재전송이 발생할 때까지 PUSCH 상에서 데이터의 사본을 계속 전송할 것이다. 성공적인 수신을 확인응답하거나 추가적인 재전송을 요청하는 표준 HARQ-ACK 또는 NACK은 재전송 윈도우(255)의 끝에서 발생할 것이다. 그러나, 여기서 설명되는 실시예들에서, PUSCH 데이터가 재전송 윈도우(255)의 끝 이전에 성공적으로 디코딩될 때, 동작 220에서 재전송의 조기 종료를 나타내는 DCI 메시지가 eNB(250)로부터 UE(201)로 전송된다. 이것은, UE(201)로부터의 임의의 잔여 재전송을 중단시킴으로써 전력을 절감하고 전송 자원을 자유롭게 한다. 일부 실시예들에서, eNB(250)는, 동작 218에서 PUSCH 데이터가 성공적으로 디코딩된 후에, 재전송 윈도우(255)에 남아있는 재전송 횟수 또는 시간량을 결정할 수 있다. 임계 시간량 또는 재전송 횟수가 남아있다면, 동작 220이 개시될 수 있지만, 임계값이 충족되지 않으면, 시스템은 단순히 조기 종료없이 재전송 동작이 발생하는 것을 허용할 수 있다. 일부 실시예들에서, 동작 220에서 DCI를 전송할 때 소비되는 자원 및 UE(201)에서 DCI를 수신한 후에 절감된 자원을 포함한, 자원 절감의 계산이 수행될 수 있으며, 이 때, 임계량의 자원 절감의 임계량이 추정된다면 동작 220이 수행될 것이다.
도 3은, 일부 예시적인 실시예에 따른, 반복된 전송의 조기 종료를 위한 방법을 설명한다. 도 3은, UE(101) 또는 UE(201) 등의 UE로부터 eNB(150) 또는 eNB(250) 등의 eNB로의 업링크 통신을 나타낸다. 일부 실시예에서, 비-일시적 컴퓨터 판독가능한 매체는, 하나 이상의 프로세서에 의해 실행될 때 방법(300)을 수행하도록 머신 타입 통신을 위한 eNB(150)를 구성하는 명령어들을 포함한다. 다른 실시예들에서, eNB(150) 또는 eNB(250) 등의 eNB는 대응하는 UE와 연계하여 방법(300)을 수행한다. 일부 실시예들에서, 특정한 eNB는 복수의 상이한 UE들과 동시에 상기 방법(300)을 동시에 수행할 수 있다. 방법(300)은, 물리적 업링크 공유 채널(PUSCH)과 연관된 하나 이상의 측정치에 기초하여 사용자 장비(UE)에 대한 채널 접속 품질을 결정하는 동작 305에서 시작한다. 이것은, 일부 실시예들에서, 에어 인터페이스(190)를 통해 UE(101)로의 측정 통신을 스케줄링 및 처리하는 제어 회로(155)에 의해 관리될 수 있다.
동작 305에서의 측정에 후속하여, 동작 310에서 채널 품질에 기초한 재전송 값이 선택되며, 여기서, 재전송 값은 재전송 윈도우와 연관된다. 앞서 논의된 바와 같이, 재전송 윈도우는 선택된 재전송 횟수 또는 또 다른 재전송 값에 기초할 수 있다. 일부 실시예들에서, 방법(300)을 수행하는 eNB와 연관된 UE 사이의 채널에 이용되는 에어 갭(air gap)에 대한 하나 이상의 측정된 품질 또는 잡음 특성에 따라 재전송 횟수를 선택하기 위해 테이블 또는 어떤 다른 계산된 동작이 이용될 수 있다. 재전송 값은 eNB에 의해 선택되거나, eNB에서 선택된 다음 UE에 전달되는 재전송 값을 이용하여 UE에서 설정될 수도 있다.
UE가 데이터 블록의 전송 및 후속된 재전송을 시작한 후에, 동작 315에서, eNB는 재전송 윈도우 동안 UE로부터의 PUSCH 상의 블록 데이터의 하나 이상의 전송을 수신한다. 블록 데이터가 수신되면, eNB는 전송들로부터의 에너지를 집성하고 이들을 처리하여 심볼들을 식별하고 전송을 디코딩한다. 추가 재전송이 수신되면, eNB는 이전의 전송이 성공적인 디코딩을 위해 충분하지 않은 경우 이 추가 전송을 이용하려고 시도한다. 동작 320은 블록 데이터의 하나 이상의 전송을 이용하여 블록 데이터가 eNB에서 성공적으로 디코딩되었다고 결정하는 동작을 포함한다. 일단 성공적인 디코딩이 발생하고 나면, 이것은, 동작 325에서, eNB에게, 재전송 윈도우 동안 다운링크 제어 정보(DCI) 메시지를 포함하는 반복된 전송의 조기 종료 메시지를 전송함으로써 UE로부터의 재전송을 종료할 것을 촉구한다. 전술된 바와 같이, 일부 실시예들에서, 재전송 윈도우가 거의 끝나고 반복된 전송의 조기 종료 메시지가 전송되어서는 안 되며, 시스템은 단순히 표준 스케줄링된 HARQ-ACK/NACK 메시지를 이용할 것이라고 결정될 수 있다. 일부 실시예에서, 재전송의 초기 세트가 성공적이지 않다면, 재전송 윈도우의 끝에서 HARQ-NACK 메시지가 전송될 것이고, 또 다른 세트의 재전송이 시작될 것이다. 블록 데이터가 제2 재전송 윈도우가 끝나기 이전에 성공적으로 디코딩된다면, HARQ-NACK 메시지 및 제2 세트의 재전송에 후속하여 또는 제2 세트의 전송 동안에 통신이 성공적으로 디코딩된다면 제2 세트의 재전송의 시작시에 동작들 320 및 325가 수행될 수 있다. 다른 실시예들에서, 설명된 동작들 사이에서 다른 동작들이 유사하게 수행될 수 있다.
도 4는, 방법(300)을 수행하는 eNB와 통신하는 방법(300)의 UE에 대응하는 UE에 의해 수행될 수 있는 방법(400)을 설명한다. 상기 방법(300)에서와 같이, 일부 실시예들에서, 비-일시적 컴퓨터 판독가능한 매체는, 하나 이상의 프로세서에 의해 실행될 때, 방법(400)을 수행하도록 MTC를 위한 UE를 구성하는 명령어들을 포함한다. 다른 실시예들에서, UE(101) 또는 UE(201) 등의 UE는 대응하는 eNB와 연계하여 방법(400)을 수행한다. 일부 실시예들에서, 방법(400)은 UE로부터 복수의 eNB들로 구성된 셀룰러 네트워크로의 무선 통신들을 관리하기 위하여 모바일 디바이스의 처리 집적 회로 장치에 의해 수행될 수 있다. 이러한 실시예에서, 방법(400)은 모바일 디바이스의 동작을 관리하는 단일 집적 회로에 의해 수행될 수 있다.
방법(400)은 동작 405에서 시작하고, 여기에서, UE의 장치는 물리적 업링크 공유 채널(PUSCH)에 대한 측정된 채널 품질과 연관된 eNB로부터의 재전송 정보를 수신하도록 구성된다.
이 재전송 정보는, 재전송 횟수를 선택하기 위해 UE에 의해 이용될 수 있는 측정 데이터이거나, UE를 위해 eNB에 의해 선택된 재전송 횟수일 수 있다. 다른 실시예에서, 이것은 재전송 윈도우에 이용되는 임의의 다른 중간 또는 최종 정보일 수 있다.
동작 410에서, UE는, 측정된 채널 품질에 기초하여 재전송 기간 동안 블록 데이터의 반복된 전송을 포함하는 블록 데이터의 전송을 수반한, PUSCH 상에서 eNB로의 블록 데이터의 전송을 개시한다. 동작 415에서, UE는, 다운링크 제어 정보(DCI) 포맷 0 메시지 또는 커스텀 DCI 메시지를 포함하는 반복된 전송의 조기 종료 메시지를 수신한다. 이 메시지는 eNB가 재전송 윈도우의 끝 이전에 블록 데이터를 성공적으로 디코딩하는 것에 기초한다.
그 다음, UE는, 동작 415로부터의 메시지에 기초하여, 동작 420에서, 재전송 기간 동안 반복된 전송의 조기 종료 메시지의 수신에 응답하여 블록 데이터의 스케줄링된 반복된 전송을 종료한다.
조기 종료를 위한 DCI의 이러한 이용은, 반영구적 스케줄링(SPS; semi-persistent scheduling) 릴리스 PDCCH 유효성확인에서의 DCI 포맷 0의 이용과 유사하다고 간주될 수 있다. 이러한 실시예들에서, UE는, 이러한 DCI 포맷 0 전송의 수신을, 그 제1 서브프레임이 이 DCI 포맷 0 전송의 수신 시간에 관하여 명시된 시간 관계를 만족시키는 PUSCH 전송에 대응하는 트랜스포트 블록의 사본들의 전송의 조기 종료의 표시로서 인가한다. 하나의 특정한 실시예에서, 다운링크 제어 채널 전송의 제1 서브프레임은 DCI 포맷 0 통신을 포함하는 특정한 타이밍 위치에 있다. 이들 다양한 실시예에서, DCI 통신은 조기 종료를 나타내는 데이터를 운반한다.
일부 실시예들에서, 반복된 전송의 조기 종료와 연관된 DCI 통신은 소정 개수의 조건이 만족되는 경우에만 이루어진다. 제1 조건은, 다운링크 제어 채널 페이로드의 CRC 패리티 비트들이 C-RNTI 또는 유사한 식별 번호로 스크램블링된다는 것이다. 또 다른 조건은 포맷 0 DCI의 새로운 데이터 표시자 값이 0으로 설정된다는 것이다.
역시 추가적인 실시예들에서, 상기 조건들 이외에, 이하의 표 1에 기재된 조건들이 또한 이용된다.
따라서, 표 1은, 일부 실시예에 따른, PUSCH 반복된 전송의 조기 종료의 표시를 위한 특별한 필드를 도시한다. 표 1에서, CS_val은 원래 할당된 DM-RS 순환 시프트 값(cyclic shift value)이다.
소정의 다른 실시예들에서, 반복된 전송의 조기 종료를 나타내는 다운링크 제어 채널 전송과 PUSCH 전송의 첫 번째 서브프레임 사이의 명시된 시간 관계를 이용하는 대신에, HARQ 프로세스 번호가 이용될 수 있다. 이러한 HARQ 프로세스 번호는 PUSCH 전송을 위한 블록 데이터를 식별하는데 이용될 수 있다. HARQ 프로세스 번호에 의한 이러한 식별은, UE가 반복된 전송의 조기 종료를 표시할 대상이 되는 적절한 데이터 블록을 식별할 수 있게 하기 위해 도입될 수 있다. 즉, 인터리빙된 재전송 윈도우들 동안 복수의 데이터 블록이 전달될 수 있다. 이 때문에, 재전송 조기 종료 시스템은 재전송되고 있는 상이한 데이터 블록들을 구별할 수 있을 필요가 있다. 데이터 블록을 식별하기 위해 HARQ 프로세스 번호를 이용하는 것은, 시스템이 이들 상이한 데이터 블록들을 구별할 수 있게 할 수 있다. HARQ 프로세스 번호의 이러한 이용은, 조기 종료 표시를 비동기식 방식으로 전송하는데 있어서 추가적인 유연성을 주지만, HARQ 프로세스 번호에 대한 새로운 필드를 가능하게 하기 위해 DCI 포맷에 대한 추가 변경과 연관된다.
역시 또 다른 실시예들에서, DCI 포맷 0을 이용하기보다는, 새로운 DCI 포맷이 정의될 수 있다. 이러한 일부 실시예들에서, MTC-특유의 DCI 포맷은, 향상된 커버리지 모드의 UE들에게 PUSCH 전송의 조기 종료를 통보하는데 이용될 수 있다. 이러한 컴팩트 DCI 포맷은 전술된 HARQ 프로세스 번호를 포함할 수 있다. 이러한 컴팩트하고 새로운 DCI 포맷의 다른 실시예들은, 순환 시프트 비트 필드 및/또는 NDI 필드를 포함할 수 있다. 이러한 컴팩트 DCI 포맷의 감소된 크기는 PDCCH 또는 EPDCCH 데이터 전송에 대한 반복 횟수를 감소시키는데 도움을 줄 수 있으며, 결과적으로 향상된 커버리지 모드의 MTC UE들이 PUSCH 반복에 대한 조기 종료 표시를 나타내는 DCI를 신속하게 수신하는 것을 허용할 수 있다.
향상된 커버리지 모드의 UE들의 경우, EPDCCH 전송의 시작 서브프레임은, 전력을 소비하는 UE에 의한 EPDCCH의 블라인드 디코딩 시도를 감소시키기 위하여 서브프레임들의 서브세트로 제한된다. eNB가 PUSCH 전송을 성공적으로 디코딩하면, 여기서 설명된 일부 실시예들에서, eNB는, 다음으로 이용가능한 명시된 시작 서브프레임에서, 또는 UE-특유의 커버리지 확장 레벨에 대한 미리정의된 또는 구성된 맵핑 규칙에 따라 유도되거나 설정될 수 있는 EPDCCH 전송에 대한 반복 레벨에 따라, EPDCCH 전송을 시작할 것이다.
또한, EC 모드의 낮은 복잡도 UE들과 함께 반이중(half-duplex) 주파수 영역 듀플렉싱(HD-FDD)에서 동작하는 일부 실시예들에서, PUSCH 재전송 윈도우는 다운링크 서브프레임들에 산재될 수 있다. 즉, 재전송 윈도우 동안, 재전송 윈도우는, 블록 데이터의 재전송 동안 공유 채널 상의 다운링크 서브프레임들의 존재에 의해 연장될 수 있다. 이것은, 보통은 HD-FDD 동작을 위해 스케줄링되는 다운링크 프레임들을 이용함으로써 재전송 윈도우 내의 반복된 전송의 조기 종료를 나타내는 계층 1 제어 시그널링을 UE가 수신할 수 있게 한다.
도 5는, 특정 실시예에 따른, MTC 통신에서 반복된 전송의 조기 종료를 수반한 시스템 동작의 양태를 나타낸다. 특히, 도 5는, 소정 실시예들에 따른, 반복된 전송의 조기 종료를 수반한 시스템에서의 조기 또는 중간 하이브리드 자동 반복 요청(HARQ) 확인응답(HARQ-ACK) 동작의 이용을 나타낸다. 일부 실시예들에서, UE(501) 및 eNB(550)는, 도 1의 UE(101) 및 eNB(150), 또는 여기서 설명된 기타 임의의 UE 또는 eNB와 유사할 수 있다. 전술된 바와 같이, DCI 포맷 0 메시징을 포함한 DCI 메시징을 이용하는 실시예들은 UE로부터 eNB로의 업링크 재전송을 종료할 수 있지만, 초기 HARQ-ACK 메시징의 이용은 업링크 및 다운링크 재전송 양쪽 모두를 종료하는데 이용될 수 있다. 또한, 다양한 실시예들은 반복된 메시지의 업링크 및/또는 다운링크 종료를 위해 DCI 메시징 및 초기 HARQ-ACK 메시징 양쪽 모두를 이용할 수 있다. 한 이러한 실시예에서, PUSCH 전송에 응답하는 HARQ-ACK 메시징은 M-PDCCH에 의해 운반되는 DCI를 이용하여 표시될 수 있다. 따라서, 일부 구현들에서, 도 2에 관하여 설명된 실시예들은 도 5에 관하여 설명된 실시예들과 결합될 수 있다.
도 2의 시스템 동작과 유사하게, 도 5는 동작들 510 및 512에서 UE(501)와 eNB(550)가 채널 성능을 측정하고 채널 성능에 기초하여 반복 값을 선택하는 것으로 시작한다. 측정된 채널 성능은 특정한 데이터 블록들의 재전송을 위한 재전송 윈도우(555)를 확립하는데 이용된다. DCI 및 초기 HARQ-ACK 반복 종료 양쪽 모두를 이용하는 실시예들에서, 동일한 채널 성능 측정치들이 도 2 및 도 5 양쪽 모두의 동작들을 수행하는 시스템들에서 이용될 수 있다.
동작들 514 및 516A-N에서, 블록 데이터의 초기 전송 및 후속하는 재전송들이 수행된다. 데이터가 PUSCH 데이터이면, 동작 518A에서 데이터는 eNB(550)에 의해 디코딩되는 반면, 동작 518B에서는 PDSCH 데이터가 UE(501)에 의해 디코딩된다. 어떤 디바이스가 재전송 윈도우(555) 동안 데이터가 정확하게 디코딩되었는지를 검증하더라도, 동작 520에서, 그 디바이스는, 다른 디바이스가 추가적인 스케줄링된 재전송이 필요없다는 것을 알게 하기 위해 초기 HARQ-ACK 메시지의 전달을 개시한다.
도 6a는, HARQ-ACK 동작의 양태들뿐만 아니라, 데이터의 전송을 추적하기 위한 HARQ 프로세스 번호 또는 프로세스 식별자의 이용을 나타낸다. 도 6a는, UE(501, 101 및 201)뿐만 아니라 eNB(550, 150 및 250)를 포함한, 여기서 설명된 임의의 UE 또는 eNB와 유사할 수 있는 eNB 및 UE 각각에 대한 전송(TX)(650 및 601)을 도시한다.
도시된 바와 같이, PDCCH(621)는 PDSCH(622)와 연관된 제어 데이터를 전송할 수 있다. PDCCH(621)는, 본질적으로, PDSCH(622) 상의 데이터의 전송을 스케줄링할 수 있으며, 이것은 특정한 세트의 데이터의 전송의 모든 프로세스들과 연관된 HARQ 프로세스 번호(620)에 의해 추적될 수 있다. HARQ 프로세스 번호(630)는 상이한 세트의 데이터에 대한 프로세스들을 유사하게 추적한다. 도시되지는 않았지만, 각각의 전송은, PDSCH(622) 데이터가 eNB로부터 전송되어 UE에서 수신되도록, 다른 디바이스에서의 대응하는 수신과 연관된다.
PDSCH의 추가 스케줄링된 프레임들 상의 재전송들을 포함할 수 있는, PDSCH(622) 내의 데이터와 연관된 표준의 스케줄링된 재전송 세트 후에, UE TX(601)는, HARQ-ACK 또는 NACK 중 어느 하나를 전달하여 PDSCH(622)로부터의 데이터가 성공적으로 수신되었는지를 eNB가 알 수 있게 하는 PUCCH(623)를 포함할 수 있다. 도 6a에 나타낸 예에서, PUCCH(623)는, PDSCH(622)로부터의 데이터가 성공적으로 디코딩되지 않았다는 것을 나타내는 HARQ-NACK을 포함하므로, HARQ 프로세스 번호(620)는, PDCCH(624) 및 PDSCH(625) 내의 동일한 데이터의 전송 및 추가 스케줄링과 연관된다.
대조적으로, PUCCH(633A)는, PDCCH(631)에 의해 스케줄링된 PDSCH(632)로부터의 데이터가 성공적으로 수신되었음을 식별하는 HARQ-ACK를 포함하는 것으로 식별될 수 있는데, 그 이유는, HARQ 프로세스 번호(630)와 연관된 전송의 일부로서의 후속 PDSCH의 어떠한 추가적 스케줄링도 없기 때문이다.
전송 채널들이 도 6a의 타임라인 상에 도시되어 있지만, 다양한 실시예에서, 전술된 도 6a에 나타낸 임의의 전송 프로세스의 일부로서 추가의 재전송이 포함될 수 있다. 따라서, 일부 실시예들에서, HARQ 프로세스 번호(620)와 연관된 데이터의 재전송을 포함한 추가적인 데이터 프레임들은 PDSCH(622)와 PUCCH(623) 사이에서 전송될 수 있다. 유사하게, HARQ 프로세스 번호(630)와 연관된 재전송 데이터를 포함하는 추가 프레임들은 PDSCH(632)와 PUCCH(633A) 사이에서 전송될 수 있다. 또한, 이러한 실시예들 뿐만 아니라 도 6a에 구체적으로 도시된 실시예에서, 상이한 HARQ 프로세스 번호들(620 및 630)과 연관된 전송들은 시스템에서 동시에 활성화되어, 일부 실시예에서는, PUCCH(623)는, PDSCH(622)가 PDSCH(632) 이전에 발생하는 경우 PUCCH(633A) 이후에 발생할 수 있다. 이것은, 반복된 전송을 수행하는 디바이스가 어느 재전송 프로세스를 종료할지를 알아야 하기 때문에, 반복된 전송의 조기 종료에 이용되는 DCI 메시지의 타이밍 또는 HARQ 프로세스 추적에 대한 필요성의 원천이다.
상기 도 6a의 설명은, 재전송 횟수가 전송중인 데이터 블록의 첫 번째 사본 이전에 설정될 때 시스템에 의해 스케줄링되는, 표준 HARQ-ACK/NACK 메시징을 설명한다. 도 6b는 재전송의 초기 또는 중간 종료의 이용을 나타낸다.
도 6b는, 도 6a에 나타낸 HARQ 프로세스 번호(630)와 연관된 전송 프로세스와 중간 HARQ-ACK를 통한 조기 종료 옵션을 추가로 포함하는 시스템의 비교를 도시한다. 앞서 언급된 바와 같이, 스케줄링은 PDCCH(631)에서 발생하고, HARQ 프로세스 번호(630)와 연관된 데이터 블록의 전송 또는 재전송은 PDSCH(632)에서 발생한다. PUCCH(633A)를 이용하는 표준 HARQ-ACK 또는 NACK은 초기 재전송 횟수가 설정될 때 스케줄링된다. 그러나, 여기서 설명된 실시예들에서, 중간 HARQ-ACK(639)는 PUCCH(633A)에 대한 ACK/NACK의 스케줄링된 시간 이전에 전송될 수 있다. 이 중간 HARQ-ACK(639)은 본질적으로 PUCCH(633A)의 표준 HARQ-ACK/NACK보다 우선적이다. 언급된 바와 같이, PDSCH(632)로부터의 데이터 블록이 성공적으로 디코딩되었다는 결정에 응답하여 HARQ-ACK(639)가 전송되고, HARQ-ACK(639)와 PUCCH(633A)의 타이밍 사이에서 스케줄링되는 어떠한 추가적인 재전송도 필요없기 때문에, 조기 종료는 항상 NACK가 아닌 ACK이다. 도 6b에서, 앞서 논의된 재전송 윈도우는 eNB TX(650)의 일부로서 데이터 블록의 첫 번째 전송과 함께 작하고, 표준 HARQ-ACK/NACK에 대해 스케줄링된 시간 또는 표준 HARQ-ACK/NACK에 선행하는 임계 기간에서 종료하며, 여기서, 임계 시간에 후속하는 조기 종료는 표준 HARQ-ACK/NACK가 이용되는 것을 허용하는 것에 비해 비효율적인 것으로 간주된다. 도 6a 및 도 6b는 eNB TX(650)가 데이터를 전송하고 UE TX(601)가 반복된 전송의 조기 종료 메시지를 전송하는 실시예를 예시하지만, 대응하는 시스템이 UE TX(601)가 데이터를 전송하고 eNB TX(650)가 반복된 전송의 조기 종료 메시지로서 중간 HARQ-ACK를 전송하는 것으로 유사하게 동작할 수 있다는 것이 또한 명백할 것이다. 유사하게, 전술된 DCI를 이용하는 일부 실시예들은, 여기서 예시된 타이밍과 유사한 것으로 볼 수 있는 타이밍으로 동작할 수 있다.
또한, 도 6b에서, 도 6a에서와 마찬가지로, PDSCH(632)는 단일의 연속된 스케줄링된 시간으로서 예시되어 있지만, 예시된 PDSCH(632)에 대해 스케줄링된 시간과 PUCCH(633A)의 표준 HARQ-ACK/NACK 사이에서 임의의 개수의 별개의 스케줄링된 재전송들이 설정될 수 있다.
표준 HARQ-ACK/NACK 스케줄링의 정황 내에서 반복된 전송의 조기 종료의 스케줄링에 관련된 추가적인 상세사항은 도 9에 관해 이하에서 포함된다.
도 7은 일부 예시적인 실시예들에 따른 재전송의 조기 종료를 위한 방법(700)을 설명한다. 방법(700)은, eNB(150, 250, 550) 등의 eNB, 또는 여기서 설명된 임의의 eNB에 의해 수행될 수 있다. 추가로, 대응하는 방법은, 방법(700)에서 설명된 전송된 신호를 수신하는 UE에 의해 수행될 것이라는 것을 명백할 것이다. 이러한 동작의 상세사항은 이하의 예에 포함되어 있다.
방법(700)에서, PDSCH 상에서 UE(101, 201 또는 501) 등의 UE로의 블록 데이터의 전송은 동작 710에서 개시되고, 블록 데이터의 전송은, 측정된 채널 품질에 기초한 재전송 기간 동안의 블록 데이터의 반복된 전송을 포함한다. 그러면, eNB는 재전송 기간에 걸쳐 설정된 재전송 횟수에 기초하여 스케줄링된 반복된 전송을 계속 진행한다.
재전송 기간 동안, eNB는 동작 715의 일부로서 UE로부터 반복된 전송의 조기 종료 메시지를 수신한다. 동작 715에서의 조기 종료 메시지는 하이브리드 자동 반복 요청(HARQ) 확인응답(HARQ-ACK) 메시지이다. 조기 종료는 메시지의 성공적인 디코딩에 기인하고, NACK은 메시지가 성공적으로 수신되지 않았음을 나타내기 때문에, 이 메시지는 항상 ACK이고 NACK이 아니다. 대신 NACK은 재전송 기간의 끝에서 스케줄링된 표준 HARQ의 일부로서 전달될 것이지만, 재전송 기간 동안 수신된 중간 HARQ-ACK은 이 표준 HARQ보다 우선적이다. 동작 720에서, eNB는, 재전송 기간 동안 반복된 전송의 조기 종료 메시지의 수신에 응답하여 블록 데이터의 반복된 전송의 적어도 하나의 추가 반복을 종료한다.
상기 동작들에 추가하여, eNB는, UE와의 통신에서 채널 품질을 측정하고, 재전송 윈도우와 연관되거나 재전송 윈도우를 생성하는데 이용되는 재전송 값을 채널 품질에 기초하여 선택하는 동작들을 유사하게 수행할 수 있다. 일부 실시예들에서, 이 방법은 eNB(150)와 유사한 eNB에 의해 수행될 수 있고, 여기서, 전송 회로는 재전송 윈도우 동안 PDSCH 상에서 블록 데이터의 하나 이상의 전송을 UE에 전달하도록 구성되고, 제어 회로는 블록 데이터의 하나 이상의 전송의 전달 이전에 하나 이상의 측정치에 기초하여 PDSCH와 연관된 채널 품질을 결정하도록 구성된다.
앞서 언급된 바와 같이, 반복된 전송의 조기 종료를 위한 HARQ-ACK 메시지의 이용은 업링크 및 다운링크 채널 양쪽 모두에 대해 동작할 수 있다. 도 7의 방법(700)은 다운링크 채널에 대한 반복된 전송의 조기 종료를 설명한다. 대조적으로, 도 8은 업링크 채널에 대한 반복된 전송의 조기 종료를 설명한다. 이것은 전술된 동작들을 미러링하는데, 여기서, 다운링크 PDSCH는 업링크 PUSCH로 대체되고, eNB 및 UE 이 방법에서 위치를 전환한다.
따라서, 방법(800)에서, PUSCH 상에서 eNB(150, 250 또는 550) 등의 eNB로의 블록 데이터의 전송은 동작 810에서 개시되고, 블록 데이터의 전송은, 측정된 채널 품질에 기초한 재전송 기간 동안의 블록 데이터의 반복된 전송을 포함한다. 그러면, UE는 재전송 기간에 걸쳐 설정된 재전송 횟수에 기초하여 스케줄링된 반복된 전송을 계속 진행한다.
재전송 기간 동안, UE는 동작 815의 일부로서 eNB로부터 반복된 전송의 조기 종료 메시지를 수신한다. 동작 815에서의 조기 종료 메시지는 eNB에서의 블록 데이터의 성공적인 디코딩으로 인해 수신된 HARQ-ACK 메시지이다. 동작 820에서, UE는, 재전송 기간 동안 반복된 전송의 조기 종료 메시지의 수신에 응답하여 블록 데이터의 반복된 전송의 하나 이상의 추가 반복을 종료한다.
일부 실시예들에서의 채널 측정치는 업링크 및 다운링크 조기 종료 양쪽 모두에 대해 eNB에 의해 관리될 수 있다. 일부 실시예들에서, 동일한 채널 측정들 및 이들 채널 측정들로부터 유도된 동일한 품질 값들은, 업링크 및 다운링크 통신 양쪽 모두에 대한 재전송 값 및 기간을 설정하는데 이용될 수 있다. 시스템 동작 동안에, eNB는, 재전송 값 및 재전송 기간이 시스템 동작 동안에 시간에 따라 변하도록, 이러한 채널 측정치의 업데이트 또는 추가 인스턴스를 관리할 수 있다. 일부 실시예들에서, 채널 품질이 충분히 양호하거나, 품질 값들이 미리 결정된 임계값 이상인 경우, 제한된 횟수의 재전송 및 조기 종료에 대응하는 제한된 이익으로 인해 반복된 전송의 조기 종료가 디스에이블될 수 있다.
도 9는 조기 종료의 양태를 설명한다. 도 9의 전송 예시도는 도 6b의 전송 예시도와 유사하지만, 도 9는 PDSCH 전송들(932A-Z) 동안 발생하는 eNB TX(950)로부터의 데이터 블록의 복수의 전송들을 명시적으로 도시한다. 일부 실시예들에서, 채널 품질 데이터가 재전송 윈도우(955)를 설정하는데 이용되고 채널(931)은 재전송 윈도우(955)의 끝에서 표준 HARQ-ACK/NACK 메시지(933)를 스케줄링할 때, 채널(931)은 또한, 반복된 전송의 조기 종료를 위한 메시지로서 역할하는 선택사항적인 중간 HARQ-ACK 메시지들(939A-C)을 스케줄링하는데 이용될 수 있다. 이러한 실시예들에서, 데이터 블록이 성공적으로 디코딩된 후에 전송 스케줄을 인터럽트하기보다는, 수신 디바이스는 성공적인 디코딩에 후속하여 다음번 스케줄링된 HARQ-ACK 메시지(939)까지 기다린다. 그러면, 이 스케줄링된 블록은 조기 종료 메시지를 전송하는데 이용된다. 예를 들어, UE가 스케줄링된 HARQ-ACK 메시지(939A) 이전에 데이터 블록을 성공적으로 디코딩하면, UE TX(901)는 eNB로의 반복된 전송의 조기 종료 메시지를 전송하고, 그 직후에 메시지가 수신된다고 가정하면, PDSCH 전송들(932D-Z)에서의 모든 재전송은 취소되어, 다른 전송들을 위해 자원들을 자유롭게 할 것이다.
UE가, 스케줄링된 HARQ-ACK 메시지(939A)에 대한 타이밍이 경과되었지만 HARQ-ACK 메시지(939B)에 대한 타이밍이 경과하기 이전에 데이터 블록을 디코딩한다면, UE TX(901)는 HARQ-ACK 메시지(939A)에 대한 타이밍 동안 전송을 스킵하거나, 그 전송 기간을 다른 데이터를 위해 이용할 수 있다. HARQ-ACK 메시지(939B)가 이용될 것이고, 성공적으로 전송되면, PDSCH 전송들(932N-Z)이 취소되고, 그 자원들은 다른 전송들을 위해 자유롭게 된다.
UE가, 스케줄링된 HARQ-ACK 메시지(939C)에 대한 타이밍 이후까지 데이터 블록을 디코딩하지 않으면, UE TX(901)는 반복된 전송의 조기 종료 메시지를 전송하지 않고, 단순히 데이터가 성공적으로 디코딩되었는지 여부를 나타내는 표준 HARQ-ACK/NACK 메시지(933A)를 재전송 윈도우(955)의 끝에서 전송할 것이다.
다양한 실시예에서, HARQ-ACK 메시지(939) 스케줄링은 상이한 방식들로 관리될 수 있다. 한 실시예에서, 미리 결정된 자원의 테이블 또는 다른 특별히 스케줄링된 타이밍이 재전송 윈도우 내에서 이용되어, 반복된 전송의 조기 종료 기능을 이용하는 모든 전송에 대해 표준 패턴이 이용되게 할 수 있다.
또 다른 실시예에서, 디바이스는 (n+4)번째 업링크 서브프레임으로부터 시작하는 PUCCH 1a/1b 자원 상에서 중간 HARQ-ACK 피드백을 전송할 수 있고, 여기서, 다운링크 서브프레임 n은 PDSCH 트랜스포트 블록의 f*N번째(상이한 실시예들에서 반올림되거나 반내림됨) 반복된 전송에 대응하며, 여기서 N은 트랜스포트 블록에 대한 반복된 서브프레임의 총 개수이고 인수 f는 0과 1 사이의 값이다.
역시 또 다른 실시예에서, 복수의 중간 HARQ-ACK 피드백 스케줄링 인스턴스가 셀-특유 또는 UE-특유 기반으로 설정될 수 있다. 중간 HARQ-ACK 메시지(939)를 운반하는 PPUCCH 전송도 역시 주어진 채널 조건에서 복수의 서브프레임에 걸쳐 반복될 필요가 있다면, 일부 실시예들은 HARQ-ACK 메시지(939)가 충돌을 피하게끔 충분하게 확산되도록 구조화될 수 있다. 즉, HARQ-ACK 메시지(939A)는, 메시지의 반복된 전송을 감안할 때 충돌을 피하기 위해 HARQ-ACK 메시지(939B)와 충분히 분리되어야 한다.
UE-특유의 구성의 경우, 재전송 윈도우 내에서 스케줄링된 중간 HARQ-ACK 피드백에 대해 0 < f < 1인 인자에 의해 주어지는 수 및 위치는 명시적으로 구성되거나 EC 모드에서 동작하는 UE에 대해 설정된 EC 레벨의 함수로서 명시될 수 있다.
PUCCH에서 정규 HARQ-ACK 전송(예를 들어, 표준 HARQ-ACK/NACK 메시지(933A))와 중간 HARQ-ACK 전송(예를 들어, 중간 HARQ-ACK 메시지들(939A-C)) 사이의 자원 충돌을 피하기 위하여, 일부 실시예들에서, 상이한 PUCCH 시작 오프셋들의 구성을 통해 별개의 영역들이 정의될 수 있다. 일부 실시예들에서, 시작 오프셋 값 N(1)PUCCH_interm을 이용한 N(1)PUCCH 값들 또는 전송들은 이 파라미터가 상위 계층 시그널링을 이용하여 셀-특유의 또는 UE-특유의 방식으로 구성되는 경우에 동작할 수 있다. 일부 실시예들에서, 다운링크 스케줄링 할당 또는 nCCE를 운반하는 원래의 다운링크 제어 채널 전송의 시작 CCE가 이 오프셋을 위해 이용될 수 있다.
중첩하는 재전송 윈도우들과 함께 발생하는 복수의 중간 HARQ-ACK 피드백 보고 인스턴스들을 수반한 실시예에서, 상이한 인스턴스들의 중간 HARQ-ACK 피드백을 전송하는 상이한 UE들 사이에서 PUCCH 자원 충돌을 피하기 위해 각각의 데이터 전송 및 연관된 HARQ-ACK 피드백에 대응하는 복수의 시작 오프셋이 구성된다.
예 1은, 머신-타입 통신(MTC)을 위한 진화된 노드 B(evolved node B)(eNB)의 장치이며, 이 장치는: 재전송 윈도우 동안 제1 사용자 장비(UE)로부터 물리적 업링크 공유 채널(PUSCH) 상에서 블록 데이터의 하나 이상의 전송을 수신하도록 구성된 수신 회로; 상기 블록 데이터의 상기 하나 이상의 전송을 이용하여 상기 블록 데이터가 상기 eNB에서 성공적으로 디코딩되었다고 결정하고, 다운링크 제어 정보(DCI) 메시지를 포함하는 반복된 전송의 조기 종료 메시지를 생성하도록 구성된 제어 회로; 및 상기 재전송 윈도우 동안 반복된 전송의 조기 종료 메시지를 전송하도록 구성된 전송 회로를 포함한다.
예 2에서, 예 1의 주제는 선택사항으로서, 상기 제어 회로가 또한, 상기 블록 데이터의 하나 이상의 전송의 수신 이전에 하나 이상의 측정치에 기초하여 PUSCH와 연관된 채널 품질을 결정하고, 상기 채널 품질에 기초하여 재전송 값을 선택하도록 구성되며, 상기 재전송 값은 상기 재전송 윈도우와 연관된다는 사항을 포함한다.
예 3에서, 예 1 내지 예 2의 임의의 하나 이상의 예의 주제는 선택사항으로서, 상기 DCI 메시지가, C-RNTI로 스크램블링된 CRC 패리티 비트들, 및 0으로 설정된 새로운 데이터 표시자(NDI) 값을 포함하는 DCI 포맷 0 메시지를 포함한다는 사항을 포함한다.
예 4에서, 예 1 내지 예 3의 주제는 선택사항으로서, 상기 DCI 포맷 0 메시지가, 00으로 설정된 PUSCH에 대한 TPC 커맨드; CS_val로 설정된 순환 시프트 DM RS; 11111로 설정된 변조 및 코딩 방식 리던던시 버전; 모두 '1'을 포함하는 자원 블록 할당 및 홉핑 자원 할당 값을 더 포함한다는 사항을 포함한다.
예 5에서, 예 1 내지 예 4 중 어느 임의의 하나 이상의 주제는 선택사항으로서, 상기 eNB는 재전송 윈도우 동안 PUSCH 상에서 복수의 트랜스포트 블록으로부터 데이터를 수신하도록 구성되고, 상기 블록 데이터는 상기 복수의 트랜스포트 블록 중의 제1 트랜스포트 블록과 연관되며; 상기 제어 회로는 상기 블록 데이터의 상기 하나 이상의 전송의 제1 서브프레임과 반복된 전송들의 조기 종료 메시지의 제1 서브프레임 사이의 타이밍 관계에 기초하여 상기 블록 데이터를 반복된 전송의 조기 종료 메시지와 연관시키도록 구성된다는 사항을 포함한다.
예 6에서, 예 1 내지 예 5 중 임의의 하나 이상의 주제는 선택사항으로서, 상기 eNB가 재전송 윈도우 동안 PUSCH 상에서 복수의 트랜스포트 블록들로부터 데이터를 수신하도록 구성되고, 상기 블록 데이터는 상기 복수의 트랜스포트 블록 중의 제1 트랜스포트 블록과 연관되며; 상기 제어 회로는 상기 복수의 트랜스포트 블록들 각각을 하이브리드 자동 반복 요청(HARQ) 확인응답(HARQ-ACK) 프로세스 번호와 연관시키도록 구성되며; 상기 DCI 메시지는 상기 제1 트랜스포트 블록과 연관된 제1 HARQ-ACK 프로세스 번호를 포함한다는 사항을 포함한다.
예 7에서, 예 6의 주제는 선택사항으로서, 상기 DCI 메시지가 순환 시프트 비트 필드 및 새로운 데이터 표시자(NDI)를 더 포함한다는 사항을 포함한다.
예 8에서, 예 1 내지 예 7 중 임의의 하나 이상의 주제는 선택사항으로서, 상기 eNB는 PUSCH가 재전송 윈도우 동안 다운링크 서브프레임들에 산재되도록 반이중 주파수 분할 듀플렉스(HD-FDD) 동작 모드에서 상기 제1 UE와 통신하도록 구성된다는 사항을 포함한다.
예 9에서, 예 1 내지 예 8 중 임의의 하나 이상의 주제는 선택사항으로서, 상기 전송 회로가 또한, 제2 재전송 윈도우 동안 제1 사용자 장비(UE)에게 물리적 다운링크 공유 채널(PDSCH) 상에서 제2 블록 데이터의 하나 이상의 전송을 전달하도록 구성되고; 상기 제어 회로는 또한, 상기 PDSCH 상에서 상기 제1 UE로의 상기 제2 블록 데이터의 전송 ―상기 제2 블록 데이터의 전송은 상기 제2 재전송 윈도우 동안 상기 제2 블록 데이터의 반복된 전송을 포함함― 을 개시하고, 상기 제2 재전송 윈도우 동안 하이브리드 자동 반복 요청(HARQ) 확인응답(HARQ-ACK) 메시지를 포함하는 상기 제1 UE로부터의 반복된 전송의 제2 조기 종료 메시지의 수신 ―상기 반복된 전송의 제2 조기 종료 메시지는 상기 제2 재전송 윈도우의 완료 이전에 상기 제1 UE에서의 상기 제2 블록 데이터의 제2 디코딩에 기초함― 을 관리하며, 상기 제2 재전송 윈도우 동안에 상기 반복된 전송의 제2 조기 종료 메시지의 수신에 응답하여 상기 제2 블록 데이터의 반복된 전송을 종료하도록 구성된다는 사항을 포함한다.
예 10에서, 예 9의 주제는 선택사항으로서, 재전송 윈도우와 제2 재전송 윈도우는 둘 다 동일한 제1 채널 품질 측정에 기초하여 결정된다는 사항을 포함한다.
예 11에서, 예 1 내지 예 10 중 임의의 하나 이상의 주제는 선택사항으로서, 상기 HARQ-ACK 메시지는 긍정 확인응답 메시지로 구성된다는 사항을 포함한다.
예 12에서, 예 1 내지 예 11 중 임의의 하나 이상의 주제는 선택사항으로서, 상기 제2 재전송 윈도우는 선택된 서브프레임 재전송 개수에 기초한다는 사항을 포함한다.
예 13에서, 예 1 내지 예 12 중 임의의 하나 이상의 주제는 선택사항으로서, 상기 PDSCH는 상기 PDSCH의 상기 제2 블록 데이터의 (n+4)번째 업로드 서브프레임으로부터 시작하는 물리적 업링크 제어 채널(PUCCH) 상에서 스케줄링된 HARQ-ACK 피드백과 연관되고, 다운링크 서브프레임 n은 (f*N)에 대응하며, N은 선택된 서브프레임 재전송 개수이고, 0 < f < 1이라는 사항을 포함한다.
예 14에서, 예 13의 주제는 선택사항으로서, PUCCH 상에서 스케줄링된 HARQ-ACK 피드백은 복수의 서브프레임들과 연관되고; 상기 복수의 서브프레임들 중 제1 서브프레임은 f = 0.25의 경우 제1 n에 기초하며; 상기 복수의 서브프레임들 중 제2 서브프레임은 f = 0.5의 경우 제2 n에 기초하고; 상기 복수의 서브프레임들 중 제3 서브프레임은 f = 0.75의 경우 제3 n에 기초한다는 사항을 포함한다.
예 15에서, 예 1 내지 예 14 중 임의의 하나 이상의 주제는 선택사항으로서, 상기 수신 회로는 또한, 제3 재전송 윈도우 동안 상기 제1 사용자 장비(UE)로부터 제2 물리적 업링크 공유 채널(PUSCH) 상에서 제3 블록 데이터의 하나 이상의 전송을 수신하도록 구성되고; 상기 제어 회로는 또한, 상기 제3 블록 데이터의 상기 하나 이상의 전송을 이용하여 상기 제3 블록 데이터가 상기 eNB에서 성공적으로 디코딩되었다고 결정하고, 제2 하이브리드 자동 반복 요청(HARQ) 확인응답(HARQ-ACK) 메시지를 포함하는 반복된 전송의 제3 조기 종료 메시지를 생성하도록 구성되며; 상기 전송 회로는 또한, 상기 제3 재전송 윈도우 동안 상기 반복된 전송의 제3 조기 종료 메시지를 전송하도록 구성된다는 사항을 포함한다.
예 16은, 하나 이상의 프로세서에 의해 실행될 때, 머신-타입 통신(MTC)을 위한 eNB(evolved node B)를 구성하는 명령어들을 포함하는 비-일시적 컴퓨터 판독가능한 매체이고, 상기 명령어들은 : 물리적 업링크 공유 채널(PUSCH; Physical Uplink Shared Channel)과 연관된 하나 이상의 측정치에 기초하여 사용자 장비(UE)에 대한 채널 접속 품질을 결정하는 단계; 상기 채널 품질에 기초하여 재전송 값 ―상기 재전송 값은 재전송 윈도우와 연관됨― 을 선택하는 단계; 상기 재전송 윈도우 동안 상기 UE로부터 상기 PUSCH 상에서 블록 데이터의 하나 이상의 전송을 수신하는 단계; 상기 블록 데이터의 상기 하나 이상의 전송을 이용하여 상기 블록 데이터가 상기 eNB에서 성공적으로 디코딩되었다고 결정하는 단계; 및 상기 재전송 윈도우 동안 다운링크 제어 정보(DCI) 메시지를 포함하는 반복된 전송의 조기 종료 메시지를 전송하는 단계를 포함한다.
예 17에서, 예 16의 주제는 선택사항으로서, 상기 DCI 메시지가 DCI 포맷 0 메시지를 포함하고; 상기 블록 데이터는, 상기 블록 데이터의 하나 이상의 전송의 제1 서브프레임과 상기 반복된 전송의 조기 종료 메시지의 제1 서브프레임 사이의 타이밍 관계에 기초하여 상기 반복된 전송의 조기 종료 메시지와 연관된다는 사항을 포함한다.
예 18에서, 상기 예들 중 임의의 하나 이상의 예들의 주제는 선택사항으로서, 상기 DCI 메시지가 상기 블록 데이터를 식별하는데 이용되는 하이브리드 자동 반복 요청(HARQ) 확인응답(HARQ-ACK) 프로세스 번호를 포함하는 커스텀 DCI 포맷을 포함한다는 사항을 포함한다.
예 19는, 머신-타입 통신(MTC)을 위한 eNB(evolved node B)의 장치이며, 이 장치는: 재전송 윈도우 동안 제1 사용자 장비(UE)로부터 물리적 업링크 공유 채널(PUSCH) 상에서 블록 데이터의 하나 이상의 전송을 수신하도록 구성된 수신 회로; 상기 블록 데이터의 상기 하나 이상의 전송의 수신 이전에 하나 이상의 측정치에 기초하여 상기 PUSCH와 연관된 채널 품질을 결정하고, 상기 채널 품질에 기초하여 재전송 값 ―상기 재전송 값은 상기 재전송 윈도우와 연관됨― 을 선택하며, 상기 블록 데이터의 상기 하나 이상의 전송을 이용하여 상기 블록 데이터가 상기 eNB에서 성공적으로 디코딩되었다고 결정하고; 하이브리드 자동 반복 요청(HARQ) 확인응답(HARQ-ACK) 메시지를 포함하는 반복된 전송의 조기 종료 메시지를 생성하도록 구성된 제어 회로; 및 상기 재전송 윈도우 동안 상기 반복된 전송의 조기 종료 메시지를 전송하도록 구성된 전송 회로를 포함한다.
예 20에서, 상기 임의의 예들의 주제는 선택사항으로서, 상기 재전송 윈도우가 선택된 서브프레임 재전송 개수에 기초하고; 상기 PUSCH는 상기 PDSCH 내의 블록 데이터의 (n+4)번째 업로드 서브프레임으로부터 시작하는 물리적 업링크 제어 채널(PUCCH) 상에서 스케줄링된 주기적 중간 HARQ-ACK 피드백과 연관되고, 다운링크 서브프레임 n은 (f*N)에 대응하고, 여기서 N은 선택된 서브프레임 재전송 개수이며, 0 < f < 1이라는 사항을 포함한다.
예 21에서, 예 q 내지 예 20의 임의의 하나 이상의 주제는 선택사항으로서, 상기 eNB는, 정규 HARQ-ACK 피드백과의 충돌을 피하기 위해 셀-특유의 또는 UE-특유의 방식으로 상기 주기적 중간 HARQ-ACK 피드백을 스케줄링하도록 구성된다는 사항을 포함한다.
예 22에서, 예 1 내지 예 21의 주제는 선택사항으로서, 상기 주기적 중간 HARQ-ACK 피드백은 상위 계층 시그널링을 통해 스케줄링된다는 사항을 포함한다.
예 23에서, 예 1 내지 예 22의 주제는 선택사항으로서, 상기 주기적 중간 HARQ-ACK 피드백에 대한 PUCCH 자원은, 다운링크 스케줄링 할당을 운반하는 초기 다운링크 제어 채널 전송의 시작 CCE 인덱스로부터 유도된다는 사항을 포함한다.
예 24에서, 예 1 내지 예 23의 주제는 선택사항으로서, 상기 셀-특유의 또는 UE-특유의 스케줄링 방식은, 상기 eNB와 통신하는 상이한 UE들 사이의 PUCCH 자원 충돌을 피하기 위해 상기 주기적 중간 HARQ-ACK 피드백의 각각의 인스턴스에 대응하여 구성되는 변화된 시작 오프셋들에 기초한다는 사항을 포함한다.
예 25는, 하나 이상의 프로세서에 의해 실행될 때, 머신-타입 통신(MTC)을 위한 진화된 노드 B(eNB)를 구성하는 명령어들을 포함하는 비-일시적 컴퓨터 판독가능한 매체이고, 상기 명령어들은: 물리적 업링크 공유 채널(PUSCH; Physical Uplink Shared Channel)과 연관된 하나 이상의 측정치에 기초하여 사용자 장비(UE)에 대한 채널 접속 품질을 결정하는 것; 상기 채널 품질에 기초하여 재전송 값 ―상기 재전송 값은 재전송 윈도우와 연관됨― 을 선택하는 것; 상기 재전송 윈도우 동안 상기 UE로부터 상기 PUSCH 상에서 블록 데이터의 하나 이상의 전송을 수신하는 것; 상기 블록 데이터의 상기 하나 이상의 전송을 이용하여 상기 블록 데이터가 상기 eNB에서 성공적으로 디코딩되었다고 결정하는 것; 및 상기 재전송 윈도우 동안 하이브리드 자동 반복 요청(HARQ) 확인응답(HARQ-ACK) 메시지를 포함하는 반복된 전송의 조기 종료 메시지를 전송하는 것을 포함한다.
예 26은, 머신-타입 통신(MTC)을 위한 진화된 노드 B(eNB)의 장치이며, 이 장치는: 재전송 윈도우 동안 물리적 다운링크 공유 채널(PDSCH) 상에서 블록 데이터의 하나 이상의 전송을 제1 사용자 장비(UE)에 전달하도록 구성된 전송 회로; 상기 블록 데이터의 상기 하나 이상의 전송의 전달 이전에 하나 이상의 측정치에 기초하여 상기 PDSCH와 연관된 채널 품질을 결정하고, 상기 채널 품질에 기초하여 재전송 값 ―상기 재전송 값은 상기 재전송 윈도우와 연관됨― 을 선택하며, 상기 PDSCH 상에서 상기 제1 UE로의 상기 볼록 데이터의 전송 ―상기 블록 데이터의 전송은, 상기 측정된 채널 품질에 기초하여 상기 재전송 윈도우 동안 상기 블록 데이터의 반복된 전송을 포함함― 을 개시하고, 상기 재전송 윈도우 동안 하이브리드 자동 반복 요청(HARQ) 확인응답(HARQ-ACK) 메시지를 포함하는 상기 제1 UE로부터의 반복된 전송의 조기 종료 메시지 ―상기 반복된 전송의 조기 종료 메시지는, 상기 재전송 윈도우의 완료 이전의 상기 블록 데이터의 디코딩에 기초함― 의 수신을 관리하고, 상기 재전송 윈도우 동안 상기 반복된 전송의 조기 종료 메시지의 수신에 응답하여 상기 블록 데이터의 반복된 전송을 종료하도록 구성된 제어 회로를 포함한다.
예 27은, 머신-타입 통신(MTC)을 위한 사용자 장비(UE)의 장치이며, 이 장치는: 물리적 업링크 공유 채널(PUSCH)에 대한 측정된 채널 품질과 연관된 eNB(evolved node B)로부터의 재전송 정보를 수신하도록 구성된 수신 회로; 및 상기 PUSCH 상에서 상기 eNB로의 블록 데이터의 전송 ―상기 블록 데이터의 전송은, 상기 측정된 채널 품질에 기초한 재전송 윈도우 동안의 상기 블록 데이터의 반복된 전송을 포함함― 을 개시하고, 다운링크 제어 정보(DCI) 포맷 0 메시지를 포함하는 반복된 전송의 조기 종료 메시지를 수신하며; 상기 재전송 윈도우 동안 상기 반복된 전송의 조기 종료 메시지의 수신에 응답하여 상기 블록 데이터의 반복된 전송을 종료하도록 구성된 제어 회로를 포함한다.
예 28은, 머신-타입 통신(MTC)을 위한 사용자 장비(UE)의 장치이며, 이 장치는: 물리적 업링크 공유 채널(PUSCH)과 연관된 측정된 채널 품질에 기초하여 eNB(evolved node B)로부터 재전송 정보를 수신하도록 구성된 수신 회로; 및 상기 PUSCH 상에서 상기 eNB로의 블록 데이터의 전송 ―상기 블록 데이터의 전송은, 상기 측정된 채널 품질에 기초한 재전송 윈도우 동안의 상기 블록 데이터의 반복된 전송을 포함함― 을 개시하고, 상기 재전송 윈도우 동안 하이브리드 자동 반복 요청(HARQ) 확인응답(HARQ-ACK) 메시지를 포함하는 반복된 전송의 조기 종료 메시지의 수신을 관리하며, 상기 재전송 윈도우 동안 상기 반복된 전송의 조기 종료 메시지의 수신에 응답하여 상기 블록 데이터의 반복된 전송을 종료하도록 구성된 제어 회로를 포함한다.
예 29는, 머신-타입 통신(MTC)을 위한 사용자 장비(UE)의 장치이며, 이 장치는: 물리적 다운링크 공유 채널(PDSCH)과 연관된 측정된 채널 품질에 기초하여 eNB(evolved node B)로부터 재전송 정보를 수신하고, 재전송 윈도우 동안 상기 eNB로부터 물리적 업링크 공유 채널(PUSCH) 상에서 블록 데이터의 하나 이상의 전송을 수신하도록 구성된 수신 회로; 상기 블록 데이터의 상기 하나 이상의 전송을 이용하여 상기 블록 데이터가 상기 UE에서 성공적으로 디코딩되었다고 결정하고, 상기 블록 데이터가 성공적으로 디코딩되었다는 결정에 응답하여 하이브리드 자동 반복 요청(HARQ) 확인응답(HARQ-ACK) 메시지를 포함하는 반복된 전송의 조기 종료 메시지를 생성하도록 구성된 제어 회로; 및 상기 재전송 윈도우의 끝 이전에 상기 반복된 전송의 조기 종료 메시지를 상기 eNB에 전송하도록 구성된 전송 회로를 포함한다.
예 30은, 머신-타입 통신(MTC)을 위한 사용자 장비(UE)의 장치이며, 이 장치는: 물리적 다운링크 공유 채널(PDSCH)과 연관된 측정된 채널 품질에 기초하여 eNB(evolved node B)로부터의 재전송 정보를 처리하고, 재전송 윈도우 동안 상기 eNB로부터의 물리적 업링크 공유 채널(PUSCH) 상의 블록 데이터의 하나 이상의 전송을 처리하며; 상기 블록 데이터의 상기 하나 이상의 전송을 이용하여 상기 블록 데이터가 상기 UE에서 성공적으로 디코딩되었다고 결정하고; 상기 블록 데이터가 성공적으로 디코딩되었다는 결정에 응답하여, 상기 블록 데이터가 성공적으로 디코딩되었다는 결정에 응답하여 하이브리드 자동 반복 요청(HARQ) 확인응답(HARQ-ACK) 메시지를 포함하는 반복된 전송의 조기 종료 메시지를 생성하도록 구성된 제어 회로를 포함한다.
예 31은 장치를 갖는 상기 임의의 예로서의 실시예이며, 상기 장치는: 안테나 및 상기 제어 회로에 결합되어, 상기 안테나로부터 상기 재전송 정보 및 상기 블록 데이터를 수신하고 상기 재전송 정보 및 상기 블록 데이터를 상기 제어 회로에 전달하도록 구성된 수신 회로; 및 상기 안테나 및 상기 제어 회로에 결합되어, 상기 재전송 윈도우의 끝 이전에 상기 반복된 전송의 조기 종료 메시지를 상기 eNB에 전송하도록 구성된 전송 회로를 포함한다.
또한, 전술된 예들의 특정한 조합들에 추가하여, 장치 또는 매체의 요소의 추가 구현들을 상세하게 설명하는 임의의 예는 임의의 다른 대응하는 장치 또는 매체에 적용되거나, 또 다른 장치 또는 매체와 연계하여 구현될 수 있다. 따라서, 상기 각각의 예는, 시스템에서의 구현으로서 및 요소들의 조합으로서 다양한 방식으로 각각의 다른 예와 결합되어 각각의 예 또는 예들의 그룹의 조합으로부터의 실시예를 생성할 수 있다.
도 10은 일부 예시적 실시예들에 따른 컴퓨팅 머신의 양태를 나타낸다. 여기서 설명된 실시예들은 임의의 적절히 구성된 하드웨어 및/또는 소프트웨어를 이용하여 시스템(1000) 내에 구현될 수 있다. 도 10은, 일부 실시예들에 대해, 적어도 도시된 바와 같이 서로 결합된, 무선 주파수(RF) 회로(1035), 기저대역 회로(1030), 애플리케이션 회로(1025), 메모리/스토리지(1040), 디스플레이(1005), 카메라(1020), 센서(1015), 및 입력/출력(I/O) 인터페이스(1010)를 포함하는 예시적 시스템(1000)을 나타낸다.
애플리케이션 회로(1025)는, 하나 이상의 단일-코어 또는 다중-코어 프로세서 등의 그러나 이것으로 제한되지 않는 회로를 포함할 수 있다. 프로세서(들)는 범용 프로세서와 전용 프로세서(예를 들어, 그래픽 프로세서, 애플리케이션 프로세서 등)의 임의의 조합을 포함할 수 있다. 프로세서들은 메모리/스토리지(1040)와 결합되어 메모리/스토리지(1040)에 저장된 명령어들을 실행하여 다양한 애플리케이션 및/또는 운영 체제가 시스템(1000) 상에서 실행될 수 있게 하도록 구성될 수 있다.
기저대역 회로(1030)는, 하나 이상의 단일-코어 또는 다중-코어 프로세서 등의 그러나 이것으로 제한되지 않는 회로를 포함할 수 있다. 프로세서(들)은 기저대역 프로세서를 포함할 수 있다. 기저대역 회로(1030)는 RF 회로(1035)를 통한 하나 이상의 무선 네트워크와의 통신을 가능케하는 다양한 무선 제어 기능을 취급할 수 있다. 무선 제어 기능은, 신호 변조, 인코딩, 디코딩, 무선 주파수 시프팅 등을 포함할 수 있지만, 이것으로 제한되지 않는다. 일부 실시예들에서, 기저대역 회로(1030)는 하나 이상의 무선 기술과 호환되는 통신을 제공할 수 있다. 예를 들어, 일부 실시예들에서, 기저대역 회로(1030)는 EUTRAN(evolved universal terrestrial radio access network), 기타의 무선 메트로폴리탄 영역 네트워크(WMAN), 무선 근거리 통신망(WLAN), 또는 무선 개인 영역 네트워크(WPAN)와의 통신을 지원할 수 있다. 기저대역 회로(1030)가 하나보다 많은 무선 프로토콜의 무선 통신을 지원하도록 구성된 구현예들은 멀티-모드 기저대역 회로라 부를 수 있다.
다양한 실시예에서, 기저대역 회로(1030)는, 기저대역 주파수에 있는 것으로 엄격하게 간주되지 않는 신호와 함께 동작하는 회로를 포함할 수 있다. 예를 들어, 일부 실시예들에서, 기저대역 회로(1030)는, 기저대역 주파수와 무선 주파수 사이에 있는 중간 주파수를 갖는 신호들과 함께 동작하는 회로를 포함할 수 있다.
RF 회로(1035)는 비고체 매체(non-solid medium)를 통한 변조된 전자기 복사를 이용하여 무선 네트워크와의 통신을 가능케할 수 있다. 다양한 실시예에서, RF 회로(1035)는, 무선 네트워크와의 통신을 가능케하기 위해 스위치, 필터, 증폭기 등을 포함할 수 있다.
다양한 실시예에서, RF 회로(1035)는 무선 주파수에 있는 것으로 엄격하게 간주되지 않는 신호들과 함께 동작하는 회로를 포함할 수 있다. 예를 들어, 일부 실시예들에서, RF 회로(1035)는, 기저대역 주파수와 무선 주파수 사이에 있는 중간 주파수를 갖는 신호들과 함께 동작하는 회로를 포함할 수 있다.
다양한 실시예에서, UE 또는 eNB에 관하여 앞서 논의된 전송기 회로 또는 수신기 회로는, 전체적으로 또는 부분적으로, RF 회로(1035), 기저대역 회로(1030), 및/또는 애플리케이션 회로(1025) 중 하나 이상에서 구현될 수 있다.
일부 실시예들에서, 기저대역 프로세서의 구성 컴포넌트들의 일부 또는 전부는 여기서 설명된 임의의 실시예의 양태들을 구현하는데 이용될 수 있다. 이러한 실시예들은, 시스템 온 칩(SOC; system on a chip) 상에 함께 구현될 수 있는 기저대역 회로(1030), 애플리케이션 회로(1025), 및/또는 메모리/스토리지(1040)에 의해 구현될 수 있다.
메모리/스토리지(1040)는, 예를 들어, 시스템(1000)에 대한 데이터 및/또는 명령어를 로딩 및 저장하는데 이용될 수 있다. 한 실시예에 대한 메모리/스토리지(1040)는, 적절한 휘발성 메모리(예를 들어, 동적 랜덤 액세스 메모리(DRAM)) 및/또는 비휘발성 메모리(예를 들어, 플래시 메모리)의 임의의 조합을 포함할 수 있다.
다양한 실시예에서, I/O 인터페이스(1010)는, 시스템(1000)과의 사용자 상호작용을 가능하게 하도록 설계된 하나 이상의 사용자 인터페이스 및/또는 시스템(1000)과의 주변 컴포넌트 상호작용을 가능하게 하도록 설계된 주변 컴포넌트 인터페이스를 포함할 수 있다. 사용자 인터페이스는, 물리적 키보드 또는 키패드, 터치패드, 스피커, 마이크로폰 등을 포함할 수 있지만 이것으로 제한되지 않는다. 주변 컴포넌트 인터페이스는, 비휘발성 메모리 포트, USB(universal serial bus) 포트, 오디오 잭, 및 전원 인터페이스를 포함할 수 있지만 이것으로 제한되지 않는다.
다양한 실시예에서, 센서(1015)는, 시스템(1000)에 관련된 환경 상태 및/또는 위치 정보를 결정하기 위해 하나 이상의 감지 디바이스를 포함할 수 있다. 일부 실시예에서, 센서(1015)는, 자이로 센서, 가속도계, 근접 센서, 주변광 센서, 및 위치결정 유닛을 포함할 수 있지만, 이것으로 제한되지 않는다. 위치결정 유닛은 또한, 위치결정 네트워크(예를 들어, GPS(global positioning system) 위성)의 컴포넌트들과 통신하는 기저대역 회로(1030) 및/또는 RF 회로(1035)의 일부이거나 이와 상호작용할 수 있다. 다양한 실시예에서, 디스플레이(1005)는 디스플레이(예를 들어, 액정 디스플레이, 터치스크린 디스플레이 등)를 포함할 수 있다.
다양한 실시예에서, 시스템(1000)은, 랩탑 컴퓨팅 디바이스, 태블릿 컴퓨팅 디바이스, 넷북, 울트라북, 스마트폰 등의 그러나 이것으로 제한되지 않는 모바일 컴퓨팅 디바이스일 수 있다. 다양한 실시예에서, 시스템(1000)은, 더 많거나 더 적은 수의 컴포넌트, 및/또는 상이한 아키텍쳐를 가질 수 있다.
도 11은 UE(1100)로서 나타낸 예시적 UE를 도시한다. UE(1100)는, UE(101), 또는 eNB(150), 또는 여기서 설명된 임의의 디바이스의 구현일 수 있다. UE(1100)는, 기지국(BS), eNB, 또는 또 다른 타입의 무선 광역 네트워크(WWAN) 액세스 포인트 등의, 전송 스테이션과 통신하도록 구성된 하나 이상의 안테나를 포함할 수 있다. UE(1100)는, 3GPP LTE, WiMAX, HSPA(High Speed Packet Access), Bluetooth, 및 WiFi를 포함하는 적어도 하나의 무선 통신 표준을 이용하여 통신하도록 구성될 수 있다. UE(1100)는, 각각의 무선 통신 표준을 위한 별개의 안테나, 또는 복수의 무선 통신 표준을 위한 공유된 안테나를 이용하여 통신할 수 있다. UE(1100)는, WLAN, WPAN, 및/또는 WWAN에서 통신할 수 있다.
도 11은 또한, UE(1100)와의 오디오 입력 및 출력에 이용될 수 있는 마이크로폰(1120)과 하나 이상의 스피커(1112)를 도시한다. 디스플레이 스크린(1104)은, 액정 디스플레이(LCD) 스크린, 또는 OLED(Organic Light Emitting Diode) 디스플레이 등의 또 다른 타입의 디스플레이 스크린일 수 있다. 디스플레이 스크린(1104)은 터치 스크린으로서 구성될 수 있다. 터치 스크린은, 용량식, 저항식, 또는 또 다른 타입의 터치 스크린 기술을 이용할 수 있다. 애플리케이션 프로세서(1114) 및 그래픽 프로세서(1118)는 내부 메모리(1116)에 결합되어 처리 및 디스플레이 능력을 제공할 수 있다. 비휘발성 메모리 포트(1110)가 역시 이용되어 사용자에게 데이터 I/O 옵션을 제공할 수 있다. 비휘발성 메모리 포트(1110)는 또한, UE(1100)의 메모리 능력을 확장하는데 이용될 수 있다. 키보드(1106)가 UE(1100)와 통합되거나 UE(1100)에 무선으로 접속되어 추가의 사용자 입력을 제공할 수 있다. 가상 키보드도 역시 터치 스크린을 이용하여 제공될 수 있다. UE(1100)의 전면(디스플레이 스크린)측 또는 배면측 상에 위치한 카메라(1122)는 또한 UE(1100)의 하우징(1102) 내에 통합될 수 있다.
도 12은, 여기서 논의된 방법론들 중 임의의 하나 이상이 실행될 수 있고, eNB(150), UE(101), 또는 여기서 설명된 기타 임의의 디바이스를 구현하는데 이용될 수 있는 예시적 컴퓨터 시스템 머신(1200)을 나타내는 블록도이다. 다양한 대안적 실시예들에서, 머신은 독립형 디바이스(standalone device)로서 동작하거나 다른 머신들에 접속(예를 들어, 네트워킹)될 수 있다. 네트워킹된 배치에서, 머신은 서버-클라이언트 네트워크 환경에서 서버 또는 클라이언트 머신의 용량에서 동작하거나, 피어-투-피어(또는 분산형) 네트워크 환경에서 피어 머신으로서 동작할 수 있다. 머신은, 휴대형이거나 휴대형이 아닐 수 있는 개인용 컴퓨터(PC)(예를 들어, 노트북 또는 넷북), 태블릿, 셋탑 박스(STB), 게이밍 콘솔, PDA(personal digital assistant), 모바일 전화 또는 스마트폰, 웹 도구(web appliance), 네트워크 라우터, 스위치 또는 브릿지, 또는 머신에 의해 취해질 동작을 명시하는 명령어들을 (순차적 또는 기타의 방식으로) 실행할 수 있는 임의의 머신일 수 있다. 또한, 단일의 머신만이 예시되어 있지만, 용어 "머신"은, 여기서 논의된 방법론들 중 임의의 하나 이상을 수행하기 위해 개별적으로 또는 공동으로 한 세트(또는 복수 세트)의 명령어를 실행하는 머신들의 임의의 집합을 포함하는 것으로 간주되어야 할 것이다.
예시적 컴퓨터 시스템 머신(1200)은, 인터커넥트(1208)(예를 들어, 링크, 버스 등)를 통해 서로 통신하는, 프로세서(1202)(예를 들어, 중앙 처리 유닛(CPU), 그래픽 처리 유닛(GPU), 또는 양쪽 모두), 메인 메모리(1204), 및 정적 메모리(1206)를 포함한다. 컴퓨터 시스템 머신(1200)은, 비디오 디스플레이 유닛(1210), 영숫자 입력 디바이스(1212)(예를 들어, 키보드), 및 사용자 인터페이스(UI) 네비게이션 디바이스(1214)(예를 들어, 마우스)를 더 포함할 수 있다. 한 실시예에서, 비디오 디스플레이 유닛(1210), 입력 디바이스(1212) 및 UI 네비게이션 디바이스(1214)는 터치 스크린 디스플레이이다. 컴퓨터 시스템 머신(1200)은, 대용량 스토리지 디바이스(1216)(예를 들어, 드라이브 유닛), 신호 생성 디바이스(1218)(예를 들어, 스피커), 출력 제어기(1232), 전력 관리 제어기(1234), 및 (하나 이상의 안테나(1230), 트랜시버, 또는 기타의 무선 통신 하드웨어를 포함하거나 이와 동작적으로 통신할 수 있는) 네트워크 인터페이스 디바이스(1220), 및 GPS 센서, 나침반, 위치 센서, 가속도계, 또는 기타의 센서 등의 하나 이상의 센서(1228)를 추가적으로 포함할 수 있다.
스토리지 디바이스(1216)는, 여기서 설명된 방법론들 또는 기능들 중 임의의 하나 이상을 구현하거나 이에 의해 이용되는 하나 이상의 세트의 데이터 구조 및 명령어(1224)(예를 들어, 소프트웨어)가 저장되어 있는 머신-판독가능한 매체(1222)를 포함한다. 명령어(1224)는 또한, 완전히 또는 적어도 부분적으로, 메인 메모리(1204), 정적 메모리(1206) 내에, 및/또는 컴퓨터 시스템 머신(1200)에 의한 그 실행 동안에 프로세서(1202) 내에 존재할 수 있고, 메인 메모리(1204), 정적 메모리(1206), 및 프로세서(1202)는 또한 머신-판독가능한 매체를 구성한다.
머신-판독가능한 매체(1222)가 예시적 실시예에서는 단일의 매체인 것으로 예시되어 있지만, 용어 "머신-판독가능한 매체"는 하나 이상의 명령어(1224)를 저장하는 단일 매체 또는 복수의 매체(예를 들어, 중앙집중형 또는 분산형 데이터베이스, 및/또는 연관된 캐쉬 및 서버)를 포함할 수 있다. 용어 "머신 판독가능한 매체"는 또한, 머신에 의한 실행을 위한 명령어를 저장, 인코딩, 또는 운반할 수 있고 머신으로 하여금 본 개시내용의 방법론들 중 임의의 하나 이상을 수행하게 하거나, 이러한 명령어에 의해 이용되거나 이와 연관된 데이터 구조를 저장, 인코딩 또는 운반할 수 있는 임의의 유형 매체(tangible medium)를 포함하는 것으로 간주된다.
명령어(1224)는 또한, 다수의 널리 공지된 전송 프로토콜들 중 임의의 하나(예를 들어, 하이퍼텍스트 전송 프로토콜(HTTP))을 이용하는 네트워크 인터페이스 디바이스(1220)를 통한 전송 매체를 이용해 통신 네트워크(1226)를 통해 전송되거나 수신될 수 있다. 용어 "전송 매체"는, 머신에 의한 실행을 위한 명령어를 저장, 인코딩 또는 운반할 수 있고, 이러한 소프트웨어의 전달을 가능케하는 디지털 또는 아날로그 통신 신호 또는 기타의 무형의 매체를 포함하는 임의의 매체를 포함하는 것으로 간주된다.
다양한 기술들, 그 소정 양태 또는 부분들은, 플로피 디스켓, CD-ROM, 하드 드라이브, 비-일시적 컴퓨터 판독가능한 스토리지 매체, 또는 기타 임의의 머신-판독가능한 스토리지 매체와 같은 유형 매체(tangible media)로 구현된 프로그램 코드(즉, 명령어)의 형태를 취할 수도 있으며, 여기서 프로그램 코드는, 컴퓨터 등의 머신 내에 로드되어 머신에 의해 실행되며, 머신은 다양한 기술들을 실시하기 위한 장치가 된다. 프로그래머블 컴퓨터에서의 프로그램 코드 실행의 경우, 컴퓨팅 디바이스는, 프로세서, 프로세서에 의해 판독가능한 스토리지 매체(휘발성 및 비휘발성 메모리 및/또는 스토리지 요소를 포함), 적어도 하나의 입력 디바이스, 및 적어도 하나의 출력 디바이스를 포함할 수도 있다. 휘발성 및 비휘발성 메모리 및/또는 스토리지 요소는, RAM, EPROM(Erasable Programmable Readonly Memory), 플래시 드라이브, 광 드라이브, 자기 하드 드라이브, 또는 전자적 데이터를 저장하기 위한 기타의 매체일 수 있다. 기지국 및 이동국은 또한, 트랜시버 모듈, 카운터 모듈, 처리 모듈, 및/또는 클록 모듈 또는 타이머 모듈을 포함할 수 있다. 여기서 설명된 다양한 기술들을 구현하거나 이용할 수 있는 하나 이상의 프로그램들은, 애플리케이션 프로그래밍 인터페이스(API; application programming interface), 재사용가능한 컨트롤(reusable controls) 등을 이용할 수 있다. 이러한 프로그램들은 컴퓨터 시스템과 통신하기 위해 고수준 절차형 또는 객체 지향형 프로그래밍 언어로 구현될 수 있다. 그러나, 프로그램(들)은, 원한다면 어셈블리어 또는 기계어로 구현될 수도 있다. 어쨌든, 언어는 컴파일형 언어이거나 인터프리팅형 언어일 수도 있으며, 하드웨어 구현과 결합될 수도 있다.
다양한 실시예들은, 3GPP LTE/LTE-A, IEEE(Institute of Electrical and Electronic Engineers) 1202.11, 및 Bluetooth 통신 표준을 이용할 수 있다. 다양한 대안적 실시예들은, 여기서 설명된 기술들과 연계하여 다양한 다른 WWAN, WLAN, 및 WPAN 프로토콜 및 표준들을 이용할 수 있다. 이들 표준들은, 3GPP(예를 들어, HSPA+, UMTS), IEEE 1202.16(예를 들어, 1202.16p), 또는 Bluetooth(예를 들어, Bluetooth 11.0, 또는 Bluetooth Special Interest Group에 의해 정의된 유사한 표준들) 표준 패밀리들로부터의 다른 표준들을 포함하지만, 이것으로 제한되지 않는다. 다른 적용가능한 네트워크 구성들이 현재 설명되는 통신 네트워크들의 범위 내에 포함될 수 있다. 이러한 통신 네트워크들 상의 통신은, 유선이나 무선 전송 매체의 임의의 조합을 이용한, 임의 개수의 PAN, LAN, 및 WAN을 이용하여 가능하게 될 수 있다는 것을 이해할 것이다.
전술된 실시예들은, 하드웨어, 펌웨어, 및 소프트웨어 중 하나로 또는 조합으로 구현될 수 있다. 다양한 방법들 또는 기술들, 또는 그 소정 양태 또는 부분들은, 플래시 메모리, 하드 드라이브, 휴대형 스토리지 디바이스, 판독 전용 메모리(ROM), RAM, 반도체 메모리 디바이스(예를 들어, EPROM, EEPROM(Electrically Erasable Programmable Read-Only Memory)), 자기 디스크 스토리지 매체, 광학적 스토리지 매체, 및 기타 임의의 머신-판독가능한 스토리지 매체나 스토리지 디바이스 등의 유형 매체로 구현된 프로그램 코드(즉, 명령어)의 형태를 취할 수도 있으며, 여기서 프로그램 코드는, 컴퓨터 또는 네트워킹 디바이스 등의 머신 내에 로드되어 머신에 의해 실행되며, 머신은 다양한 기술들을 실시하기 위한 장치가 된다.
본 명세서에서 설명되는 기능 유닛들 또는 능력들은 그들의 구현 독립성을 더욱 특별히 강조하기 위하여 컴포넌트 또는 모듈이라 부르거나 컴포넌트 또는 모듈로서 라벨링될 수 있다는 점을 이해해야 한다. 예를 들어, 컴포넌트 또는 모듈은, 맞춤형 VLSI(very-large-scale integration) 회로나 게이트 어레이, 로직 칩 등의 기성품 반도체, 트랜지스터, 또는 기타의 개별 컴포넌트를 포함하는 하드웨어 회로로서 구현될 수 있다. 컴포넌트 또는 모듈은 또한, 필드 프로그래머블 게이트 어레이, 프로그래머블 어레이 로직, 프로그래머블 로직 디바이스 등의 프로그래머블 하드웨어 디바이스로 구현될 수도 있다. 컴포넌트 또는 모듈들은 또한, 다양한 타입의 프로세서에 의한 실행을 위해 소프트웨어로 구현될 수도 있다. 실행가능한 코드의 식별된 컴포넌트 또는 모듈은, 예를 들어, 객체, 프로시져, 또는 함수로서 조직화될 수 있는, 컴퓨터 명령어들의 하나 이상의 물리적 또는 논리적 블록들을 포함할 수 있다. 그럼에도 불구하고, 식별된 컴포넌트 또는 모듈의 실행파일들은 물리적으로 함께 위치할 필요는 없고, 논리적으로 함께 결합될 때, 컴포넌트 또는 모듈을 포함하고 그 컴포넌트 또는 모듈의 기술된 목적을 달성하는, 상이한 위치들에 저장된 이질적인 명령어들을 포함할 수 있다.
사실상, 실행가능한 코드의 컴포넌트 또는 모듈은, 단일 명령어, 또는 다수의 명령어일 수 있고, 심지어, 수 개의 상이한 코드 세그먼트들에 걸쳐, 상이한 프로그램들 사이에, 및 수 개의 메모리 디바이스들에 걸쳐 분산될 수도 있다. 유사하게, 연산 데이터는 여기서는 컴포넌트 또는 모듈들 내에서 식별되고 예시될 수 있지만, 임의의 적절한 형태로 구현되거나 임의의 적절한 타입의 데이터 구조 내에서 조직화될 수도 있다. 연산 데이터는 단일 데이터 세트로서 집합되거나, 상이한 스토리지 디바이스들을 포함한 상이한 장소들에 걸쳐 분산될 수도 있고, 적어도 부분적으로, 단순히 전자적 신호로서 시스템이나 네트워크 상에 존재할 수도 있다. 컴포넌트 또는 모듈들은, 원하는 기능을 수행하도록 동작가능한 에이전트(agent)를 포함한, 수동형 또는 능동형일 수 있다.
Claims (26)
- 기지국으로서,
무선통신(radio); 및
상기 무선통신에 동작 가능하게 연결되는 프로세서를 포함하고, 상기 프로세서는, 상기 기지국으로 하여금,
머신-타입 통신(MTC) 동안에:
재전송 윈도우(retransmission window) 동안 제1 사용자 장비(UE)로부터 물리적 업링크 공유 채널(PUSCH; Physical Uplink Shared Channel) 상에서 블록 데이터의 하나 이상의 전송을 수신하고,
상기 블록 데이터의 하나 이상의 전송을 사용하여 상기 블록 데이터가 성공적으로 디코딩되었음을 결정하고,
성공적인 디코딩의 결정에 후속하여 상기 블록 데이터를 위한 반복 전송 메시지의 조기 종료를 생성하고 - 상기 반복 전송 메시지의 조기 종료는 다운링크 제어 정보(DCI: downlink control information) 메시지를 포함하며, 상기 DCI 메시지는 모두 "1"로 설정된 자원 블록 할당을 포함함 -,
상기 재전송 윈도우 동안 상기 반복 전송 메시지의 조기 종료를 전송하게 하도록 구성되는, 기지국. - 제1항에 있어서,
상기 DCI 메시지는 0으로 설정된 전송 전력 커맨드(TPC: transmit power command)를 추가로 포함하는, 기지국. - 제1항에 있어서,
상기 DCI 메시지는 DCI 포맷 0 메시지를 포함하고,
상기 DCI 포맷 0 메시지는,
C-RNTI(cell radio network temporary identifier)로 스크램블링된 CRC(cyclic redundancy check) 패리티 비트들; 및
0으로 설정된 새로운 데이터 표시자(NDI; new data indicator) 값
을 포함하는, 기지국. - 제1항에 있어서,
상기 DCI 메시지는,
CS_val로 설정된 DM RS (demodulation reference signals)의 순환 시프트;
11111로 설정된 변조 및 코딩 방식 리던던시 버전; 또는
모두 '1'을 포함하는 홉핑 자원 할당 값
을 더 포함하는, 기지국. - 제1항에 있어서,
상기 프로세서는 또한, 상기 기지국으로 하여금
상기 재전송 윈도우 동안 상기 PUSCH 상에서 복수의 트랜스포트 블록(transport block)으로부터 데이터를 수신하도록 구성되고;
상기 블록 데이터는 상기 복수의 트랜스포트 블록 중의 제1 트랜스포트 블록과 연관되는, 기지국. - 제5항에 있어서,
상기 블록 데이터는 상기 복수의 트랜스포트 블록 중의 제1 트랜스포트 블록과 연관되며;
상기 프로세서는 또한, 상기 기지국으로 하여금, 상기 복수의 트랜스포트 블록들 각각을, 하이브리드 자동 반복 요청 확인응답(HARQ-ACK) 프로세스 번호와 연관시키도록 구성되고;
상기 DCI 메시지는 상기 제1 트랜스포트 블록과 연관되는 제1 HARQ-ACK 프로세스 번호를 포함하는, 기지국. - 사용자 장비(UE)로서,
무선통신; 및
상기 무선통신에 동작 가능하게 연결되는 프로세서를 포함하고, 상기 프로세서는, 상기 UE로 하여금,
머신-타입 통신(MTC) 동안:
재전송 윈도우 동안 물리적 업링크 공유 채널(PUSCH) 상에서 블록 데이터의 하나 이상의 전송을 기지국으로 전송하고,
상기 블록 데이터를 위한 반복 전송 메시지의 조기 종료를 상기 기지국으로부터 수신하고 - 상기 반복 전송 메시지의 조기 종료는 다운링크 제어 정보(DCI) 메시지를 포함하며, 상기 DCI 메시지는 모두 "1"로 설정된 자원 블록 할당을 포함함 -,
상기 반복 전송 메시지의 조기 종료에 응답하여 상기 블록 데이터의 전송들을 종료하게 하도록 구성되는, 사용자 장비. - 제7항에 있어서,
상기 DCI 메시지는 0으로 설정된 전송 전력 커맨드(TPC)를 추가로 포함하는, 사용자 장비. - 제7항에 있어서,
상기 DCI 메시지는 DCI 포맷 0 메시지를 포함하고,
상기 DCI 포맷 0 메시지는,
C-RNTI로 스크램블링된 CRC 패리티 비트들; 및
0으로 설정된 새로운 데이터 표시자(NDI) 값
을 포함하는, 사용자 장비. - 제7항에 있어서,
상기 DCI 메시지는,
CS_val로 설정된 DM RS (demodulation reference signals)의 순환 시프트;
11111로 설정된 변조 및 코딩 방식 리던던시 버전; 또는
모두 '1'을 포함하는 홉핑 자원 할당 값
을 더 포함하는, 사용자 장비. - 제7항에 있어서,
상기 프로세서는 또한 상기 UE로 하여금,
상기 재전송 윈도우 동안 상기 PUSCH 상에서 복수의 트랜스포트 블록으로부터의 데이터를 상기 기지국으로 전송하게 하도록 구성되고, 상기 블록 데이터는 상기 복수의 트랜스포트 블록 중의 제1 트랜스포트 블록과 연관되는, 사용자 장비. - 제11항에 있어서,
상기 블록 데이터는 상기 복수의 트랜스포트 블록 중의 제1 트랜스포트 블록과 연관되며;
상기 DCI 메시지는 상기 제1 트랜스포트 블록과 연관되는 제1 HARQ-ACK 프로세스 번호를 포함하는, 사용자 장비. - 제7항에 있어서,
상기 프로세서는 또한, 상기 UE로 하여금, 상기 PUSCH가 상기 재전송 윈도우 동안 다운링크 서브프레임들에 산재되도록 반이중 주파수 분할 듀플렉스(HD-FDD; half-duplex frequency division duplex) 동작 모드에서 상기 기지국과 통신하도록 구성되는, 사용자 장비. - 장치로서,
프로세서를 포함하고, 상기 프로세서는, 사용자 장비(UE)로 하여금,
머신-타입 통신(MTC) 동안:
재전송 윈도우 동안 물리적 업링크 공유 채널(PUSCH) 상에서 블록 데이터의 하나 이상의 전송을 기지국으로 전송하고,
상기 블록 데이터를 위한 반복 전송 메시지의 조기 종료를 상기 기지국으로부터 수신하고 - 상기 반복 전송 메시지의 조기 종료는 다운링크 제어 정보(DCI) 메시지를 포함하며, 상기 DCI 메시지는 모두 "1"로 설정된 자원 블록 할당을 포함함 -,
상기 반복 전송 메시지의 조기 종료에 응답하여 상기 블록 데이터의 전송들을 종료하게 하도록 구성되는, 장치. - 제14항에 있어서,
상기 DCI 메시지는 0으로 설정된 전송 전력 커맨드(TPC)를 추가로 포함하는, 장치. - 제14항에 있어서,
상기 DCI 메시지는 DCI 포맷 0 메시지를 포함하고,
상기 DCI 포맷 0 메시지는,
C-RNTI로 스크램블링된 CRC 패리티 비트들; 및
0으로 설정된 새로운 데이터 표시자(NDI) 값
을 포함하는, 장치. - 제14항에 있어서,
상기 DCI 메시지는,
CS_val로 설정된 DM RS의 순환 시프트;
11111로 설정된 변조 및 코딩 방식 리던던시 버전; 또는
모두 '1'을 포함하는 홉핑 자원 할당 값
을 더 포함하는, 장치. - 제14항에 있어서,
상기 프로세서는 또한 상기 UE로 하여금,
상기 재전송 윈도우 동안 상기 PUSCH 상에서 복수의 트랜스포트 블록으로부터의 데이터를 상기 기지국으로 전송하게 하도록 구성되고, 상기 블록 데이터는 상기 복수의 트랜스포트 블록 중의 제1 트랜스포트 블록과 연관되는, 장치. - 제18항에 있어서,
상기 블록 데이터는 상기 복수의 트랜스포트 블록 중의 제1 트랜스포트 블록과 연관되며,
상기 DCI 메시지는 상기 제1 트랜스포트 블록과 연관되는 제1 HARQ-ACK 프로세스 번호를 포함하는, 장치. - 제14항에 있어서,
상기 프로세서는 또한, 상기 UE로 하여금, 상기 PUSCH가 상기 재전송 윈도우 동안 다운링크 서브프레임들에 산재되도록 반이중 주파수 분할 듀플렉스(HD-FDD) 동작 모드에서 상기 기지국과 통신하도록 구성되는, 장치. - 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462076198P | 2014-11-06 | 2014-11-06 | |
US62/076,198 | 2014-11-06 | ||
PCT/US2015/059016 WO2016073591A1 (en) | 2014-11-06 | 2015-11-04 | Early termination of repeated transmissions for mtc |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170062492A KR20170062492A (ko) | 2017-06-07 |
KR102304205B1 true KR102304205B1 (ko) | 2021-09-17 |
Family
ID=55909752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177010882A KR102304205B1 (ko) | 2014-11-06 | 2015-11-04 | Mtc를 위한 반복된 전송의 조기 종료 |
Country Status (7)
Country | Link |
---|---|
US (2) | US10172127B2 (ko) |
EP (2) | EP3731444B1 (ko) |
JP (1) | JP6708654B2 (ko) |
KR (1) | KR102304205B1 (ko) |
CN (2) | CN112350802A (ko) |
BR (1) | BR112017009269A2 (ko) |
WO (1) | WO2016073591A1 (ko) |
Families Citing this family (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6386073B2 (ja) * | 2014-03-21 | 2018-09-05 | アルカテル−ルーセント | 低コストマシン型通信のための方法および装置 |
US10172127B2 (en) | 2014-11-06 | 2019-01-01 | Intel IP Corporation | Early termination of repeated transmissions for MTC |
US10791546B2 (en) | 2014-11-07 | 2020-09-29 | Qualcomm Incorporated | PUCCH for MTC devices |
EP3278483B1 (en) | 2015-03-31 | 2021-09-29 | Panasonic Intellectual Property Corporation of America | Wireless communication method, user equipment and enode-b |
US9918344B2 (en) | 2015-04-09 | 2018-03-13 | Intel IP Corporation | Random access procedure for enhanced coverage support |
KR102179107B1 (ko) * | 2015-04-24 | 2020-11-16 | 삼성전자 주식회사 | 기계형 통신 기술에서 전자 장치의 전력 소모를 절약하는 방법 및 장치 |
ES2767703T3 (es) * | 2015-09-24 | 2020-06-18 | Intel Ip Corp | Determinación del número de repeticiones de canal de control de enlace ascendente físico para comunicaciones de tipo de máquina |
WO2017153418A1 (en) | 2016-03-11 | 2017-09-14 | Sony Corporation | Terminal device, infrastructure equipment and methods |
WO2018009137A1 (en) * | 2016-07-08 | 2018-01-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and apparatus for multicast or broadcast transmission |
US10142905B2 (en) | 2016-08-26 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for dynamic routing of low power wide area wireless communication devices |
US10673593B2 (en) * | 2016-11-03 | 2020-06-02 | Huawei Technologies Co., Ltd. | HARQ signaling for grant-free uplink transmissions |
CN110268782B (zh) * | 2016-12-23 | 2020-12-22 | 华为技术有限公司 | 一种增强型机器类通信eMTC资源调度的方法及设备 |
CN108282274A (zh) * | 2017-01-06 | 2018-07-13 | 中兴通讯股份有限公司 | 数据传输方法及装置,终端和基站 |
EP3602883B1 (en) * | 2017-03-23 | 2021-06-23 | Convida Wireless, LLC | Terminal device, infrastructure equipment and methods |
CN110463102B (zh) * | 2017-03-24 | 2022-06-21 | 瑞典爱立信有限公司 | 用于harq-ack反馈的方法、设备和介质 |
EP3602898B1 (en) * | 2017-03-24 | 2024-02-28 | Apple Inc. | Design of early termination signal and harq-ack feedback for pusch |
EP3621233B1 (en) * | 2017-05-04 | 2022-01-19 | LG Electronics Inc. | Methods for signal transmission and reception between terminal and base station in wireless communication system, and devices for supporting same |
US11398882B2 (en) | 2017-05-04 | 2022-07-26 | Lg Electronics Inc. | Early termination of repeated transmissions between terminal and base station in wireless communication system |
CN109088703B (zh) * | 2017-06-13 | 2023-03-24 | 中兴通讯股份有限公司 | 一种链路信号重传处理方法、装置及通信终端设备 |
CN112994844B (zh) * | 2017-06-23 | 2023-02-14 | 华为技术有限公司 | 一种信道编码方法、数据接收方法及相关设备 |
CN110959265B (zh) * | 2017-07-21 | 2023-07-25 | 株式会社Ntt都科摩 | 用户终端以及无线通信方法 |
US10771192B2 (en) | 2017-07-31 | 2020-09-08 | Qualcomm Incorporated | Power saving in narrowband devices by early termination of decoding of communication channels |
WO2019027262A1 (en) | 2017-08-02 | 2019-02-07 | Samsung Electronics Co., Ltd. | METHOD, PLANNING INFORMATION RECEIVING EQUIPMENT, TERMINAL, BASE STATION, AND INFORMATION TRANSMITTING METHOD |
WO2019028752A1 (en) | 2017-08-10 | 2019-02-14 | Zte Corporation | TRANSMITTING AND RECEIVING CONTROL INFORMATION IN WIRELESS COMMUNICATIONS |
KR102384877B1 (ko) * | 2017-09-29 | 2022-04-08 | 삼성전자주식회사 | 무선통신 시스템에서 데이터 정보 송수신 방법 및 장치 |
CN109842846B (zh) * | 2017-09-29 | 2022-01-11 | 中兴通讯股份有限公司 | 数据传输方法、装置及存储介质 |
CN109788557A (zh) * | 2017-11-13 | 2019-05-21 | 珠海市魅族科技有限公司 | 资源分配方法及装置、资源分配的接收方法及装置 |
WO2019095339A1 (zh) * | 2017-11-17 | 2019-05-23 | 华为技术有限公司 | 一种反馈方法及装置 |
US11343029B2 (en) * | 2017-11-30 | 2022-05-24 | Nokia Technologies Oy | Method and apparatus for improving resource efficiency in a wireless communication system |
US10757601B2 (en) * | 2017-12-13 | 2020-08-25 | At&T Intellectual Property I, L.P. | Physical layer procedures for user equipment in power saving mode |
US11743893B2 (en) * | 2018-01-26 | 2023-08-29 | Lenovo (Beijing) Limited | Control message transmission |
CN110166197B (zh) * | 2018-02-12 | 2021-11-19 | 北京紫光展锐通信技术有限公司 | 物理下行控制信道的发送、接收方法、装置、设备及基站 |
WO2019153332A1 (zh) * | 2018-02-12 | 2019-08-15 | 华为技术有限公司 | 一种数据传输的方法以及通信设备 |
EP3753159B8 (en) * | 2018-02-16 | 2023-11-29 | Interdigital Patent Holdings, Inc. | Communications device, infrastructure equipment, wireless communications systems and methods |
US20190289478A1 (en) * | 2018-03-19 | 2019-09-19 | Qualcomm Incorporated | Physical downlink control channel (pdcch) reliability for ultra-reliability low latency communication (urllc) |
WO2019193773A1 (en) * | 2018-04-03 | 2019-10-10 | Nec Corporation | Method for use in transmitting urllc data in nr system |
PL3787320T3 (pl) * | 2018-04-25 | 2024-01-29 | Beijing Xiaomi Mobile Software Co., Ltd. | Sposoby wskazywania i interpretowania informacji, stacja bazowa i urządzenie użytkownika |
CN108513714B (zh) * | 2018-04-26 | 2019-10-25 | 北京小米移动软件有限公司 | Harq反馈方法及装置 |
CN110474719B (zh) | 2018-05-11 | 2021-10-22 | 华为技术有限公司 | 一种重复传输的方法和装置 |
US10771198B2 (en) | 2018-05-17 | 2020-09-08 | At&T Intellectual Property I, L.P. | Adaptive repetition in wireless communication systems |
EP3797550A4 (en) * | 2018-05-21 | 2022-01-19 | Nokia Technologies Oy | AUTOMATIC HYBRID REPEAT REQUEST IN OFF-LAND NETWORKS |
CN110601800A (zh) * | 2018-06-12 | 2019-12-20 | 中国移动通信集团山东有限公司 | 一种窄带物联网上行数据传输方法及基站 |
GB2575475A (en) * | 2018-07-11 | 2020-01-15 | Tcl Communication Ltd | Transmission techniques in a cellular network |
CN112703793B (zh) * | 2018-07-17 | 2024-04-02 | 上海诺基亚贝尔股份有限公司 | 用于早期数据传输的方法、设备以及计算机可读介质 |
US11309999B2 (en) * | 2018-07-31 | 2022-04-19 | Qualcomm Incorporated | Repetition techniques for autonomous uplink transmissions |
CN110830208B (zh) * | 2018-08-10 | 2022-04-29 | 中兴通讯股份有限公司 | 一种下行控制信息传输方法及装置 |
EP3611861B1 (en) * | 2018-08-16 | 2021-07-07 | Shenzhen Goodix Technology Co., Ltd. | Method for predictive reception of physical layer downlink repetitions in a nb-iot ue for prolonged battery lifetime |
KR102165806B1 (ko) * | 2018-08-16 | 2020-10-14 | 에스케이텔레콤 주식회사 | 전송장치 및 전송장치의 동작 방법 |
US11963258B2 (en) * | 2018-09-19 | 2024-04-16 | Beijing Xiaomi Mobile Software Co., Ltd. | Method and device for prematurely terminating transmission |
CN110958689B (zh) * | 2018-09-26 | 2022-05-27 | 维沃移动通信有限公司 | 资源分配方法和设备 |
US11129188B2 (en) * | 2018-09-27 | 2021-09-21 | Qualcomm Incorporated | Early termination of PUSCH with new uplink grant |
CN112840717B (zh) * | 2018-09-28 | 2023-02-28 | 华为技术有限公司 | 传输数据的方法、终端设备和网络设备 |
US12057944B2 (en) * | 2018-11-08 | 2024-08-06 | Nec Corporation | Method and devices for hybrid automatic repeat request |
CN111356250B (zh) * | 2018-12-20 | 2021-10-26 | 华为技术有限公司 | 混合自动重传请求进程的调度方法、装置及存储介质 |
EP3697013A1 (en) | 2019-02-14 | 2020-08-19 | Panasonic Intellectual Property Corporation of America | User equipment and system performing transmission and reception operations |
WO2020194400A1 (ja) * | 2019-03-22 | 2020-10-01 | 株式会社Nttドコモ | ユーザ端末及び無線通信方法 |
CN113924806B (zh) * | 2019-03-28 | 2024-07-30 | 苹果公司 | Emtc的dci格式3/3a的重复次数的指示 |
CN111770572B (zh) * | 2019-03-30 | 2023-08-04 | 华为技术有限公司 | 确定反馈信息的方法和通信装置 |
CN110312315A (zh) * | 2019-04-19 | 2019-10-08 | 展讯通信(上海)有限公司 | 一种信息传输方法及装置 |
CN112217616A (zh) * | 2019-07-10 | 2021-01-12 | 苹果公司 | 上行链路重复增强 |
CN110380830B (zh) * | 2019-07-19 | 2023-08-11 | 展讯通信(上海)有限公司 | 终端、基站、通信系统、数据传输方法和存储介质 |
CN114175753B (zh) * | 2019-07-30 | 2024-09-17 | 赛峰旅客创新公司 | 用于分配实现单播传输的时隙的系统和方法 |
CN114175551B (zh) * | 2019-08-06 | 2024-08-23 | 索尼集团公司 | 通信装置、基础设施设备以及方法 |
US20220294568A1 (en) * | 2019-08-07 | 2022-09-15 | Beijing Xiaomi Mobile Software Co., Ltd. | Harq feedback enhancement method and apparatus, communication device and storage medium |
CN111800222B (zh) * | 2019-08-09 | 2022-09-23 | 维沃移动通信有限公司 | 一种数据接收方法及设备 |
CN111835489B (zh) * | 2019-08-16 | 2022-05-10 | 维沃移动通信有限公司 | 一种传输方法、配置方法、终端及网络侧设备 |
WO2021063620A1 (en) * | 2019-10-04 | 2021-04-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Configured ul with repetition |
WO2021072689A1 (zh) * | 2019-10-16 | 2021-04-22 | 华为技术有限公司 | 一种信息处理方法和终端设备以及网络设备 |
US11284429B2 (en) | 2019-10-25 | 2022-03-22 | Huawei Technologies Co., Ltd. | Systems and methods for data transmission in an inactive state |
US11641235B2 (en) | 2019-11-07 | 2023-05-02 | Electronics And Telecommunications Research Institute | Method and apparatus for retransmission in communication system |
CN111092697A (zh) * | 2019-11-07 | 2020-05-01 | 中兴通讯股份有限公司 | 一种数据传输方法、装置和存储介质 |
CN115694731B (zh) | 2019-11-08 | 2023-11-10 | 中兴通讯股份有限公司 | 一种控制信息指示方法、通信节点及计算机可读存储介质 |
CN113114431B (zh) * | 2020-01-13 | 2023-05-09 | 中国移动通信有限公司研究院 | 信息的传输方法、网络设备及终端 |
US11722254B2 (en) * | 2020-01-17 | 2023-08-08 | Qualcomm Incorporated | Methods and apparatuses for latency reduction for URLLC |
EP4092938A4 (en) * | 2020-02-18 | 2023-01-18 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | SIGNAL TRANSMISSION METHODS AND DEVICES, DEVICES AND STORAGE MEDIA |
GB2593745B (en) * | 2020-03-31 | 2022-10-12 | Samsung Electronics Co Ltd | Improvements in and relating to HARQ in a non-terrestrial network |
US11950252B2 (en) * | 2020-07-02 | 2024-04-02 | Qualcomm Incorporated | Early termination of uplink communication repetitions with multiple transport blocks |
US11985660B2 (en) * | 2020-10-08 | 2024-05-14 | Electronics And Telecommunications Research Institute | Method and apparatus for transmitting and receiving feedback information in communication system |
CN114374496B (zh) * | 2020-10-19 | 2024-06-07 | 中国移动通信有限公司研究院 | 信息传输方法、装置、相关设备及存储介质 |
WO2022109782A1 (zh) * | 2020-11-24 | 2022-06-02 | Oppo广东移动通信有限公司 | 传输方法、发送端设备和接收端设备 |
WO2022126456A1 (zh) * | 2020-12-16 | 2022-06-23 | 北京小米移动软件有限公司 | 数据重传的方法、装置、通信设备及存储介质 |
US11930552B2 (en) * | 2021-01-14 | 2024-03-12 | Qualcomm Incorporated | Timers for enhanced coverage with non-terrestrial network |
WO2022165760A1 (zh) * | 2021-02-05 | 2022-08-11 | 北京小米移动软件有限公司 | 提前终止方法、装置、通信设备及存储介质 |
CN115175352A (zh) * | 2021-04-01 | 2022-10-11 | 中兴通讯股份有限公司 | 反馈信息传输方法、装置、基站、终端和存储介质 |
US11778607B2 (en) * | 2021-04-01 | 2023-10-03 | Nokia Technologies Oy | Using relative transmission occasion delay indexing |
KR20220152789A (ko) * | 2021-05-10 | 2022-11-17 | 삼성전자주식회사 | 무선 통신 시스템에서 상향링크 채널을 전송하기 위한 방법 및 장치 |
WO2023019409A1 (zh) * | 2021-08-16 | 2023-02-23 | Oppo广东移动通信有限公司 | 信息指示方法、终端设备、网络设备、芯片和存储介质 |
KR20240029736A (ko) * | 2021-11-03 | 2024-03-06 | 인텔 코포레이션 | 반이중 주파수 분할 이중 무선 동작에 대한 향상된 물리적 업링크 공유 채널 반복 |
CN116671231A (zh) * | 2021-12-28 | 2023-08-29 | 北京小米移动软件有限公司 | 一种重复传输的终止方法及设备/存储介质/装置 |
CN116436569A (zh) * | 2021-12-31 | 2023-07-14 | 大唐移动通信设备有限公司 | 数据传输的终止方法、装置、设备及存储介质 |
WO2023201493A1 (zh) * | 2022-04-18 | 2023-10-26 | Oppo广东移动通信有限公司 | 无线通信的方法、终端设备和网络设备 |
US20240015739A1 (en) * | 2022-07-05 | 2024-01-11 | Qualcomm Incorporated | Early acknowledgement feedback |
CN115694743A (zh) * | 2022-11-07 | 2023-02-03 | 南京大鱼半导体有限公司 | 一种数据传输方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013112703A2 (en) * | 2012-01-24 | 2013-08-01 | Interdigital Patent Holdings, Inc. | Systems and methods for improved uplink coverage |
US20140233470A1 (en) * | 2011-06-15 | 2014-08-21 | Lg Electronics Inc. | Method for receiving downlink control information in wireless access system and terminal therefor |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1925383A (zh) * | 2006-08-15 | 2007-03-07 | 华为技术有限公司 | 一种数据包重传方法及发送装置和重传系统 |
WO2008085811A2 (en) | 2007-01-04 | 2008-07-17 | Interdigital Technology Corporation | Method and apparatus for hybrid automatic repeat request transmission |
US8181079B2 (en) | 2007-09-21 | 2012-05-15 | Qualcomm Incorporated | Data transmission with HARQ and interference mitigation |
CN101420292B (zh) * | 2007-10-22 | 2013-05-15 | 电信科学技术研究院 | 同步混合式自动请求重传进程冲突的处理方法及装置 |
US20090168723A1 (en) * | 2007-11-27 | 2009-07-02 | Qualcomm Incorporated | Method and apparatus for handling out-of-order packets during handover in a wireless communication system |
US8121045B2 (en) * | 2008-03-21 | 2012-02-21 | Research In Motion Limited | Channel quality indicator transmission timing with discontinuous reception |
JP5035065B2 (ja) | 2008-03-27 | 2012-09-26 | 富士通株式会社 | 移動体通信のランダムアクセス手順における再送処理方法、移動局装置及び基地局装置 |
US8199725B2 (en) * | 2008-03-28 | 2012-06-12 | Research In Motion Limited | Rank indicator transmission during discontinuous reception |
US9215043B2 (en) * | 2008-11-19 | 2015-12-15 | Futurewei Technologies, Inc. | Systems and methods for scheduling and MU-MIMO in uplink Vo-IP for OFDMA/SCFDMA networks |
CN102714879B (zh) * | 2008-12-17 | 2016-03-16 | 摩托罗拉移动公司 | 通过无线通信装置进行半静态资源释放 |
EP2214340A1 (en) * | 2009-01-30 | 2010-08-04 | Panasonic Corporation | HARQ operation for macro-diversity transmissions in the downlink |
CN102158973B (zh) * | 2010-02-11 | 2013-11-20 | 电信科学技术研究院 | 半持续调度、传输及处理方法、系统和设备 |
US9337962B2 (en) * | 2010-02-17 | 2016-05-10 | Qualcomm Incorporated | Continuous mode operation for wireless communications systems |
US8473804B2 (en) * | 2010-04-26 | 2013-06-25 | Via Telecom, Inc. | Enhanced wireless communication with HARQ |
US20130114570A1 (en) * | 2010-08-18 | 2013-05-09 | Lg Electronics Inc. | Method and apparatus for transmitting uplink data in a wireless access system |
WO2013127053A1 (en) | 2012-02-27 | 2013-09-06 | Qualcomm Incorporated | Frame early termination of ul transmissions on dedicated channel |
US9526091B2 (en) * | 2012-03-16 | 2016-12-20 | Intel Corporation | Method and apparatus for coordination of self-optimization functions in a wireless network |
WO2013166689A1 (en) | 2012-05-10 | 2013-11-14 | Nokia Corporation | Harq-ack transmissions for dynamic tdd ul/dl configuration |
US20140126382A1 (en) | 2012-11-06 | 2014-05-08 | Qualcomm Incorporated | Forward link acknowledgment in a machine-to-machine wireless wide area network |
US9609637B2 (en) * | 2012-12-21 | 2017-03-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Override of multi-TTI scheduling messages |
JP6216039B2 (ja) * | 2013-05-15 | 2017-10-18 | 華為技術有限公司Huawei Technologies Co.,Ltd. | 信号伝送方法、装置、通信システム、端末、及び基地局 |
US20150085796A1 (en) * | 2013-09-20 | 2015-03-26 | Qualcomm Incorporated | Flexible operation of enhanced tti-bundling modes in lte |
WO2015056946A1 (ko) * | 2013-10-14 | 2015-04-23 | 엘지전자 주식회사 | 무선 통신 시스템에서의 커버리지 개선 방법 및 이를 위한 장치 |
WO2016048044A1 (en) * | 2014-09-23 | 2016-03-31 | Lg Electronics Inc. | Method and apparatus for performing initial access procedure for low cost user equipment in wireless communication system |
US10172127B2 (en) | 2014-11-06 | 2019-01-01 | Intel IP Corporation | Early termination of repeated transmissions for MTC |
-
2015
- 2015-11-04 US US15/517,430 patent/US10172127B2/en active Active
- 2015-11-04 CN CN202011257187.5A patent/CN112350802A/zh active Pending
- 2015-11-04 KR KR1020177010882A patent/KR102304205B1/ko active IP Right Grant
- 2015-11-04 BR BR112017009269A patent/BR112017009269A2/pt not_active Application Discontinuation
- 2015-11-04 CN CN201580056245.9A patent/CN107078863B/zh active Active
- 2015-11-04 JP JP2017543297A patent/JP6708654B2/ja active Active
- 2015-11-04 EP EP20172778.1A patent/EP3731444B1/en active Active
- 2015-11-04 EP EP15857380.8A patent/EP3216149B1/en active Active
- 2015-11-04 WO PCT/US2015/059016 patent/WO2016073591A1/en active Application Filing
-
2018
- 2018-11-15 US US16/192,271 patent/US11006401B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140233470A1 (en) * | 2011-06-15 | 2014-08-21 | Lg Electronics Inc. | Method for receiving downlink control information in wireless access system and terminal therefor |
WO2013112703A2 (en) * | 2012-01-24 | 2013-08-01 | Interdigital Patent Holdings, Inc. | Systems and methods for improved uplink coverage |
Also Published As
Publication number | Publication date |
---|---|
CN107078863A (zh) | 2017-08-18 |
US11006401B2 (en) | 2021-05-11 |
CN107078863B (zh) | 2020-11-06 |
CN112350802A (zh) | 2021-02-09 |
EP3216149A1 (en) | 2017-09-13 |
EP3731444B1 (en) | 2024-01-24 |
JP6708654B2 (ja) | 2020-06-10 |
EP3731444A1 (en) | 2020-10-28 |
EP3216149A4 (en) | 2018-06-20 |
KR20170062492A (ko) | 2017-06-07 |
US20200305131A1 (en) | 2020-09-24 |
WO2016073591A1 (en) | 2016-05-12 |
US10172127B2 (en) | 2019-01-01 |
BR112017009269A2 (pt) | 2017-12-19 |
JP2017538371A (ja) | 2017-12-21 |
US20170303248A1 (en) | 2017-10-19 |
EP3216149B1 (en) | 2020-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102304205B1 (ko) | Mtc를 위한 반복된 전송의 조기 종료 | |
CN107211441B (zh) | 用于许可-辅助的接入的上行调度 | |
CN110169180B (zh) | 自适应超可靠低延迟通信(urllc)半持久调度 | |
TWI654896B (zh) | 無線通訊中的排程分配的內容和傳輸 | |
US11497078B2 (en) | Apparatus and method for DRX mechanisms for single HARQ process operation in NB-IoT | |
EP3560264B1 (en) | Semi-persistent scheduling for low-latency communications | |
US20190110290A1 (en) | Rate matching for broadcast channels | |
EP3902188A1 (en) | Rate matching behavior for bundled coresets | |
US11765696B2 (en) | Sidelink resource allocation for device-to-device communications | |
CN107113748B (zh) | 具有信道选择的功率余量上报 | |
EP4154455B1 (en) | Configured grant enhancements in unlicensed band | |
US20240064730A1 (en) | Systems and Methods of Monitoring UL Cancelation Indications | |
WO2018126406A1 (en) | Mobile terminated data handling in inactive state | |
WO2022170620A1 (en) | Machine learning assisted predictive retransmission feedback | |
WO2023150956A1 (en) | Multiple configured grant small data transmission configurations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |