KR102244798B1 - 칩 스케일 원자시계 - Google Patents

칩 스케일 원자시계 Download PDF

Info

Publication number
KR102244798B1
KR102244798B1 KR1020190062685A KR20190062685A KR102244798B1 KR 102244798 B1 KR102244798 B1 KR 102244798B1 KR 1020190062685 A KR1020190062685 A KR 1020190062685A KR 20190062685 A KR20190062685 A KR 20190062685A KR 102244798 B1 KR102244798 B1 KR 102244798B1
Authority
KR
South Korea
Prior art keywords
atomic clock
implemented
suspension
layer
wafer substrate
Prior art date
Application number
KR1020190062685A
Other languages
English (en)
Other versions
KR20200136735A (ko
Inventor
박종철
이종권
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020190062685A priority Critical patent/KR102244798B1/ko
Publication of KR20200136735A publication Critical patent/KR20200136735A/ko
Application granted granted Critical
Publication of KR102244798B1 publication Critical patent/KR102244798B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

본 발명의 일 관점에 따르면, 광 발생부; 및 상기 광 발생부와 이격되어 배치되며, 상기 광 발생부로부터 발생된 레이저 광이 입사되고 출사되는 증기셀과 상기 증기셀로부터 출사되는 광을 수신하는 광 검출부가 접합되어 구성된 융합소자; 를 포함하는, 칩 스케일 원자시계의 물리부를 제공한다.

Description

칩 스케일 원자시계{chip-scale atomic clock}
본 발명은 칩 스케일 원자시계 (chip-scale atomic devices)에 관한 것으로서, 더욱 상세하게는 칩 스케일 원자시계에 있어서, 원자의 에너지 레벨 변화를 감지하기 위한 물리부의 구성에 관한 것이다.
원자시계는 원자의 자연 공진 주파수에 의해 지배되는 전자 타이밍 기기이다. 다양한 형태의 원자시계가 있지만, 그들의 기본적 원리는 시간에 대해 극히 안정적인 하나의 주파수에서 전자기 방사를 흡수하고 방출하도록 적절한 환경에서 설정된 원자의 양자화된 에너지 레벨 변화를 이용한다. 본 기술분야의 원자시계는 제1족 원소, 특히 세슘 (Cesium)이나 루비듐 (Rubidium)의 알칼리 원소를 이용한 원자시계를 포함한다.
원자의 에너지 레벨 변화 및 감지하기 위한 장치인 물리부는 원자시계의 핵심 장치이며, 외부와 격리된 공간에서 광학 요소와 알칼리 원소를 포함한 증기셀 및 증기셀의 자기장 및 온도 제어 기능을 포함한다. 종래의 원자장치 물리부는 각각의 소자들이 현수되어 집적된 구조를 가지고 있어 소형화 및 생산성이 낮고 복잡한 현수 구조로 인해 패키지의 열저항을 낮추는 것이 제한적이다.
본 발명은 소형화 및 생산성 향상에 기여할 수 있으며, 열저항 특성이 개선된 칩 스케일 원자시계의 물리부 및 이를 구비하는 칩 스케일 원자시계의 제공을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 일 관점에 따르면, 광 발생부; 및 상기 광 발생부와 이격되어 배치되며, 상기 광 발생부로부터 발생된 레이저 광이 입사되고 출사되는 증기셀과 상기 증기셀로부터 출사되는 광을 수신하는 광 검출부가 접합되어 구성된 융합소자; 를 포함하는, 칩 스케일 원자시계의 물리부를 제공한다.
상기 칩 스케일 원자시계의 물리부는, 서로 이격되어 상하로 배치된 복수개의 현수기판 및 상기 현수기판의 단부를 지지하여 소정의 높이로 현수할 수 있는 현수지지부로 이루어진 현수프레임;을 더 포함할 수 있되, 상기 복수개의 현수기판은 상기 광 발생부가 장착된 제 1 현수기판; 및 상기 융합소자가 장착된 제 2 현수기판;을 구비할 수 있다.
상기 칩 스케일 원자시계의 물리부에서, 상기 제 2 현수기판은 상기 융합소자를 구성하는 상기 증기셀의 상면과 직접 접합되지 않고 상기 증기셀의 상면과 접합된 상기 광 검출부의 상면과 접합될 수 있다.
상기 칩 스케일 원자시계의 물리부에서, 상기 융합소자의 적어도 일부는 실리콘 웨이퍼 기판, 제 1 도전형의 실리콘층 및 상기 실리콘 웨이퍼 기판과 상기 실리콘층 사이에 개재된 매립산화물층으로 이루어진 SOI(Silicon On Insulator) 구조체를 이용하여 구현되되,상기 광 검출부는 상기 실리콘층에 포토리소그래피 공정과 이온주입 공정을 수행하여 구현되며, 상기 증기셀은 상기 실리콘 웨이퍼 기판의 일부를 관통하는 공정을 수행하여 구현될 수 있다.
상기 칩 스케일 원자시계의 물리부에서, 상기 융합소자는 상기 실리콘 웨이퍼 기판의 하면과 접합되는 글래스층을 더 구비하되, 단결정 쿼츠를 이용할 경우 굴절율의 차 (no, ne)와 파장의 관계에 따라 상기 글래스층의 두께 조절을 통해 QWP(quarter wave plate)가 구현될 수 있다.
상기 칩 스케일 원자시계의 물리부에서, 상기 융합소자는 상기 실리콘 웨이퍼 기판의 하면과 접합되는 글래스층을 더 구비하되, 상기 글래스층 상에 광이 투과하지 않는 금속, 고분자 또는 세라믹으로 이루어진 패턴을 구비한 메타구조를 이용하여 QWP(quarter wave plate)가 구현될 수 있다.
상기 칩 스케일 원자시계의 물리부에서, 상기 융합소자는 상기 실리콘 웨이퍼 기판의 하면과 접합되는 글래스층을 더 구비하되, 상기 글래스층의 레이저 입사면에는 분광셀 내부의 높은 광밀도에 따른 신호 왜곡을 줄이기 위해 고굴절율의 산화막과 저굴절율의 산화막, 금속박막을 교차 증착하여 특정 파장에서 적절한 투과도를 가지며 반사를 최소화 하기위한 흡수형의 ND 필터를 적용하여 구현될 수 있다.
본 발명의 다른 관점에 따르면, 상술한 칩 스케일 원자시계의 물리부를 포함하는, 칩 스케일 원자시계를 제공한다.
상기한 바와 같이 이루어진 본 발명의 실시예들에 의하면 소형화 및 생산성 향상에 기여할 수 있으며, 열저항 특성이 개선된 칩 스케일 원자시계의 물리부 및 이를 구비하는 칩 스케일 원자시계를 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 칩 스케일 원자시계의 물리부의 단면도이다.
도 2는 칩 스케일 원자시계의 물리부의 구성을 개념적으로 도해하는 도면이다.
도 3은 본 발명의 비교예에 따른 칩 스케일 원자시계의 물리부의 단면도이다.
도 4a 내지 도 4d는 본 발명의 일 실시예에 따른 칩 스케일 원자시계의 물리부를 구성하는 융합소자를 제조하는 일 예를 순차적으로 도해하는 도면들이다.
도 5a 내지 도 5d는 본 발명의 일 실시예에 따른 칩 스케일 원자시계의 물리부를 구성하는 융합소자를 제조하는 다른 예를 순차적으로 도해하는 도면들이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.
도 1은 본 발명의 일 실시예에 따른 칩 스케일 원자시계의 물리부의 단면도이며, 도 2는 칩 스케일 원자시계의 물리부의 구성을 개념적으로 도해하는 도면이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 칩 스케일 원자시계의 물리부(1)는 기본적으로 광 발생부와 광 발생부로부터 발생된 레이저 광이 입사되고 출사되는 알칼리 증기셀 및 증기셀로부터 출사되는 광을 수신하는 광 검출부를 구비한다.
구체적으로, 본 발명의 일 실시예에 따른 칩 스케일 원자시계의 물리부(1)는 광 발생부(122); 및 상기 광 발생부(122)와 이격되어 배치되며, 상기 광 발생부(122)로부터 발생된 레이저 광(L)이 입사되고 출사되는 증기셀(220)과 상기 증기셀(220)로부터 출사되는 광을 수신하는 광 검출부(240)가 접합되어 구성된 융합소자(200);를 포함한다.
한편, 본 발명의 실시예를 따르는 칩 스케일 원자시계의 물리부(1)는 동작에 필요한 구성 소자들이 현수프레임 상에 장착되는 구조를 가진다. 상기 현수프레임은 현수기판 및 상기 현수기판의 단부를 지지하여 소정의 높이로 현수할 수 있는 현수지지부로 이루어진다. 경우에 따라 장착될 소자가 없을 경우에는 현수기판이 없이 현수지지부로만 이루어질 수도 있다. 또한, 복수개의 현수기판 중에서 적어도 일부의 현수기판은 내주에 중공을 가지는 중공형일 수 있으며 중공형의 현수기판의 단부를 지지하는 일면을 가진 현수지지부에 의해 지지될 수도 있다.
예를 들어, 상기 칩 스케일 원자시계의 물리부(1)는, 서로 이격되어 상하로 배치된 복수개의 현수기판(101b, 103b, 105b, 107b, 113b) 및 상기 현수기판(101b, 103b, 105b, 107b, 113b)의 단부를 지지하여 소정의 높이로 현수할 수 있는 현수지지부(101a, 103a, 105a, 107a, 113a, 115a)로 이루어진 현수프레임(101, 103, 105, 107, 113);을 포함할 수 있다. 상기 복수개의 현수기판(101b, 103b, 105b, 107b, 113b)은, 구체적으로, 상기 광 발생부(122)가 장착된 제 1 현수기판(101b); 및 상기 융합소자(200)가 장착된 제 2 현수기판(107b);을 포함할 수 있다.
상기 복수개의 현수프레임은 바닥면에서 대략 수직한 상방의 방향으로 각각 이격되어 적층 배열되는 층상 구조를 가진다. 예를 들어, 도 1을 참조하면, 본 실시예의 물리부(100)의 경우에는 현수프레임(101, 103, 105, 107, 113)은 하방에서 상방으로 순차적으로 이격 배열되는 층상 구조를 가진다.
상기 칩 스케일 원자시계의 물리부(1)에서, 상기 제 2 현수기판(107b)은 상기 융합소자(200)를 구성하는 상기 증기셀(220)의 상면과 직접 접합되지 않고 상기 증기셀(220)의 상면과 접합된 상기 광 검출부(240)의 상면과 접합될 수 있다. 증기셀(220)의 상면은 광 검출부(240)와 직접 접합되는 구성을 가지므로, 증기셀(220)의 상면은 복수의 현수기판(101b, 103b, 105b, 107b, 113b) 중의 어느 하나의 현수기판과도 직접 접합되지 않는다.
이러한 구성에 의하면, 칩 스케일 원자시계의 물리부(1)의 동작에 필요한 구성 소자를 현수하기 위하여 도입되는 현수기판의 갯수를 줄일 수 있으며, 상기 동작에 필요한 구성 소자와 현수기판이 접합되는 구성을 줄일 수 있어, 접합에 따른 칩 스케일 원자시계의 물리부(1) 내부의 오염 문제를 감소시킬 수 있으며, 칩 스케일 원자시계의 물리부(1)의 제조비용을 절감할 수 있고, 칩 스케일 원자시계의 물리부(1)의 소형화에 기여할 수 있다. 또한, 칩 스케일 원자시계의 물리부(1) 내의 복잡한 현수 구조를 간소화하여 칩 스케일 원자시계의 물리부(1)의 높은 열저항 확보에 유리할 수도 있다.
이하에서는, 칩 스케일 원자시계의 물리부(1)를 구성하는 구성요소에 대하여 상세하게 설명한다.
광 발생부(122)는 레이저를 발생시킬 수 있는 소자로서, 예를 들어 VCSEL(vertical cavity surface emitting laser) 다이오드와 같은 레이저 다이오드를 포함한다. 광 발생부(122)에서의 레이저 발생을 최적화 하기 위해서는 특정 온도 범위를 유지하는 것이 필요하다. 이에 따라, 선택적으로 광 발생부(122)가 장착된 제 1 현수기판(101b)의 반대 면에는 히터(123)가 추가로 장착될 수 있다.
증기셀(220)은 증기화된 알칼리 원자(예를 들어, 세슘(Cs)이나 루비듐(Rb))가 포함되어 있다. 알칼리 원자만 증기셀 내에 주입하고 광펌핑을 하게 되면 활성화된 원자가 증기셀 벽과 충돌을 일으키거나 빠른 이동에 따른 도플러 효과 등으로 인해 안정적인 주파수의 감지가 어렵게 된다. 따라서 알칼리 원자를 적절히 구속하기 위한 버퍼 가스를 같이 주입할 수 있다.
증기셀(220)은 광 발생부(122)에서 조사된 레이저가 투과될 수 있도록 레이저가 입사되는 면에 투명한 재질, 예를 들어 유리로 이루어진 제 1 윈도우(250)를 구비할 수 있다. 또한 상기 윈도우(250)가 형성된 면의 반대 면에는 증기셀(220) 내부의 알칼리 원자의 에너지 레벨 변화에 따라 방출된 빛이 외부로 출사될 수 있도록 역시 투명한 재질의 제 2 윈도우(232)가 구비될 수 있다. 제 1 윈도우(250) 및/또는 제 2 윈도우(232)는, 예를 들어, 글래스 층일 수 있다.
광 검출부(240)는 증기셀(220)로부터 출사되는 광을 검출하는 장치로서, 예를 들어 광 다이오드(photo diode)를 포함할 수 있다.
광 발생부(122)에서 발생한 레이저(L)는 상 방향으로 조사되어 광 발생부(122) 상부에 있는 증기셀(220)로 입사된다. 증기셀(220) 내부의 알칼리 원자는 입사된 레이저에 의해 에너지 레벨의 변화를 겪으면서 다시 광을 방출하게 되며, 이렇게 방출된 광은 증기셀(220) 상면에 접합된 광 검출부(240)에 의해 에너지 레벨의 변화가 검출된다.
선택적으로 광 발생부(122) 및 증기셀(220) 내부 사이에는 광 발생부(122)로부터 발생된 선편광(linear polarization)된 레이저를 원편광(circular polarization)으로 바꾸기 위해 QWP(250′, quarter wave plate)가 제공될 수 있다. 상기 융합소자(200)는 증기셀(220)의 하부에 글래스층인 제 1 윈도우(250)를 구비할 수 있는 데, 단결정 쿼츠를 이용할 경우 굴절율의 차 (no, ne)와 파장의 관계에 따라 상기 글래스층의 두께 조절을 통해 QWP(quarter wave plate)가 구현될 수 있다. 한편, 상기 글래스층 상에 광이 투과하지 않는 금속, 고분자 또는 세라믹으로 이루어진 패턴을 구비한 메타구조를 이용하여 QWP(quarter wave plate)가 구현될 수도 있다.
융합소자(200)의 최하단에 배치된 제 1 윈도우(250)는 복수의 현수기판(101b, 103b, 105b, 107b, 113b) 중의 어느 하나의 현수기판(105b) 상에 지지될 수 있다. 다만, 현수기판(105b) 중 레이저(L)가 통과하는 경로에는 레이저(L)가 통과될 수 있도록 투명한 영역 또는 빈 공간이 형성될 수 있다. 물론, 이와 달리, 레이저(L)가 통과하는 경로에도 투명한 영역 또는 빈 공간이 현수기판(105b)에 제공되지 않을 수 있는 데, 이 경우에는, 레이저(L)가 통과할 수 있도록 현수기판(105b)의 두께를 조절하여야 한다.
한편, 발생된 레이저의 세기가 필요 이상으로 강할 경우, 레이저의 투과량을 감소 시켜줄 수 있는 ND 필터를 제공할 수 있다. ND 필터는 레이저가 통과하여 증기셀(220)에 도달하는 경로에 제공할 수 있다.
광 발생부(122)로부터 방출된 특정 파장의 빛을 증기셀(220)의 알칼리 원소가 흡수 및 방출하여 특정 주파수에서 공진하게 된다. 이러한 공진주파수는 매우 미약한 자기장에도 이동하기 때문에 지자기와 같은 외부 자기장의 자폐가 필요하다. 또한 공진주파수의 폭을 좁히기 위해서는 일정 수준의 정자장 역시 필요하다.
이를 위해 본 발명의 일 실시예의 칩 스케일 원자시계의 물리부(1)는 자기차폐막을 효과적으로 배치하여 증기셀 부분이 외부 자기장으로부터 차폐되도록 구성될 수 있다.
도 1을 참조하면, 현수프레임(101, 103, 105, 107, 113)의 현수지지부(101a, 103a, 105a, 107a, 113a, 115a)에는 상부면으로부터 하부의 반대면까지 현수지지부를 관통하여 빈 공간이 연장되는 관통영역이 형성되어 있다. 이러한 각 현수프레임의 관통영역은 서로 상하로 연결되어 최종적으로 가장 상부에 있는 현수프레임의 현수지지부로부터 가장 하부에 있는 현수프레임의 현수지지부까지 관통영역이 중단없이 연결되는 연결관통부를 형성한다. 이렇게 형성된 연결관통부 내부의 빈 공간에는 외부 자기장을 차폐할 수 있는 자기차폐막(116)이 배치될 수 있다.
자기차폐막(116)은 외부 자기장에 민감한 증기셀(220) 부분에 대한 차폐를 강화하기 위하여 증기셀(220)의 상부 및 하부를 모두 차폐할 수 있도록 칩 스케일 원자시계의 물리부(1)의 최상부 및 최하부에도 배치될 수 있다. 따라서 자기차폐막(116)은 연결관통부내에 배치되어 증기셀(220)의 측면에서 외부 자기장을 차폐하고, 증기셀(220)의 상부 및 하부에 배치된 자기차폐막(116)에 의해 상부 및 하부로부터 유입되는 외부 자기장을 차폐할 수도 있다.
자기차폐막(116)은 시트(sheet) 또는 포일(foil)형태를 가지는 금속재료로 이루어진 것일 수 있다. 자기차폐막(116)의 소재로는 Fe, Ni, Co 등 강자성체 금속원소를 포함하는 합금으로서, Fe-Si계 합금, Fe-Ni계 합금 등을 포함할 수 있다. Fe-Ni계 합금으로는 퍼멀로이(permalloy), 뮤 메탈(mu metal) 등을 포함할 수 있다.
한편, 본 발명의 일 실시예에 따른 칩 스케일 원자시계의 물리부(1)는 추가적으로 증기셀(220)에 일정량의 정자장을 가해주기 위하여 증기셀(220)의 상부 및/또는 하부에 적층형 코일을 배치할 수 있다. 예를 들어, 도 1에 도시된 것과 같이, 증기셀(220)의 하부 및 상부 영역에 배치된 현수기판(103b, 113b)의 상면 및 하면에는 적층형 코일(121, 117)이 각각 배치되어 있다. 이러한 적층형 코일(121, 117)은 헬름호르츠 코일(Helmholtz coil) 구성으로 배치될 수 있다.
이하에서는 본 발명의 일 실시예에 따른 칩 스케일 원자시계의 물리부(1)를 구성하는 현수기판과 비아에 대하여 설명한다. 다만, 현수기판과 비아에 대한 하기의 설명은 본 발명의 일 실시예에 따른 칩 스케일 원자시계의 물리부를 더 잘 이해하기 위한 예시적인 것이므로, 이에 의하여 본 발명의 기술적 사상이 한정되는 것은 아니다.
상술한 현수프레임을 이루는 상기 현수기판은 열저항이 높은 고분자 기판의 일면상에 금속층이 도포된 유연 기판일 수 있다. 대표적으로 폴리이미드 기판의 일면에 구리층이 클래딩된 연성동박적층판(FCCL)일 수 있다. 상기 금속층은 금속배선으로 패터닝되어 현수기판 상에 장착되는 소자와 전기적으로 연결되도록 구성될 수 있다. 추가적으로 금속층의 상부에는 유연한 절연층, 예를 들어 고분자 절연층이 형성되어 있을 수 있다. 이러한 절연층은 현수기판 간의 전기적 절연이 필요한 경우에 사용될 수 있다. 이러한 고분자 기판 상에 금속층이 도포된 유연기판을 사용할 경우, 주 소재인 고분자 기판의 낮은 열전도에 의해 물리부의 열안전성에 기여할 수 있다. 또한 금속배선을 형성함에 있어서도 반도체 소자의 제조에 이용되는 정밀가공을 이용하지 않고 상대적으로 경제적인 방법으로 패터닝이 가능하다는 점에서 경제적인 측면에서도 장점을 가진다. 앞에서 설명한 현수프레임의 현수기판은 소자를 고정하여 지지하는 역할을 수행할 뿐 아니라 현수기판의 상면에 패터닝된 금속배선에 의해 소자와 전기적 연결을 가능하게 하는 역할도 또한 수행한다. 다른 예로서 전술한 적층형 코일(121, 117)도 고분자 기판 상에 적층된 금속층을 패터닝하여 형성한 것일 수 있다. 각 현수프레임에 있어서, 적어도 일면에 금속배선이 형성된 현수기판은 현수프레임의 현수지지부의 최외곽면까지 연장되며, 최외각면에서 외부 전원 공급 배선과 연결되게 된다. 예를 들어, 도 1을 참조하면, 광 발생부(122)가 장착된 제 1 현수기판(101b)은 현수지지부(101a)의 최외곽면까지 연장되며, 최외곽면에서 금속이 내부에 도포된 비아(130) 중 어느 하나와 연결되는 구성을 가진다. 비아는 현수지지부의 최외곽면에 단면적인 반원인 형태로 상부에서 하부로 연장되는 트렌치(trench)를 형성하고 그 내부에 전도성 물질로 전부 또는 일부가 매립 또는 도포되는 구성을 가진다. 물론 단면적은 반원 형태로 한정되는 것은 아니고 최외곽면 표면의 일부가 소실된 것이라면 임의의 단면 형태를 가지는 것도 무방하다. 이러한 비아는 현수프레임 각각의 현수지지부 최외곽면에 모두 형성되며 각 현수프레임이 적층배열 때 상하로 서로 연결되어 적층된 현수프레임들의 현수지지부의 최외곽면을 중단없이 서로 연결하는 구성을 가지게 된다. 비아의 내부는 금속 예를 들어 구리층으로 도포되거나 매립될 수 있다. 다른 예로서 전도성 페이스트로 도포되거나 매립될 수 있다. 이러한 비아(131, 132, 133, 134)는 현수지지부의 최외곽면에 복수개로 형성될 수 있다. 복수로 형성된 비아 각각에는 설계안에 따라 특정 현수프레임으로부터 연장된 현수기판의 금속배선이 연결되며, 상기 현수기판에 장착된 소자와 외부 전원과의 통전을 담당하게 된다. 본 발명에서는 일반적으로 사용되고 있는 유연 동박 기판을 이용해 현수 한다. 종래의 물리부 현수 구조물의 제조 공정이 반도체 정밀 가공으로 사용함으로써 낮은 생산성 및 높은 제조비용을 특징으로 하고 있으나, 유연 동박 기판 공정을 이용하여 생산성 향상과 제조비용 절감이 가능하다. 특히, 유연 동박 기판의 주 소재가 열전도도가 낮은 폴리이미드이기 때문에 종래의 기술과 비교했을 때 물리부 열안정성 면에서 동등한 효과를 얻을 수 있다. 안정적인 정자장을 유지하기 위해 종래에는 자기 차폐용 뮤합금 쉴드와 정자장 생성용 솔레노이드 코일을 외부에 추가적으로 사용한다. 특히 종래의 패키징 구조물을 솔레노이드 코일과 전자차폐용 쉴드가 감싸고 있어 소형화에 및 조립 제작에 어려움이 있으며 내부 배선에 흐르는 전류에 의한 자기장으로 증기셀의 공진신호에 영향을 준다. 이에 비해 본 발명의 실시예들에서는 자기차폐막을 물리부 패키징 구조물에 삽입한 구조를 사용하여, 배선으로부터 발생하는 자기장의 영향을 최소화 할 수 있다. 또한 적층형 코일을 증기셀의 상/하부에 배치하여 종래의 외부에 배치되던 솔레노이드 코일을 대체하여, 소형화와 함께 조립 제작을 개선할 수 있다. 종래의 물리부는 와이어 본딩이나 TSV (Through silicon via)등을 이용해 물리부 내에 집적된 히터 및 광 발생부, 광 검출부 등을 제어하였다. 와이어 본딩은 종래의 반도체 공정에서 활용성이 높은 배선공정이나 원자시계 물리부와 같이 고종횡비의 3차원 구조물의 전극 연결시 일정한 길이를 유지하고, 연결에 많은 어려움이 따르며, 물리적으로 취약하다. 또한 TSV등의 반도체 공정 기반 배선 공정 역시 고종횡비 구조에 적용은 현실적으로 불가능에 가까우며, 이러한 배선으로부터 발생하는 자기장 등이 물리부 분광셀에 영향을 줄 것이다. 이에 비해 본 발명의 실시예들은 유연 기판을 활용해 물리부에 집적된 히터 및 광 발생부, 광 검출부 등으로부터 원하는 형태로 배선을 할 수 있다. 특히 종래 와이어본딩에 비해 물리적으로 강하며, 기판의 제작 오차 이내의 균일도를 갖고 있다는 장점이 있다. 또한 TSV 등에 비해서는 낮은 제조비용 및 높은 생산성을 장점으로 하고 있어 물리부 제작에 효율적이다.
도 3은 본 발명의 비교예에 따른 칩 스케일 원자시계의 물리부(100)의 단면도이다.
도 3을 참조하면, 도 1과 달리, 광 발생부(122), QWP(120, quarter wave plate), 증기셀(119) 및 광 검출부(118)는 서로 다른 현수프레임(101, 105, 107, 109, 111)을 구성하는 현수기판(101b, 105b, 107b, 109b, 111b)의 상면 또는 하면에 각각 장착된다.
이러한 복잡한 현수 구조는, QWP(120, quarter wave plate), 증기셀(119) 및 광 검출부(118)가 서로 이격 분리되어 배치되기 때문에 발생한다. 이러한 구성에 의하면, 칩 스케일 원자시계의 물리부(100)의 동작에 필요한 구성 소자를 현수하기 위하여 도입되는 현수기판의 갯수를 줄일 수 없으며, 상기 동작에 필요한 구성 소자와 현수기판이 접합되는 구성을 줄일 수 없다. 또한, 상대적으로 많은 위치에서의 접합에 따른 칩 스케일 원자시계의 물리부(100) 내부의 오염 문제를 초래할 수 있으며, 칩 스케일 원자시계의 물리부(100)의 제조비용이 상승하며, 칩 스케일 원자시계의 물리부(100)의 소형화를 구현하기 어렵다. 또한, 칩 스케일 원자시계의 물리부(100) 내의 복잡한 현수 구조에 기인하여 칩 스케일 원자시계의 물리부(100)의 높은 열저항 확보를 구현하기 어렵다.
이하에서는, 본 발명의 일 실시예에 따른 칩 스케일 원자시계의 물리부(1)를 구성하는 융합소자(200)를 제조하는 다양한 방법들을 설명한다.
도 4a 내지 도 4d는 본 발명의 일 실시예에 따른 칩 스케일 원자시계의 물리부(1)를 구성하는 융합소자(200)를 제조하는 일 예를 순차적으로 도해하는 도면들이다.
도 4a를 참조하면, 실리콘 웨이퍼 기판(222), 제 1 도전형의 실리콘층(242) 및 상기 실리콘 웨이퍼 기판(222)과 상기 실리콘층(242) 사이에 개재된 매립산화물층(232)으로 이루어진 SOI(Silicon On Insulator) 구조체(210)를 준비한다. 상기 제 1 도전형은 n형 또는 p형 중의 어느 하나의 도전형일 수 있는 바, 예를 들어, p형일 수 있다.
도 4b를 참조하면, 제 1 도전형의 실리콘층(242)에 포토리소그래피 공정과 이온주입 공정을 수행하여 광 검출부(240)를 구현할 수 있다. 광 검출부(240)는 상대적으로 낮은 도핑 농도의 웰 영역(244)과 상대적으로 높은 도핑 농도의 고농도 영역(246)의 구성을 포함할 수 있다. 나아가, 광 검출부(240)는 제 1 도전형의 실리콘층(242)에 형성된 히터 및/또는 온도센서(248)를 더 포함할 수 있다.
광 검출부(240)는 제 1 도전형의 실리콘층(242)에 이온주입, 보호막 공정, 금속 패턴 공정 등 일반적인 반도체 공정을 적용하여 구현한 광 다이오드(photo diode)를 포함할 수 있다. 광 다이오드는 복수개로 제공되어 디퍼렌셜(differential) 모드 등으로 적용 가능할 수 있다.
도 4c를 참조하면, SOI 구조체(210)의 실리콘 웨이퍼 기판(222)을 관통하여 내부공간(224)을 형성하는 공정을 수행한다. 실리콘 웨이퍼 기판(222)을 관통하는 식각 공정을 수행하는 과정에서, 선택적으로, SOI 구조체(210)의 매립산화물층(232)을 더 제거할 수도 있다. 이 경우, 반사 최소화를 위해 별도의 실리콘 질화막이나 실리콘 산화막과 같은 박막을 매립산화물층(232)을 제거한 후에 형성할 수도 있다. 만약, 매립산화물층(232)을 제거하지 않고 유지하고자 한다면, 반사의 최소화를 위해 매립산화물층(232)의 두께는 500nm 이하가 바람직할 수 있다.
도 4d를 참조하면, 레이저가 입사되는 면인 SOI 구조체(210)의 실리콘 웨이퍼 기판(222)의 하면에 투명한 재질, 예를 들어 유리로 이루어진 제 1 윈도우(250)를 접합할 수 있다. 제 1 윈도우(250)는, 예를 들어, 글래스 층일 수 있다. 상기 글래스 층은 단결정 쿼츠(quartz)와 같은 이방성 굴절율을 가지는 소재로 이루어질 수 있다. 상술한 제조방법에 의하여 구현된 융합소자(200)는 증기셀(220)의 하부에 글래스층인 제 1 윈도우(250)를 구비할 수 있는 데, 굴절율의 차 (no, ne)와 파장의 관계에 따라 상기 글래스층의 두께 조절을 통해 QWP(quarter wave plate)가 구현될 수 있다. 한편, 상기 글래스층 상에 광이 투과하지 않는 금속, 고분자 또는 세라믹으로 이루어진 패턴을 구비한 메타구조를 이용하여 QWP(quarter wave plate)가 구현될 수도 있다. 상기 글래스의 레이저 입사면에는 분광셀 내부의 높은 광밀도에 따른 신호 왜곡을 줄이기 위해 고굴절율의 산화막과 저굴절율의 산화막, 금속박막을 교차 증착하여 특정 파장에서 적절한 투과도를 가지며 반사를 최소화 하기위한 흡수형의 ND 필터를 적용할 수 있다.
도 5a 내지 도 5d는 본 발명의 일 실시예에 따른 칩 스케일 원자시계의 물리부(1)를 구성하는 융합소자(200)를 제조하는 다른 예를 순차적으로 도해하는 도면들이다.
도 5a를 참조하면, 글래스층(232)과 접합된 상태인 제 1 도전형의 실리콘층(242)이 제공된다. 상기 제 1 도전형은 n형 또는 p형 중의 어느 하나의 도전형일 수 있는 바, 예를 들어, p형일 수 있다.
도 5b를 참조하면, 글래스층(232)과 접합된 상태인 제 1 도전형의 실리콘층(242)에 포토리소그래피 공정과 이온주입 공정을 수행하여 광 검출부(240)를 구현할 수 있다. 광 검출부(240)는 제 1 도전형의 실리콘층(242)에 이온주입, 보호막 공정, 금속 패턴 공정 등 일반적인 반도체 공정을 적용하여 구현한 광 다이오드(photo diode)를 포함할 수 있다. 광 다이오드는 복수개로 제공되어 디퍼렌셜(differential) 모드 등으로 적용 가능할 수 있다. 광 검출부(240)는 상대적으로 낮은 도핑 농도의 웰 영역(244)과 상대적으로 높은 도핑 농도의 고농도 영역(246)의 구성을 포함할 수 있다. 나아가, 광 검출부(240)는 제 1 도전형의 실리콘층(242)에 형성된 히터 및/또는 온도센서(248)를 더 포함할 수 있다.
한편, 변형된 다른 예에서는, 제 1 도전형의 실리콘층(242)에 광 검출부(240)을 먼저 형성한 후에, 제 1 도전형의 실리콘층(242)과 글래스층(232)을 추후에 접합할 수 있다. 또 다른 방법으로는 글래스층(232)의 한면에 n-type 혹은 p-type의 다결정 혹은 비정질 실리콘층 (242)의 증착과 식각을 반복하여 광 검출부(240)을 형성할 수 있다.
한편, 광 다이오드 면에서 반사되는 광은 분광셀 내부의 광밀도 변화를 일으켜 분광신호의 왜곡을 야기할 수 있다. 이러한 문제를 극복하기 위하여, 상기 글래스층(232)에는 반사를 최소화하기 위하여 고굴절율의 산화물과 저굴절율의 산화막을 교차로 증착하여 특정 파장에 대한 투과도를 극대화하고 반사를 최소화 하는 광학 필터를 적용할 수 있다.
도 5c를 참조하면, 글래스층(232)의 하면에 관통된 실리콘 웨이퍼 기판(222)을 정렬하여 접합한다. 실리콘 웨이퍼 기판(222)은 내부공간(224)을 형성하기 위한 관통 공정을 사전에 수행한다.
도 5d를 참조하면, 레이저가 입사되는 면인 실리콘 웨이퍼 기판(222)의 하면에 투명한 재질, 예를 들어 유리로 이루어진 제 1 윈도우(250)를 접합할 수 있다. 제 1 윈도우(250)는, 예를 들어, 글래스 층일 수 있다. 상기 글래스 층은 단결정 쿼츠(quartz)와 같은 이방성 굴절율을 가지는 소재로 이루어질 수 있다. 상술한 제조방법에 의하여 구현된 융합소자(200)는 증기셀(220)의 하부에 글래스층인 제 1 윈도우(250)를 구비할 수 있는 데, 굴절율의 차 (no, ne)와 파장의 관계에 따라 상기 글래스층의 두께 조절을 통해 QWP(quarter wave plate)가 구현될 수 있다. 한편, 상기 글래스층 상에 광이 투과하지 않는 금속, 고분자 또는 세라믹으로 이루어진 패턴을 구비한 메타구조를 이용하여 QWP(quarter wave plate)가 구현될 수도 있다. 상기 글래스의 레이저 입사면에는 분광셀 내부의 높은 광밀도에 따른 신호 왜곡을 줄이기 위해 상대적으로 높은 고굴절율의 산화막과 상대적으로 낮은 저굴절율의 산화막 및 금속박막을 교차 증착하여 특정 파장에서 적절한 투과도를 가지며 반사를 최소화 하기위한 흡수형의 ND 필터를 적용할 수 있다.
지금까지 본 발명의 일 실시예에 따른 칩 스케일 원자시계의 물리부 및 그 제조방법을 설명하였다.
일반적으로, 칩 스케일 원자장치를 대표하는 원자시계는 물리부와 전자회로부로 구성된다. CPT(Coherent Population Trapping) 기반의 물리부는 광원(VCSEL), 렌즈, QWP, 분광을 위한 마이크로 증기셀 (Vapor cell), 신호검출을 위한 포토다이오드, 온도조절을 위한 히터와 온도센서, 정자장 발생을 위한 솔레노이드, 그리고 외부자장을 차폐하기 위한 자기차폐를 포함한다. 본 발명은 칩스케일 원자 장치 (원자시계, 자력계, 각가속도 센서 등)의 핵심 부품인 물리부, 그 중에서도 정밀한 기준을 얻기 위한 분광셀 및 CPT 신호 감지를 위한 광감지 장치의 웨이퍼 레벨 집적을 통한 융합소자를 구현한 것이다.
본 융합소자는 웨이퍼 레벨 집적 공정 기반으로 MEMS 증기셀에 실리콘 포토다이오드 집적한 것으로, QWP 및 ND 필터를 포함한 MEMS 증기셀의 구성, CPT 신호 획득을 위한 실리콘 포토다이오드와 MEMS 증기셀 집적 구성, 온도 제어를 위한 히터 및 온도센서가 집적된 MEMS 증기셀 구성을 제공한다.
본 융합소자를 이용한 CPT 기반의 원자장치용 물리부는 기존의 물리부에 비해 소형화 및 저전력화가 가능하여 칩스케일 원자시계, 자력계, 각가속도계 등의 개발에 활용될 것으로 기대된다. 즉, 종래의 원자장치 물리부는 각각의 소자들이 현수되어 집적된 구조를 가지고 있어 소형화 및 생산성이 낮고 복잡한 현수 구조로 인해 패키지의 열저항을 낮추는데 제한적이였으나, 본 발명의 융합소자를 통해 구조를 더욱 간소화하여 소형화 및 생산성 향상에 기여 가능하며, 현수 구조 역시 간소화되어 높은 열저항 확보에 유리하다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (10)

  1. 광 발생부; 및
    상기 광 발생부와 이격되어 배치되며, 상기 광 발생부로부터 발생된 레이저 광이 입사되고 출사되는 증기셀과 상기 증기셀로부터 출사되는 광을 수신하는 광 검출부가 접합되어 구성된 융합소자; 를 포함하고,
    상기 융합소자의 적어도 일부는 실리콘 웨이퍼 기판, 제 1 도전형의 실리콘층 및 상기 실리콘 웨이퍼 기판과 상기 실리콘층 사이에 개재된 글래스 구조체를 이용하여 구현되거나,
    상기 융합소자의 적어도 일부는 실리콘 웨이퍼 기판, 제 1 도전형의 실리콘층 및 상기 실리콘 웨이퍼 기판과 상기 실리콘층 사이에 개재된 매립산화물층으로 이루어진 SOI(Silicon On Insulator) 구조체를 이용하여 구현되되,
    상기 융합소자는 상기 실리콘 웨이퍼 기판의 하면과 접합되는 글래스층을 더 구비하며,
    상기 글래스층 상에 광이 투과하지 않는 금속, 고분자 또는 세라믹으로 이루어진 패턴을 구비한 QWP(quarter wave plate)가 구현되거나, 상기 글래스층을 투과하는 광의 세기 및 반사를 조절하기 위하여 상기 글래스층에 상대적으로 높은 굴절율의 산화막, 상대적으로 낮은 굴절율의 산화막 및 금속층을 교차 증착한 것을 특징으로 하는,
    칩 스케일 원자시계의 물리부.
  2. 제 1 항에 있어서,
    서로 이격되어 상하로 배치된 복수개의 현수기판 및 상기 현수기판의 단부를 지지하여 소정의 높이로 현수할 수 있는 현수지지부로 이루어진 현수프레임;을 더 포함하되, 상기 복수개의 현수기판은 상기 광 발생부가 장착된 제 1 현수기판; 및 상기 융합소자가 장착된 제 2 현수기판;을 구비하는 것을 특징으로 하는,
    칩 스케일 원자시계의 물리부.
  3. 제 2 항에 있어서,
    상기 제 2 현수기판은 상기 융합소자를 구성하는 상기 증기셀의 상면과 직접 접합되지 않고 상기 증기셀의 상면과 접합된 상기 광 검출부의 상면과 접합되는 것을 특징으로 하는,
    칩 스케일 원자시계의 물리부.
  4. 제 1 항에 있어서,
    상기 융합소자의 적어도 일부는 실리콘 웨이퍼 기판, 제 1 도전형의 실리콘층 및 상기 실리콘 웨이퍼 기판과 상기 실리콘층 사이에 개재된 매립산화물층으로 이루어진 SOI(Silicon On Insulator) 구조체를 이용하여 구현되되,
    상기 광 검출부는 상기 실리콘층에 포토리소그래피 공정과 이온주입 공정을 수행하여 구현되며, 상기 증기셀은 상기 실리콘 웨이퍼 기판의 일부를 관통하는 공정을 수행하여 구현되는 것을 특징으로 하는,
    칩 스케일 원자시계의 물리부.
  5. 제 1 항에 있어서,
    상기 융합소자의 적어도 일부는 실리콘 웨이퍼 기판, 제 1 도전형의 실리콘층 및 상기 실리콘 웨이퍼 기판과 상기 실리콘층 사이에 개재된 글래스 구조체를 이용하여 구현되되,
    상기 광 검출부는 상기 실리콘층에 포토리소그래피 공정과 이온주입 공정을 수행하여 구현되며, 상기 증기셀은 상기 실리콘 웨이퍼 기판의 일부를 관통하는 공정을 수행하여 구현되는 것을 특징으로 하는,
    칩 스케일 원자시계의 물리부.
  6. 제 1 항에 있어서,
    상기 융합소자의 적어도 일부는 실리콘 웨이퍼 기판, 제 1 도전형의 실리콘층 및 상기 실리콘 웨이퍼 기판과 상기 실리콘층 사이에 개재된 글래스 구조체를 이용하여 구현되되,
    상기 광 검출부에서 상기 실리콘층은 다결정 혹은 비정질의 반도체 박막의 증착과 식각으로 구현되며, 상기 증기셀은 상기 실리콘 웨이퍼 기판의 일부를 관통하는 공정을 수행하여 구현되는 것을 특징으로 하는,
    칩 스케일 원자시계의 물리부.
  7. 삭제
  8. 삭제
  9. 삭제
  10. 제 1 항 내지 제 6 항 중 어느 하나의 항에 따른 상기 칩 스케일 원자시계의 물리부를 포함하는, 칩 스케일 원자시계.






KR1020190062685A 2019-05-28 2019-05-28 칩 스케일 원자시계 KR102244798B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190062685A KR102244798B1 (ko) 2019-05-28 2019-05-28 칩 스케일 원자시계

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190062685A KR102244798B1 (ko) 2019-05-28 2019-05-28 칩 스케일 원자시계

Publications (2)

Publication Number Publication Date
KR20200136735A KR20200136735A (ko) 2020-12-08
KR102244798B1 true KR102244798B1 (ko) 2021-04-27

Family

ID=73779209

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190062685A KR102244798B1 (ko) 2019-05-28 2019-05-28 칩 스케일 원자시계

Country Status (1)

Country Link
KR (1) KR102244798B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193037A (ja) * 2007-01-31 2008-08-21 Fujifilm Corp フォトディテクタおよびその作製方法
US20150378316A1 (en) * 2014-06-30 2015-12-31 Texas Instruments Incorporated Microfabricated atomic clocks (mfac) & magnetometers (mfam): high sensitivity vapor cell structure with internal condensation site

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101867054B1 (ko) * 2016-08-01 2018-07-23 한국과학기술원 칩 스케일 원자시계

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193037A (ja) * 2007-01-31 2008-08-21 Fujifilm Corp フォトディテクタおよびその作製方法
US20150378316A1 (en) * 2014-06-30 2015-12-31 Texas Instruments Incorporated Microfabricated atomic clocks (mfac) & magnetometers (mfam): high sensitivity vapor cell structure with internal condensation site

Also Published As

Publication number Publication date
KR20200136735A (ko) 2020-12-08

Similar Documents

Publication Publication Date Title
US20150311355A1 (en) Thermally-insulated micro-fabricated atomic clock structure and method of forming the atomic clock structure
US11988619B2 (en) NV-center-based microwave-free quantum sensor and uses and characteristics thereof
US10539630B2 (en) Package for chip scale magnetometer or atomic clock
CN108844532B (zh) 一种使用斜入射探测光路微小型核磁共振陀螺仪
KR101867054B1 (ko) 칩 스케일 원자시계
US7826065B1 (en) Tuned optical cavity magnetometer
US7852163B2 (en) Batch-fabricated, RF-interrogated, end transition, chip-scale atomic clock
JP6308037B2 (ja) ヒーター基板、アルカリ金属セルユニット及び原子発振器
US20150180490A1 (en) Quantum interference device, atomic oscillator, electronic apparatus, and moving object
US9203026B2 (en) Quantum interference device, atomic oscillator, electronic apparatus, and moving object
JP2008524632A5 (ko)
KR20130137712A (ko) 광-검출 시스템
CN103391097A (zh) 振荡装置和电子装置
JP2016092442A (ja) 原子セルの製造方法、原子セル、量子干渉装置、原子発振器、電子機器および移動体
KR102289703B1 (ko) 칩 스케일 원자시계
JP2015185911A (ja) 原子セル、量子干渉装置、原子発振器、電子機器および移動体
TW201706736A (zh) 用於原子鐘的設備、其操作方法及其製造方法
KR102244798B1 (ko) 칩 스케일 원자시계
CN105306055A (zh) 原子共振跃迁装置、原子振荡器、电子设备以及移动体
JP2009049623A (ja) 原子発振器
JP2014007300A (ja) 原子発振器および電子機器
US20160001942A1 (en) Lid, gas cell, sealing method for gas cell, manufacturing method for lid, and lid array substrate
JP6264876B2 (ja) 量子干渉装置、原子発振器、および電子機器
Wang et al. On-chip heating noise suppression of 3D chip-scale atomic magnetometer using single-layer shifted heater
JP2020120069A (ja) 量子光学装置

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant