KR102301893B1 - MANUFACTURING METHOD Of LOW SODA ALUMINA POWDER - Google Patents

MANUFACTURING METHOD Of LOW SODA ALUMINA POWDER Download PDF

Info

Publication number
KR102301893B1
KR102301893B1 KR1020190122868A KR20190122868A KR102301893B1 KR 102301893 B1 KR102301893 B1 KR 102301893B1 KR 1020190122868 A KR1020190122868 A KR 1020190122868A KR 20190122868 A KR20190122868 A KR 20190122868A KR 102301893 B1 KR102301893 B1 KR 102301893B1
Authority
KR
South Korea
Prior art keywords
alumina
alumina powder
aluminum hydroxide
hydrofluoric acid
content
Prior art date
Application number
KR1020190122868A
Other languages
Korean (ko)
Other versions
KR20210040540A (en
Inventor
유영철
조병옥
임형섭
Original Assignee
(주)석경에이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)석경에이티 filed Critical (주)석경에이티
Priority to KR1020190122868A priority Critical patent/KR102301893B1/en
Publication of KR20210040540A publication Critical patent/KR20210040540A/en
Application granted granted Critical
Publication of KR102301893B1 publication Critical patent/KR102301893B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Abstract

본 발명은 수산화알루미늄을 포함하는 원료에 묽은 불산 용액을 첨가하여 혼합하는 단계; 상기 혼합물을 교반하여 세정 후에 건조하여 알루미나 분말을 얻는 단계; 및 상기 알루미나 분말을 소성하여 알루미나(α-Al2O3)를 얻는 단계;를 포함하는, 저소다 알루미나 분말의 제조방법에 관한 것이다.
본 발명의 제조방법에 따르면, 최종 알루미나 내의 소다함량 및 규소, 철분 함량도 매우 적고 비용도 저렴한 알루미나 분말을 제조할 수 있고, 또한 Fe2O3, SiO2 등의 불순물도 현저히 낮춰 백색도를 증가시키는 장점이 있다.
또한 본 발명의 방법에 의해 제조된 알루미나는 불순물이 적어 전기 절연성이 우수할 뿐만 아니라 기계적 강도, 내열성, 내마모성, 내식성 등이 우수하기 때문에, 세라믹스, 전기, 전자, 광학, 기계, 화학 등 여러 분야에서 널리 사용될 수 있다.
The present invention comprises the steps of adding and mixing a diluted hydrofluoric acid solution to a raw material containing aluminum hydroxide; stirring the mixture to obtain an alumina powder by washing and drying; and calcining the alumina powder to obtain alumina (α-Al 2 O 3 ).
According to the manufacturing method of the present invention, it is possible to produce alumina powder with very low soda content and silicon and iron content in the final alumina and low cost, and also to significantly lower impurities such as Fe 2 O 3 and SiO 2 to increase whiteness. There are advantages.
In addition, the alumina produced by the method of the present invention has few impurities and thus has excellent electrical insulation as well as mechanical strength, heat resistance, abrasion resistance, corrosion resistance, etc. It can be widely used.

Description

저소다 알루미나 분말 제조방법{MANUFACTURING METHOD Of LOW SODA ALUMINA POWDER} Low soda alumina powder manufacturing method {MANUFACTURING METHOD Of LOW SODA ALUMINA POWDER}

본 발명은 낮은 소다 함량을 가지는 알루미나 분말의 제조방법에 관한 것이다.The present invention relates to a method for producing alumina powder having a low soda content.

대부분의 알루미나는 보크사이트(bauxite) 광물을 원료로 하여 베이어(Bayer) 공정을 통하여 제조된 수산화알루미늄을 얻은 뒤, 상기 수산화알루미늄을 고온 소성하여 제조하고 있다. 그러나 상기 베이어(Bayer) 공정은, 보크사이트를 NaOH(가성소다)를 용매로 사용하여 고온에서 알루민산나트륨 수용액으로 용출시킨 후 석출하여 수산화알루미늄을 수득하기 때문에, 수산화알루미늄에 소다(soda, Na2O 등)가 분술물로 잔존하게 된다. 그 결과 베이어 공정을 통해 얻은 수산화나트륨을 고온 소성하여 얻은 알루미나는 높은 소다 함량으로 인하여 전기전자 분야에서 사용하기에 적합하지 않은 특성을 나타내게 된다. 이와 같은 방법으로 만들어진 알루미나에 함유된 Na2O, K2O 등의 알카리 성분은 전기 절연성능을 저하시키게 한다.Most alumina is manufactured by using bauxite mineral as a raw material to obtain aluminum hydroxide manufactured through the Bayer process, and then calcining the aluminum hydroxide at a high temperature. However, in the Bayer process, since bauxite is eluted with an aqueous sodium aluminate solution at a high temperature using NaOH (caustic soda) as a solvent and then precipitated to obtain aluminum hydroxide, soda (soda, Na 2 ) in aluminum hydroxide O, etc.) will remain in the powder. As a result, alumina obtained by high-temperature calcination of sodium hydroxide obtained through the Bayer process exhibits unsuitable properties for use in electrical and electronic fields due to its high soda content. Alkali components such as Na 2 O and K 2 O contained in the alumina made in this way deteriorate the electrical insulation performance.

대부분의 알루미나는 수산화알루미늄을 원료로 하여 고온 소성하여 제조하고 있다. 첨부 Na2O 저감기술4Page을 참조하면, 원료인 수산화알루미늄은 천연적으로 깁사이트(Al(OH)3), 보헤마이트(γ-AlOOH) 또는 다이아스포어(α-AlOOH) 형태로 존재하며, 이 중 깁사이트는 200℃ 이상의 온도로 가열하면 물분자를 잃어 AlOOH 형태로 바뀌고, 500℃ 이상의 온도로 가열하면 천이형 알루미나(γ,η-Al2O3 등) 형태로 전환된 뒤, 약 1100℃ 이상의 온도로 더 가열하면 화학적으로 가장 안정된 알루미나(α-alumina)가 생성된다(아래 화학식 참조):Most alumina is manufactured by firing at high temperature using aluminum hydroxide as a raw material. Referring to the attached Na2O reduction technology 4Page, the raw material, aluminum hydroxide, is naturally present in the form of gibbsite (Al(OH) 3 ), boehmite (γ-AlOOH), or diaspore (α-AlOOH). When the site loses water molecules when heated to a temperature of 200°C or higher, it is changed to AlOOH form, and when heated to a temperature of 500°C or higher, it is converted into a transition type alumina (γ,η-Al 2 O 3, etc.), and then at a temperature of about 1100°C or higher Further heating with a furnace produces the most chemically stable alumina (α-alumina) (see formula below):

Al(OH)3 + 가열(1100~1800℃) → α-Al2O3 + 3H2O↑Al(OH) 3 + heating (1100~1800℃) → α-Al 2 O 3 + 3H 2 O↑

원료로 사용되는 수산화알루미늄은 통상적인 베이어 공정을 통해 제조된 것을 사용할 수 있다.Aluminum hydroxide used as a raw material may be prepared through a conventional Bayer process.

이와 같이 베이어 공정에 의해 제조된 수산화알루미늄은 대체적으로 미량의 불순물을 함유하고 있다. 예를 들어, 상기 수산화알루미늄은 소다를 0.2 중량% 이상의 함량으로 포함할 수 있다. 또한, 상기 수산화알루미늄은 그 외 불순물로서 Fe2O3, SiO2 등을 더 포함할 수 있으며, 이들을 0.1중량% 이하의 함량으로 포함할 수 있다.As such, aluminum hydroxide produced by the Bayer process generally contains trace amounts of impurities. For example, the aluminum hydroxide may include soda in an amount of 0.2 wt% or more. In addition, the aluminum hydroxide may further include Fe 2 O 3 , SiO 2 and the like as other impurities, and may include these in an amount of 0.1 wt% or less.

이와 같은 방법으로 만들어진 알루미나에 함유된 Na2O, K2O 등의 알카리 성분은 전기 절연성능을 저하시키게 한다. Alkali components such as Na 2 O and K 2 O contained in the alumina made in this way deteriorate the electrical insulation performance.

이에 따라, 수산화알루미늄의 소성시에 탈소다 공정을 수행함으로써 저소다 알루미나를 제조하는 기술이 사용되고 있다. 저소다 알루미나를 제조하기 위한 종래의 기술로서, 원료인 수산화알루미늄을 열처리와 물세척을 통하여 소다를 제거시키는 방법이 알려져 있으나, 이와 같은 방법은 소다 제거 효과가 미비하고 비경제적인 문제가 있다.Accordingly, a technique for producing low-sodium alumina by performing a de-soda process during sintering of aluminum hydroxide is used. As a conventional technique for producing low soda alumina, a method of removing soda through heat treatment and washing with water from aluminum hydroxide as a raw material is known, but such a method has insufficient soda removal effect and is uneconomical.

또한, 상기와 같이 물을 이용하는 대신 묽은 염산과 같은 무기산을 이용하여 소다를 제거시키는 방법이 공지되어 있으나(대한민국 공개특허공보 제2001-0046015호 참조), 이 방법은 염산 용액이 수산화알루미늄과 반응하여 알루미늄이 용해되는 문제점이 있다. 또한, 수산화알루미늄의 소성시에 샤모트(chamotte)를 첨가하여 소다를 감소시키는 방법이 알려져 있으나, 샤모트 내에 함유되어 있는 철분으로 인하여 최종 알루미나 내에 철분 함량이 증가하는 문제가 있다.In addition, there is known a method of removing soda using an inorganic acid such as dilute hydrochloric acid instead of using water as described above (refer to Korean Patent Application Laid-Open No. 2001-0046015), but in this method, the hydrochloric acid solution reacts with aluminum hydroxide There is a problem in that aluminum is dissolved. In addition, a method of reducing soda by adding chamotte during sintering of aluminum hydroxide is known, but there is a problem in that the iron content in the final alumina increases due to the iron contained in the chamotte.

또한, 그 외 알려진 일반적인 산 처리 방법, Cl2 가스환원 방법 등도 공정설비의 부식, 공정 비효율성, 환경오염, 인체유해, 알루미나 순도의 저하 등의 문제점을 가지고 있다.In addition, other known general acid treatment methods, Cl 2 gas reduction methods, etc. have problems such as corrosion of process equipment, process inefficiency, environmental pollution, harm to human body, and deterioration of alumina purity.

본 발명의 목적은 상기 종래의 문제점을 해결하기 위하여 불순물 함량이 낮고, 저소다 알루미나의 제조방법을 제공하는 것이다.It is an object of the present invention to provide a method for manufacturing low-sodium alumina having a low impurity content in order to solve the above problems of the prior art.

본 발명은 수산화알루미늄을 포함하는 원료에 알루미늄 용해에 3~6 중량%의 불산 수용액을 첨가하여 혼합하는 단계; 상기 혼합물을 상기 혼합물을 상온에서 ~ 60℃까지 가열하면서 1~12 시간 교반하여 세정 후에 건조하여 알루미나 분말을 얻는 단계; 및 상기 알루미나 분말을 소성하여 알루미나(α-Al2O3)를 얻는 단계;를 포함하는, 저소다 알루미나 분말의 제조방법을 제공한다. The present invention comprises the steps of adding and mixing 3 to 6% by weight of an aqueous hydrofluoric acid solution to dissolving aluminum in a raw material containing aluminum hydroxide; obtaining an alumina powder by stirring the mixture for 1 to 12 hours while heating the mixture from room temperature to ~ 60°C, washing and drying the mixture; and calcining the alumina powder to obtain alumina (α-Al 2 O 3 ).

묽은 불산은 알루미늄 용해성이 적기 때문에, 수산화알루미늄에 묽은 불산을 사용하여 세정하면 수산화알루미늄 내 불순물인 소다 등의 불순물의 함량이 매우 낮은 알루미나를 생산할 수 있으며 제조비용도 저렴한 장점이 있다.Since dilute hydrofluoric acid has little solubility in aluminum, washing with dilute hydrofluoric acid in aluminum hydroxide can produce alumina with a very low content of impurities such as soda, which is an impurity in aluminum hydroxide, and has the advantage of low manufacturing cost.

또한 상기 불산 수용액에서 불산은 1~20 중량% 이며, 묽은 불산 수용액임을 특징으로 한다. 불산 농도가 상기 범위보다 낮을 경우 불순물 제거가 어렵고 불산 농도가 너무 높을 경우 알루미나 이외에 알루미늄 플루오라이드가 생기는 원인이 된다. In addition, in the hydrofluoric acid aqueous solution, hydrofluoric acid is 1 to 20 wt%, and it is characterized in that it is a dilute hydrofluoric acid aqueous solution. When the hydrofluoric acid concentration is lower than the above range, it is difficult to remove impurities, and when the hydrofluoric acid concentration is too high, aluminum fluoride is generated in addition to alumina.

또한 상기 불산 수용액으로는 불산과 함께, 질산, 황산, 염산, 및 구연산, 포름산, 숙신산 등의 유기산 중 1 이상을 혼합하여 사용하는 것을 특징으로 한다.In addition, as the hydrofluoric acid aqueous solution, it is characterized in that at least one of nitric acid, sulfuric acid, hydrochloric acid, and organic acids such as citric acid, formic acid, and succinic acid is mixed and used together with hydrofluoric acid.

또한, 상기 알루미나 분말의 소성온도는 1100℃ 이상인 것을 특징으로 한다. 알루미나 분말내 소다 함량을 낮추기 위해서는 상기 온도 이상에서 소성하는 것이 바람직하다.(도 8 참조)In addition, the calcination temperature of the alumina powder is characterized in that 1100 ℃ or more. In order to lower the content of soda in the alumina powder, it is preferable to calcinate at a temperature above the above temperature (refer to FIG. 8).

본 발명의 제조방법에 의해 제조된 알루미나(α-Al2O3) 분말은 Na2O 함량이 0.1중량% 이하, Fe2O3 함량이 0.05중량% 이하, 백색도가 95%이상인 것을 특징으로 한다. 본 발명의 방법에 의해 제조된 알루미나는 불순물이 적어 전기 절연성이 우수할 뿐만 아니라 기계적 강도, 내열성, 내마모성, 내식성 등이 우수하기 때문에, 세라믹스, 전기, 전자, 광학, 기계, 화학 등 여러 분야에서 널리 사용될 수 있다. The alumina (α-Al 2 O 3 ) powder prepared by the manufacturing method of the present invention has a Na 2 O content of 0.1 wt% or less, Fe 2 O 3 content of 0.05 wt% or less, and a whiteness of 95% or more. . Alumina produced by the method of the present invention has few impurities and thus has excellent electrical insulation as well as mechanical strength, heat resistance, abrasion resistance, corrosion resistance, etc. can be used

본 발명의 방법에 따르면, 수산화알루미늄에 알루미늄 용해성이 적은 묽은 불산을 사용하여 세정해 내는 간편한 공정으로 수산화알루미늄 내 불순물인 소다 함량을 현저히 낮춘 알루미나를 제조할 수 있다.According to the method of the present invention, it is possible to produce alumina with a significantly lowered content of soda, an impurity in aluminum hydroxide, by a simple process of washing aluminum hydroxide with dilute hydrofluoric acid having low aluminum solubility.

또한 Fe2O3, SiO2 등의 불순물도 현저히 낮춰 백색도를 증가시키는 장점이 있으며, 종래 기술에 비해 최종 알루미나 내의 소다함량 및 규소, 철분 함량도 매우 적고 비용도 저렴하다. In addition, Fe 2 O 3 , SiO 2 It has the advantage of increasing the whiteness by significantly lowering impurities, and the soda content and the silicon and iron content in the final alumina are very small compared to the prior art, and the cost is low.

또한 본 발명의 방법에 의해 제조된 알루미나는 불순물이 적어 전기 절연성이 우수할 뿐만 아니라 기계적 강도, 내열성, 내마모성, 내식성 등이 우수하기 때문에, 세라믹스, 전기, 전자, 광학, 기계, 화학 등 여러 분야에서 널리 사용될 수 있다.In addition, the alumina produced by the method of the present invention has few impurities and thus has excellent electrical insulation as well as mechanical strength, heat resistance, abrasion resistance, corrosion resistance, etc. It can be widely used.

도 1 은 기존 수산화알루미늄 분말과 본 발명의 산세품 백색도 비교이며.
도 2는 SG-ALO-L500(500nm급 α-Al2O3 )의 SEM 및 색차값을 나타낸 그래프,
도 3은 SG-ALO-L1000(1㎛급 α-Al2O3 )의 SEM 및 색차값을 나타낸 그래프,
도 4는 SG-ALO-L4000(4㎛급 α-Al2O3 )의 SEM 및 색차값을 나타낸 그래프,
도 5는 SG-ALO-L500UP(500nm급 α-Al2O3 )의 SEM 및 색차값을 나타낸 그래프,
도 6는 SG-ALO-L1000UP(1㎛급 α-Al2O3 )의 SEM 및 색차값을 나타낸 그래프,
도 7은 SG-ALO-L4000(4㎛급 α-Al2O3 )의 SEM 및 색차값을 나타낸 그래프,
도 8은 열처리 온도별 결정상 조절을 확인하는 그래프이며,
도 9는 ATH 원료의 열처리 온도에 따른 Na2O 함량 변화를 나타내는 XRF이며,
도 10은 ATH 산세공정을 통한 Na2O 함량 변화를 나타내는 XRF이며,
도 11은 α-Al2O3 산세공정을 통한 Na2O 함량 변화를 나태내는 XRF이다.
1 is a comparison of the whiteness of the conventional aluminum hydroxide powder and the pickling product of the present invention.
2 is a graph showing the SEM and color difference values of SG-ALO-L500 (500 nm grade α-Al 2 O 3 );
3 is a graph showing the SEM and color difference values of SG-ALO-L1000 (1 μm grade α-Al 2 O 3 );
Figure 4 is a graph showing the SEM and color difference values of SG-ALO-L4000 (4㎛ grade α-Al 2 O 3 );
5 is a graph showing the SEM and color difference values of SG-ALO-L500UP (500 nm grade α-Al 2 O 3 );
6 is a graph showing the SEM and color difference values of SG-ALO-L1000UP (1 μm grade α-Al 2 O 3 );
7 is a graph showing the SEM and color difference values of SG-ALO-L4000 (4 μm grade α-Al 2 O 3 );
8 is a graph confirming the crystal phase control for each heat treatment temperature,
9 is an XRF showing the change in the Na 2 O content according to the heat treatment temperature of the ATH raw material,
10 is an XRF showing the Na 2 O content change through the ATH pickling process,
11 is an XRF showing the Na 2 O content change through the α-Al 2 O 3 pickling process.

상기 문제점을 해결하기 위하여, 본 발명은 수산화알루미늄을 포함하는 원료에 알루미늄 용해에 반응성이 적은 묽은 불산 용액을 첨가하여 혼합하는 단계; 및 이를 세정 후 건조하는 단계; 수득한 분말을 소성하여 알루미나(α-Al2O3)를 얻는 단계를 포함하는, 저소다 알루미나의 제조방법을 제공한다.In order to solve the above problem, the present invention comprises the steps of adding and mixing a dilute hydrofluoric acid solution having little reactivity in dissolving aluminum to a raw material containing aluminum hydroxide; and drying it after washing; It provides a method for producing low-sodium alumina, comprising the step of calcining the obtained powder to obtain alumina (α-Al 2 O 3 ).

본 발명의 방법에 따르면, 수산화알루미늄에 알루미늄 용해성이 적은 묽은 불산을 사용하여 세정해내는 간편한 공정으로 수산화알루미늄 내 불순물인 소다 함량을 현저히 낮춘 알루미나를 제조할 수 있다.According to the method of the present invention, it is possible to produce alumina with a significantly lowered content of soda, an impurity in aluminum hydroxide, by a simple process of washing aluminum hydroxide with dilute hydrofluoric acid having low aluminum solubility.

또한 이에 의해 제조된 알루미나는 불순물이 적어 전기 절연성이 우수할 뿐만 아니라 기계적 강도, 내열성, 내마모성, 내식성 등이 우수하기 때문에, 세라믹스, 전기, 전자, 광학, 기계, 화학 등 여러 분야에서 널리 사용될 수 있다.In addition, the alumina produced by this method has few impurities and thus has excellent electrical insulation as well as excellent mechanical strength, heat resistance, abrasion resistance, corrosion resistance, etc., so it can be widely used in various fields such as ceramics, electricity, electronics, optics, machinery, and chemistry. .

본 발명에서는 수산화 알루미늄에 3~6 중량%의 묽은 불산 수용액을 혼합 후 1~12 시간 교반 후 세정 및 건조 공정을 거친 후 소성 단계를 거쳐 저소다의 알루미나 분말을 얻을 수 있다. 또한, 수산화 알루미늄을 소성단계를 거쳐 알루미나 분말을 얻은 후 3~6중량% 의 묽은 불산 수용액을 혼합 후 1~12 시간 교반 후 세정 및 건조 공정을 거쳐 저소다의 알루미나 분말을 얻을 수 있다. In the present invention, 3 to 6% by weight of a dilute hydrofluoric acid aqueous solution is mixed with aluminum hydroxide, stirred for 1 to 12 hours, washed and dried, and then calcined to obtain low-soda alumina powder. In addition, after the aluminum hydroxide is calcined to obtain alumina powder, 3 to 6% by weight of a dilute hydrofluoric acid aqueous solution is mixed, stirred for 1 to 12 hours, and then washed and dried to obtain alumina powder with low soda.

이하에서는 실시예를 통하여 보다 자세히 설명한다.Hereinafter, it will be described in more detail through examples.

실시예 1Example 1

묽은 불산 4중량% 수용액 5kg에 1㎛급 수산화 알루미늄 분말 2kg을 넣고 4hr 동안 교반을 행한다. 이 후 초순수를 사용하여 수세 과정을 5회 걸친 후 건조하여 저소다의 수산화 알루미늄 분말을 얻는다. 이를 다시 1200℃에서 4시간 열처리하여 α상의 알루미나를 얻는다. 2 kg of 1㎛ grade aluminum hydroxide powder is added to 5 kg of a dilute 4% by weight aqueous solution of hydrofluoric acid, and the mixture is stirred for 4 hours. After that, it is washed with ultrapure water five times and dried to obtain low-soda aluminum hydroxide powder. This is again heat-treated at 1200° C. for 4 hours to obtain α-phase alumina.

실시예 2Example 2

1㎛급 수산화 알루미늄을 1200℃에서 4시간 열처리하여 α상의 알루미나를 얻은 후 묽은 불산 4중량 % 수용액 5kg에 열처리하여 얻은 α상의 알루미나 분말 2kg을 넣고 4hr 동안 교반을 행한다. 이 후 초순수를 사용하여 수세 과정을 5회 걸친 후 건조하여 저소다의 α-알루미나를 분말을 얻는다.After heat-treating 1㎛ grade aluminum hydroxide at 1200°C for 4 hours to obtain α-phase alumina, 2 kg of α-phase alumina powder obtained by heat treatment in 5 kg of a dilute 4 wt% hydrofluoric acid aqueous solution is added and stirred for 4 hours. After that, it is washed with ultrapure water 5 times and dried to obtain a low-soda α-alumina powder.

실시예 3Example 3

묽은 불산 4중량% 수용액 5kg에 500nm, 1um, 4um의 α-알루미나 분말 각 2kg을 넣고 4hr 동안 교반을 행한다. 이 후 초순수를 사용하여 수세 과정을 5회 걸친 후 건조하여 저소다의 α-알루미나를 분말을 얻는다.2 kg each of α-alumina powder of 500 nm, 1 μm, and 4 μm was added to 5 kg of a dilute 4 wt% hydrofluoric acid aqueous solution and stirred for 4 hr. After that, it is washed with ultrapure water 5 times and dried to obtain a low-soda α-alumina powder.

비교예 1Comparative Example 1

1㎛급 수산화 알루미늄 분말 2kg을 1200℃에서 4시간 열처리하여 α상의 알루미나를 얻는다.2 kg of 1㎛ grade aluminum hydroxide powder is heat treated at 1200°C for 4 hours to obtain α-phase alumina.

<알루미나 물성 및 함량> <Alumina properties and content>

1. 소다(Na2O) 함량 (동일한 Lot의 수산화 알루미늄 원료 사용)1. Soda (Na 2 O) content (using the same lot of aluminum hydroxide raw material)

1) 수산화 알루미늄 분말 : 0.4455 중량 %1) Aluminum hydroxide powder: 0.4455 wt%

2) 수산화 알루미늄 열처리 분말 : 0.2495 중량 % (도 9 참조)2) Aluminum hydroxide heat treatment powder: 0.2495 wt% (see Fig. 9)

3) 수산화 알루미늄 산처리 : 0.2502 중량 % (도 10 참조)3) Aluminum hydroxide acid treatment: 0.2502 wt% (see Fig. 10)

4) 수산화 알루미늄 열처리 후 산처리한 분말 : 0.0535% (도 11 참조)4) Powder treated with acid after aluminum hydroxide heat treatment: 0.0535% (see FIG. 11)

상기 방법에 의해 제조된 알루미나는 소다 함량이 0.1중량% 이하일 수 있고, 바람직하게는 0.05중량% 이하이며, 보다 바람직하게는 약 0.01 내지 0.04 중량%이다.The alumina produced by the above method may have a soda content of 0.1 wt% or less, preferably 0.05 wt% or less, and more preferably about 0.01 to 0.04 wt%.

2. 철분함량2. Iron content

철분, 특히 Fe2O3 함량이 0.05중량% 이하일 수 있고, 바람직하게는 0.03중량% 이하일 수 있다. 기타, 규소(SiO2) 함량도 원료 분말에 비해 산세한 분말이 다소 감소한 것을 확인할 수 있었다. The iron content, particularly Fe 2 O 3 content, may be 0.05% by weight or less, preferably 0.03% by weight or less. In addition, it was confirmed that the silicon (SiO 2 ) content was also slightly reduced in the pickled powder compared to the raw powder.

3. 백색도 비교 (산세에 따른 백색도 비교, 실시예 3)3. Comparison of whiteness (Comparison of whiteness according to pickling, Example 3)

 500nm 500nm 1㎛   1㎛ 4㎛4㎛ 산세 전before pickling 96.84   96.84 95.58  95.58 93.5893.58 산세 후after pickling 98.26    98.26 97.33    97.33 97.0697.06

상기 표 1 및 도 1~7에서와 같이, 본 발명의 제조방법에 따라 제조된 알루미나는 백색도가 95%이상일 수 있고, 바람직하게는 97%이상일 수 있으며, 보다 바람직하게는 98% 이상 일 수 있다. As shown in Table 1 and FIGS. 1 to 7, the alumina produced according to the manufacturing method of the present invention may have a whiteness of 95% or more, preferably 97% or more, and more preferably 98% or more. .

Claims (5)

수산화알루미늄을 포함하는 원료에 불산 수용액을 첨가하여 혼합하는 단계, 여기서 상기 불산 수용액에서 불산은 1~20 중량% 이며;
상기 혼합물을 상온에서 ~ 60℃까지 가열하면서 1~12 시간 교반하여 세정 후에 건조하여 알루미나 분말을 얻는 단계; 및
상기 알루미나 분말을 1100℃이상의 온도에서 소성하여 알루미나(α-Al2O3)를 얻는 단계;를 포함하는, 저소다 알루미나 분말의 제조방법.
adding and mixing an aqueous hydrofluoric acid solution to a raw material containing aluminum hydroxide, wherein the hydrofluoric acid content in the aqueous hydrofluoric acid solution is 1-20 wt%;
obtaining an alumina powder by stirring the mixture from room temperature to ~60°C while stirring for 1 to 12 hours, washing and drying; and
A method of producing a low-sodium alumina powder, including; calcining the alumina powder at a temperature of 1100° C. or higher to obtain alumina (α-Al 2 O 3 ).
삭제delete 제 1항에 있어서, 상기 불산 수용액은 불산과 함께, 질산, 황산, 염산, 및 유기산(Citric acid,Formic acid, Succinic acid)으로부터 선택되는 1 이상을 혼합한 것을 특징으로 하는 저소다 알루미나 분말의 제조방법.According to claim 1, wherein the hydrofluoric acid aqueous solution, nitric acid, sulfuric acid, hydrochloric acid, and at least one selected from organic acids (Citric acid, Formic acid, Succinic acid) with hydrofluoric acid, characterized in that the production of low-soda alumina powder Way. 삭제delete Na2O 함량이 0.1중량% 이하, Fe2O3 함량이 0.05중량% 이하, 백색도가 95%이상인 것을 특징으로 하는 제 1 항 또는 제 3 항에 따른 방법에 의해 제조된 저소다 알루미나 분말.The low-soda alumina powder prepared by the method according to claim 1 or 3, characterized in that the Na 2 O content is 0.1 wt% or less, the Fe 2 O 3 content is 0.05 wt% or less, and the whiteness is 95% or more.
KR1020190122868A 2019-10-04 2019-10-04 MANUFACTURING METHOD Of LOW SODA ALUMINA POWDER KR102301893B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190122868A KR102301893B1 (en) 2019-10-04 2019-10-04 MANUFACTURING METHOD Of LOW SODA ALUMINA POWDER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190122868A KR102301893B1 (en) 2019-10-04 2019-10-04 MANUFACTURING METHOD Of LOW SODA ALUMINA POWDER

Publications (2)

Publication Number Publication Date
KR20210040540A KR20210040540A (en) 2021-04-14
KR102301893B1 true KR102301893B1 (en) 2021-09-14

Family

ID=75477505

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190122868A KR102301893B1 (en) 2019-10-04 2019-10-04 MANUFACTURING METHOD Of LOW SODA ALUMINA POWDER

Country Status (1)

Country Link
KR (1) KR102301893B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402831B1 (en) * 1996-03-05 2004-05-06 고로 사토 Alumina sol, a process for producing the same, a process for producing an alumina compact using the same, and an alumina-based catalyst obtained from the alumina compact

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010046015A (en) * 1999-11-09 2001-06-05 김원배 Manufacturig method of alumina powder
KR101548633B1 (en) * 2013-12-30 2015-09-01 한국알루미나 주식회사 Preparation method of low soda-containing alumina using quartz

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402831B1 (en) * 1996-03-05 2004-05-06 고로 사토 Alumina sol, a process for producing the same, a process for producing an alumina compact using the same, and an alumina-based catalyst obtained from the alumina compact

Also Published As

Publication number Publication date
KR20210040540A (en) 2021-04-14

Similar Documents

Publication Publication Date Title
CA1226719A (en) Production of low silica content, high purity alumina
KR20180054058A (en) Method for producing synthetic hectorite at low temperature and atmospheric pressure
KR101939265B1 (en) Method of manufacturing boehmite
KR102092183B1 (en) Preparation method of high purity alumina
CN1888096A (en) Prepn process of Bayer process leaching additive
KR102301893B1 (en) MANUFACTURING METHOD Of LOW SODA ALUMINA POWDER
US2961297A (en) Process for producing alumina of low soda content
JP6587070B2 (en) Process for producing β-eucryptite fine particles
KR20150000295A (en) Magnesia, method for preparing thereof, and multilayer ceramic capacitor comprising additives the same
EP0272294B1 (en) Preparation of hydrolysed zirconium salt precursors and high purity zirconia
KR101548633B1 (en) Preparation method of low soda-containing alumina using quartz
US3092453A (en) Production of low-soda alumina
CN111186853A (en) Preparation method of rare earth halide
CN103723751A (en) Impurity removal method of alumina for LCD (Liquid Crystal Display) glass base board
KR101052344B1 (en) Method for producing high purity magnesium oxide powder from magnesium chloride
CN111039689B (en) Corrosion-resistant nano heat-insulating felt and preparation method and application thereof
CN1235802C (en) Bayer process stripping additive and its preparation and using method
CN113788494A (en) Preparation method of barium dititanate
US3092452A (en) Production of low-soda alumina
JP2003012323A (en) Method for producing low soda alumina
JP2639989B2 (en) Metal titanate whisker and method for producing the same
KR100600804B1 (en) Method for manufacturing magnesia for annealing separator of oriented electrical steel sheet
JP5242366B2 (en) Zirconium oxide, precursor thereof, and production method thereof
JP6644763B2 (en) Method for producing purified alkaline earth metal carbonate
CN106032286B (en) A kind of production method of aluminum oxide

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant