KR102303936B1 - 용안육 포함 조합 생약 추출물을 유효성분으로 함유하는 궤양의 치료 또는 예방용 외용조성물 - Google Patents

용안육 포함 조합 생약 추출물을 유효성분으로 함유하는 궤양의 치료 또는 예방용 외용조성물 Download PDF

Info

Publication number
KR102303936B1
KR102303936B1 KR1020210022674A KR20210022674A KR102303936B1 KR 102303936 B1 KR102303936 B1 KR 102303936B1 KR 1020210022674 A KR1020210022674 A KR 1020210022674A KR 20210022674 A KR20210022674 A KR 20210022674A KR 102303936 B1 KR102303936 B1 KR 102303936B1
Authority
KR
South Korea
Prior art keywords
skin
ulcer
extract
wound
herbal medicine
Prior art date
Application number
KR1020210022674A
Other languages
English (en)
Other versions
KR102303936B9 (ko
Inventor
박옥남
Original Assignee
박옥남
(주)메디헬프라인
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박옥남, (주)메디헬프라인 filed Critical 박옥남
Priority to PCT/KR2021/002946 priority Critical patent/WO2021182864A1/en
Priority to US17/911,282 priority patent/US20230127213A1/en
Priority to EP21767374.8A priority patent/EP4117699A4/en
Priority to CN202180020984.8A priority patent/CN115297880A/zh
Priority to JP2022555138A priority patent/JP7498466B2/ja
Application granted granted Critical
Publication of KR102303936B1 publication Critical patent/KR102303936B1/ko
Publication of KR102303936B9 publication Critical patent/KR102303936B9/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/77Sapindaceae (Soapberry family), e.g. lychee or soapberry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/23Apiaceae or Umbelliferae (Carrot family), e.g. dill, chervil, coriander or cumin
    • A61K36/232Angelica
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/69Polygalaceae (Milkwort family)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/59Mixtures

Landscapes

  • Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Dermatology (AREA)
  • Birds (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 용안육, 고본 및 원지로 구성된 조합 생약 추출물을 유효성분으로 함유하는 궤양의 예방 및/또는 완화 및/또는 치료 용도의 조성물에 관한 것으로 구체적으로 상기 조합 생약 추출물에 대하여 사람 피부 상피세포(HaCaT)를 이용한 사이토카인 발현 억제 효과 실험 (실험예 1), 생약 혼합 추출물의 세포 증식 효과 시험 (in vitro proliferation assay)(실험예 2); 생약 혼합 추출물의 피부 상처 치유 효과 실험 (In vitro wound healing assay)(실험예 3); 당뇨 모델 마우스를 이용한 생약 혼합 추출물의 만성 상처 치료 효과 시험(실험예 4); 생약 혼합 추출물의 피부 상처 조직 회복 효과 시험(실험예 5); 생약 혼합 추출물의 성장인자 관련 염증인자 발현에 미치는 영향실험 (실험예 6) 등의 다양한 실험을 수행한 바, 상기 시료들이 강력한 궤양 치료 및 개선효과를 확인하여 상기 조성물을 궤양 치료 및 개선용 피부외용 약학조성물 또는 화장료 조성물로 이용될 수 있다.

Description

용안육 포함 조합 생약 추출물을 유효성분으로 함유하는 궤양의 치료 또는 예방용 외용조성물 {topical composition comprising the extract of combined herbs comprising Longanae Arillus for the treatment or alleviation of skin ulcer}
본 발명은 용안육 포함 조합 생약 추출물을 유효성분으로 함유하는 궤양의 치료 및 개선용 외용조성물에 관한 것이다.
[문헌 1] Demidova-Rice TN, Hamblin MR, Herman IM (2012) Acute and Impaired Wound Healing: Pathophysiology and Current Methods for Drug Delivery, Part 1: Normal and Chronic Wounds: Biology, Causes, and Approaches to Care. Advances in Skin & Wound Care. 25: 304`=-314
[문헌 2] Eming SA, Krieg T, Davidson JM (2007) Inflammation in Wound Repair: Molecular and Cellular Mechanisms. Journal of Investigative Dermatology. 127: 514-525.
[문헌 3] Frank S, Hubner G, Breier G, Longaker MT, Greenhalgh DG, Werner S (1995) Regulation of Vascular Endothelial Growth Factor Expression in Cultured Keratinocytes. Journal of Biological Chemistry. 270: 12607-12613.
[문헌 4] Goldman R (2004) Growth Factors and Chronic Wound Healing: Past, Present, and Future. Advances in Skin & Wound Care. 17: 24-35.
[문헌 5] Pazyar N, Yaghoobi R, Rafiee E, Mehrabian A, Feily A (2014) Skin Wound Healing and Phytomedicine: A Review. Skin Pharmacol Physiol. 27: 303-310.
[문헌 6] Velnar T, Bailey T, Smrkolj V (2009) The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. Journal of International Medical Research. 37: 1528-1542.
[문헌 7] Robson MC, Steed DL, Franz MG (2001) Wound Healing: Biologic Features and Approaches to Maximize Healing Trajectories. Current Problems in Surgery. 38: 72-140.
[문헌 8] Reinke JM, Sorg H (2012) Wound Repair and Regeneration. European Surgical Research. 49: 35-43
[문헌 9] Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev. 83: 835-870.
[문헌 10] Thiruvoth F, Mohapatra D, Sivakumar D, Chittoria R, Nandhagopal V (2015) Current concepts in the physiology of adult wound healing. Plastic and Aesthetic Research. 2: 250-256.
[문헌 11] Guo S, DiPietro LA (2010) Factors Affecting Wound Healing. Journal of Dental Research. 89: 219-229.
[문헌 12] Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends in Cell Biology. 15: 599-607.
[문헌 13] Grotendorst GR, Martin GR, Pencev D, Sodek J, Harvey AK (1985) Stimulation of granulation tissue formation by platelet-derived growth factor in normal and diabetic rats. The journal of clinical investigation. 76: 2323-2329.
[문헌 14] Reinke JM, Sorg H (2012) Wound Repair and Regeneration. European Surgical Research. 49: 35-43.
[문헌 15] Martin P, Nunan R (2015) Cellular and molecular mechanisms of repair in acute and chronic wound healing. British Journal of Dermatology. 173: 370-378.
[문헌 16] Reinke JM, Sorg H (2012) Wound Repair and Regeneration. European Surgical Research. 49: 35-43.
[문헌 17] Hakkinen L, Larjava H, Koivisto L (2012) Granulation Tissue Formation and Remodeling. Endodontic Topics. 24: 94-129.
[문헌 18] Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P (2010) Oxygen in acute and chronic wound healing. British Journal of Dermatology. 163: 257-268
[문헌 19] Gonzalez AC, Costa TF, Andrade ZA, Medrado AR (2016) Wound healing - A literature review. Anais brasileiros de dermatologia. 91: 614-620.
[문헌 20] Nunan R, Harding KG, Martin P (2014) Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Disease Models & Mechanisms. 7: 1205-1213.
[문헌 21] Armstrong DG, Boulton AJM, Bus SA (2017) Diabetic Foot Ulcers and Their Recurrence. New England Journal of Medicine. 376: 2367-2375.
[문헌 22] Bannon P, Wood S, Restivo T, Campbell L, Hardman MJ, Mace KA (2013) Diabetes induces stable intrinsic changes to myeloid cells that contribute to chronic inflammation during wound healing in mice. Disease Models & Mechanisms. 6: 1434-1447.
[문헌 23] Trengove NJ, Bielefeldt-Ohmann H, Stacey MC (2001) Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Repair and Regeneration. 8: 13-25.
[문헌 24] Armstrong DG, Jude EB (2002) The Role of Matrix Metalloproteinases in Wound Healing. Journal of the American Podiatric Medical Association. 92: 12-18
[문헌 25] Martins VL, Caley M, O’Toole EA (2013) Matrix metalloproteinases and epidermal wound repair. Cell and Tissue Research. 351: 255-268
[문헌 26] Jones JI, Nguyen TT, Peng Z, Chang M (2019) Targeting MMP-9 in Diabetic Foot Ulcers. Pharmaceuticals. 12: 79.
[문헌 27] Reiss MJ, Han YP, Garcia E, Goldberg M, Yu H, Garner WL (2010) Matrix metalloproteinase-9 delays wound healing in a murine wound model. Surgery. 147: 295-302
[문헌 28] McLaughlin PJ, Cain JD, Titunick MB, Sassani JW, Zagon IS. Topical Naltrexone Is a Safe and Effective Alternative to Standard Treatment of Diabetic Wounds. Adv Wound Care. 2017; 6: 279-288
[문헌 29] Grazul-Bilska AT (2003) Wound healing : the role of growth factors. Drugs Today (Barc) 2003 Oct;39(10):787-800
[문헌 30] Kleopatra Alexiadou, John Doupis (2012) Management of Diabetic Foot Ulcers. Diabetes Ther. Dec; 3(1): 4 ; Aurelio Perez-Favila, Margarita L Martinez-Fierro, Jessica G Rodriguez-Lazalde (2019 Current Therapeutic Strategies in Diabetic Foot ulcers. Medicina, 55(11), 714
[문헌 31] Lara Lopes, Ocean Setia, Afsha Aurshina, Shirley Liu, Haidi Hu (2018) Stem cell therapy for diabetic foot ulcers: a review of preclinical and clinical research. Stem Cell Res Ther: 9:188
[문헌 32]Frykberg RG, Zgonis T, Armstrong DG, Driver VR, Giurini JM, Kravitz SR, Landsman AS, Lavery LA, Moore JC, Schuberth JM, Wukich DK, Andersen C, Vanore JV; American College of Foot and Ankle Surgeons (2006) Diabetic Foot Disorders: A Clinical Practice Guideline (2006 Revision). The Journal of Foot and Ankle Surgery. 45: S1-S66
[문헌 33]Shankaran V, Brooks M, Mostow E (2013) Advanced therapies for chronic wounds: NPWT, engineered skin, growth factors, extracellular matrices. Dermatologic Therapy. 26: 215-221
[문헌 34]Papanas N, Maltezos E (2008) Becaplermin gel in the treatment of diabetic neuropathic foot ulcers. Clinical Interventions in Aging. 3: 233-240 ;
[문헌 35] Hanft JR, Pollak RA, Barbul A, van Gils C, Kwon PS, Gray SM, Lynch CJ, Semba CP, Breen TJ (2008) Phase I trial on the safety of topical rhVEGF on chronic neuropathic diabetic foot ulcers. Journal of Wound Care. 17: 30-37.; [문헌 36]Hong JP, Jung HD, Kim YW (2006) Recombinant Human Epidermal Growth Factor (EGF) to Enhance Healing for Diabetic Foot Ulcers. Annals of Plastic Surgery. 56: 394-398
[문헌 37]Fang RC, Galiano RD (2008) A review of becaplermin gel in the treatment of diabetic neuropathic foot ulcers. Biologics. 2: 1-12.
[문헌 39]Jones JI, Nguyen TT, Peng Z, Chang M (2019) Targeting MMP-9 in Diabetic Foot Ulcers. Pharmaceuticals. 12: 79.
[문헌 40]Reinke JM, Sorg H (2012) Wound Repair and Regeneration. European Surgical Research. 49: 35-43
[문헌 41]Lucas T, Waisman A, Ranjan R, Roes J, Krieg T, Muller W, Roers A, Eming SA (2010) Differential Roles of Macrophages in Diverse Phases of Skin Repair. The Journal of Immunology. 184: 3964-3977
[문헌 42]Grotendorst GR, Martin GR, Pencev D, Sodek J, Harvey AK (1985) Stimulation of granulation tissue formation by platelet-derived growth factor in normal and diabetic rats. The journal of clinical investigation. 76: 2323-2329
[문헌 43]Lamalice L, Le Boeuf F, Huot J (2007) Endothelial Cell Migration During Angiogenesis. Circulation Research. 100: 782-794.
[문헌 44]Leoni G, Neumann PA, Sumagin R, Denning TL, Nusrat A (2015) Wound repair: role of immune-epithelial interactions. Mucosal Immunology. 8: 959-968.
[문헌 45] 정보섭, 신민교, 도해향약대사전, 영림사, pp371-373, 1998
[문헌 46] 정보섭외 1인, 영림출판사, p428-429, 1998년
[문헌 47] 정보섭외 1인, 영림출판사, p798-799, 1998년
[문헌 48] Long M, Rojo de la Vega M, Wen Q, Bharara M, Jiang T, Zhang R, Zhou S, Wong PK, Wondrak GT, Zheng H, Zhang DD (2016) An Essential Role of NRF2 in Diabetic Wound Healing. Diabetes. 65: 780-793.
[문헌 49] Grotendorst GR, Martin GR, Pencev D, Sodek J, Harvey AK (1985) Stimulation of granulation tissue formation by platelet-derived growth factor in normal and diabetic rats. The journal of clinical investigation. 76: 2323-2329.
[문헌 50] Trengove NJ, Bielefeldt-Ohmann H, Stacey MC (2001) Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Repair and Regeneration. 8: 13-25.
[문헌 51] Armstrong DG, Jude EB (2002) The Role of Matrix Metalloproteinases in Wound Healing. Journal of the American Podiatric Medical Association. 92: 12-18.
[문헌 52] Leoni G, Neumann PA, Sumagin R, Denning TL, Nusrat A (2015) Wound repair: role of immune-epithelial interactions. Mucosal Immunology. 8: 959-968.
[문헌 53] DiGiovanni CW, Petricek JM. The evolution of rhPDGF-BB in musculoskeletal repair and its role in foot and ankle fusion surgery. Foot Ankle Clin. 2010 ;15 :621-640.
[문헌 54] Shi R, Lian W, Han S, Cao C, Jin Y, Yuan Y, Zhao H, Li M. Nanosphere-mediated co-delivery of VEGF-A and PDGF-B genes for accelerating diabetic foot ulcers healing in rats. Gene Ther. 2018; 25 :425-438.
[문헌 55] Jeong et al., 2019, J Invest Dermatol. 2019 May;139(5):1098-1109. doi: 10.1016/j.jid.2018.11.012. Epub 2018 Nov 29.
[문헌 56] Lee et al., 2020, Int J Mol Sci. 2020 Jan 5;21(1):343. doi: 10.3390/ijms21010343
[문헌 57]Na et al., 2016, J Invest Dermatol. 2016 Apr;136(4):847-858. doi: 10.1016/j.jid.2015.11.029. Epub 2016 Jan 21.
상처 치유 (wound healing)는 지혈 (hemostasis), 염증 (inflammation), 증식 (proliferation), 재형성 (remodeling) 4가지 단계의 순차적이고 연속적인 과정으로 일어난다 (Demidova-Rice TN, Hamblin MR, Herman IM (2012) Acute and Impaired Wound Healing: Pathophysiology and Current Methods for Drug Delivery, Part 1: Normal and Chronic Wounds: Biology, Causes, and Approaches to Care. Advances in Skin & Wound Care. 25: 304-314). 이러한 과정은 다양한 세포, 단백질, 사이토카인 간의 효율적인 상호작용을 통해 매우 복잡하지만 정교하게 일어난다. 다양한 원인으로 인해 상처 치유 과정이 제대로 진행되지 못하면 만성 상처가 형성된다. 예를 들어, 만성 상처는 염증 단계에 정체되어 과도한 염증반응이 일어나고 이에 따라 전염증성 사이토카인 (proinflammatory cytokine)과 MMPs이 비정상적으로 증가되어 있다고 알려져 있다 (Eming SA, Krieg T, Davidson JM (2007) Inflammation in Wound Repair: Molecular and Cellular Mechanisms. Journal of Investigative Dermatology. 127: 514-525.). 또한 성장인자들의 발현이 감소되어 있으며, 혈관생성 과정과 육아조직의 형성이 제대로 이루어 지지 못한다 (Frank S, Hubner G, Breier G, Longaker MT, Greenhalgh DG, Werner S (1995) Regulation of Vascular Endothelial Growth Factor Expression in Cultured Keratinocytes. Journal of Biological Chemistry. 270: 12607-12613. ; Goldman R (2004) Growth Factors and Chronic Wound Healing: Past, Present, and Future. Advances in Skin & Wound Care. 17: 24-35. ).
피부 상처 (skin wound)란 외상, 타박상, 찢김 등으로 유발되며 상처 치유 (wound healing)는 피부의 온전함을 위해 손상 입은 조직을 복구하는 과정이다 (Pazyar N, Yaghoobi R, Rafiee E, Mehrabian A, Feily A (2014) Skin Wound Healing and Phytomedicine: A Review. Skin Pharmacol Physiol. 27: 303-310.).
상처 치유는 다양한 면역학 그리고 생물학적 시스템의 상호작용으로 일어나고 4가지의 연속적이고 복잡한 과정으로 이루어진다 (Velnar T, Bailey T, Smrkolj V (2009) The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. Journal of International Medical Research. 37: 1528-1542.).
첫 번째 과정은 피부가 손상을 입은 후 즉각적으로 일어나며, 주로 지혈작용과 일시적인 상처 매트릭스 (wound matrix)를 만들어 상처를 보호한다 (Robson MC, Steed DL, Franz MG (2001) Wound Healing: Biologic Features and Approaches to Maximize Healing Trajectories. Current Problems in Surgery. 38: 72-140.). 또한, 이 상처 매트릭스에는 피브린(fibrin)과 피브로넥틴(fibronectin)을 포함하고 있어서 백혈구 (leukocytes), 각질세포 (keratinocytes), 섬유아세포 (fibroblasts) 등의 이동을 위한 발판을 마련해준다 (Reinke JM, Sorg H (2012) Wound Repair and Regeneration. European Surgical Research. 49: 35-43.).
혈소판 (platelets)과 백혈구 (leukocytes)는 다음 과정을 위해서 사이토카인과 성장인자를 방출한다 (Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev. 83: 835-870.).
출혈이 멈추게 되면 염증 세포가 상처 부위로 이동하게 되고 두 번째 단계인 염증 단계 (inflammatory phase)가 시작된다. 염증 단계에서는 순차적으로 호중구 (neutrophils), 대식 세포 (macrophages) 그리고 림프구 (lymphocytes)가 상처 부위에 도달한다 (Thiruvoth F, Mohapatra D, Sivakumar D, Chittoria R, Nandhagopal V (2015) Current concepts in the physiology of adult wound healing. Plastic and Aesthetic Research. 2: 250-256.). 호중구와 대식세포는 손상된 조직부위의 잔해물들 (debris)을 제거하는 동시에 단백질분해효소 (protease)와 활성산소 (reactive oxygen species, ROS)를 생산하여 침입하는 미생물들을 죽인다. 또한 사이토카인을 분비하여 염증반응을 촉진한다 (Guo S, DiPietro LA (2010) Factors Affecting Wound Healing. Journal of Dental Research. 89: 219-229.). 상처부위가 깨끗하게 청소되면, 세번째 증식 단계 (proliferative phase)로 넘어가게 된다. 증식 단계에서는 주로 손상입은 조직의 복구 과정들이 일어나게 된다. 가장 먼저 호중구와 대식세포에 의해서 방출된 성장 인자 PDGF (platelet-derived growth factor)가 상처부위로의 섬유아세포의 증식과 이동을 촉진한다 (Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends in Cell Biology. 15: 599-607.; Grotendorst GR, Martin GR, Pencev D, Sodek J, Harvey AK (1985) Stimulation of granulation tissue formation by platelet-derived growth factor in normal and diabetic rats. The journal of clinical investigation. 76: 2323-2329.). 또한 기존에 있었던 혈관으로부터 새로운 혈관이 생성되는 혈관 신생 (angiogenesis) 과정이 일어나며, 이는 성장 인자 VEGF (vascular endothelial growth factor), PDGF, bFGF (basic fibroblast growth factor)가 기존의 혈관 내피 세포에 있는 자신의 receptor에 결합하는 것으로 시작된다. 새롭게 생성된 혈관은 상처 부위에 영양분과 산소를 공급하여 치유를 촉진하기 때문에 손상 입은 조직에 필수적이다 (Reinke JM, Sorg H (2012) Wound Repair and Regeneration. European Surgical Research. 49: 35-43.). 섬유아세포와 새롭게 형성된 혈관들은 상처 매트릭스로 이동하여 빈공간을 채우게 되는데, 이 결과로 육아조직 (granulation tissue)이 형성된다 (Martin P, Nunan R (2015) Cellular and molecular mechanisms of repair in acute and chronic wound healing. British Journal of Dermatology. 173: 370-378.). 육아조직은 증식 단계의 마지막에 형성되며, 섬유아세포와 혈관 이외에도 과립성 백혈구 (granulocytes), 대식세포, 섬유아세포에 의해 만들어진 3형 콜라겐 다발 (type Ⅲ collagen bundles)로 구성되어 있다 (Reinke JM, Sorg H (2012) Wound Repair and Regeneration. European Surgical Research. 49: 35-43.). 상처 치유의 마지막인 재형성 단계 (remodeling phase)에서는 상처 부위의 수축과 콜라겐 (collagen) 재형성 과정이 일어난다. 상처 부위의 수축은 근육섬유아세포 (myofibroblast)에 의해서 이루어지며, 근육섬유아세포는 육아조직에 있는 일부의 섬유아세포가 분화된 세포다. 섬유아세포가 근육섬유아세포로 분화되는 메커니즘은 아직 명확하게 밝혀지지 않았다 (Hakkinen L, Larjava H, Koivisto L (2012) Granulation Tissue Formation and Remodeling. Endodontic Topics. 24: 94-129.). 증식단계에서는 주로 3형 콜라겐 다발이 상처 부위를 이루고 있는 반면, 재형성 단계에서는 좀 더 정교하게 조직화되고 평행한 구조인 1형 콜라겐 다발로 바뀌게 된다 (Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P (2010) Oxygen in acute and chronic wound healing. British Journal of Dermatology. 163: 257-268.). 상처 부위의 수축과 콜라겐 재형성 과정으로 인해 최소한의 흉터 (scar)가 만들어지고 탄성 (tension)이 부여된다 (Gonzalez AC, Costa TF, Andrade ZA, Medrado AR (2016) Wound healing - A literature review. Anais brasileiros de dermatologia. 91: 614-620. ).
만성 상처 (chronic wound)란 3달 동안 자연적으로 치유되지 않는 상처를 뜻하며, 당뇨 (diabetes), 혈관 질환 (vascular disease)을 가지고 있는 환자들에게서 발생한다 (Nunan R, Harding KG, Martin P (2014) Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Disease Models & Mechanisms. 7: 1205-1213. ). 만성 상처 중 당뇨발 궤양 (diabetic foot ulcer)을 앓고 있는 환자의 수가 가장 많으며. 전세계적으로 당뇨병을 앓고 있는 환자의 수는 4억명 정도이고 이 중 20-30%는 당뇨발의 위험에 평생 노출되어 있다 (Armstrong DG, Boulton AJM, Bus SA (2017) Diabetic Foot Ulcers and Their Recurrence. New England Journal of Medicine. 376: 2367-2375.). 만성 상처는 분자생물학적으로 염증 단계에 정체되어, 다음의 증식 단계로 진행되지 못하여 생성된다 (Bannon P, Wood S, Restivo T, Campbell L, Hardman MJ, Mace KA (2013) Diabetes induces stable intrinsic changes to myeloid cells that contribute to chronic inflammation during wound healing in mice. Disease Models & Mechanisms. 6: 1434-1447.). 이러한 이유로 비정상적인 유전자들의 발현과 상호작용이 일어나게 된다.
염증 단계가 지속되면서 TNF-α, IL-1β, IL-6와 같은 전염증성 사이토카인(proinflammatory cytokines)과 MMPs (matrix metalloproteinases)과 발현되어 있는 반면에 PDGF, VEGF, IGF와 같은 성장인자들은 발현이 감소되어 있는 것으로 알려져 있다 (Trengove NJ, Bielefeldt-Ohmann H, Stacey MC (2001) Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Repair and Regeneration. 8: 13-25.; Armstrong DG, Jude EB (2002) The Role of Matrix Metalloproteinases in Wound Healing. Journal of the American Podiatric Medical Association. 92: 12-18.). 상처부위에서 MMPs(matrix metalloproteinases)는 활성저해제인 TIMPs (tissue inhibitors of metalloproteinases)에 의해 조절되고, 세포외기질을 분해하여 재상피화 (re-epithelialization)를 가능하게 한다 (Martins VL, Caley M, O’Toole EA (2013) Matrix metalloproteinases and epidermal wound repair. Cell and Tissue Research. 351: 255-268. ). 특히, MMPs 중에서도 MMP-9에 대한 연구가 가장 활발하게 진행되고 있으며, 만성 상처에서 가장 해로운 영향을 끼친다고 알려져 있다 (Jones JI, Nguyen TT, Peng Z, Chang M (2019) Targeting MMP-9 in Diabetic Foot Ulcers. Pharmaceuticals. 12: 79.; Reiss MJ, Han YP, Garcia E, Goldberg M, Yu H, Garner WL (2010) Matrix metalloproteinase-9 delays wound healing in a murine wound model. Surgery. 147: 295-302.).
현재 만성창성의 특효약은 없으며 창상부위에 직접 도포하는 성장인자 창상치료제 (예, 재조합 PDGF)의 경우 치료 효과를 보이지만 고가이며 발암과 같은 안전성의 이유로 최근 사용이 크게 감소하고 있다 (McLaughlin PJ, Cain JD, Titunick MB, Sassani JW, Zagon IS. Topical Naltrexone Is a Safe and Effective Alternative to Standard Treatment of Diabetic Wounds. Adv Wound Care. 2017; 6: 279-288.).
최근 당뇨병성 피부궤양, 욕창, 방사선 궤양, 정맥 궤양, 과도한 스테로이드 사용, 노화 등으로 인한 치유가 매우 어려운 만성창상은 정상적인 피부상처 회복 과정의 진행에 문제가 발생하고 있다. 다양한 원인으로 피부상처가 아무는 과정이 억제되는데 상처회복의 초기인 염증단계에서 비정상적인 염증은 증식단계로 진행을 지연시킨다.
MMP (matrix metalloproteinase)의 활성과 TIMPs (tissue inhibitors of metalloproteinases)의 균형이 깨어짐에 따라 상처 손상이 지속되며 과활성화된 면역세포로 인한 TNF-α와 같은 염증 사이토카인의 합성/분비가 증가되고 세포증식을 촉진하는 PDGF와 TGF-β등의 성장인자의 발현이 감소되어 증식단계로의 진행이 억제된다.
특히 당뇨병성 피부궤양의 상처회복 지연은 말초혈관 장애로 인한 혈액 공급 장애, 신경병증, 감염, 굳은살 생성 등의 원인이 존재하고 이러한 원인은 비정상적인 성장인자의 생성과 반응, 신혈관 생성, 대식세포의 기능, collagen 침착, 육아조직의 질, 각질세포와 섬유아세포의 이동과 증식, 세포외기질의 구성, MMP 효소의 활성으로 세분화된다. 특히, 성장인자에 관한 연구가 많이 이루어지며 인슐린 유사성장인자 (insulin-like growth factor, IGF), TGF-β, VEGF, bFGF, PDGF (Platelet-derived growth factor), 신경성장인자 (nerve growth factor, NGF), GM-CSF (granulocyte-macrophage colony stimulating factor), EGF, 간세포성장인자(hepatocyte growth factor, HGF)와 같은 다양한 성장인자가 당뇨병 피부궤양 회복에 관여한다고 알려져 있다 (Grazul-Bilska AT (2003) Wound healing : the role of growth factors. Drugs Today (Barc) 2003 Oct;39(10):787-800).
당뇨병 족부궤양의 경우 환자의 15% 정도는 말초혈관의 손상, 장애, 폐색이 발생하고 감염으로 진행하여 상처부위는 물론 다리를 절단하는 상황까지 발생한다. 기본 치료는 혈당조절, 상처부위 제거, 죽은 조직 제거, 항생제 치료가 원칙이며 또한 다양한 형태의 드레싱이 개발되고 실제 임상에서 사용되고 있다.
항생제로는 세팔렉신(Cephalexin), 클린다마이신(Clindamycin) 등이 주로 사용되고 있으며, 중도 또는 만성 감염에는 암피실린(Ampicillin), 이미페넴 (Imipenem) 등이 사용되고 있다. 최근 피부창상에 대한 세포학적, 생화학적, 분자생물학적 이해가 높아짐에 따라 새로운 치료법이 개발되고 있으며 상처부위 허혈 (ischemia)을 개선하기 위한 고압산소치료, 피부이식, 감압술, EGF, PDGF, VEGF의 처리, 유전자 치료, 줄기세포 치료법 등이 개발되고 있다 (Kleopatra Alexiadou, John Doupis (2012) Management of Diabetic Foot Ulcers. Diabetes Ther. Dec; 3(1): 4 ; Aurelio Perez-Favila, Margarita L Martinez-Fierro, Jessica G Rodriguez-Lazalde (2019 Current Therapeutic Strategies in Diabetic Foot ulcers. Medicina, 55(11), 714).
특히 PDGF (becaplermin, Regranex) 국소도포제는 미국 FDA의 승인을 받아 당뇨병의 궤양에 사용되고 있다. 하지만 효능 및 발암과 같은 안전 문제로 인해 점차 사용이 줄고 있다. 국소 VEGF 도포제 (telbermin) 처리도 효과가 있다. 하지만 이들 성장인자 치료제는 상처부위의 MMP에 의해 효과적으로 전달되지 못해 고농도로 자주 처리해야 하고 실제 효과도 일정치 않다. 또한 재조합 성장인자의 경우 피부조직투과능이 떨어져 실제조직에서 회복에 필요한 양의 약 50배를 투여해야하고 이에 따라 고가인 문제가 있다. 최근 각광받고 있는 줄기세포치료제의 경우도 임상에 적용하기까지 많은 연구가 필요하다.(Lara Lopes, Ocean Setia, Afsha Aurshina, Shirley Liu, Haidi Hu (2018) Stem cell therapy for diabetic foot ulcers: a review of preclinical and clinical research. Stem Cell Res Ther: 9:188)
만성 상처가 일단 생성되면 치유의 과정은 매우 복잡하고 어려우며 환자에게 정신적, 경제적으로 큰 부담이 된다. 실제로 당뇨발 (diabetic foot) 환자의 7-20%는 현재까지 나온 치료법으로는 완치가 불가능해 신체 일부를 절단해야 한다는 보고가 있다 (Frykberg RG, Zgonis T, Armstrong DG, Driver VR, Giurini JM, Kravitz SR, Landsman AS, Lavery LA, Moore JC, Schuberth JM, Wukich DK, Andersen C, Vanore JV; American College of Foot and Ankle Surgeons (2006) Diabetic Foot Disorders: A Clinical Practice Guideline (2006 Revision). The Journal of Foot and Ankle Surgery. 45: S1-S66.). 이에 따라 만성 상처 치유에 대한 새롭고 효과가 뛰어난 치료법들이 필요하다. 최근 만성 상처 치료제에 대한 연구가 활발히 진행 중인데, 주목할 만한 치료법은 성장인자를 이용하는 것이다 (Shankaran V, Brooks M, Mostow E (2013) Advanced therapies for chronic wounds: NPWT, engineered skin, growth factors, extracellular matrices. Dermatologic Therapy. 26: 215-221). 대표적 성장인자인 PDGF, VEGF, EGF 등을 피부 상처에 직접 처리하는 치료법이 주를 이루고 있다. 특히 PDGF는 이미 FDA승인을 받아 당뇨병 상처에 쓰이고 있지만 비싼 비용에 비해서 효과가 뚜렷하지 않고 효능이 일정하지 않아 제한이 따른다 (Papanas N, Maltezos E (2008) Becaplermin gel in the treatment of diabetic neuropathic foot ulcers. Clinical Interventions in Aging. 3: 233-240 ; Hanft JR, Pollak RA, Barbul A, van Gils C, Kwon PS, Gray SM, Lynch CJ, Semba CP, Breen TJ (2008) Phase I trial on the safety of topical rhVEGF on chronic neuropathic diabetic foot ulcers. Journal of Wound Care. 17: 30-37.; Hong JP, Jung HD, Kim YW (2006) Recombinant Human Epidermal Growth Factor (EGF) to Enhance Healing for Diabetic Foot Ulcers. Annals of Plastic Surgery. 56: 394-398; Fang RC, Galiano RD (2008) A review of becaplermin gel in the treatment of diabetic neuropathic foot ulcers. Biologics. 2: 1-12.). 또한 만성 상처 부위에 MMPs 특히 MMP-9 발현이 비정상적으로 증가되어 성장인자의 활성이 억제된다고 알려졌다 (Jones JI, Nguyen TT, Peng Z, Chang M (2019) Targeting MMP-9 in Diabetic Foot Ulcers. Pharmaceuticals. 12: 79.). 따라서 최근에 만성 상처 치료제로서 MMPs 저해제에 대한 연구가 증가하고 있다.
성장인자 PDGF-A와 VEGF-A의 발현이 증가하였다. 두 성장인자 모두 혈관 신생과 육아조직의 형성에 관여한다고 보고되어 있다 (Reinke JM, Sorg H (2012) Wound Repair and Regeneration. European Surgical Research. 49: 35-43) 육아조직은 상처가 치유되는 과정 중 형성되는 것으로, 증식단계의 후반부로 진행될수록 상처가 난 부위를 거의 채울 수 있을 정도로 발달한다 (Lucas T, Waisman A, Ranjan R, Roes J, Krieg T, Muller W, Roers A, Eming SA (2010) Differential Roles of Macrophages in Diverse Phases of Skin Repair. The Journal of Immunology. 184: 3964-3977). 육아조직은 수많은 신생 혈관들과 섬유아세포, 성장인자 등의 세포들로 구성되어 있다. 육아조직은 섬유아세포가 상처부위로 이동과 증식을 함으로써 형성되는데, 이 때의 과정을 담당하는 것이 성장인자 PDGF라고 알려져 있다 (Grotendorst GR, Martin GR, Pencev D, Sodek J, Harvey AK (1985) Stimulation of granulation tissue formation by platelet-derived growth factor in normal and diabetic rats. The journal of clinical investigation. 76: 2323-2329). 또한 혈관 신생 과정은 성장인자 VEGF가 담당하고 있는데, 기존 혈관에 있는 자신의 receptor에 결합하여 내피 세포 (endothelial cell)의 이동과 증식을 통해 새로운 혈관을 생성한다 (Lamalice L, Le Boeuf F, Huot J (2007) Endothelial Cell Migration During Angiogenesis. Circulation Research. 100: 782-794.) 육아조직에 존재하는 섬유아세포는 후에 근섬유아세포로 분화하여 상처의 수축을 담당한다 (Leoni G, Neumann PA, Sumagin R, Denning TL, Nusrat A (2015) Wound repair: role of immune-epithelial interactions. Mucosal Immunology. 8: 959-968.).
따라서, 상처나 피부궤양 등의 피부 질환에 대한 효과적이면서 부작용이 적은 치료제의 개발이 요구된다.
용안육 (Dimocarpus longan Loureiro)은 무환자나무과(Sapindaceae)에 속하는 용안(Euphoria longan) 및 동속식물의 종피로서, 그 성분으로는 포도당, 서당, 단백질 등을 함유하고, 심장보호, 식욕촉진 등의 효능이 알려져 있다 (정보섭, 신민교, 도해향약대사전, 영림사, pp371-373, 1998).
고본 (Ligusticum tenuissimum KITAG.)은 미나리과(Umbelliferae)에 속하는 다년생 초본으로서 그 근경 및 뿌리를 고본이라고 지칭하며, 크니딜리드 (cnidilide), 3-부틸(butyl) 프탈리드(phthalide) 등의 정유 성분을 함유하고 있으며, 항진균 작용 등의 효능을 지니고 있는 것으로 알려져 있다(정보섭외 1인, 영림출판사, p428-429, 1998년).
원지 (Polygala tenuifolia WILLD.)은 원지과(Polygalaceae)에 속하는 다년생 초본으로서 그 뿌리를 원지(Polygalae Radix)라고 지칭하며, 다양한 사포닌 (saponin) 성분을 함유하고 있으며, 거담작용 및 항균 작용 등의 효능을 지니고 있는 것으로 알려져 있다(정보섭외 1인, 영림출판사, p798-799, 1998년).
그러나, 상기 문헌의 어디에도 용안육, 고본 및 원지로 구성된 조합 추출물을 유효성분으로 함유하는 상처나 피부궤양 등의 피부 질환에 대한 치료효과가 개시되거나 교시된 바는 없다.
이에 본 발명자들은 상기 조합 생약 추출물에 대하여 사람 피부 상피세포(HaCaT)를 이용한 사이토카인 발현 억제 효과 실험 (실험예 1), 생약 혼합 추출물의 세포 증식 효과 시험 (in vitro proliferation assay)(실험예 2); 생약 혼합 추출물의 피부 상처 치유 효과 실험 (In vitro wound healing assay)(실험예 3); 당뇨 모델 마우스를 이용한 생약 혼합 추출물의 만성 상처 치료 효과 시험(실험예 4); 생약 혼합 추출물의 피부 상처 조직 회복 효과 시험(실험예 5); 생약 혼합 추출물의 성장인자 관련 염증인자 발현에 미치는 영향실험 (실험예 6) 등의 다양한 실험을 수행한 바, 상기 시료들이 강력한 궤양 치료 및 개선효과를 확인하여 상기 조성물을 궤양 치료 및 개선용 피부외용 약학조성물 또는 화장료 조성물로 유용함을 확인함으로써 본 발명을 완성하였다.
상기 목적을 달성하기 위하여, 본 발명은 용안육, 고본 및 원지로 구성된 조합 생약 추출물을 유효성분으로 함유하는 궤양의 치료 및 예방용 피부외용 약학조성물을 제공한다.
또한 , 본 발명은 용안육, 고본 및 원지로 구성된 조합 생약 추출물을 유효성분으로 함유하는 궤양의 예방 및 개선용 화장료 조성물을 제공한다.
본원에서 정의되는 조합 생약 추출물은 바람직하게는, 용안육, 고본원지의 중량 혼합비(w/w)가 0.01 - 100 : 0.01 - 100 : 0.01 - 100 중량부 (w/w), 보다 바람직하게는 0.5-50 : 0.5-50: 0.5-50 중량부 (w/w), 보다 더 바람직하게는 0.1-10 : 0.1-10: 0.1-10 중량부(w/w), 보다 더 바람직하게는 1-5 : 1-5: 1-5 중량부 (w/w), 보다 더욱더 바람직하게는 1-3 : 1-3: 1-3 중량부 (w/w)로 배합된 배합물을 포함하는 것임을 특징으로 한다.
이하, 본 발명을 상세히 설명한다. 하기와 같은 통상의 추출과정을 통하여 조합 생약 추출물을 수득가능하다.
상기 단계에서 얻은 건조생약재료인 용안육, 고본 및 원지를 용안육, 고본 및 원지의 중량 혼합비(w/w)가 0.01 - 100 : 0.01 - 100 : 0.01 - 100 중량부 (w/w), 보다 바람직하게는 0.5-50 : 0.5-50: 0.5-50 중량부 (w/w), 보다 더 바람직하게는 0.1-10 : 0.1-10: 0.1-10 중량부(w/w), 보다 더 바람직하게는 1-5 : 1-5: 1-5 중량부 (w/w), 보다 더욱더 바람직하게는 1-3 : 1-3: 1-3 중량부 (w/w)로 배합된 배합물을 제조하는 제 1단계; 상기 배합물을 세척하고 상기 배합물 시료의 1 내지 20배 (w/v) 중량, 바람직하게는 1 내지 10배 (v/w) 부피의 물, 에탄올, 메탄올, 프로판올, 부탄올, 아세톤, 에틸아세테이트, 헥산, 부틸렌글리콜, 프로필렌글리콜, 함수부틸렌글리콜, 함수프로필렌글리콜, 함수글리세린으로 구성된 그룹으로부터 선택된 하나 이상의 용매, 바람직하게는 물 또는 물 및 에탄올 혼합용매, 가장 바람직하게는 10% 내지 80% 에탄올로 50 내지 120℃, 바람직하게는 약 80-100℃에서 1시간 내지 24시간, 바람직하게는 2시간 내지 12시간 동안 열수 추출법, 냉침 추출법 또는 초음파 추출법, 바람직하게는 열수 추출법을 수행하여 추출액을 얻는 제 2단계; 상기 2단계의 추출공정을 2 내지 10회, 바람직하게는 3 내지 5회 반복하여 얻은 추출액을 회수하여 여과지로 여과하여 여과물을 수득하는 제 3단계; 상기 여과물을 동결건조, 상온건조 또는 열풍건조, 바람직하게는 동결건조를 수행하여 건조 상태의 조합 생약 추출물을 수득하는 제 4단계 공정을 통하여 본 발명의 조합 생약 추출물을 제조가능하다.
본 발명은 상기 제조방법 및 상기 제조방법으로 수득된 조합 생약 추출물을 유효성분으로 함유하는 궤양 치료 및 개선 효과를 갖는 피부외용 약학조성물 및 화장료 조성물을 제공한다.
본원에서 정의되는 “추출물”은 상기 용안육, 고본, 및 원지들의 뿌리, 줄기 및 잎 부위를 추출재료의 추출물을 포함하며, 구체적으로는, 상기 추출재료의 물, 에탄올, 메탄올, 프로판올, 부탄올, 아세톤, 에틸아세테이트, 헥산, 부틸렌글리콜, 프로필렌글리콜, 함수부틸렌글리콜, 함수프로필렌글리콜, 함수글리세린으로 구성된 그룹으로부터 선택된 하나 이상의 용매, 바람직하게는 물 또는 물 및 에탄올 혼합용매, 가장 바람직하게는 10% 내지 80% 에탄올 가용 추출물을 포함한다.
상기 용안육, 고본, 및 원지의 조합 추출물은
(1) 용안육, 고본, 및 원지의 조합의 추출물, 또는
(2) 개개 용안육 추출물, 고본 추출물, 및 원지 추출물들의 혼합물, 또는
(3) 이들 조합을 포함한다.
일 구체예에서, 용안육, 고본, 및 원지의 혼합 추출물은 용안육, 고본, 및 원지의 혼합물의 추출물일 수 있다.
본 명세서에서, "추출물"은 생약에 추출 용매를 가하여 추출하여 얻어진 추출물뿐 아니라, 상기 추출물의 농축물 및 희석물, 및 상기 추출물, 농축물, 및 희석물의 건조물을 모두 포함하는 의미로, 특별한 언급이 없는 한, "추출물"은 생약에 추출 용매를 가하여 추출하여 얻어진 추출물, 상기 추출물의 건조물, 상기 추출물의 농축물 또는 희석물, 및 상기 농축물 또는 희석물의 건조물로 이루어진 군에서 선택된 1종 이상을 의미하는 것으로 해석될 수 있다.
본원에서 정의되는 궤양은 욕창궤양, 피부궤양 또는 당뇨병성궤양 등을 포함한다.
상기 추출물은 피부외용 약학조성물은 총 중량에 대하여 0.1 내지 50 중량%으로 포함함을 특징으로 한다.
상기 피부외용 약학 조성물은 크림, 젤, 패취, 분무제, 에멀젼제, 연고제, 경고제, 로션제, 리니멘트제, 파스타제, 용제, 현탁제, 팩(pack), 패치제(patch) 또는 카타플라스마제(cataplasma) 제형을 포함한다.
또한, 상기 화장료 조성물은 화장수, 스킨, 로션, 영양로션, 영양크림, 마사지 크림, 에센스, 팩, 비누, 액상 세정제, 젤, 패치 등의 제형, 정제, 캡슐제, 산제 등의 경구 투여용 식용 화장품제제를 포함한다.
본 발명자들은 본 발명의 조합 생약 추출물에 대하여 사람 피부 상피세포(HaCaT)를 이용한 사이토카인 발현 억제 효과 실험 (실험예 1), 생약 혼합 추출물의 세포 증식 효과 시험 (in vitro proliferation assay)(실험예 2); 생약 혼합 추출물의 피부 상처 치유 효과 실험 (In vitro wound healing assay)(실험예 3); 당뇨 모델 마우스를 이용한 생약 혼합 추출물의 만성 상처 치료 효과 시험(실험예 4); 생약 혼합 추출물의 피부 상처 조직 회복 효과 시험(실험예 5); 생약 혼합 추출물의 성장인자 관련 염증인자 발현에 미치는 영향실험 (실험예 6) 등의 다양한 실험을 수행한 바, 상기 시료들이 강력한 상처 치료 및 개선효과를 확인하여 상기 조성물을 궤양 치료 및 개선용 피부외용 약학조성물 또는 화장료 조성물로 유용함을 확인하였다.
또한, 상기 생약들은 오랫동안 생약 및 식용으로 사용되어 오던 약재로서 이들로부터 추출된 본 발명의 추출물 역시 독성 및 부작용 등의 문제가 없으며, 피부 첩포 시험에서 무자극 시료임이 입증되었으므로 장기간 사용 시에도 안심하고 사용할 수 있다.
본 발명의 추출물을 함유하는 피부외용 약학조성물은 크림, 젤, 패취, 분무제, 연고제, 경고제, 로션제, 리니멘트제, 파스타제 또는 카타플라스마제의 피부 외용제 형태의 약학조성물로 제조하여 사용할 수 있으나, 이에 한정하는 것은 아니다.
본 발명의 추출물의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 그러나 바람직한 효과를 위해서, 본 발명의 추출물은 1일 0.0001 내지 100 ㎎/㎏으로, 바람직하게는 0.001 내지 10 ㎎/㎏으로 투여하는 것이 좋다. 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 투여할 수도 있다. 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.
본 발명의 추출물은 항궤양 효과를 갖는 화장품 및 세안제 등에 다양하게 이용될 수 있다.
본 조성물을 첨가할 수 있는 제품으로는, 예를 들어, 화장수, 스킨, 로션, 영양로션, 영양크림, 맛사지크림, 에센스, 팩 등과 같은 화장품류와 클렌징, 세안제, 비누, 트리트먼트, 미용액 등이 있다.
본 발명의 화장료는 수용성 비타민, 유용성 비타민, 고분자 펩티드, 고분자 다당, 스핑고 지질 및 해초 엑기스로 이루어진 군에서 선택된 조성물을 포함한다.
수용성 비타민으로서는 화장품에 배합 가능한 것이라면 어떠한 것이라도 되지만, 바람직하게는 비타민 B1, 비타민 B2, 비타민 B6, 피리독신, 염산피리독신, 비타민 B12, 판토텐산, 니코틴산, 니코틴산아미드, 엽산, 비타민 C, 비타민 H 등을 들 수 있으며, 그들의 염 (티아민염산염, 아스코르빈산나트륨염 등)이나 유도체 (아스코르빈산-2-인산나트륨염, 아스코르빈산-2-인산마그네슘염 등)도 본 발명에서 사용할 수 있는 수용성 비타민에 포함된다. 수용성 비타민은 미생물 변환법, 미생물의 배양물로부터의 정제법, 효소법 또는 화학 합성법 등의 통상의 방법에 의해 수득할 수 있다.
유용성 비타민으로서는 화장품에 배합 가능한 것이라면 어떠한 것이라도 되지만, 바람직하게는 비타민 A, 카로틴, 비타민 D2, 비타민 D3, 비타민 E (d1-알파 토코페롤, d-알파 토코페롤, d-알파 토코페롤) 등을 들 수 있으며, 그들의 유도체 (팔미틴산아스코르빈, 스테아르산아스코르빈, 디팔미틴산아스코르빈, 아세트산 dl-알파 토코페롤, 니코틴산 dl-알파 토코페롤비타민 E, dl-판토테닐알코올, D-판토테닐알코올, 판토테닐에틸에테르 등) 등도 본 발명에서 사용되는 유용성 비타민에 포함된다. 유용성 비타민은 미생물 변환법, 미생물의 배양물로부터의 정제법, 효소 또는 화학 합성법 등의 통상의 방법에 의해 취득할 수 있다.
고분자 펩티드로서는 화장품에 배합 가능한 것이라면 어떠한 것이라도 되지만, 바람직하게는 콜라겐, 가수 분해 콜라겐, 젤라틴, 엘라스틴, 가수 분해 엘라스틴, 케라틴 등을 들 수 있다. 고분자 펩티드는 미생물의 배양액으로부터의 정제법, 효소법 또는 화학 합성법 등의 통상의 방법에 의해 정제 취득할 수 있으며, 또는 통상 돼지나 소 등의 진피, 누에의 견섬유 등의 천연물로부터 정제하여 사용할 수 있다.
고분자 다당으로서는 화장품에 배합 가능한 것이라면 어떠한 것이라도 되지만, 바람직하게는 히드록시에틸셀룰로오스, 크산탄검, 히알루론산나트륨, 콘드로이틴 황산 또는 그 염 (나트륨염 등) 등을 들 수 있다. 예를 들어, 콘드로이틴 황산 또는 그 염 등은 통상 포유동물이나 어류로부터 정제하여 사용할 수 있다.
스핑고 지질로서는 화장품에 배합 가능한 것이라면 어떠한 것이라도 되지만, 바람직하게는 세라미드, 피토스핑고신, 스핑고당지질 등을 들 수 있다. 스핑고 지질은 통상 포유류, 어류, 패류, 효모 또는 식물 등으로부터 통상의 방법에 의해 정제하거나 화학 합성법에 의해 취득할 수 있다.
해초 엑기스로는 화장품에 배합 가능한 것이라면 어떠한 것이라도 되지만, 바람직하게는 갈조 엑기스, 홍조 엑기스, 녹조 엑기스 등을 들 수 있으며, 또, 이들의 해초 엑기스로부터 정제된 칼라기난, 아르긴산, 아르긴산나트륨, 아르긴산칼륨 등도 본 발명에서 사용되는 해초 엑기스에 포함된다. 해초 엑기스는 해초로부터 통상의 방법에 의해 정제하여 취득할 수 있다.
본 발명의 화장료에는 상기 필수 성분과 더불어 필요에 따라 통상 화장료에 배합되는 다른 성분을 배합해도 된다.
이외에 첨가해도 되는 배합 성분으로서는 유지 성분, 보습제, 에몰리엔트제, 계면 활성제, 유기 및 무기 안료, 유기 분체, 자외선 흡수제, 방부제, 살균제, 산화 방지제, 식물 추출물, pH 조정제, 알콜, 색소, 향료, 혈행 촉진제, 냉감제, 제한(制汗)제, 정제수 등을 들 수 있다.
유지 성분으로서는 에스테르계 유지, 탄화수소계 유지, 실리콘계 유지, 불소계 유지, 동물 유지, 식물 유지 등을 들 수 있다.
에스테르계 유지로서는 트리2-에틸헥산산글리세릴, 2-에틸헥산산세틸, 미리스틴산이소프로필, 미리스틴산부틸, 팔미틴산이소프로필, 스테아르산에틸, 팔미틴산옥틸, 이소스테아르산이소세틸, 스테아르산부틸, 리놀레산에틸, 리놀레산이소프로필, 올레인산에틸, 미리스틴산이소세틸, 미리스틴산이소스테아릴, 팔미틴산이소스테아릴, 미리스틴산옥틸도데실, 이소스테아르산이소세틸, 세바신산디에틸, 아디핀산디이소프로필, 네오펜탄산이소알킬, 트리(카프릴, 카프린산)글리세릴, 트리2-에틸헥산산트리메틸롤프로판, 트리이소스테아르산트리메틸롤프로판, 테트라2-에틸헥산산펜타엘리슬리톨, 카프릴산세틸, 라우린산데실, 라우린산헥실, 미리스틴산데실, 미리스틴산미리스틸, 미리스틴산세틸, 스테아르산스테아릴, 올레인산데실, 리시노올레인산세틸, 라우린산이소스테아릴, 미리스틴산이소트리데실, 팔미틴산이소세틸, 스테아르산옥틸, 스테아르산이소세틸, 올레인산이소데실, 올레인산옥틸도데실, 리놀레산옥틸도데실, 이소스테아르산이소프로필, 2-에틸헥산산세토스테아릴, 2-에틸헥산산스테아릴, 이소스테아르산헥실, 디옥탄산에틸렌글리콜, 디올레인산에틸렌글리콜, 디카프린산프로필렌글리콜, 디(카프릴,카프린산)프로필렌글리콜, 디카프릴산프로필렌글리콜, 디카프린산네오펜틸글리콜, 디옥탄산네오펜틸글리콜, 트리카프릴산글리세릴, 트리운데실산글리세릴, 트리이소팔미틴산글리세릴, 트리이소스테아르산글리세릴, 네오펜탄산옥틸도데실, 옥탄산이소스테아릴, 이소노난산옥틸, 네오데칸산헥실데실, 네오데칸산옥틸도데실, 이소스테아르산이소세틸, 이소스테아르산이소스테아릴, 이소스테아르산옥틸데실, 폴리글리세린올레인산에스테르, 폴리글리세린이소스테아르산에스테르, 시트르산트리이소세틸, 시트르산트리이소알킬, 시트르산트리이소옥틸, 락트산라우릴, 락트산미리스틸, 락트산세틸, 락트산옥틸데실, 시트르산트리에틸, 시트르산아세틸트리에틸, 시트르산아세틸트리부틸, 시트르산트리옥틸, 말산디이소스테아릴, 히드록시스테아르산 2-에틸헥실, 숙신산디2-에틸헥실, 아디핀산디이소부틸, 세바신산디이소프로필, 세바신산디옥틸, 스테아르산콜레스테릴, 이소스테아르산콜레스테릴, 히드록시스테아르산콜레스테릴, 올레인산콜레스테릴, 올레인산디히드로콜레스테릴, 이소스테아르산피트스테릴, 올레인산피트스테릴, 12-스테알로일히드록시스테아르산이소세틸, 12-스테알로일히드록시스테아르산스테아릴, 12-스테알로일히드록시스테아르산이소스테아릴 등의 에스테르계 등을 들 수 있다.
탄화 수소계 유지로서는 스쿠알렌, 유동 파라핀, 알파-올레핀올리고머, 이소파라핀, 세레신, 파라핀, 유동 이소파라핀, 폴리부덴, 마이크로크리스탈린왁스, 와셀린 등의 탄화 수소계 유지 등을 들 수 있다.
실리콘계 유지로서는 폴리메틸실리콘, 메틸페닐실리콘, 메틸시클로폴리실록산, 옥타메틸폴리실록산, 데카메틸폴리실록산, 도데카메틸시클로실록산, 디메틸실록산ㆍ메틸세틸옥시실록산 공중합체, 디메틸실록산ㆍ메틸스테알록시실록산 공중합체, 알킬 변성 실리콘유, 아미노 변성 실리콘유 등을 들 수 있다.
불소계 유지로서는 퍼플루오로폴리에테르 등을 들 수 있다.
동물 또는 식물 유지로서는 아보카도유, 아르몬드유, 올리브유, 참깨유, 쌀겨유, 새플라워유, 대두유, 옥수수유, 유채유, 행인(杏仁)유, 팜핵유, 팜유, 피마자유, 해바라기유, 포도종자유, 면실유, 야자유, 쿠쿠이너트유, 소맥배아유, 쌀 배아유, 시아버터, 월견초유, 마커데이미아너트유, 메도홈유, 난황유, 우지(牛脂), 마유, 밍크유, 오렌지라피유, 호호바유, 캔데리러왁스, 카르나바왁스, 액상 라놀린, 경화피마자유 등의 동물 또는 식물 유지를 들 수 있다.
보습제로서는 수용성 저분자 보습제, 지용성 분자 보습제, 수용성 고분자, 지용성 고분자 등을 들 수 있다.
수용성 저분자 보습제로서는 세린, 글루타민, 솔비톨, 만니톨, 피롤리돈-카르복실산나트륨, 글리세린, 프로필렌글리콜, 1,3-부틸렌글리콜, 에틸렌글리콜, 폴리에틸렌글리콜B(중합도 n = 2 이상), 폴리프로필렌글리콜(중합도 n = 2 이상), 폴리글리세린B(중합도 n = 2 이상), 락트산, 락트산염 등을 들 수 있다.
지용성 저분자 보습제로서는 콜레스테롤, 콜레스테롤에스테르 등을 들 수 있다.
수용성 고분자로서는 카르복시비닐폴리머, 폴리아스파라긴산염, 트라가칸트, 크산탄검, 메틸셀룰로오스, 히드록시메틸셀룰로오스, 히드록시에틸셀룰로오스, 히드록시프로필셀룰로오스, 카르복시메틸셀룰로오스, 수용성 키틴, 키토산, 덱스트린 등을 들 수 있다.
지용성 고분자로서는 폴리비닐피롤리돈ㆍ에이코센 공중합체, 폴리비닐피롤리돈ㆍ헥사데센 공중합체, 니트로셀룰로오스, 덱스트린지방산에스테르, 고분자 실리콘 등을 들 수 있다.
에몰리엔트제로서는 장쇄아실글루타민산콜레스테릴에스테르, 히드록시스테아르산콜레스테릴, 12-히드록시스테아르산, 스테아르산, 로진산, 라놀린지방산콜레스테릴에스테르 등을 들 수 있다.
계면 활성제로서는 비이온성 계면 활성제, 음이온성 계면 활성제, 양이온성 계면 활성제, 양성 계면 활성제 등을 들 수 있다.
비이온성 계면 활성제로서는 자기 유화형 모노스테아르산글리세린, 프로필렌글리콜지방산에스테르, 글리세린지방산에스테르, 폴리글리세린지방산에스테르, 솔비탄지방산에스테르, POE (폴리옥시에틸렌)솔비탄지방산에스테르, POE 솔비트지방산에스테르, POE 글리세린지방산에스테르, POE 알킬에테르, POE 지방산에스테르, POE 경화피마자유, POE 피마자유, POEㆍPOP (폴리옥시에틸렌ㆍ폴리옥시프로필렌) 공중합체, POEㆍPOP 알킬에테르, 폴리에테르변성실리콘, 라우린산알카놀아미드, 알킬아민옥시드, 수소첨가대두인지질 등을 들 수 있다.
음이온성 계면 활성제로서는 지방산비누, 알파-아실술폰산염, 알킬술폰산염, 알킬알릴술폰산염, 알킬나프탈렌술폰산염, 알킬황산염, POE 알킬에테르황산염, 알킬아미드황산염, 알킬인산염, POE 알킬인삼염, 알킬아미드인산염, 알킬로일알킬타우린염, N-아실아미노산염, POE 알킬에테르카르복실산염, 알킬술포숙신산염, 알킬술포아세트산나트륨, 아실화 가수분해 콜라겐펩티드염, 퍼플루오로알킬인산에스테르 등을 들 수 있다.
양이온성 계면 활성제로서는 염화알킬트리메틸암모늄, 염화스테아릴트리메틸암모늄, 브롬화스테아릴트리메틸암모늄, 염화세토스테아릴트리메틸암모늄, 염화디스테아릴디메틸암모늄, 염화스테아릴디메틸벤질암모늄, 브롬화베헤닐트리메틸암모늄, 염화벤잘코늄, 스테아르산디에틸아미노에틸아미드, 스테아르산디메틸아미노프로필아미드, 라놀린 유도체 제 4급 암모늄염 등을 들 수 있다.
양성 계면 활성제로서는 카르복시베타인형, 아미드베타인형, 술포베타인형, 히드록시술포베타인형, 아미드술포베타인형, 포스포베타인형, 아미노카르복실산염형, 이미다졸린 유도체형, 아미드아민형 등의 양성 계면 활성제 등을 들 수 있다.
유기 및 무기 안료로서는 규산, 무수규산, 규산마그네슘, 탤크, 세리사이트, 마이카, 카올린, 벵갈라, 클레이, 벤토나이트, 티탄피막운모, 옥시염화비스무트, 산화지르코늄, 산화마그네슘, 산화아연, 산화티탄, 산화알루미늄, 황산칼슘, 황산바륨, 황산마그네슘, 탄산칼슘, 탄산마그네슘, 산화철, 군청, 산화크롬, 수산화크롬, 칼라민 및 이들의 복합체등의 무기 안료 ; 폴리아미드, 폴리에스테르, 폴리프로필렌, 폴리스티렌, 폴리우레탄, 비닐수지, 요소수지, 페놀수지, 불소수지, 규소수지, 아크릴수지, 멜라민수지, 에폭시수지, 폴리카보네이트수지, 디비닐벤젠ㆍ스티렌 공중합체, 실크파우더, 셀룰로오스, CI 피그먼트옐로우, CI 피그먼트오렌지 등의 유기 안료 및 이들의 무기 안료와 유기 안료의 복합 안료 등을 들 수 있다.
유기 분체로서는 스테아르산칼슘 등의 금속비누 ; 세틸린산아연나트륨, 라우릴린산아연, 라우릴린산칼슘 등의 알킬인산금속염 ; N-라우로일-베타-알라닌칼슘, N-라우로일-베타-알라닌아연, N-라우로일글리신칼슘 등의 아실아미노산 다가금속염 ; N-라우로일-타우린칼슘, N-팔미토일-타우린칼슘 등의 아미드술폰산 다가금속염 ; N-엡실론-라우로일-L-리진, N-엡실론-팔미토일리진, N-알파-파리토일올니틴, N-알파-라우로일아르기닌, N-알파-경화우지지방산아실아르기닌 등의 N-아실염기성아미노산 ; N-라우로일글리실글리신 등의 N-아실폴리펩티드 ; 알파-아미노카프릴산, 알파-아미노라우린산 등의 알파-아미노지방산 ; 폴리에틸렌, 폴리프로필렌, 나일론, 폴리메틸메타크릴레이트, 폴리스티렌, 디비닐벤젠ㆍ스티렌 공중합체, 사불화에틸렌 등을 들 수 있다.
자외선 흡수제로서는 파라아미노벤조산, 파라아미노벤조산에틸, 파라아미노벤조산아밀, 파라아미노벤조산옥틸, 살리실산에틸렌글리콜, 살리신산페닐, 살리신산옥틸, 살리신산벤질, 살리신산부틸페닐, 살리신산호모멘틸, 계피산벤질, 파라메톡시계피산-2-에톡시에틸, 파라메톡시계피산옥틸, 디파라메톡시계피산모노-2-에틸헥산글리세릴, 파라메톡시계피산이소프로필, 디이소프로필ㆍ디이소프로필계피산에스테르 혼합물, 우로카닌산, 우로카닌산에틸, 히드록시메톡시벤조페논, 히드록시메톡시벤조페논술폰산 및 그 염, 디히드록시메톡시벤조페논, 디히드록시메톡시벤조페논디술폰산나트륨, 디히드록시벤조페논, 테트라히드록시벤조페논, 4-tert-부틸-4'-메톡시디벤조일메탄, 2,4,6-트리아닐리노-p-(카르보-2'-에틸헥실-1'-옥시)-1,3,5-트리아진, 2-(2-히드록시-5-메틸페닐)벤조트리아졸 등을 들 수 있다.
살균제로서는 히노키티올, 트리클로산, 트리클로로히드록시디페닐에테르, 크로르헥시딘글루콘산염, 페녹시에탄올, 레조르신, 이소프로필메틸페놀, 아줄렌, 살리칠산, 진크필리티온, 염화벤잘코늄, 감광소 301 호, 모노니트로과이어콜나트륨, 운데시렌산 등을 들 수 있다.
산화 방지제로서는 부틸히드록시아니솔, 갈릭산프로필, 엘리소르빈산 등을 들 수 있다.
pH 조정제로서는 시트르산, 시트르산나트륨, 말산, 말산나트륨, 프말산, 프말산나트륨, 숙신산, 숙신산나트륨, 수산화나트륨, 인산일수소나트륨 등을 들 수 있다.
알코올로서는 세틸알코올 등의 고급 알코올을 들 수 있다.
또한, 이외에 첨가해도 되는 배합 성분은 이에 한정되는 것은 아니며, 또, 상기 어느 성분도 본 발명의 목적 및 효과를 손상시키지 않는 범위 내에서 배합 가능하지만, 총중량에 대하여 바람직하게는 0.01 - 5 % 중량, 보다 바람직하게는 0.01 - 3 % 중량로 배합된다.
본 발명의 화장료는 용액, 유화물, 점성형 혼합물 등의 형상을 취할 수 있다.
본 발명의 화장료 조성물에 포함되는 성분은 유효성분으로서 상기 추출물 이외에 화장료 조성물에 통상적으로 이용되는 성분들을 포함할 수 있으며, 예를 들면, 안정화제, 용해화제, 비타민, 안료 및 향료와 같은 통상적인 보조제 및 담체를 포함한다.
본 발명의 화장료 조성물은 당업계에서 통상적으로 제조되는 어떠한 제형으로도 제조될 수 있으며, 예를 들어 유액, 크림, 화장수, 팩, 파운데이션, 로션, 미용액, 모발화장료 등을 들 수 있다.
구체적으로, 본 발명의 화장료 조성물은 스킨로션, 스킨소프너, 스킨토너, 아스트린젠트, 로션, 밀크로션, 모이스쳐 로션, 영양로션, 맛사지크림, 영양크림, 모이스처크림, 핸드크림, 파운데이션, 에센스, 영양에센스, 팩, 비누, 클렌징폼, 클렌징로션, 클렌징크림, 바디로션 및 바디클린저의 제형을 포함한다.
본 발명의 제형이 페이스트, 크림 또는 겔인 경우에는 담체 성분으로서 동물섬유, 식물섬유, 왁스, 파라핀, 전분, 트라칸트, 셀룰로오스 유도체, 폴리에틸렌 글리콜, 실리콘, 벤토나이트, 실리카, 탈크 또는 산화아연 등이 이용될 수 있다.
본 발명의 제형이 파우더 또는 스프레이인 경우에는 담체 성분으로서 락토스, 탈크, 실리카, 알루미늄 히드록시드, 칼슘 실리케이트 또는 폴리아미드 파우더가 이용될 수 있고, 특히 스프레이인 경우에는 추가적으로 클로로플루오로히드로카본, 프로판/부탄 또는 디메틸 에테르와 같은 추진체를 포함할 수 있다.
본 발명의 제형이 용액 또는 유탁액의 경우에는 담체 성분으로서 용매, 용매화제 또는 유탁화제가 이용되고, 예컨대 물, 에탄올, 이소프로판올, 에틸 카보네이트, 에틸 아세테이트, 벤질 알코올, 벤질 벤조에이트, 프로필렌 글리콜, 1,3-부틸글리콜 오일, 글리세롤 지방족 에스테르, 폴리에틸렌 글리콜 또는 소르비탄의 지방산 에스테르가 있다.
본 발명의 제형이 현탁액인 경우에는 담체 성분으로서 물, 에탄올 또는 프로필렌 글리콜과 같은 액상 희석제, 에톡실화 이소스테아릴 알코올, 폴리옥시에틸렌 소르비톨 에스테르 및 폴리옥시에틸렌 소르비탄 에스테르와 같은 현탁제, 미소결정성 셀룰로오스, 알루미늄 메타히드록시드, 벤토나이트, 아가 또는 트라칸트 등이 이용될 수 있다.
본 발명의 제형이 계면-활성제 함유 클린징인 경우에는 담체 성분으로서 지방족 알코올 설페이트, 지방족 알코올 에테르 설페이트, 설포숙신산 모노에스테르, 이세티오네이트, 이미다졸리늄 유도체, 메틸타우레이트, 사르코시네이트, 지방산 아미드 에테르 설페이트, 알킬아미도베타인, 지방족 알코올, 지방산 글리세리드, 지방산 디에탄올아미드, 식물성 유, 리놀린 유도체 또는 에톡실화 글리세롤 지방산 에스테르 등이 이용될 수 있다.
본 발명의 조합 생약 추출물에 대하여 사람 피부 상피세포(HaCaT)를 이용한 사이토카인 발현 억제 효과 실험 (실험예 1), 생약 혼합 추출물의 세포 증식 효과 시험 (in vitro proliferation assay)(실험예 2); 생약 혼합 추출물의 피부 상처 치유 효과 실험 (In vitro wound healing assay)(실험예 3); 당뇨 모델 마우스를 이용한 생약 혼합 추출물의 만성 상처 치료 효과 시험(실험예 4); 생약 혼합 추출물의 피부 상처 조직 회복 효과 시험(실험예 5); 생약 혼합 추출물의 성장인자 관련 염증인자 발현에 미치는 영향실험 (실험예 6) 등의 다양한 실험을 수행한 바, 상기 시료들이 강력한 궤양 치료 및 개선효과를 확인하여 상기 조성물을 궤양 치료 및 개선용 피부외용 약학조성물 또는 화장료 조성물로 이용될 수 있다.
도 1은 피부상피세포 (HaCaT)에 Scratch를 내었을 때 다양한 실시예의 생약 혼합 추출물을 처리한 경우의 세포사진을 나타낸 도이며(여기에서, 음성 대조군 (DIW)임);
도 2는 스트렙토조토신(STZ)-유도 당뇨병 유발 마우스 모델을 확립하는 도면이며 ((A)스트렙토조토신(STZ)-유도 당뇨병 유발 마우스 모델에서의 피부-창상 치유를 위한 실험 과정으로서, STZ을 5일 연속 복강주사하고 대조군은 0.05 M 시트르산 나트륨 완충액을 주사하였으며 3주후에, 4시간 절식후 포도당 수준을 측정하였다. 혈당수준( ≥350 mg/dL ) 마우스를 당뇨병 유발 마우스로 간주하였다);
도 3은 피부 상처 치유과정에 대한 실시예 추출물의 효과를 나타낸 도이며 (스트렙토조토신(STZ)-유도 당뇨병 유발 마우스 모델을 확립하는 도면이며 (피부 상처 치유 과정은 대조군과 비교시 STZ-유도 마우스에서 지연되었으나, 본원 실시예 추출물시료 처리시에 치유가 가속화되었으며, (A) 스트렙토조토신(STZ)-주사후, 두꺼운 절단 상처는 생검용 펀치(biopsy punch)를 이용하였고 지정된 시간에서의 부형제 (DIW) 및 추출물 (NP)를 처치한 마우스 피부 상처의 대표적인 사진임);
도 4는 당뇨병성 피부 궤양 조직학적 분석 결과를 나타낸 도이다 (스트렙토조토신(STZ)-유도 당뇨병 유발 마우스의 당뇨병성 피부 궤양에서 육아조직(granulation tissue) 형성이 탐지되지 않았으나, 추출물 시료를 처치한 군에서는 육아조직(granulation tissue) 형성이 촉진되었으며, (A) 스트렙토조토신(STZ)-주사후, 두꺼운 절단 상처는 생검용 펀치(biopsy punch)를 이용하였고, 상처 유발 7일후 피부 조직을 회수하고 조직학적 검사를 수행하였으며, 지정된 시간에서의 부형제 (DIW) 및 추출물 (NP)를 처치한 마우스 당뇨병성 궤양의 대표적인 사진이며, 크기 막대(Scale bars = 200 ㎛. ).
이하 본 발명을 다음의 실시예에 의하여 보다 구체적으로 설명하고자 한다. 그러나 이들은 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 제한되는 것은 아니다.
실시예 1. 조합 생약추출물의 제조
건조 상태의 용안육 (부영약업사) 20g, 원지 (부영약업사) 20g, 고본 (부영약업사) 20g을 깨끗이 세척하고 잘게 절단한 후, 6배 부피 (v/w)의 20% (v/v) 에탄올/물 용매를 가하여 옹기 약탕기에서 90±5°C에서 3시간 환류추출한 후 여과 (10μm 이하)하고 남은 고형분에 다시 4배 부피 (v/w)의 20% (v/v) 에탄올/물 용매를 추가하여 상기와 동일한 조건에 따라 2차 추출한 후 여과(10μm 이하)하였다.
상기 3가지 추출액을 혼합 후 감압농축 (16~21 brix) 후 농축액을 살균 (80~90°C) 후에 냉각하였다. 동결건조 후 용안육, 원지 및 고본의 혼합 에탄올 추출분말을 파쇄 (50 mesh 이하)하여 실험예 시료로 사용하였다 (20.5g, 수율 33.4%, 이하, "WIN-1001X"로 명명).
실시예 2-6. 조합 생약추출물의 제조
건조 상태의 용안육 (부영약업사), 원지 (부영약업사) 및 고본의 건조중량을 기준으로 하기 표 1의 조성으로 배합비 및 추출용매를 달리하는 것만을 제외하고 실시예 시료 2-6을 각각 제조하여 하시 실험예 시료로 사용하였다.
조합 생약추출물 시료
시료중량(g)
실시예 용안육 원지 고본 추출용매* 명 명 추출물중량 최종수율
실시예 2 10 5 50 10% EtOH WIN-1002X 16.6g 25.6%
실시예 3 20 50 5 증류수 WIN-1003X 24.7g 32.9%
실시예 4 10 80 20 70% BuOH WIN-1004X 32.3g 29.4%
실시예 5 5 50 20 50% EtOH WIN-1005X 21.5g 28.7%
실시예 6 30 10 2 hexane WIN-1006X 12.6g 30.1%
실험예 1. 생약 혼합 추출물의 사이토카인 발현 억제 효과 시험 (in vitro)
상기 실시예 시료의 사이토카인 발현에 대한 억제 효과를 확인하기 위하여 기존 문헌에 기재된 방법을 응용하여 하기와 같이 실험을 수행하였다. (Jeong et al., 2019, J Invest Dermatol. 2019 May;139(5):1098-1109. doi: 10.1016/j.jid.2018.11.012. Epub 2018 Nov 29.)
인체 피부상피세포(HaCaT, 300493, CLS))를 10% fetal bovine serum (FBS) 와 100units/ml 페니실린, 100μg/ml 스트렙토마이신이 포함된 DMEM 배지(D6429, Sigma-Aldrich)에 적정 습도(85-95%)와 5% CO2가 유지되는 37℃ 배양기(HERA cell 150i, Thermo Fisher Scientific)에서 배양하였다.
유전자 발현 조사를 위해 상기 세포를 12개의 웰에 계대하여 TNFα (RC214-12, Biobasic) 50ng/ml을 1시간 동안 처리하여 염증반응을 유발하였다.
염증 유발 1시간 후에 동일 배지에 생약 혼합 추출물을 각 1μg/ml 농도로 처리하고 추가로 1시간 배양하였다.
비교군으로 덱사메타손 (200nM; 양성대조군; DEX로 표시; D4902, Sigma-Aldrich) 또는 DIW (탈이온수; 음성대조군)를 각각 사용하였다.
상기 세포에 생약 혼합 추출물을 1시간 동안 처리 후 RNA를 추출하고 (FATRR-001, Favorgen), cDNA synthesis kit (RR036A, ,TAKARA)을 이용하여 상기 추출한 RNA로부터 cDNA를 합성하였다.
합성된 cDNA와 Sybrgreen kit (RT500M, Enzynomics)를 이용하여 중합반응을 수행하고, 피부염증과 관련된 사이토카인 (TSLP, GM-CSF 및 IL-1β)에 대한 프라이머(primer)를 사용하여 Real-time PCR을 수행하였다. 상기 PCR에 사용된 프라이머는 표 2와 같다.
PCR 사용 프라이머
human* direction sequence seq. no.
RPLP0 forward 5'- AGC CCA GAA CAC TGG TCT C-3' 1
reverse 5’- ACT CAG GAT TTC AAT GGT GCC-3’ 2
TSLP forward 5'-TAT GAG TGG GAC CAA AAG TAC CG-3' 3
reverse 5'-GGG ATT GAA GGT TAG GCT CTG G-3' 4
GM-CSF forward 5'-TCC TGA ACC TGA GTA GAG ACA C-3' 5
reverse 5'-TGC TGC TTG TAG TGG CTG G-3' 6
IL-1β forward 5'-CTC CAG GGA CAG GAT ATG GA-3' 7
reverse 5'-TCT TTC AAC ACG CAG GAC AG-3' 8

* : abbreviation- RPLP0 (Ribosomal Protein Lateral Stalk Subunit P0); TSLP (thymic stromal lymphopoietin); GM(Granulocyte-macrophage)-CSF (colony stimulating factor); IL (interleukin)
상기 프라이머를 이용하여 Real-time PCR로 정량한 결과를 표 3에 나타내었다. 표 3에 나타난 바와 같이, 실시예의 추출물이 처리된 시험군은 DIW가 처리된 음성대조군과 비교하여 피부염증 관련 사이토카인들의 발현 정도가 현저히 감소하였으며, 그 감소 정도는 덱사메타손(DEX)이 처리된 양성대조군과 동등한 것으로 확인되었다.(표 3)
사이토카인들의 발현에 미치는 억제 효과
TSLP
-
-
TNFα
DIW
TNFα
WIN-1001X
TNFα
WIN-1002X
TNFα
WIN-1003X
TNFα
WIN-1005X
TNFα
Dex
1 132.4692 47.43735 60.85783 48.9323 55.34286 52.49334
0.462769 26.91228 9.645089 24.95619 19.85678 26.59252 11.2336
GM-CSF
-
-
TNFα
DIW
TNFα
WIN-1001X
TNFα
WIN-1002X
TNFα
WIN-1003X
TNFα
WIN-1005X
TNFα
Dex
1 4.473627 1.982161 2.069408 2.384771 1.917569 1.935997
0.111 0.817826 0.889233 0.326074 0.871501 0.599711 0.581338
IL-1β
-
-
TNFα
DIW
TNFα
WIN-1001X
TNFα
WIN-1002X
TNFα
WIN-1003X
TNFα
WIN-1005X
TNFα
Dex
1 4.152715 1.407169 1.437399 2.064964 1.662578 1.080503
0.483565 1.087056 0.394622 0.1926 0.620225 0.193175 0.413136
통계처리
실험 결과는 3회 반복 측정 후 평균 ± SD로 나타내었다. 통계분석은 SAS program (SAS Institue, Cary, NC, USA)을 이용하여 분석한 후 Duncan의 다중검정을 실시하였으며, 상관관계를 분석하였다.
실험예 2. 생약 혼합 추출물의 세포 증식 효과 시험 ( in vitro proliferation assay)
상기 실시예 시료의 세포 증식 효과를 확인하기 위하여 기존문헌에 기재된 빙법을 응용하여 하기와 같이 실험을 수행하였다 (Lee et al., 2020, Int J Mol Sci. 2020 Jan 5;21(1):343. doi: 10.3390/ijms21010343.)
피부상피세포(HaCaT, 300493, CLS)), 뇌 미세혈관 내피세포 (bEND.3, CRL-2299, ATCC) 및 섬유모세포 (NIH 3T3, CRL-1658, ATCC)를 10% fetal bovine serum (FBS) 와 100units/ml 페니실린, 100μg/ml 스트렙토마이신이 포함된 DMEM 배지(D6429, Sigma-Aldrich)에 적정 습도(85-95%)와 5% CO2가 유지되는 37℃ 배양기(HERA cell 150i, Thermo Fisher Scientific)에서 배양하였다.
세포 증식 효과를 조사하기 위해 상기 세포들을 48개의 웰에 계대하여 생약 혼합 추출물을 각 1μg/ml 농도로 처리했다. 비교를 위하여 DIW(탈이온수; 음성대조군)를 사용했다.
상기 세포에 Quanti-Max™(QM1000, BIOMAX)를 10μl씩 시간별로 (0hr, 24hr, 48hr, 72hr) 분주하여 30분간 배양했다. 30분 후 Microplate reader(SPECTRA MAX 250, Molecular Devices)를 이용하여 450nm에서 흡광도를 측정했다.
흡광도를 측정한 결과를 표 4에 나타내었다. 표 4에 나타난 바와 같이, 실시예1의 추출물이 처리된 시험군은 DIW가 처리된 음성대조군과 비교하여 세포 증식이 촉진되는 것으로 확인되었다. (표 4)
세포 증식 효과
HaCaT
  Absorbance (450nm) SD
  DIW WIN-1001X WIN-1002X WIN-1003X WIN-1005X DIW WIN-1001X WIN-1002X WIN-1003X WIN-1005X
0hr 0.045 0
24hr 0.0630 0.0880 0.0793 0.0797 0.0867 0.0010 0.0069 0.0015 0.0012 0.0035
48hr 0.1987 0.2120 0.2067 0.2073 0.2073 0.0031 0.0062 0.0006 0.0025 0.0025
72hr 0.3233 0.3560 0.3513 0.3577 0.3843 0.0101 0.0082 0.0059 0.0064 0.0090
NIH 3T3
Absorbance (450nm) SD
DIW WIN-1001X WIN-1002X WIN-1003X WIN-1005X DIW WIN-1001X WIN-1002X WIN-1003X WIN-1005X
0hr 0.043 0
24hr 0.0670 0.0823 0.0723 0.0720 0.0738 0.0109 0.0046 0.0057 0.0096 0.0049
48hr 0.1948 0.2170 0.2033 0.2043 0.2043 0.0186 0.0189 0.0085 0.0153 0.0153
72hr 0.2235 0.2405 0.2375 0.2308 0.2378 0.0065 0.0123 0.0114 0.0215 0.0101
bEND.3
Absorbance (450nm) SD
DIW WIN-1001X WIN-1002X WIN-1003X WIN-1005X DIW WIN-1001X WIN-1002X WIN-1003X WIN-1005X
0hr 0.143 0
24hr 0.2270 0.2383 0.2187 0.2197 0.2277 0.0123 0.0067 0.0174 0.0147 0.0093
48hr 0.4100 0.4523 0.4270 0.4313 0.4313 0.0085 0.0058 0.0046 0.0081 0.0081
72hr 0.5113 0.5457 0.5440 0.5443 0.5367 0.0021 0.0040 0.0046 0.0068 0.0032
실험예 3. 생약 혼합 추출물의 피부 상처 치유 효과 실험 ( In vitro wound healing assay)
상기 실시예 시료의 세포 치유 효과를 확인하기 위하여 기존문헌에 기재된 빙법을 응용하여 하기와 같이 실험을 수행하였다 (Na et al., 2016, J Invest Dermatol. 2016 Apr;136(4):847-858. doi: 10.1016/j.jid.2015.11.029. Epub 2016 Jan 21.)
인체 피부상피세포(HaCaT, 300493, CLS)를 10% fetal bovine serum (FBS) 와 100units/ml 페니실린, 100μg/ml 스트렙토마이신이 포함된 DMEM 배지(D6429, Sigma-Aldrich)에 적정 습도(85-95%)와 5% CO2가 유지되는 37℃ 배양기(HERA cell 150i, Thermo Fisher Scientific)에서 배양하였다.
상처 회복 효과를 조사하기 위해 상기 세포를 6개의 웰에 계대 했다. 세포가 90% 정도 밀집(confluency)이 되었을 때 까지 배양한 후 무혈청(Serum-Free) 배지(D6429, Sigma-Aldrich)에서 24시간 동안 배양했다. 24시간 후 200μl tip(KG1212-L, Kirgen)으로 세포에 상처를 낸 후 각각의 생약 혼합 추출물이 1μg/ml 농도로 포함된 2% FBS 배지(D6429, Sigma-Aldrich)로 갈아 주었다. 상처가 회복되는 과정은 시간별로 현미경(AMEX 1000, EVOS XL Core)으로 촬영하여 비교했다. 비교를 위하여 DIW(탈이온수; 음성대조군)를 사용했다.
사진을 찍어 비교한 결과 실시예의 추출물이 처리된 시험군은 DIW가 처리된 음성 대조군과 비교하여 상처 치유가 촉진되는 것을 알 수 있었다. (도 1 및 표 5)
세포 상처 치유 효과
  DIW WIN-1001X WIN-1002X WIN-1003X WIN-1005X
0hr 100.00 100.00 100.00 100.00 100.00
12hr 72.00 75.47 66.52 76.36 77.33
24hr 50.73 52.38 46.86 60.57 54.83
48hr 32.34 28.56 20.68 33.43 21.40
72hr 25.03 3.05 5.23 20.51 11.10
실험예 4. 생약 혼합 추출물의 만성 궤양 치료 효과 시험 (in vivo)
상기 실시예 시료의 만성 궤양 치료 효과를 확인하기 위하여 하기와 같이 당뇨 모델 마우스를 이용하여 문헌에 기재된 방법을 응용하여 실험하였다. (Long M, Rojo de la Vega M, Wen Q, Bharara M, Jiang T, Zhang R, Zhou S, Wong PK, Wondrak GT, Zheng H, Zhang DD (2016) An Essential Role of NRF2 in Diabetic Wound Healing. Diabetes. 65: 780-793. )
4-1. 당뇨 모델 마우스 제작 (Diabetes mouse model)
8주령 C57BL/6 생쥐 수컷(230g)들을 대한바이오링크 (DBL, Korea)에서 구입하였다. 온도 22±1℃와 습도 50±5%가 유지되며 12시간 밤낮 주기로 조절되는 사육장에서 사육하였다.
1주일 동안 적응기간을 준 후, 대조군과 실험군의 생쥐들을 나누어 1마리씩 케이지에 넣었다. 5일 연속으로 실험군 생쥐들의 복강에 50 mg/kg streptozotocin (S0130, STZ, Sigma-Aldrich USA)을 주사하였다. 대조군의 생쥐들은 0.05 M sodium citrate buffer (pH 4.5, IBS-BC0036, Intron, Korea)를 복강에 주사하였다.
3주 후에 생쥐들의 꼬리에서 피를 뽑아 4시간 공복혈당을 재고, 공복혈당이 350 mg/dL 이상인 생쥐들만 연구에 포함시켰다.
이자의 인슐린 생성 세포인 베타세포의 독인 50 mg/kg streptozotocin S0130, STZ, Sigma-Aldrich USA)를 5일 동안 복강에 주사하여 당뇨를 유발하였다 (도 2). 이때 대조군은 0.05 M sodium citrate buffer(pH 4.5, IBS-BC0036, Intron, Korea)를 주사하였다. 그리고 각각 3주와 5주 후에 4시간 공복 혈당과 몸무게를 측정했다.
본 실험 결과, STZ로 당뇨를 유발한 생쥐의 몸무게가 감소하였으며 공복 혈당은 증가하였다 (표 6 및 표 7). 공복 혈당이 350 mg/dL 이상인 생쥐만 당뇨군에 포함시켰다 (Long M, Rojo de la Vega M, Wen Q, Bharara M, Jiang T, Zhang R, Zhou S, Wong PK, Wondrak GT, Zheng H, Zhang DD (2016) An Essential Role of NRF2 in Diabetic Wound Healing. Diabetes. 65: 780-793. ).
STZ로 당뇨를 유발한 생쥐의 몸무게 변화
몸무게 (g) 오차막대
Day0 Day3 Day5 Day0 Day3 Day5
Con 23.16 25.94 26.72 0.93 1.20 0.29
STZ+DIW 23.52 21.92 22.06 0.74 0.70 1.04
STZ+NP 23.82 21.6 21.16 1.09 0.74 1.15
STZ로 당뇨를 유발한 생쥐의 공복 혈당 변화
혈당 (mg/dL) 오차막대
Day0 Day3 Day5 Day0 Day3 Day5
Con 144.4 152 158.8 24.73 24.06 20.00
STZ+DIW 156.6 389.2 480.6 20.59 34.59 16.42
STZ+NP 151.4 437.2 491 20.09 25.83 39.53
4-2. 실험 방법(만성 궤양 치료 효과)
4-1에서 준비된 당뇨 쥐를 이용하여 고본 · 원지 · 용안육 추출물이 만성 궤양 치유에 미치는 영향을 문헌에 기재된 방법을 응용하여 하기와 같이 실험을 수행하였다(Long M, Rojo de la Vega M, Wen Q, Bharara M, Jiang T, Zhang R, Zhou S, Wong PK, Wondrak GT, Zheng H, Zhang DD (2016) An Essential Role of NRF2 in Diabetic Wound Healing. Diabetes. 65: 780-793. )
상기 실험예 4-1의 8주령 C57BL/6 생쥐 수컷 (대한바이오링크, DBL, Korea)을 대조군 생쥐들과 streptozotocin (STZ)로 당뇨를 유발시킨 생쥐들로 구분하여 상기 생쥐의 복강에 25 mg/mL Avertin (T48402, Sigma-Aldrich, USA) 300 ㎕를 주사하여 생쥐들을 마취시켰다.
마취가 된 것을 확인한 후에 전동면도기(327/808, RIKEI, Taiwan)를 사용하여 등 털을 제거한 후, 5 mm biopsy punch (BP-50F, Kai Industries, USA)와 수술용 가위(PF-24.10, Professional, Pakistan)를 이용하여 5 mm 원형의 등 피부 전층을 도려냈다. 실험군 생쥐의 등 상처부위에는 매일 실시예 시료 (10 mg/mL, DIW) 35 ㎕를 발라주었고 대조군에는 DIW 35 ㎕를 발라주었다.
14일동안 사진기(LG V20 핸드폰 카메라)로 쥐 상처부위를 찍어서 이미지화 하였고, 상처의 크기는 photoshop CS5 (Adobe)를 이용하여 측정하였다. 상처가 치유된 비율은 각각의 샘플마다 처음 상처를 낸 상처의 크기로 나눠서 하기와 같은 수학식 1의 방법으로 계산하였다.
Figure 112021020522626-pat00001
4-3. 실험 결과(만성 궤양 치료 효과)
본 실험 결과, 당뇨 쥐에서 상처가 아무는 속도가 증류수를 처리한 대조군에 비해 감소하였다 (도 3). 하지만 고본 · 원지 · 용안육 추출물을 처리한 실험군에서 상처 치유 속도가 당뇨 쥐 대조군은 물론 증류수 대조군 보다 빠르게 증가하였다.
상처 면적을 계산하기 위해 상처를 카메라(LG V20 핸드폰 카메라) 로 찍어 이미지화한 후에 픽셀 수를 계산하여 정량적으로 비교해 보았다. 당뇨 쥐 대조군과 비교하여 고본 · 원지 · 용안육 추출물을 처리한 당뇨 쥐의 궤양 면적이 상처 낸 후 6일부터 빠르게 진행된다는 것으로 나타났다 (표 8).
궤양 면적에 미치는 효과
궤양 면적 (%) 오차막대
Con STZ+DIW STZ+NP Con STZ+DIW STZ+NP
Day 0 100 100 100 0 0 0
Day 3 60.84148 90.06944 78.4669 8.656211 7.466538 5.462093
Day 6 36.87717 59.5353 36.926 9.241531 7.106927 7.088473
Day 8 18.20702 48.83158 23.55075 3.185915 8.51045 9.839982
Day 10 12.76884 22.70063 13.31474 4.074972 6.651348 5.455846
Day 12 5.428536 12.01001 9.053564 3.243584 4.522714 2.306299
Day 14 2.669485 10.03802 5.296044 2.512582 3.14416 0.822959
실험예 5. 생약 혼합 추출물의 피부 상처 조직 회복 효과 시험 ( In vivo mouse skin wound healing)
상기 실시예 시료의 피부 상처 조직 회복 효과를 확인하기 위하여 하기와 같이 상기 실험예의 실험 결과를 바탕으로 당뇨 쥐 대조군과 고본 · 원지 · 용안육 추출물 처리 실험군에서 조직학적인 차이가 있는지를 기존 문헌에 기재된 방법을 응용하여 실험하였다. (Long M, Rojo de la Vega M, Wen Q, Bharara M, Jiang T, Zhang R, Zhou S, Wong PK, Wondrak GT, Zheng H, Zhang DD (2016) An Essential Role of NRF2 in Diabetic Wound Healing. Diabetes. 65: 780-793. )
5-1. 실험 방법
상기 실험예 4-1의 8주령 C57BL/6 생쥐 수컷 (대한바이오링크, DBL, Korea)을 대조군 생쥐들과 streptozotocin (STZ)로 당뇨를 유발시킨 생쥐들로 구분하여 상기 생쥐의 복강에 25 mg/mL Avertin (T48402, Sigma-Aldrich, USA) 300 ㎕를 주사하여 생쥐들을 마취시켰다.
마취가 된 것을 확인한 후에 전동면도기(327/808, RIKEI, Taiwan)를 사용하여 등 털을 제거한 후, 5 mm biopsy punch (BP-50F, Kai Industries, USA)와 수술용 가위(PF-24.10, Professional, Pakistan)를 이용하여 5 mm 원형의 등 피부 전층을 도려냈다. 실험군 생쥐의 등 상처부위에는 매일 실시예 시료 (10 mg/mL) 35 ㎕를 발라주었고 대조군에는 DIW 35 ㎕를 발라주었다.
수술을 통해 생쥐의 7일째 상처 조직을 분리하였다. 4% paraformaldehyde 용액(158127, Sigma, USA)에 분리한 상처 조직을 넣고 4℃ shaker에서 하루 동안 두어 고정시켰다.
다음날 상온(RT)에서 상처 조직을 PBS가 담겨있는 바이알(vial)에 넣고 15분 간격으로 5번 반복하여 씻어주었다. 그 후 상처 조직을 25%, 50%, 75%, 95%, 100% 순으로 에탄올 용액에 넣고 30분씩 진탕기(shaker, SHK039, 정바이오텍, Korea) 위에 두어 탈수 (dehydration) 과정을 거쳤다.
탈수된 피부조직을 자일렌(xylene) 용액(1330-20-7, DUKSAN, Korea)으로 옮겨 2시간 동안 진탕기 위에 놔두어 자일렌((xylene)이 조직에 스며들게 하였다. 조직이 투명해진 것을 확인하고, 자일렌((xylene)에 담겨 있는 조직을 55℃로 유지된 오븐(oven, 300, CHICAGO SURGICAL & ELECTRICAL CO., USA)으로 옮겨서 파라핀 용액(8042-47-5, Merck Millipore, Germany)으로 5번 씻어 주었다.
마지막 파라핀 용액을 넣고 55℃ 유지 오븐에서 밤새 두었다. 다음 날 파라핀에 조직을 함침(embedding)하고, 상온(RT)에서 1시간 두어 굳힌 후에 4℃에 하루동안 두었다. 파라핀으로 함침(embedding)된 조직을 미크로톰(820, AO AMERICAN OPTICAL, USA)을 이용하여 5 ㎛두께로 절편화(sectioning)하고 이 파라핀 절편(section)들을 슬라이드 글라스에 올렸다. 자일렌(xylene)으로 파라핀을 제거하고 100%, 95%, 75%, 50%, 25% 에탄올 용액 순으로 조직을 수화 (hydration) 시켰다. 그 후 H&E (hematoxylin and eosin) 염색을 하고, EVOS XL Core 현미경 (Advanced Microscopy Group, USA)을 이용하여 40배로 촬영하고 분석하였다.
5-2. 실험 결과
흥미롭게도, 대조군에서 관찰하지 못한 육아조직 (granulation tissue)를 고본 · 원지 · 용안육 추출물 처리 실험군에서 관찰하였다 (도 4). 육아조직은 상처 치유의 증식단계에서 형성되는, 수많은 신생 혈관들과 섬유아세포, 성장인자 등의 세포들로 구성되어 있는 조직이다 (Grotendorst GR, Martin GR, Pencev D, Sodek J, Harvey AK (1985) Stimulation of granulation tissue formation by platelet-derived growth factor in normal and diabetic rats. The journal of clinical investigation. 76: 2323-2329.). 고본 · 원지 · 용안육 추출물 처리 실험군에서 육아조직의 관찰 빈도는 대조군에 비해 5배 높았다 (표 9).
상처 면적에 미치는 효과
Formation of granulation tissue (%)
STZ+DIW 14
STZ+NP 71.4
실험예 6. 생약 혼합 추출물의 성장인자 관련 염증인자 발현에 미치는 영향실험
상기 실시예 시료의 성장인자 관련 염증인자 발현에 미치는 영향확인하기 위하여 하기와 같이 기존 문헌에 기재된 방법을 응용하여 실험하였다. (Long M, Rojo de la Vega M, Wen Q, Bharara M, Jiang T, Zhang R, Zhou S, Wong PK, Wondrak GT, Zheng H, Zhang DD (2016) An Essential Role of NRF2 in Diabetic Wound Healing. Diabetes. 65: 780-793. )
만성 상처에서 MMP-9의 비정상적인 발현 증가와 성장인자 (PDGF, VEGF 등)의 발현 감소가 잘 알려져 있다 (Trengove NJ, Bielefeldt-Ohmann H, Stacey MC (2001) Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Repair and Regeneration. 8: 13-25.; Armstrong DG, Jude EB (2002) The Role of Matrix Metalloprotei상기 실시예 시료의 성장인자 관련 염증인자 발현에 미치는 영향을 확인하기 위하여 하기와 같이 기존 문헌에 기재된 방법을 응용하여 실험하였다. (Long M, Rojo de la Vega M, Wen Q, Bharara M, Jiang T, Zhang R, Zhou S, Wong PK, Wondrak GT, Zheng H, Zhang DD (2016) An Essential Role of NRF2 in Diabetic Wound Healing. Diabetes. 65: 780-793. )
만성 상처에서 MMP-9의 비정상적인 발현 증가와 성장인자 (PDGF, VEGF 등)의 발현 감소가 잘 알려져 있다 (Trengove NJ, Bielefeldt-Ohmann H, Stacey MC (2001) Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Repair and Regeneration. 8: 13-25.; Armstrong DG, Jude EB (2002) The Role of Matrix Metalloproteinases in Wound Healing. Journal of the American Podiatric Medical Association. 92: 12-18.). 특히 성장인자는 육아조직 형성을 촉진하여 상처 치유를 매개한다 (Leoni G, Neumann PA, Sumagin R, Denning TL, Nusrat A (2015) Wound repair: role of immune-epithelial interactions. Mucosal Immunology. 8: 959-968.). 따라서 고본 · 원지 · 용안육 추출물이 이들 유전자 발현에 미치는 영향을 알아보고자 quantitative RT-PCR과 Western blot analysis를 수행하였다.
6-1. RNA 추출 및 정량적 RT-PCR
생쥐의 7일째 상처 부위를 중심으로 양쪽 세로와 가로 3 mm만큼의 간격을 두고 수술용 가위(PF-24.10, Professional, Parkistan)를 이용하여 상처 피부 조직을 얻었다. 피부 조직은 total RNA를 분리하기 위해서 액체질소(동아가스, Korea)에 얼렸다.
얼어 있는 피부조직에 Tri-RNA reagent (FATRR001, Favorgen, Taiwan)를 넣은 후, bead(D1031-05, Beadbug, USA)를 이용하여 분쇄하였다.
Chloroform(67-66-3, JUNSEI, Japan) 0.2mL 을 넣고 충분히 섞어준 후에, 12,000 rpm, 4℃에서 10분간 원심분리기(5415R, Eppendorf, Germany)를 이용하여 원심분리하였다. 새로운 microcentrifuge tube(S044378, SARSTEDT AG5CO.KG, Germany)에 상층액만 옮긴 후에 isopropanol 0.4 mL을 넣고 섞어준 후에 12,000 rpm, 4℃에서 20분간 원심분리기 (5415R, Eppendorf, Germany)를 이용하여 원심분리하여 RNA가 침전되게 하였다.
RNA 침전물을 75% ethanol로 씻어준 후 12,000rpm, 4℃에서 10분간 원심분리 하였다. RNA는 nuclease free water(S002, Enzynomics, Korea)에 녹였다. Recombinant DNase I (M0595, Enzynomics, Korea)을 넣고 37℃의 배양기(incubator, BF-150N, Biofree, Korea)에서 30분 둔 후, 8 M Lithium chloride(L9650, Sigma, USA)를 넣고 -20℃에서 밤새 두었다.
다음 날 12,000 rpm, 4℃에서 20분간 원심분리 한 후, RNA 침전물을 75% ethanol로 씻어주었다. 12,000 rpm, 4℃에서 10분간 원심분리하고 RNA를 nuclease free water(S002, Enzynomics, Korea)로 녹인 후 정량하였다. cDNA는 total RNA template으로부터 PrimeScript™ RT Master Mix (RR036A, Takara, Japan)를 이용하여 합성하였다. 합성된 cDNA는 SYBR green kit (RT500M, Enzynomics, Korea)를 이용하고 Stratagene Mx3000p (MX3000p, Agilent, USA)로 qRT-PCR을 수행하였다.
결과 분석은 원하는 유전자의 cycle threshold (Ct)값에서 18S의 Ct 값을 빼어 보정하고, (1/2)^보정된 ct 값을 구하는 하기 수학식 2의 방법으로 이루어졌다. 사용한 primer들의 서열은 표 10과 같다.
Figure 112021020522626-pat00002
Primer sequences used for quantitative PCR.
gene* direction sequence seq. no.
MMP-9 forward 5'- TGT CTG GAG ATT CGA CCT GAA GTC-3' 9
reverse 5'-TGA GTT CCA GGG CAC ACC A-3' 10
PDGF-A forward 5'-TGG CTC GAA GTC AGA TCC ACA -3' 11
reverse 5'-TTC TCG GGC ACA TGG TTA ATG-3' 12
VEGF-A forward 5'-ATT GAG ACC CTG GTG GAC ATC T-3' 13
reverse 5'-TGC ATG GTG ATG TTG CTC TCT G-3' 14
18S forward 5'-AGT CCC TGC CCT TTG TAC ACA-3' 15
reverse 5'-CGA TCC GAG GGC CTC ACT A-3' 16

* : abbreviation- MMP (matrix metalloproteinase)); PDGF (Platelet-derived growth factor)/VEGF-A (Vascular endothelial growth factor)
6-2. 웨스턴 블롯 법(Western blot analysis)
수술을 통하여 상기 실험예 4에서 준비된 생쥐의 7일째 상처 피부 조직을 얻었다. PBS 용액에 피부 조직을 넣고 4℃에서 진탕기(shaker)에서 밤새 세척(washing) 해주었다. 피부 조직을 RIPA buffer[직접 제조 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X-100, 2 mM EDTA, 50 mM Tris-HCl (pH 8.0), 150 mM NaCl]에 넣고 빙냉(ice)에서 30분동안 배양하였다.
가위(PF-24.10, Professional, Parkistan)로 피부 조직을 잘게 잘라주고 호모게나이저(microtube homogenizer, 985370, DREMEL, Mexico)로 파쇄하였다. 이를 13,000 rpm, 4℃에서 10분간 원심분리기((5415R, Eppendorf, Germany)로 원심분리하고 상층액만 옮겼다.
상기 상층액에 5X sample buffer[직접제조 1 M Tris-HCl (pH 6.8), 50% glycerol, 10% SDS, 2-mercaptoethanol, 1% bromophenol blue]를 첨가하고 7분간 100℃의 물에서 끓여주었다. Ice에서 3분동안 식혀주고 SDS-PAGE gel에서 단백질들을 분리하였다. 1차 항체는 MMP-9 (Millipore, USA, AB19016), VEGF-A (abcam, UK, ab46154), PDGF-A (Santa cruz, USA, sc-9974), β-tubulin (Santa cruz, USA, sc-166729)을 사용하였다.
실험 결과, RNA와 단백질 수준에서 MMP-9 발현이 STZ로 유발한 당뇨 쥐의 상처에서 증가하는 것을 확인하였다. 하지만 고본 · 원지 · 용안육 추출물을 처리한 당뇨 쥐 상처에서 확연히 감소하였다. 또한 고본 · 원지 · 용안육 추출물을 처리한 당뇨 쥐 상처에서 성장인자 PDGF-A와 VEGF-A의 발현이 RNA와 단백질 수준에서 모두 증가한 것을 확인하였다 (표 11).
MMP 유전자 발현의 억제 및 성장인자들의 발현 증가 효과
MMP9 VEGF PDGF
Con STZ+DIW STZ+NP Con STZ+DIW STZ+NP Con STZ+DIW STZ+NP
상대적 발현량 (fold) 1.00 3.00 1.87 1.00 1.15 2.65 1.00 1.39 4.63
오차막대 0.16 0.32 0.14 0.18 0.53 0.34 0.40 0.32 1.44
특히 PDGF는 최근 개발된 만성창상 단백질 치료제이며 VEGF는 혈관성장인자이다 (DiGiovanni CW, Petricek JM. The evolution of rhPDGF-BB in musculoskeletal repair and its role in foot and ankle fusion surgery. Foot Ankle Clin. 2010 ;15 :621-640.DiGiovanni and Petricker, 2010; Shi R, Lian W, Han S, Cao C, Jin Y, Yuan Y, Zhao H, Li M. Nanosphere-mediated co-delivery of VEGF-A and PDGF-B genes for accelerating diabetic foot ulcers healing in rats. Gene Ther. 2018; 25 :425-438. ).
통계처리
실험에서 얻은 결과들에 대해 평균과 표준오차를 산출하였다. 유의차 검정은 t-test를 이용하여 분석하였고, 유의 수준 (P-value)은 P ≤ 0.05 = *, P ≤ 0.01 = **, P ≤ 0.001 = *** 로 나타내었다.
이하, 본 발명의 제형예로서 크림, 맛사지크림, 로션, 스킨로션, 에센스, 팩, 클렌징폼의 제형을 예시하고 있으나, 본 발명의 화장품 조성물을 포함하는 제형은 이에 한정되는 것은 아니다.
제형예 1. 크림조성물
유상과 수상을 각각 75 ℃로 가열 혼합한 후 실온으로 냉각한다.
Figure 112021020522626-pat00003
제형예 2. 맛사지크림 조성물
유상과 수상을 각각 75 ℃로 가열 용해 혼합한 후 실온으로 냉각한다.
Figure 112021020522626-pat00004
제형예 3. 로션 조성물
유상과 수상을 각각 75 ℃로 가열 혼합 유화한 후 실온으로 냉각한다.
Figure 112021020522626-pat00005
제형예 4. 스킨로션 조성물
수상과 에탄올상을 각각 제조 혼합한 후 여과한다.
Figure 112021020522626-pat00006
제형예 5. 에센스 조성물
수상과 에탄올상을 각각 제조 혼합한 후 여과한다.
Figure 112021020522626-pat00007
제형예 6. 팩 조성물
수상과 에탄올상을 각각 분산 용해하여 혼합시킨 후 실온으로 냉각한다.
Figure 112021020522626-pat00008
제형예 7. 클렌징폼 조성물
수상과 오일상을 각각 분산 용해하여 혼합 검화한 후 실온으로 냉각한다.
Figure 112021020522626-pat00009
<110> PARK, Ok Nam MEDI HELP LINE Co., LTD. <120> topical composition comprising the extract of combined herbs comprising Longanae Arillus for the treatment or alleviation of skin ulcer <130> DIF/2021-02-001/EK <150> KR 10-2020-0031481 <151> 2020-03-13 <160> 16 <170> KoPatentIn 3.0 <210> 1 <211> 19 <212> DNA <213> Homo sapiens <400> 1 agcccagaac actggtctc 19 <210> 2 <211> 21 <212> DNA <213> Homo sapiens <400> 2 actcaggatt tcaatggtgc c 21 <210> 3 <211> 23 <212> DNA <213> Homo sapiens <400> 3 tatgagtggg accaaaagta ccg 23 <210> 4 <211> 22 <212> DNA <213> Homo sapiens <400> 4 gggattgaag gttaggctct gg 22 <210> 5 <211> 22 <212> DNA <213> Homo sapiens <400> 5 tcctgaacct gagtagagac ac 22 <210> 6 <211> 19 <212> DNA <213> Homo sapiens <400> 6 tgctgcttgt agtggctgg 19 <210> 7 <211> 20 <212> DNA <213> Homo sapiens <400> 7 ctccagggac aggatatgga 20 <210> 8 <211> 20 <212> DNA <213> Homo sapiens <400> 8 tctttcaaca cgcaggacag 20 <210> 9 <211> 24 <212> DNA <213> Mus musculus <400> 9 tgtctggaga ttcgacctga agtc 24 <210> 10 <211> 19 <212> DNA <213> Mus musculus <400> 10 tgagttccag ggcacacca 19 <210> 11 <211> 21 <212> DNA <213> Mus musculus <400> 11 tggctcgaag tcagatccac a 21 <210> 12 <211> 21 <212> DNA <213> Mus musculus <400> 12 ttctcgggca catggttaat g 21 <210> 13 <211> 22 <212> DNA <213> Mus musculus <400> 13 attgagaccc tggtggacat ct 22 <210> 14 <211> 22 <212> DNA <213> Mus musculus <400> 14 tgcatggtga tgttgctctc tg 22 <210> 15 <211> 21 <212> DNA <213> Mus musculus <400> 15 agtccctgcc ctttgtacac a 21 <210> 16 <211> 19 <212> DNA <213> Mus musculus <400> 16 cgatccgagg gcctcacta 19

Claims (10)

  1. 용안육, 고본 및 원지로 구성된 조합 생약 추출물을 유효성분으로 함유하는 궤양의 치료 및 예방용 피부외용 약학조성물.
  2. 제 1항에 있어서, 상기 용안육, 고본 및 원지의 중량 혼합비(w/w)가 0.01 - 100 : 0.01 - 100 : 0.01 - 100 중량부 (w/w)로 배합된 배합물인 피부외용 약학조성물.
  3. 제 1항에 있어서, 상기 조합 생약 추출물은 물, 에탄올, 메탄올, 프로판올, 부탄올, 아세톤, 에틸아세테이트, 헥산, 부틸렌글리콜, 프로필렌글리콜, 함수부틸렌글리콜, 함수프로필렌글리콜, 함수글리세린으로 구성된 그룹으로부터 선택된 하나 이상의 용매로 추출된 피부외용 약학조성물.
  4. 제 1항에 있어서, 상기 궤양은 욕창궤양, 피부궤양 또는 당뇨병성궤양인 피부외용 약학조성물.
  5. 제 1항에 있어서, 상기 약학 조성물은 크림, 젤, 패취, 분무제, 에멀젼제, 연고제, 경고제, 로션제, 리니멘트제, 파스타제, 용제, 현탁제, 팩(pack), 패치제(patch) 또는 카타플라스마제(cataplasma) 제형인 것을 특징으로 하는 피부외용 약학조성물.
  6. 용안육, 고본 및 원지로 구성된 조합 생약 추출물을 유효성분으로 함유하는 궤양의 개선 및 예방용 화장료 조성물.
  7. 제 6항에 있어서, 상기 용안육, 고본 및 원지의 중량 혼합비(w/w)가 0.01 - 100 : 0.01 - 100 : 0.01 - 100 중량부 (w/w)로 배합된 배합물인 화장료 조성물.
  8. 제 6항에 있어서, 상기 조합 생약 추출물은 물, 에탄올, 메탄올, 프로판올, 부탄올, 아세톤, 에틸아세테이트, 헥산, 부틸렌글리콜, 프로필렌글리콜, 함수부틸렌글리콜, 함수프로필렌글리콜, 함수글리세린으로 구성된 그룹으로부터 선택된 하나 이상의 용매로 추출된 화장료 조성물.
  9. 제 6항에 있어서, 상기 궤양은 욕창궤양, 피부궤양 또는 당뇨병성궤양인 화장료 조성물.
  10. 제 6항에 있어서 상기 화장료 조성물은 화장수, 스킨, 로션, 영양로션, 영양크림, 마사지 크림, 에센스, 팩, 비누, 액상 세정제, 젤, 패치 제형, 또는 경구 투여용 식용 화장품 제제인 것을 특징으로 하는 화장료 조성물.
KR1020210022674A 2020-03-13 2021-02-19 용안육 포함 조합 생약 추출물을 유효성분으로 함유하는 궤양의 치료 또는 예방용 외용조성물 KR102303936B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/KR2021/002946 WO2021182864A1 (en) 2020-03-13 2021-03-10 A topical composition comprising an extract of combined herbs comprising longanae arillus for the treatment or alleviation of skin ulcer and the use thereof.
US17/911,282 US20230127213A1 (en) 2020-03-13 2021-03-10 A topical composition comprising an extract of combined herbs comprising longanae arillus for the treatment or alleviation of skin ulcer and the use thereof
EP21767374.8A EP4117699A4 (en) 2020-03-13 2021-03-10 TOPICAL COMPOSITION COMPRISING COMBINED HERBAL EXTRACT COMPRISING LONGANAE ARILLUS FOR THE TREATMENT OR RELIEF OF SKIN ULCER AND USE THEREOF
CN202180020984.8A CN115297880A (zh) 2020-03-13 2021-03-10 用于治疗或改善皮肤溃疡的包括含龙眼肉组合生药提取物的局部用组合物及其用途
JP2022555138A JP7498466B2 (ja) 2020-03-13 2021-03-10 皮膚潰瘍の治療または改善のための竜眼肉含有混合生薬抽出物を含む局所用組成物およびその使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200031481 2020-03-13
KR1020200031481 2020-03-13

Publications (2)

Publication Number Publication Date
KR102303936B1 true KR102303936B1 (ko) 2021-09-24
KR102303936B9 KR102303936B9 (ko) 2021-11-12

Family

ID=77914550

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210022674A KR102303936B1 (ko) 2020-03-13 2021-02-19 용안육 포함 조합 생약 추출물을 유효성분으로 함유하는 궤양의 치료 또는 예방용 외용조성물

Country Status (1)

Country Link
KR (1) KR102303936B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023003292A1 (ko) * 2021-07-19 2023-01-26 주식회사 메디헬프라인 피부상처 또는 염증 예방, 개선 또는 치료용 조성물

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100018174A (ko) * 2008-08-06 2010-02-17 (주)아모레퍼시픽 포공영, 승마, 산약 또는 고본 추출물을 함유하는 피부외용제 조성물
KR20180069756A (ko) * 2018-05-28 2018-06-25 주식회사 엘지생활건강 용안육 추출물을 포함하는 화장료 조성물

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100018174A (ko) * 2008-08-06 2010-02-17 (주)아모레퍼시픽 포공영, 승마, 산약 또는 고본 추출물을 함유하는 피부외용제 조성물
KR20180069756A (ko) * 2018-05-28 2018-06-25 주식회사 엘지생활건강 용안육 추출물을 포함하는 화장료 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Trop. J. Pharm. Res., 16(1):75-81(2017) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023003292A1 (ko) * 2021-07-19 2023-01-26 주식회사 메디헬프라인 피부상처 또는 염증 예방, 개선 또는 치료용 조성물

Also Published As

Publication number Publication date
KR102303936B9 (ko) 2021-11-12

Similar Documents

Publication Publication Date Title
KR102685847B1 (ko) 밀크 엑소좀의 새로운 용도
KR101017709B1 (ko) 인삼 등의 복합 생약 추출물을 함유하는 탈모 방지, 비듬 생성 억제 및 발모 촉진효과를 갖는 화장료 조성물
KR102039846B1 (ko) 기난드로프시스 기난드라 또는 클레오메 기난드라 지상부위 추출물, 및 이를 포함하는 화장, 피부과학적 또는 약학조성물
JP6259209B2 (ja) コラーゲン産生促進剤
KR100708236B1 (ko) 피부 수렴효과를 갖는 동백꽃 추출물을 함유하는 화장료조성물
KR102303936B1 (ko) 용안육 포함 조합 생약 추출물을 유효성분으로 함유하는 궤양의 치료 또는 예방용 외용조성물
JP6259207B2 (ja) エラスチン産生促進剤
EP3662907B1 (en) Anti-aging or skin-regenerating composition comprising piperonylic acid as effective ingredient
JP5955499B2 (ja) 皮膚コラーゲン産生促進剤
KR102214985B1 (ko) 식물추출물 또는 이의 분획물을 유효성분으로 함유하는 피부 상태 개선용 조성물
KR20210018388A (ko) 식물추출물 또는 이의 분획물을 유효성분으로 함유하는 피부 상태 개선용 조성물
KR102348776B1 (ko) 토란 생물전환 추출물을 포함하는 화장료 조성물 및 이의 제조방법
KR102033073B1 (ko) 세리신, 사상자 추출물 및 겨우살이 추출물을 포함하는, 피부 재생, 진정 또는 상처 치유용 조성물
KR102374383B1 (ko) 용안육 포함 조합 생약 추출물을 유효성분으로 함유하는 피부재생 및 상처의치료 또는 예방용 외용조성물
KR102374382B1 (ko) 용안육 포함 조합 생약 추출물을 유효성분으로 함유하는 tslp 억제 및 염증성 피부질환의 치료 또는 예방용 외용조성물
KR102335297B1 (ko) 초고압 처리된 아티초크 잎, 동백나무 잎 및 케이퍼 열매 복합 추출물을 함유하는 외부자극에 의한 가려움증 완화 또는 피부진정용 화장료 조성물
JP7498466B2 (ja) 皮膚潰瘍の治療または改善のための竜眼肉含有混合生薬抽出物を含む局所用組成物およびその使用
US20230103514A1 (en) A topical composition comprising an extract of combined herbs comprising longanae arillus for the skin regeneration and the treatment or alleviation of skin wound and the use thereof
KR102066208B1 (ko) Lgi3 또는 lgi3 유래 펩타이드를 유효성분으로 포함하는 건선 예방, 치료, 또는 개선용 조성물
KR20200106372A (ko) 잣나무 잎 추출물을 포함하는 항균 조성물
EP4410815A1 (en) Peptide having activity of preventing hair loss or promoting hair growth, and use thereof
EP4410812A1 (en) Peptide having activity for preventing hair loss or promoting hair growth, and use thereof
EP4410814A1 (en) Peptide having activity of preventing hair loss or promoting hair growth and use thereof
EP4410810A1 (en) Peptide having activity of preventing hair loss or promoting hair growth, and use thereof
JP7523111B2 (ja) 老化細胞の排除促進剤

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]