KR102292594B1 - Method for manufacturing metal antenna-plastic assembly - Google Patents

Method for manufacturing metal antenna-plastic assembly Download PDF

Info

Publication number
KR102292594B1
KR102292594B1 KR1020200128080A KR20200128080A KR102292594B1 KR 102292594 B1 KR102292594 B1 KR 102292594B1 KR 1020200128080 A KR1020200128080 A KR 1020200128080A KR 20200128080 A KR20200128080 A KR 20200128080A KR 102292594 B1 KR102292594 B1 KR 102292594B1
Authority
KR
South Korea
Prior art keywords
silicate
pyrophosphate
sodium
antenna
etching
Prior art date
Application number
KR1020200128080A
Other languages
Korean (ko)
Inventor
성무창
홍성호
Original Assignee
주식회사 플라스탈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 플라스탈 filed Critical 주식회사 플라스탈
Priority to KR1020200128080A priority Critical patent/KR102292594B1/en
Application granted granted Critical
Publication of KR102292594B1 publication Critical patent/KR102292594B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3456Antennas, e.g. radomes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

The present invention relates to a method for manufacturing a metal antenna-plastic assembly. The method comprises the steps of: etching an antenna component; electrolyzing the etched antenna component in an electrolyte; and insert-injecting polymer resin and the electrolyzed antenna part in a mold. The electrolyte solution comprises caustic soda, phosphate and silicate. An object of the present invention is to provide a metal antenna-plastic assembly having significantly improved plastic and antenna adhesion strength.

Description

금속안테나-플라스틱 어셈블리 제조방법{Method for manufacturing metal antenna-plastic assembly}Method for manufacturing metal antenna-plastic assembly

본 발명은 금속안테나-플라스틱 어셈블리 제조방법에 관한 것으로, 보다 상사하게는 박막 금속인 안테나를 플라스틱과 높은 인장강도를 갖도록 접합시키는 금속안테나-플라스틱 어셈블리 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a metal antenna-plastic assembly, and more similarly to a method for manufacturing a metal antenna-plastic assembly in which a thin-film metal antenna is bonded to plastic to have high tensile strength.

통신 기술의 발달과 함께 박막 형태의 안테나가 기지국 등에서 널리 사용되고 있다. 이 경우 인쇄회로길판과 같은 고분자성의 플라스틱 기판과 접합 또는 실장되는데, 예를 들어 대한민국 공개특허 10-2013-0042909호는 인쇄회로기판에 안테나를 실장하는 방법을 개시하고 있다.With the development of communication technology, thin-film antennas are widely used in base stations and the like. In this case, it is bonded or mounted to a polymeric plastic substrate such as a printed circuit board. For example, Korean Patent Laid-Open No. 10-2013-0042909 discloses a method for mounting an antenna on a printed circuit board.

하지만, 정밀해지는 통신 환경에서 박막형태의 금속 안테나를 플라스틱 기판에 보다 높은 인장강도와 접합강도(누설량)로 접합시키는 기술 개발이 절실한 상황이다.However, there is an urgent need to develop a technology for bonding a thin-film metal antenna to a plastic substrate with higher tensile strength and bonding strength (leakage) in the increasingly precise communication environment.

따라서, 본 발명이 해결하고자 하는 과제는 새로운 안테나 접합방법에 기반한 금속안테나 어셈블리 제조방법을 제공하는 것이다. Accordingly, an object of the present invention is to provide a method for manufacturing a metal antenna assembly based on a novel antenna bonding method.

상기 과제를 해결하기 위하여, 본 발명은 금속안테나-플라스틱 어셈블리 제조방법으로, 안테나 부품을 에칭하는 단계; 상기 에칭된 안테나 부품을 전해액 내에서 전해시키는 단계; 및 금형 내에서 고분자 수지와 상기 전해된 안네타 부품을 인서트 사출하는 단계를 포함하며, 상기 전해액은 가성소다, 인산염 및 규산염을 포함하하는 것을 특징으로 하는 금속안테나-플라스틱 어셈블리 제조방법을 제공한다.In order to solve the above problems, the present invention provides a method for manufacturing a metal antenna-plastic assembly, comprising the steps of: etching the antenna component; electrolyzing the etched antenna component in an electrolyte; and insert-injecting the polymer resin and the electrolyzed antenna part in a mold, wherein the electrolyte contains caustic soda, phosphate and silicate.

본 발명의 일 실시예에서, 상기 전해액은 증류수 및 상기 중류수 100중량부 대비 가성소다 0.1~20중량부, 인산염 화합물 0.1~30중량부, 규산염 화합물 0.1~30중량부를 포함한다.In one embodiment of the present invention, the electrolyte includes distilled water and 0.1 to 20 parts by weight of caustic soda relative to 100 parts by weight of the distilled water, 0.1 to 30 parts by weight of a phosphate compound, and 0.1 to 30 parts by weight of a silicate compound.

본 발명의 일 실시예에서, 상기 에칭하는 단계는 2단계로 진행되며, 상기 인산염 화합물은 피로인산나트륨, 산성피로인산나트륨, 피로인산칼슘, 피로인산주석, 피로인산구리, 피로인산철, 피로인산철나트륨, 피로인산칼륨, 아이소펜테닐피로인산, 멜라민피로인산 및 티아민피로인산으로 이루어진 군으로부터 선택된 적어도 어느 하나이며, 상기 규산염 화합물은 규산 칼슘(calcium silicate), 탈크(Magnesium silicate), 규불화마그네슘, 규산알루미늄, 규산지르코늄, 올소규산나트륨, 오르토규산나트륨, 규산나트륨, 메타규산나트륨, 규불화나트륨, 리튬메타실리케이트 및 에틸실리케이트로 이루어진 군으로부터 선택된 적어도 어느 하나이다. In one embodiment of the present invention, the etching step is performed in two steps, and the phosphate compound is sodium pyrophosphate, sodium acid pyrophosphate, calcium pyrophosphate, tin pyrophosphate, copper pyrophosphate, iron pyrophosphate, pyrophosphate. At least one selected from the group consisting of sodium iron, potassium pyrophosphate, isopentenyl pyrophosphate, melamine pyrophosphate and thiamine pyrophosphate, wherein the silicate compound is calcium silicate, talc (Magnesium silicate), magnesium silicate , at least one selected from the group consisting of aluminum silicate, zirconium silicate, sodium orthosilicate, sodium orthosilicate, sodium silicate, sodium metasilicate, sodium silicate fluoride, lithium metasilicate and ethyl silicate.

본 발명에 따르면, 가성소다, 인산염 화합물 및 규산염 화합물을 전해액 성분으로 동시에 사용하여 고분자 수지와 인서트 사출함으로서 플라스틱과 안테나 접착강도가 현저히 향상된 금속안테나-플라스틱 어셈블리를 제조할 수 있다. According to the present invention, by using caustic soda, a phosphate compound, and a silicate compound as an electrolyte component at the same time and insert injection with a polymer resin, a metal antenna-plastic assembly having significantly improved plastic and antenna adhesion strength can be manufactured.

도 1은 본 발명의 일 실시예에 따른 금속안테나-플라스틱 어셈블리 제조방법의 단계도이다. 1 is a step diagram of a method for manufacturing a metal antenna-plastic assembly according to an embodiment of the present invention.

이하, 본 발명에 따른 금속안테나-플라스틱 어셈블리 제조방법을, 바람직한 실시예를 첨부한 도면들에 의거하여 상세히 설명한다. 참고로, 본 명세서 및 청구범위에 사용된 용어와 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석해야만 한다. 또한, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Hereinafter, a method for manufacturing a metal antenna-plastic assembly according to the present invention will be described in detail with reference to the accompanying drawings of preferred embodiments. For reference, the terms and words used in the present specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventor must properly understand the concept of the term in order to best describe his invention. Based on the principle that it can be defined, it should be interpreted as meaning and concept consistent with the technical idea of the present invention. In addition, the configurations shown in the embodiments and drawings described in this specification are only the most preferred embodiment of the present invention, and do not represent all of the technical spirit of the present invention, so at the time of the present application, various It should be understood that there may be equivalents and variations.

상술한 문제를 해결하기 위하여 본 발명은 에칭을 거친 안테나를 특정 전해 공정으로 전해처리 한 후 이를 금형에서 플라스틱과 함께 사출하여 성형한다. 이로써 안테나 부품과 플라스틱간 접착강도가 증가할 수 된 안테나-플라스틱 어셈블리를 제조할 수 있다.In order to solve the above problem, the present invention electrolytically treats an etched antenna with a specific electrolytic process, and then injects it together with plastic in a mold and molds it. Thereby, it is possible to manufacture an antenna-plastic assembly in which the adhesive strength between the antenna component and the plastic can be increased.

도 1은 본 발명의 일 실시예에 따른 금속안테나-플라스틱 어셈블리 제조방법의 단계도이다. 1 is a step diagram of a method for manufacturing a metal antenna-plastic assembly according to an embodiment of the present invention.

도 1을 참조하면, 본 발명은 안테나 부품을 에칭하는 단계; 상기 에칭된 안테나 부품을 전해시키는 단계; 및 금형 내에서 고분자 수지와 상기 전해된 안네타 부품을 인서트 사출하는 단계를 포함한다. Referring to Figure 1, the present invention comprises the steps of: etching an antenna component; electrolyzing the etched antenna component; and insert-injecting the polymer resin and the electrolyzed antenna part in the mold.

즉, 기본의 안테나 부품과 플라스팃 사출 부품을 따로 융착, 본딩하는 기존 방식과 달리 본 발명은 안테나 부품을 사출 금형 내에 삽입한 후 이를 사출하여 동시에 접합시키는 소위 인서트 사출 방식으로 안테나-플라스틱 어셈블리를 제조한다. 이로써 보다 인장강도가 향상되고 접착력이 향상된 안테나-플라스틱 어셈블리를 제조할 수 있다. That is, unlike the conventional method of fusion and bonding the basic antenna part and the plastic injection part separately, the present invention manufactures the antenna-plastic assembly by the so-called insert injection method in which the antenna part is inserted into the injection mold and then injected and joined at the same time. do. As a result, it is possible to manufacture an antenna-plastic assembly having improved tensile strength and improved adhesion.

본 발명의 일 실시예에서 상기 에칭은 2단계로 진행될 수 있으며, 이 경우 각각 안테나 금속 부품의 표면에 포어를 구성하기 위한 것으로 각각의 에칭단계의 에칭액은 다음과 같다. In an embodiment of the present invention, the etching may be performed in two steps. In this case, the etching solution for each etching step is as follows to form pores on the surface of each antenna metal part.

제1 에칭액: 옥살산, 질산, 염산, 불산, 염화철, 황산 및 과산화수소 중 적어도 어느 하나와 증류수를 포First etching solution: containing at least one of oxalic acid, nitric acid, hydrochloric acid, hydrofluoric acid, iron chloride, sulfuric acid and hydrogen peroxide and distilled water

제2 에칭액: 탄산수소나트륨, 수산화나트륨, 사붕산나트륨 중 적어도 어느 하나와 증류수를 포함Second etching solution: contains at least one of sodium hydrogen carbonate, sodium hydroxide, sodium tetraborate and distilled water

또한 전해단계에서 사용되는 전해액은 증류수, 가성소다, 인산염, 규산염 화합물을 포함하는, 인산염 및 규산염 화합물은 다음의 물질 중 적어도 어느 하나 이상을 포함할 수 있다. In addition, the electrolyte used in the electrolysis step is distilled water, caustic soda, phosphate, including silicate compounds, phosphates and silicate compounds may include at least any one or more of the following materials.

인산염 화합물: 피로인산나트륨, 산성피로인산나트륨, 피로인산칼슘, 피로인산주석, 피로인산구리, 피로인산철, 피로인산철나트륨, 피로인산칼륨, 아이소펜테닐피로인산, 멜라민피로인산 및 티아민피로인산으로 이루어진 군 중 적어도 어느 하나 Phosphate compounds: sodium pyrophosphate, sodium acid pyrophosphate, calcium pyrophosphate, tin pyrophosphate, copper pyrophosphate, iron pyrophosphate, sodium iron pyrophosphate, potassium pyrophosphate, isopentenyl pyrophosphate, melamine pyrophosphate and thiamine pyrophosphate. at least one of the group consisting of

규산염을 포함하는 화합물 종류 : 규산 칼슘(calcium silicate), 탈크(Magnesium silicate), 규불화마그네슘, 규산알루미늄, 규산지르코늄, 올소규산나트륨, 오르토규산나트륨, 규산나트륨, 메타규산나트륨, 규불화나트륨, 리튬메타실리케이트 및 에틸실리케이트로 이루어진 군 중 적어도 어느 하나 Types of compounds containing silicate: calcium silicate, talc (Magnesium silicate), magnesium silicate, aluminum silicate, zirconium silicate, sodium orthosilicate, sodium orthosilicate, sodium silicate, sodium metasilicate, sodium silicate, lithium At least one of the group consisting of metasilicate and ethyl silicate

본 발명의 일 실시예에서 상기 전해액은 : 중류수 100중량부 대비 가성소다 0.1~20중량부, 인산염 화합물 0.1~30중량부, 규산염 화합물 0.1~30중량부이다. 증류수 100 중량부 대비 가성소다 20중량부를 초과하면 전도도가 높아져 코팅층이 균일하지 않고 국부적(선택적)으로 코팅이 되는 문제가 있다. 또한 그 미만인 경우는 가성소다에 의한 전해 효과를 기대하기 어렵다. 또한 인산염 화합물이 30중량부를 벗어나게 되면 전해액에 완전히 용해되지 않으며 용해되지 않은 화합물들이 코팅을 방해하게 되며, 그 미만인 경우 전해 효과를 기대하기 어렵다. 규산염 화합물 또한 30중량부를 벗어나게 되면 전해액에 완전히 용해가 되지 않으며 용해되지 않은 화합물들이 코팅을 방해하게 되며, 그 미만인 경우 전해 효과를 기대하기 어렵다. 특히 본 발명은 가성소다, 인산염 화합물 및 규산염 화합물을 동시에 사용하는 경우 전해처리된 안테나 부품은 고분자 수지와의 인서트 사출시 매우 강한 접합강도를 가지게 된다. In an embodiment of the present invention, the electrolyte is: 0.1 to 20 parts by weight of caustic soda, 0.1 to 30 parts by weight of a phosphate compound, and 0.1 to 30 parts by weight of a silicate compound relative to 100 parts by weight of distilled water. When it exceeds 20 parts by weight of caustic soda relative to 100 parts by weight of distilled water, the conductivity is increased, and there is a problem in that the coating layer is not uniform and is coated locally (selectively). Moreover, when it is less than that, it is difficult to expect the electrolytic effect by caustic soda. In addition, when the phosphate compound exceeds 30 parts by weight, it is not completely dissolved in the electrolyte and the undissolved compounds interfere with the coating. If the silicate compound also exceeds 30 parts by weight, it is not completely dissolved in the electrolyte and the undissolved compounds interfere with the coating. In particular, in the present invention, when caustic soda, a phosphate compound, and a silicate compound are used at the same time, the electrolytically treated antenna part has very strong bonding strength during insert injection with the polymer resin.

또한 전해액 온도 5~60도에서 120~3600초, 전압은 1~50볼트로 진행될 수 있다. In addition, at an electrolyte temperature of 5 to 60 degrees, 120 to 3600 seconds, the voltage may be 1 to 50 volts.

본 발명의 상기 어셈블리 제조방법은 안테나 부품을 타겟하므로, 상기 모재인 금속은 철, 강, 스테인레스스틸, 알루미늄, 구리, 및 마그네슘으로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함할 수 있으며, 상기 고분자 수지(플라스틱)는 PBT, PPA, PC, LCP, PE, PP, PA6, PA66, ASA 및 PPS로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함할 수 있다. Since the assembly manufacturing method of the present invention targets an antenna component, the base metal may include at least one selected from the group consisting of iron, steel, stainless steel, aluminum, copper, and magnesium, and the polymer resin ( plastic) may include at least one selected from the group consisting of PBT, PPA, PC, LCP, PE, PP, PA6, PA66, ASA and PPS.

실시예Example

본 실시예는 다음과 같은 순서로 메탈-고분자 레진의 접합체를 제조하였다. 여기에서 %는 모두 중량%를 의미한다.In this example, a metal-polymer resin conjugate was prepared in the following order. Here, all % means % by weight.

1) 3mm 두께의 스테인레스스틸을 40*12*3mm의 크기로 가공하여 20개의 시편을 준비하였다. 1) 20 specimens were prepared by processing 3mm thick stainless steel to a size of 40*12*3mm.

2) 이후 접합처리 시 랙에 거치할 수 있게 상기 1)에서 준비한 시편에 4mm 크기의 구멍을 추가로 가공하여 준비하였다. 2) The specimen prepared in 1) was further processed with a hole of 4 mm in size so that it could be mounted on a rack during subsequent bonding processing.

3) 이후 상기랙에 상기 2)에서 가공한 구멍을 이용해 시편을 거치시켰다.3) Then, the specimen was mounted on the rack using the hole machined in 2) above.

4) 알맥스 사의 탈지액에 3)에서 준비한 시편을 거치된 상기 랙에 넣고 초음파 세척을 30초간 실시하여 표면에 불순물을 제거 후 증류수로 세척하였다(틸지 단계)4) Put the specimen prepared in 3) in the degreasing solution of Rmax, put it in the rack, and perform ultrasonic washing for 30 seconds to remove impurities on the surface and then wash with distilled water (tilji step)

5) 상기에서 4) 세척 완료한 시편을 질산(20%), 염산(25%), 과산화수소(5%)의 버블교반기에 담긴 증류수 혼압액(70℃)에 5분간 넣어 1차 에칭을 시킨 후 에칭 시 발생한 불순물을 제거시킨 후 증류수로 세척하였다(1차 에칭)5) In the above 4), the washed specimen was placed in a mixed pressure solution of distilled water (70° C.) contained in a bubble stirrer of nitric acid (20%), hydrochloric acid (25%), and hydrogen peroxide (5%) for 5 minutes to perform the first etching. After removing impurities generated during etching, it was washed with distilled water (first etching)

6) 상기 5) 상태의 시료를 70℃의 탄산수소나트륨(25%), 수산화나트륨(15%)의 증류수 혼합액에 30초간 담가 2차 에칭을 시킨 후 표면을 활성화 시킨 후 증류수 세척을 2회 실시하였다(2차 에칭).6) Soak the sample in 5) in distilled water mixture of sodium hydrogen carbonate (25%) and sodium hydroxide (15%) at 70°C for 30 seconds to perform secondary etching, activate the surface, and wash with distilled water twice (secondary etching).

7) 2차 에칭까지 완료 한 강판 시편을 가성소다(5%), 피로인산소다(10ㅈ%), 규불화소다(10%)의 혼하백으로 전해공정을 실시하여 코팅층을 형성시킨다(전해). 8) 상기 7)까지 완료한 20개의 시편 중 10개는 인장테스트용 사출, 나머지 10개는 누설량 테스트용 사출을 나누어 실시하였다(사출). 7) A coating layer is formed by performing an electrolytic process on a steel sheet specimen that has been etched until the second etching is performed with a mixture of caustic soda (5%), sodium pyrophosphate (10%), and sodium silicate fluoride (10%) (electrolysis). . 8) Of the 20 specimens completed up to 7) above, 10 were divided into injection for tensile testing and the remaining 10 for injection for leakage test (injection).

9) 사출에 사용 된 고분자 레진은 LG화학사의 PC 이고 Glass fiber 함량은 10% 이다. 또한 사출기는 우진사의 TB 시리즈 120톤 수평사출기를 사용하여 사출을 하였다. 사출 조건은 금형온도 130℃, 노즐온도 280℃, 보압 5초로 설정하였다. 9) The polymer resin used for injection is LG Chem's PC, and the glass fiber content is 10%. In addition, injection was performed using Woojin's TB series 120-ton horizontal injection machine. Injection conditions were set at a mold temperature of 130°C, a nozzle temperature of 280°C, and a holding pressure of 5 seconds.

10) 상기 8)에서 준비 된 인장테스트용 사출 시편은 타임그룹사의 WDW시리즈 UTM기를 사용하여 5mm/min의 속도로 인장강도를 측정하였다.10) The tensile strength of the injection specimen for tensile test prepared in 8) was measured at a rate of 5 mm/min using a WDW series UTM machine manufactured by Time Group.

11) 상기 8)에서 준비 된 누설량 테스트용 사출 시편은 헬륨 리크장비를 사용하여 누설량을 측정하였고, 누설량이 10-8Pam3/s 이하면 합격판정 하였다.11) For the injection specimen for the leak test prepared in 8), the leak amount was measured using a helium leak device, and if the leak amount was 10 -8 Pam 3 /s or less, it was judged as acceptable.

12) 인장과 누설량 테스트 결과는 평균 인장강도 42.2 MPa와 누설량 합격률 100%로 측정 되었다.12) Tensile and leak test results were measured with an average tensile strength of 42.2 MPa and a leak rate of 100%.

비교예 1Comparative Example 1

본 실시예에서는 전해 공정 중 혼합액 중 피로인산소다(10%), 규불화소다(10%) 을 빼고 공정을 실시한 것 외에는 상기 실시예 1과 동일한 방법으로 접합처리를 실시하였다. 그 결과, 인장강도는 평균 5.3 MPa, 누설량 합격률 0%로 금속과 고분자 수지가 제대로 접합이 되지 않았다.In this embodiment, the bonding treatment was performed in the same manner as in Example 1, except that the process was performed by subtracting sodium pyrophosphate (10%) and sodium silicofluoride (10%) from the mixed solution during the electrolysis process. As a result, the average tensile strength was 5.3 MPa and the leakage pass rate was 0%, so the metal and polymer resin were not properly bonded.

비교예 2Comparative Example 2

본 실시예는 전해 공정의 혼합액 중 규불화소다(10%) 을 빼고 공정을 실시한 것 외에는 상기 실시예 1과 동일한 방법으로 접합처리를 실시하였다.In this example, the bonding treatment was performed in the same manner as in Example 1, except that the process was performed by subtracting sodium silicate fluoride (10%) from the mixed solution of the electrolysis process.

그 결과, 인장강도는 평균 32.6 MPa, 누설량 합격률 10%로 실시예 1의 결과(인장강도 평균 42.2 MPa, 누설량 합격률 100%)보다 좋지 않았다.As a result, the tensile strength was 32.6 MPa on average, and the leak rate pass rate was 10%, which was not as good as the result of Example 1 (average tensile strength 42.2 MPa, leak rate pass rate 100%).

실험예 Experimental example

본 실험예에서는 전해액 성분에 따른 인장강도 및 접착 정도를 알 수 있는헬륨 누설량을 측정하였고 이를 하기 표 1에 표시하였다. In this experimental example, the amount of helium leakage, which can know the tensile strength and the degree of adhesion according to the components of the electrolyte, was measured, and it is shown in Table 1 below.

[표 1]

Figure 112020104814004-pat00001
[Table 1]
Figure 112020104814004-pat00001

상기 결과를 참조하면, 가성소다, 피로인산소다 및 규불화소다를 모두 사용한 실시예 1의 경우 인장강도 평균 42.2 MPa, 누설량 합격률 100%을 보이는 것을 알 수 있다. 하지만, 피로인산소다(10%), 규불화소다(10%)을 빼고 공정을 실시한 비교예 1은 인장강도는 평균 5.3 MPa, 누설량 합격률 0%였으며, 규불화소다(10%) 을 빼고 공정을 실시한 비교예 2의 경우 인장강도는 평균 32.6 MPa, 누설량 합격률 10%로 실시예 1의 결과보다는 낮은 접착 효율을 보이는 것을 알 수 있다. Referring to the above results, in the case of Example 1 using all of caustic soda, sodium pyrophosphate, and sodium silicate fluoride, it can be seen that the average tensile strength of 42.2 MPa and the leakage rate pass rate were 100%. However, in Comparative Example 1, in which the process was performed except for sodium pyrophosphate (10%) and sodium silicofluoride (10%), the average tensile strength was 5.3 MPa and the leakage pass rate was 0%. In the case of Comparative Example 2, it can be seen that the average tensile strength was 32.6 MPa, and the leakage pass rate was 10%, showing lower adhesion efficiency than the result of Example 1.

따라서, 본 발명에 따른 안테나 어셈블리 제조방법은 가성소다, 피로인산소다 및 규불화소다을 모두 포함하는 혼한액에서 전해공정을 진행한 후 이를 금형에서 고분자 수지와 함께 사출함으로써 접합 효율을 극대화시킨다.Therefore, the method for manufacturing an antenna assembly according to the present invention maximizes bonding efficiency by performing an electrolysis process in a mixed solution containing all of caustic soda, sodium pyrophosphate, and sodium silicofluoride, and then injecting it together with a polymer resin in a mold.

Claims (4)

금속안테나-플라스틱 어셈블리 제조방법으로,
안테나 부품을 에칭하는 단계;
상기 에칭된 안테나 부품을 전해액 내에서 전해시키는 단계; 및
금형 내에서 고분자 수지와 상기 전해된 안테나 부품을 인서트 사출하는 단계를 포함하며, 상기 전해액은 증류수, 가성소다, 인산염 및 규산염을 포함하는 것을 특징으로 하는 금속안테나-플라스틱 어셈블리 제조방법.
A method for manufacturing a metal antenna-plastic assembly, comprising:
etching the antenna component;
electrolyzing the etched antenna component in an electrolyte; and
A method for manufacturing a metal antenna-plastic assembly, comprising: insert-injecting a polymer resin and the electrolyzed antenna part in a mold, wherein the electrolyte includes distilled water, caustic soda, phosphate and silicate.
제 1항에 있어서,
상기 전해액은 증류수 100중량부 대비 가성소다 0.1~20중량부, 인산염 화합물 0.1~30중량부, 규산염 화합물 0.1~30중량부를 포함하는 것을 특징으로 하는 금속안테나-플라스틱 어셈블리 제조방법.
The method of claim 1,
The electrolyte solution comprises 0.1 to 20 parts by weight of caustic soda, 0.1 to 30 parts by weight of a phosphate compound, and 0.1 to 30 parts by weight of a silicate compound relative to 100 parts by weight of distilled water.
제 1항에 있어서,
상기 에칭하는 단계는
상기 안테나 부품을 제1 에칭액 내에서 제1 에칭하는 단계; 및
상기 제1 에칭된 안테나 부품을 제2 에칭액 내에서 제2 에칭하는 단계의 2단계로 진행되는 것을 특징으로 하는 금속안테나-플라스틱 어셈블리 제조방법.
The method of claim 1,
The etching step
first etching the antenna component in a first etchant; and
and a second step of etching the first etched antenna component in a second etching solution.
제 2항에 있어서,
상기 인산염 화합물은 피로인산나트륨, 산성피로인산나트륨, 피로인산칼슘, 피로인산주석, 피로인산구리, 피로인산철, 피로인산철나트륨, 피로인산칼륨, 아이소펜테닐피로인산, 멜라민피로인산 및 티아민피로인산으로 이루어진 군으로부터 선택된 적어도 어느 하나이며, 상기 규산염 화합물은 규산 칼슘(calcium silicate), 탈크(Magnesium silicate), 규불화마그네슘, 규산알루미늄, 규산지르코늄, 올소규산나트륨, 오르토규산나트륨, 규산나트륨, 메타규산나트륨, 규불화나트륨, 리튬메타실리케이트 및 에틸실리케이트로 이루어진 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는 금속안테나-플라스틱 어셈블리 제조방법.
3. The method of claim 2,
The phosphate compound is sodium pyrophosphate, sodium acid pyrophosphate, calcium pyrophosphate, tin pyrophosphate, copper pyrophosphate, iron pyrophosphate, sodium iron pyrophosphate, potassium pyrophosphate, isopentenyl pyrophosphate, melamine pyrophosphate and thiamine pyrophosphate. At least one selected from the group consisting of phosphoric acid, and the silicate compound is calcium silicate, talc, magnesium silicate, magnesium silicate, aluminum silicate, zirconium silicate, sodium orthosilicate, sodium orthosilicate, sodium silicate, meta Metal antenna-plastic assembly manufacturing method, characterized in that at least one selected from the group consisting of sodium silicate, sodium silicate fluoride, lithium metasilicate and ethyl silicate.
KR1020200128080A 2020-10-05 2020-10-05 Method for manufacturing metal antenna-plastic assembly KR102292594B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200128080A KR102292594B1 (en) 2020-10-05 2020-10-05 Method for manufacturing metal antenna-plastic assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200128080A KR102292594B1 (en) 2020-10-05 2020-10-05 Method for manufacturing metal antenna-plastic assembly

Publications (1)

Publication Number Publication Date
KR102292594B1 true KR102292594B1 (en) 2021-08-24

Family

ID=77506779

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200128080A KR102292594B1 (en) 2020-10-05 2020-10-05 Method for manufacturing metal antenna-plastic assembly

Country Status (1)

Country Link
KR (1) KR102292594B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080019759A (en) * 2006-08-29 2008-03-05 엘지이노텍 주식회사 Rfid tag and antenna thereof
KR20090013423A (en) * 2007-08-01 2009-02-05 주식회사 에스에이피 The manufacturing method of the antenna function which uses the copper plating, nickel plating, gold plating in the circuit pattern due to the duplex shooting out of handset housing
KR20180043429A (en) * 2016-10-19 2018-04-30 이엘케이 주식회사 Metalized cover having antena function for electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080019759A (en) * 2006-08-29 2008-03-05 엘지이노텍 주식회사 Rfid tag and antenna thereof
KR20090013423A (en) * 2007-08-01 2009-02-05 주식회사 에스에이피 The manufacturing method of the antenna function which uses the copper plating, nickel plating, gold plating in the circuit pattern due to the duplex shooting out of handset housing
KR20180043429A (en) * 2016-10-19 2018-04-30 이엘케이 주식회사 Metalized cover having antena function for electronic device

Similar Documents

Publication Publication Date Title
KR101621224B1 (en) Shell, preparing method and application thereof in electronic product
CN109421207B (en) Method for manufacturing metal-polymer resin bonded member
CN1612951A (en) Direct electrolytic metallization of non-conducting substrate
US10154598B2 (en) Filling through-holes
CN102711394A (en) Electroplating interconnecting processing technology for circuit board
TW201323189A (en) Method for making a composite of metal and plastic and the composite
KR102292594B1 (en) Method for manufacturing metal antenna-plastic assembly
JP6750293B2 (en) How to treat plastic surface
CN1306071C (en) Magnesium anodisation system and methods
CN106544711B (en) Method for anodizing metallic workpieces incorporating dissimilar materials
CN111926360B (en) Stainless steel surface gold plating method
AU2002334458A1 (en) Magnesium anodisation system and methods
CN112519099A (en) Surface treatment method for aluminum alloy before injection molding
WO2002028838A2 (en) Magnesium anodisation system and methods
US4702793A (en) Method for manufacturing a laminated layered printed wiring board using a sulfuroxy acid and an oxiding treatment of the metallic wiring patterns to insure the integrity of the laminate product
US20040216761A1 (en) Desmear and texturing method
Taylor et al. Electropolishing of niobium SRF cavities in low viscosity aqueous electrolytes without hydrofluoric acid
US20100200417A1 (en) Method and Apparatus for Electrodeposition in Metal Acoustic Resonators
KR100489640B1 (en) Electrolyte solution for anodizing and corrosion-resisting coating method of magnesium alloy using the same
KR20160062054A (en) Method for treatment of recessed structures in dielectric materials for smear removal
KR102470590B1 (en) Titanium-resin conjugate manufacturing method and titanium treatment solution therefor
CN105088319A (en) Method for manufacturing LED center substrate based on inorganic matter
KR102475459B1 (en) composite assembly of die-cased metal parts and polymer resin and manufacturing method thereof
CN106102336B (en) A method of with air conservation high-speed transfer circuit signal stabilization
JPS6112877A (en) Method for carrying out electroless copper plating

Legal Events

Date Code Title Description
GRNT Written decision to grant