KR102234406B1 - 회절 기반의 포커스 메트롤로지 - Google Patents

회절 기반의 포커스 메트롤로지 Download PDF

Info

Publication number
KR102234406B1
KR102234406B1 KR1020197013821A KR20197013821A KR102234406B1 KR 102234406 B1 KR102234406 B1 KR 102234406B1 KR 1020197013821 A KR1020197013821 A KR 1020197013821A KR 20197013821 A KR20197013821 A KR 20197013821A KR 102234406 B1 KR102234406 B1 KR 102234406B1
Authority
KR
South Korea
Prior art keywords
diffraction
pitch
elements
based focus
target
Prior art date
Application number
KR1020197013821A
Other languages
English (en)
Other versions
KR20190057152A (ko
Inventor
블라디미르 레빈스키
Original Assignee
케이엘에이 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이엘에이 코포레이션 filed Critical 케이엘에이 코포레이션
Publication of KR20190057152A publication Critical patent/KR20190057152A/ko
Application granted granted Critical
Publication of KR102234406B1 publication Critical patent/KR102234406B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4788Diffraction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/44Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0037Production of three-dimensional images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70641Focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/70683Mark designs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95676Masks, reticles, shadow masks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Printing Methods (AREA)

Abstract

회절 기반의 포커스 타겟 셀, 타겟 및 설계 및 측정 방법이 제공되며, 이것은 민감한 포커스 측정들이 오버레이 측정 툴들에 의해 수행될 수 있게 한다. 셀들은 파인 피치로 배열된 다수의 요소 및 코스 피치를 갖는 주기적 구조를 포함한다. 코스 피치는 파인 피치의 정수배이며, 파인 피치는 1개 내지 2개의 설계 규칙 피치 사이에 있고 측정 분해능보다 작으며, 코스 피치는 측정 분해능보다 크다. 요소들은 산란된 조명의 +1차 및 -1차 회절 차수에서 상이한 진폭을 제공하기 위해 비대칭이며, 요소의 서브세트는 인쇄적성 문턱값보다 큰 CD(임계 치수)를 가지며 다른 요소들은 인쇄적성 문턱값보다 작은 CD를 갖는다.

Description

회절 기반의 포커스 메트롤로지
본 출원은 2016년 10월 14일에 출원되었으며 그 전체가 본 명세서에 참고로 통합된 미국 가출원 제62/408,238호의 이익을 주장한다.
본 발명은 메트롤로지(metrology)의 분야에 관한 것으로, 보다 구체적으로, 스캐터로메트리(scatterometry) 포커스 측정들 및 대응 타겟 설계들에 관한 것이다.
리소그래피 인쇄 툴들, 예컨대 스캐너들 또는 스테퍼들은 지정된 노드 정의형(node-defined) 프로세스 윈도우 내에서 포커스 및 도즈(dose) 값들을 갖도록 요구되므로 이러한 파라미터들에 대한 엄격한 요건들이 발생한다. 최근 노드들에 대해서는, 허용되는 포커스 변동 범위는 포커스 및 도즈의 공칭 위치에 대해 ±10nm이며 다음 노드들에 대해서는 더 작아진다. 현재, 동일한 패턴을 갖는 특수 테스트 웨이퍼(FEM, focus exposure matrix, 웨이퍼)가 미리 정의된 상이한 스캐너 포커스 및 도즈 값들에 대해 인쇄되어, 그에 대한 비교에 의해 실제 포커스 및 도즈 파라미터들을 결정하는 데 사용된다.
현재의 포커스/도즈 측정 방법들에 대한 예들은, (i) 가능하면 감도 향상을 위한 보조 특징들을 갖는 격리된 라인들의 패턴을 갖는 FEM 웨이퍼들을 사용하는 것(예컨대, Brunner 및 Ausschnitt 2007, "Process Monitor Gratings" Proc. of SPIE Vol. 6518; 미국 특허 제 7,916,284 호(그 전체 내용이 본 명세서에 포함됨)), (ii) 이미징 툴에 의한 라인 엔드 단축 효과의 측정(예컨대, Ausschnitt 및 Lagus 1998, "Seeing the forest for the trees: a new approach to CD control", SPIE Vol. 3332, 그 전체 내용이 본 명세서에 포함됨), (iii) 전문 레티클들에서 위상 시프트 마스크들을 사용하는 것(예컨대, Brunner 등, 1994, "Quantitative stepper metrology using the focus monitor test mask", Proc. of SPIE, Vol. 2197, 그 전체 내용이 본 명세서에 포함됨), 및 (iv) 격자의 이미지에서의 시프트에 대해 비교되는, 비대칭 회절 격자 패턴 및 기준 패턴을 포함하는 포커스 테스트 마스크를 사용하는 것(Hinnen 등 2013, "Scatterometry-based on-product focus measurement and monitoring", ASMC 2013 SEMI Advanced Semiconductor Manufacturing Conference, 그 전체 내용이 본 명세서에 포함됨)를 포함한다.
이하는 본 발명에 대한 처음의 이해를 제공하는 간략화된 개요이다. 개요는 반드시 핵심 요소들을 식별하는 것은 아니고 본 발명의 범위를 제한하지 않으며, 단지 이하의 설명을 소개하는 역할을 하기 위한 것이다.
본 발명의 일 양태는 파인(fine) 피치로 배열된 복수의 요소 및 코스 피치(coarse pitch)를 갖는 주기적 구조를 포함하는 회절 기반의 포커스 타겟 셀을 제공하되, 코스 피치는 파인 피치의 정수배이며, 파인 피치는 1개 내지 2개의 설계 규칙 피치 사이에 있고 측정 분해능(resolution)보다 작으며, 코스 피치는 측정 분해능보다 크며, 요소들은 산란된 조명(scattered illumination)의 +1차 및 -1차 회절 차수에서 상이한 진폭을 제공하기 위해 비대칭이며, 요소의 서브세트는 인쇄적성 문턱값(printability threshold)보다 큰 CD(임계 치수; Critical Dimension)를 가지며 다른 요소들은 인쇄적성 문턱값보다 작은 CD를 갖는다.
본 발명의 이러한, 부가적인 및/또는 다른 양태들 및/또는 이점들은 이하의 상세한 설명에 기재되며; 가능하면 상세한 설명으로부터 추론 가능하며; 그리고/또는 본 발명의 실시에 의해 학습 가능하다.
본 발명의 실시예들에 대한 보다 나은 이해를 위해 그리고 실시예가 효과적으로 수행되는 방법을 나타내기 위해, 이제 유사한 숫자가 전반에 걸쳐 대응 요소들 또는 섹션들을 나타내는 첨부 도면들을 단지 예로서 참조하기로 한다.
첨부 도면들에서,
도 1은 본 발명의 일부 실시예들에 따른, 일반적인 조명 및 산란 스킴의 하이 레벨 개략도이다.
도 2는 본 발명의 일부 실시예들에 따른, 회절 기반의 포커스 타겟의 하이 레벨 개략도이다.
도 3은 본 발명의 일부 실시예들에 따른, 다양한 포커스 조건들 하에서 인쇄된 셀들에 대한 비-제한적인 예이다.
도 4는 본 발명의 일부 실시예들에 따른, 우측 조명 극에 대응하는 회절 패턴에 대한 비-제한적인 예이다.
도 5는 본 발명의 일부 실시예들에 따른, 비-제한적인 예에서 인쇄 툴의 포커스 시프트들에 따라 인쇄된 셀들에서의 라인들의 횡방향 시프트들을 개략적으로 도시한다.
도 6은 본 발명의 일부 실시예들에 따른 방법을 도시하는 하이 레벨 흐름도이다.
이하의 설명에서, 본 발명의 다양한 양태들이 설명된다. 설명의 목적으로, 특정 구성들 및 세부 사항이 본 발명의 완전한 이해를 제공하기 위해 기재된다. 하지만, 본 발명이 본 명세서에 제시된 특정 세부 사항없이 실시될 수 있음은 또한 당업자에게 자명할 것이다. 또한, 공지된 특징들은 본 발명을 모호하게 하지 않기 위해 생략되거나 단순화되었을 수 있다. 도면들을 구체적으로 참조하는 경우, 나타낸 세부 사항은 예시이며, 단지 본 발명의 예시적인 논의를 목적으로 하며, 가장 유용하고 또한 본 발명의 원리들 및 개념적 양태들의 기재를 용이하게 이해하는 것으로 여겨지는 것을 제공하기 위해 제시되었음이 강조된다. 이와 관련하여, 본 발명의 근본적인 이해를 위해 필요한 것보다 본 발명의 구조적 세부 사항을 더욱 상세히 나타내기 위한 시도는 하지 않았으며, 설명은 당업자에게 본 발명의 몇몇 형태들이 실제로 어떻게 구현될 수 있는지를 명확하게 하는 도면들을 이용하여 행해졌다.
본 발명의 적어도 하나의 실시예가 상세히 설명되기 전에, 본 발명은 이하의 설명에서 제시되거나 도면들에 도시된 구성요소들의 구성 및 배열의 세부 사항에 본 발명이 제한되지 않는 것으로 이해되어야 한다. 본 발명은 개시된 실시예들의 조합들뿐만 아니라 다양한 방식들로 실시되거나 수행될 수 있는 다른 실시예들에 적용 가능하다. 또한, 본 명세서에서 사용된 어법 및 용어는 설명을 목적으로 하며 제한적으로 간주되어서는 안된다는 것은 이해되어야 한다.
이하의 논의들로부터 명백해지는 바와 같이, 구체적으로 달리 언급되지 않는다면, 명세서 전반에 걸쳐, "처리(processing)", "컴퓨팅", "계산(calculating)", "결정(determining)", 향상(enhancing)" 등과 같은 용어들을 활용한 논의들은, 컴퓨팅 시스템의 레지스터들 및/또는 메모리들 내의 물리량들, 이를테면 전자적(electronic) 양들로서 표현되는 데이터를, 컴퓨팅 시스템의 메모리들, 레지스터들 또는 기타 그러한 정보 저장, 송신 또는 디스플레이 디바이스들 내의 물리량들로서 유사하게 표현되는 다른 데이터로 조작 및/또는 변환하는 컴퓨터 또는 컴퓨팅 시스템, 혹은 유사한 전자 컴퓨팅 디바이스의 작동 및 프로세스들을 지칭한다.
본 발명의 실시예들은 스캐터로메트리 측정들에서 포커스를 측정하기 위한 효율적이고 경제적인 방법들 및 메커니즘들을 제공하고, 이에 의해 메트롤로지의 기술 분야에 대한 개선책들을 제공한다. 회절 기반의 포커스 타겟 셀, 타겟 및 설계 및 측정 방법이 제공되며, 이것은 민감한 포커스 측정들이 오버레이 측정 툴들에 의해 수행될 수 있게 한다. 셀들은 파인 피치로 배열된 다수의 요소 및 코스 피치를 갖는 주기적 구조를 포함한다. 코스 피치는 파인 피치의 정수배이며, 파인 피치는 1개 내지 2개의 설계 규칙 피치 사이에 있고 측정 분해능보다 작으며, 코스 피치는 측정 분해능보다 크다. 요소들은 산란된 조명의 +1차 및 -1차 회절 차수에서 상이한 진폭을 제공하기 위해 비대칭이며, 요소의 서브세트는 인쇄적성 문턱값(threshold)보다 큰 CD(임계 치수; Critical Dimension)를 가지며 다른 요소들은 인쇄적성 문턱값보다 작은 CD를 갖는다.
도 1은 본 발명의 일부 실시예들에 따른, 일반적인 조명 및 산란 스킴의 하이 레벨 개략도이다. 비-제한적인 예로서, L 및 R로 표시된 2개의 조명 소스들을 갖는 다이폴 조명을 갖는 인쇄 툴(90)을 고려하면, 최소 설계 규칙 피치(비-제한적인 예에서, 150nm)와 최소 설계 규칙 피치의 2배(예컨대, 300nm) 사이의 피치 범위들에서의 회절 타겟(100)F은 L 조명 소스로부터 0차 및 -1차 회절 차수들(각각 0차(L) 및 -1차(L)로 표시됨)에 대응하는 동공면(pupil plane)에서의 조명 스폿(spot)들 그리고 R 조명 소스로부터 0차 및 +1차 회절 차수들(각각 0차(R) 및 +1차(R)로 표시됨)에 대응하는 동공면에서의 조명 스폿들을 전달한다. 타겟(100)은 아래에 설명된 바와 같이 2빔 이미징 조명 조건을 만족시키도록 설계될 수 있다. 타겟 요소들(101)은 인쇄적성 문턱값에 대한 이들의 치수에 따라 웨이퍼(80) 상에 인쇄되고, 그 측정 분해능에 대한 측정 툴(95)(예컨대, 메트롤로지 오버레이 스캐터로메트리(metrology overlay scatterometry) 툴)에 의해 측정된다. 타겟 요소들(101)은 X축 및 Y축을 따라 인쇄되고, Z축으로 정의된 레지스트 층 내로 연장된다. 최소한의 설계 규칙 피치들은 상이한 인쇄 툴들에 따라 상이할 수 있으며 기술 발전들에 따라 보다 작아질 수 있다. 예를 들어, 최소한의 설계 규칙 피치들은 150nm보다 클 수 있는, 예컨대 200nm, 250nm 등이거나, 또는 결국 150nm보다 작을 수 있는, 예컨대, 120nm, 100nm, 80nm 또는 심지어는 더 작을 수 있다. 각각의 피치 범위들(및 아래에 개시된 파인 피치들)은, 각각의 최소 설계 규칙 피치의 1배와 2배 사이에서(그러나 이에 제한되지는 않음) 통상적으로 더 크거나 더 작을 수 있다.
예를 들어, 도 1의 이미지는 최소 설계 규칙 피치(인쇄적성 문턱값와 동등함)에 대한 조명 동공에서의 광 분포가 90nm이고 마스크 상의 격자 피치가 150nm(아래에 개시된 파인 피치와 동등함)임을 도시하고 있다. 2빔 이미징 조명 조건은, 예컨대, 최소 설계 규칙 피치와 최소 설계 규칙 피치의 거의 2배까지 사이에서의 피치들의 범위(아래에서 파인 피치라고 지칭됨)에 대해 충족되고, 웨이퍼(80) 상에 투영된 결과 이미지는 우측 조명 극(R)에 대한 0 회절 차수(0차(R))와 +1 회절 차수(+1차(R)) 사이에서의 간섭, 그리고 좌측 조명 극(L)에 대한 0 회절 차수(0차(L))와 -1 회절 차수(-1차(L)) 사이에서의 간섭으로서 형성된다. 이하에서, 개시된 타겟 설계들은 +1 및 -1 회절 차수들의 진폭들을 동일하지 않게 하기 위해 비대칭이다. 예를 들어, 본 발명자들은 포커스에 대한 감도가 1차 회절 차수들 중 하나의 진폭을 다른 것의 진폭보다 훨씬 크게(예컨대 +1 회절 차수의 진폭을 -1 회절 차수의 진폭보다 훨씬 크게) 함으로써 향상될 수 있어서, 가능하면 이미지 구성에 대한 더 작은(예컨대, 이 예에서 -1 회절 차수) 진폭의 기여도를 무시할 수 있음을 알아내었다.
어떤 실시예들은 타겟들(100) 및/또는 셀들(110)로부터 도출되는 메트롤로지 포커스 측정 신호를 포함한다. 어떤 실시예들은 타겟(100)의 타겟 설계 파일들 및/또는 셀들(110)로 구성된 타겟들을 포함한다.
도 2는 본 발명의 일부 실시예들에 따른, 회절 기반의 포커스 타겟(100)의 하이 레벨 개략도이다. 회절 기반의 포커스 타겟(100)은 셀들(110) 내의 요소들(130)의 대향 비대칭성(opposite asymmetry)을 갖는 적어도 2쌍의 셀들(110)(셀 1 및 셀 2로서 개략적으로 지시됨)을 갖는 다수의 회절 기반의 포커스 타겟 셀들(110)(예컨대, 110A, 110B)을 포함하여, 타겟(100)은 180°회전 대칭성을 갖는다. 도 2는 마스크 상의 셀 및 타겟 설계들(도 1을 또한 참조)을 도시하며, 이들 설계는 아래에서 설명되는 바와 같이 웨이퍼(80) 상에 완전히 인쇄되지 않는다는 것을 유의해야 한다.
회절 기반의 포커스 타겟 셀들(110)은 파인 피치(P1)에 배열된 다수의 요소(130) 및 코스 피치(P2)를 갖는 주기적 구조(각각의 셀(110A, 110B)에 대해 하나의 코스 피치 구조(120A, 120B)가 각각 나타남)를 포함한다. 파인 피치(P1)는, 예컨대, 1개 내지 2개의 설계 규칙 피치들인 2빔 이미징 조명 조건을 만족시키도록 선택될 수 있다. 코스 피치(P2)는 파인 피치(P1)의 정수배(예컨대, 도시된 바와 같이 x10 또는 비-제한적인 예로서 x6과 x20 사이의 임의의 다른 값)가 되도록 구성된다. 파인 피치(P1)는 측정 툴에 의해 분해되지 않도록 선택될 수 있고(예컨대, P1 < 최소 설계 규칙 피치의 2배, 예컨대, 통상적이고 비-제한적인 최소 설계 규칙 피치로서 P1 < 2·150nm), 코스 피치(P2)는 측정 분해능보다 크다. 파인 피치들(P1)에 대한 예들은, 예컨대, 100nm, 150nm, 200nm를 포함하고, 코스 피치들(P2)에 대한 예들은, 예컨대, 몇몇 정수 n에 대해 P2 = n·P1이기만 하면 1000-2500nm 사이의 피치들을 포함한다.
파인 피치(P1)는 2빔 이미징 조명 조건을 만족시키도록 선택될 수 있고, 또한, 각각의 ±1 회절 차수의 진폭들 사이의 향상된 또는 최대 차를 제공하도록 구성된 비대칭 구조(들)를 갖도록 선택될 수 있다(아래에서의 식 1 및 도 4를 또한 참조).
요소들(130)은, (예컨대, 비-제한적인 예들로서 각각 구조들(120A, 120B)로 도시된 바와 같이 파인 피치(P1)의 단위 셀의 우측 또는 좌측으로) 비대칭이어서, 산란된 조명의 +1차 및 -1차 회절 차수에서 상이한 진폭을 제공한다. 도 1의 일반적인 조명 및 산란 스킴을 주목하면, 비대칭 설계는 상이한 회절 차수들과 조명 요소들을 강하게 구별하도록 구성될 수 있다.
어떤 실시예들에서, 요소들(130)의 서브세트(130A)(더 넓은 요소들(130))는 인쇄적성 문턱값보다 큰 CD(임계 치수)를 가지며, 다른 요소들(130B)(더 좁은 요소들(130))은 인쇄적성 문턱값보다 작은 CD를 갖는다. 어떤 실시예들에서는, 비-인쇄형 요소들(130B)에서의 형태를 인쇄형 요소들(130A)의 형태와 유사하게 유지하는 것은 2빔 이미징 조건에 최대의 근접성을 제공하는 데 유리하기 때문에, 인쇄가능형 요소들(130A)은 비-인쇄가능형 요소들(130B)과 유사한 형태를 가질 수 있으며(예컨대, 도 4를 참조), P1 피치에 대응하는 0 및 1 회절 차수들과는 별도로 모든 회절 차수들의 진폭들을 작게 만든다.
이하에서, 신호들의 분석은 개시된 타겟들(100) 및 셀들(110)을 사용하는 효율 및 결과들을 예시한다. 비-제한적인 방식으로 간략화하기 위해, 조명 극들(도 1에서의 R, L)을, 조명 극들의 중심들에 위치한 점 광원들로서 처리하는 것-전술한 바와 같이 비대칭인 타겟들(100) 및 셀들(110)의 에어리얼 이미지(aerial image)-는 식 1에서와 같이 표현될 수 있으며, 여기서 I는 에어리얼 이미지의 강도를 나타내고, A, B는 상수이고 P는 파인 피치(P1)이다.
Figure 112019049085628-pct00001
식 1
Figure 112019049085628-pct00002
는 0 및 +1 회절 차수들에 대응하는 동공 점들에서의 대칭 수차(aberration)들 간의 차이를 나타내고,
Figure 112019049085628-pct00003
는 0 및 +1 회절 차수들에 대응하는 동공 점들에서의 비대칭 수차들 간의 차이를 나타내고,
Figure 112019049085628-pct00004
는 (타겟 (100)에서) 마스크 구조의 특정 선택에 의해 제공되는 0 및 +1 회절 차수들 간의 위상차를 나타내며,
Figure 112019049085628-pct00005
는 인쇄 툴(90)(예컨대, 스캐너)의 포커스 위치로부터의 포커스 시프트에 의해 야기된 0 및 +1 회절 차수들 사이에서의 위상 시프트를 나타낸다.
Figure 112019049085628-pct00006
이며, 여기서,
Figure 112019049085628-pct00007
Figure 112019049085628-pct00008
은 0차 및 1차 회절 차수들에 대응하는 조명 평면파들의 극각(polar angle)들을 나타낸다.
본 발명자들은 점 형태의 조명 소스 프레임워크에서 조명 소스를 근사하는 것으로, 파라미터들
Figure 112019049085628-pct00009
,
Figure 112019049085628-pct00010
Figure 112019049085628-pct00011
는 오직 조명 극들(도 1에서의 L, R)의 중심들의 위치 그리고 파인 피치(P1)의 선택된 값에만 의존한다는 것을 지적하고, 따라서 수차들 및 특정 타겟 설계 파라미터들의 영향은 인쇄 툴(90)의 포커스 효과로부터 분리될 수 있고, FEM 웨이퍼를 사용하여 교정(calibrate)될 수 있다. 식 1에 예시된 바와 같이, 인쇄 툴(90)의 포커스 위치의 변화는, 아래에 예시된 바와 같이, 표준 이미징 오버레이 툴과 같은 측정 툴(95)로 측정될 수 있는 타겟(100)(및/또는 셀(110))의 횡방향 변위를 초래한다.
명백하게, 예컨대, 쿼드러폴(quadrupole) 조명과 같은 다이폴들 이외의 조명 소스들을 포함하여, 보다 현실적인 조명 소스들에도 유사한 고려 사항이 적용 가능하다.
개시된 셀들(110) 및 타겟들(100)은 오버레이 타겟들을 모방하고 측정 처리 동안에 측정 툴(95) 및/또는 인쇄 툴(90)의 툴 유도형 에러들을 제거해 내는 것을 허용하기 위해 180°회전에 대해 불변인 것과 유사하게 체계화될 수 있다. 비-제한적인 예로서,도 2에 도시된 배열은 타겟(100)의 180°회전에 대해 불변인 타겟(100)을 산출하기 위해 (전술한 바와 같이) 대향 미세 구조 비대칭 방향들을 갖는 쌍으로 4개의 셀들(110)을 포함한다.
도 3은 본 발명의 일부 실시예들에 따른, 다양한 포커스 조건들 하에서 인쇄된 셀들(111)에 대한 비-제한적인 예이다. 본 발명자들은 각각의 인쇄된 셀(111)의 라인들(131)이 셀들(110)에서의 인쇄적성 문턱값보다 큰 CD를 갖는 요소들(130A)에 대응하고, 상이한 인쇄된 셀들(111)은, 쿼드러폴 조명 스킴을 갖는 시뮬레이션에 기초하여, -60nm와 + 60nm 사이에서 20nm 간격으로 상이한 스캐너 포커스 위치들에 대응함을 주목한다. 인쇄된 라인(131)은 레지스트 층 내에서 수직 방향으로 길게 연장된 XZ 평면으로 나타낸다. 타겟 비대칭성으로 인해, 각 라인(131)의 중심의 위치는 포커스 위치에 의존하므로 인쇄 라인들(131)은 또한 경사지게 되며, Z 좌표가 변경되는 경우 X 좌표도 또한 변경된다. 따라서, 개시된 설계들은, 인쇄된 패턴(111)의 형태를 변경하지 않으면서 스캐너 포커스를 변경하는 스캐너 포커스의 함수로서, 인쇄된 타겟(111)의 수평 시프트를 제공하는 것이 가능하다. 그 결과, 타겟(100)은 종래 기술에 비해 FEM 웨이퍼를 이용한 교정 절차를 상당히 단순화하는 간단한(pure) 시프트들을 (형태 변경없이) 제공하도록 설계된다. 인쇄된 패턴들은 상이하며, 도 3은 위에 개시된 설계 원리들의 적용 가능성을 도시한다. 인쇄된 셀들(111)에 대한 상이한 포커스의 효과는 아래의 도 5에 더 설명된다.
도 3에 도시된 바와 같이, 각각의 인쇄된 셀(111)은 단지 마스크(도 2에 도시됨) 상의 셀(110) 내의 10개의 파인 피치 구조들로부터 인쇄되는 4개의 라인들을 갖는다. 그 결과, 인쇄된 타겟(105)은, 포커스의 각 슬라이스 위치의 중심의 강한 의존성으로 인해, 인쇄된 라인들(131)이 경사진다는 사실을 제외하고는, 분해된 코스 피치(P2)를 갖는 표준 세그먼트형 OVL 타겟으로서 나타난다. 그럼에도 불구하고, 인쇄된 패턴(105)은 상이한 스캐너 포커스 위치들에 대해 동일한 형태를 유지하며, 스캐너 포커스 변경들의 효과는 인쇄된 패턴의 횡방향 변위로 그 자체를 나타낸다. 스캐너 포커스 위치의 함수로서의 횡방향 변위의 값은 도 5에 제시되어 있다.
요소들(130A, 130B)(요소들(130B)은 인쇄적성 문턱값 아래로 그들을 가져오는 약간 감소된 라인 폭으로 설계됨) 사이의 요소 폭(CD)에 있어서의 차이는, 이 예에서 CD의 작은 변경으로 인해, 인쇄된 라인들과 비-인쇄된 라인들 사이의 뚜렷한(sharp) 경계를 제공한다는 점에 유의한다. 뚜렷한 경계는, 파인 피치 주기로 주기적인 타겟의 패턴 배치에 가까운 패턴 배치를 갖는 인쇄 콘트라스트 및 프로세스 호환 가능형 타겟(100)을 가능하게 하고, 파인 피치가 측정 툴(95)에 의해 분해되지 않는 경우에 조차도 2개의 셀들(110) 간의 오버레이 시프트가 측정 가능하게 되는 오버레이 프록시 타겟으로서 보여질 수 있다.
도 4는 본 발명의 일부 실시예들에 따른, 우측 조명 극(R)에 대응하는 회절 패턴에 대한 비-제한적인 예이다. 도 4는, 시뮬레이션 툴들을 사용하여, 식 1과, 도 2에 제시된 타겟 설계에 관한 위에 제시된 고려 사항의 정확성을 예시한다. 도 4에 도시된 바와 같이, 모든 회절 차수들의 진폭들은 파인 피치(표기법에 대해서는 도 1을 참조)에 대응하는 0차(0차(R)) 및 +1(1차(R)) 회절 차수들을 제외하고는 작다. 그에 상응하여, 도 4는 인쇄된 타겟의 배치에 대한 스캐너 수차들의 효과가 파인 피치 구조들의 주기적인 로우(row)에 대한 것과 동일함을 도시한다.
타겟들(100) 및 셀들(110)은, 인쇄적성에 대해 견고하도록, 또한 인쇄 툴(90)의 관심 파라미터들(예컨대, 포커스)의 변경들에 매우 민감하도록, 또한 간단한 교정 모델을 사용하여, 예를 들어, 포커스에 대한 타겟의 응답과 도즈에 대한 타겟의 응답 사이의 상관 관계를 감소시키는 것을 가능하게 하도록 구성되는데, 예컨대, 타겟들(100)은 도즈 파라미터들과는 독립적으로 포커스 파라미터들만을 측정하도록 (또는 그 반대로) 구성될 수 있다. 어떤 실시예들에서, 타겟들(100)은, 예컨대, 180°회전 대칭성을 갖는 것에 의해 스캐너 수차들의 영향을 제거해 낼 수 있게 하도록 추가적으로 구성될 수 있다. 어떤 실시예들에서, 스캐너 수차들의 영향은 FEM 웨이퍼를 이용한 교정 절차를 사용하여 제거해 낼 수 있다. 유리하게는, 타겟들(100) 및 셀들(110)은 표준 이미징 OVL 툴, 예컨대, 스캐터로메트리 오버레이 메트롤로지 툴에 의해 측정 가능하도록 설계된다.
유리하게는, 셀들(110) 및 타겟들(100)은 적어도 2개의 피치들, 즉 측정 툴(95)에 의해 분해되지 않은 파인 피치 및 측정 툴(95)에 의해 분해되고 정수 개의 파인 피치들과 동일한 코스 피치를 갖도록 설계된다.
도 5는 본 발명의 일부 실시예에 따른 비-제한적인 예에서 인쇄 툴(90)(예컨대, 스캐너)의 포커스 시프트들에 따른 인쇄 셀들(111)에서의 라인들(131)의 횡방향 시프트들을 개략적으로 도시한다. 인쇄된 타겟 패턴(105)은 도 3과 유사하게 도시되며, -0.06㎛와 +0.06㎛ 사이에서 20nm 간격으로 있는 스캐너 포커스 위치들에 따른 ADI(after-develop-inspection) 배치 에러들에 관하여 횡방향 시프트들을 나타내는 그래프(106)로 정렬된다.
도 5에 도시된 바와 같이, 횡방향 시프트들은 스캐너 포커스 변경으로 거의 선형이며 120nm 스캐너 포커스 간격 동안 약 35nm의 횡방향 시프트를 제공한다. 이 측정 버짓(budget)은 통상적인 오버레이 측정 버짓들과 비슷하며, 측정 방법들이 유사하므로, 포커스 측정 정확도를 추정하는 것을 허용한다. 예를 들어, 통상적으로, 대향 비대칭성 방향들을 갖는 2개의 타겟 셀들 간의 오버레이 측정들은 120nm 스캐너 포커스 간격에 대해 70nm 오버레이 변경을 제공한다. 약 1nm의 오버레이 측정 정확도를 가정하면, 인쇄된 셀들(110)의 횡방향 시프트들을 사용하여, 개시된 포커스 시프트들의 측정들에 대한 정확도는 스캐너 포커스 메트롤로지에 대해 약 2배, 예컨대, 2-3nm로 추정될 수 있다.
도 6은 본 발명의 일부 실시예들에 따른 방법(200)을 도시하는 하이 레벨 흐름도이다. 방법 스테이지들은 방법(200)을 구현하도록 선택적으로 구성될 수 있는, 전술한 타겟들(100), 셀들(110) 및/또는 측정 툴(95)에 대해 수행될 수 있다. 방법(200)은 적어도 하나의 컴퓨터 프로세서에 의해 그리고/또는 포커스 측정 모듈에서, 가능하면 스캐터로메트리 오버레이 측정 툴에서, 적어도 부분적으로 구현될 수 있다. 어떤 실시예들은 그와 함께 구체화되고 방법(200)의 관련 스테이지들을 수행하도록 구성된 컴퓨터 판독가능 프로그램을 갖는 컴퓨터 판독가능 저장 매체를 포함하는 컴퓨터 프로그램 제품들을 포함한다. 어떤 실시예들은 방법(200)의 실시예들에 의해 설계된 각각의 타겟들의 타겟 설계 파일들을 포함한다. 방법(200)은 그들의 순서와 무관하게 다음 스테이지들을 포함할 수 있다.
방법(200)은 1개 내지 2개의 설계 규칙 피치 사이에 있고 측정 분해능보다 작은 파인 피치로 배열된 비대칭 요소들을 갖는 적어도 하나의 회절 기반의 포커스 타겟 셀을 사용하여 인쇄 툴의 포커스 위치를 측정하는 단계(스테이지 210)를 포함할 수 있고, 적어도 하나의 셀은 파인 피치의 정수배이고 측정 분해능보다 큰 코스 피치를 가지며, 비대칭 요소들은 산란된 조명의 +1차 및 -1차 회절 차수에서 상이한 진폭을 제공하도록 설계되며, 요소의 서브세트는 인쇄적성 문턱값보다 큰 CD를 가지며 다른 요소들은 인쇄적성 문턱값보다 작은 CD를 갖는다. 어떤 실시예들에서, 셀들은 180°회전 대칭성을 갖는 포커스 타겟으로 배열될 수 있다.
방법(200)은, 1개 내지 2개의 설계 규칙 피치 사이에 있고 측정 분해능보다 작은 파인 피치로 배열된 비대칭 요소들을 갖도록 회절 기반의 포커스 타겟 셀들을 설계하는 단계(스테이지 220), 그리고 파인 피치의 정수배이며 측정 분해능보다 큰 코스 피치를 갖도록 회절 기반의 포커스 타겟 셀들을 설계하는 단계(스테이지 225)를 포함할 수 있다. 방법(200)은 산란된 조명의 +1차 및 -1차 회절 차수에서 상이한 진폭을 제공하도록 비대칭 요소들을 구성하는 단계(스테이지 230), 및 요소의 서브세트가 인쇄적성 문턱값보다 큰 CD를 가지며 다른 요소들이 인쇄적성 문턱값보다 작은 CD를 갖도록 구성하는 단계(스테이지 235)를 더 포함할 수 있다. 방법(200)은 설계된 셀들을 180°회전 대칭성을 갖는 포커스 타겟으로 배열하는 단계(스테이지 240)를 더 포함할 수 있다.
유리하게는, 개시된 타겟들(100), 셀들(110), 측정 툴들(95) 및/또는 방법들(200)은 스캐너 포커스 위치 타겟들에 민감하고, 스캐너 수차들의 영향을 제거해 내는 것을 허용하는 간단한 교정 절차들을 제공하며, 스캐너 포커스 위치에 관한 정보를, 인쇄된 패턴의 형태를 변경시키지 않으면서 인쇄된 패턴의 횡방향 시프트로 변환할 수 있게 한다.
유리하게는, 개시된 타겟들(100), 셀들(110), 측정 툴들(95) 및/또는 방법들(200)은, 측정이 프로세스 윈도우 내의 공칭 포커스 위치 주변에서 그리고 프로세스 윈도우에 걸쳐 인쇄 가능한 설계들을 이용하여 수행될 때, 훨씬 더 높은 타겟 감도, 현재 및 더 작은 노드들에 대한 측정 정확도를 제공하지만, 몇몇 종래 기술의 방법들은 (관심의 범위인) 공칭 포커스 위치 주변에서 매우 낮은 감도를 가지며 그리고/또는 스캐너 초점과 그 분리를 방지하는 도즈 파라미터들 사이의 커플링을 나타낸다(배경기술 섹션에서 방법들 (i) 및 (ii)). 종래 기술의 방법들 중 일부는 현재 적용할 수 없는 고가의 테스트 마스크(예컨대, 배경기술 섹션에서의 방법(iii))를 필요로 하지만, 개시된 타겟들(100) 및 셀들(110)은 용이한 설계들을 제공한다. 종래 기술의 방법들 중 일부(배경기술 섹션에서의 방법(iv))는 측정 툴(95)에 의해 분해되지만, 따라서 몇몇 회절 차수들(통상적으로는 대략 동일 진폭을 갖는 5-6 차수들)을 제공하는 큰 피치들을 사용하며, 각각은 스캐너 포커스 변화에 따라 변하고 패턴 프로파일들의 상이한 변화를 야기하는 위상을 가지며, 타겟들의 상이한 인쇄적성 및 교정 모델의 낮은 정확도를 특징으로 한다.
본 발명의 양태들은 본 발명의 실시예들에 따른 방법들, 장치(시스템들) 및 컴퓨터 프로그램 제품들의 흐름도들 및/또는 부분도들을 참조하여 위에서 설명되었다. 흐름도들 및/또는 부분도들의 각 부분, 그리고 흐름도들 및/또는 부분도들의 일부분들의 조합은 컴퓨터 프로그램 명령어들에 의해 구현될 수 있음은 이해될 것이다. 이들 컴퓨터 프로그램 명령어들은 범용 컴퓨터, 특수 목적용 컴퓨터 또는 기타 프로그램 가능형 데이터 처리 장치의 프로세서에 제공되어, 컴퓨터 또는 기타 프로그램 가능형 데이터 처리 장치의 프로세서를 통해 실행되는 명령어들이, 흐름도 및/또는 부분도 또는 그 일부분들에서 특정된 기능들/작동들을 구현하기 위한 수단을 생성하도록 하는 머신을 생성할 수 있다.
이들 컴퓨터 프로그램 명령어들은 또한, 컴퓨터 판독가능 매체에 저장된 명령어들이 흐름도 및/또는 부분도 또는 그 일부분들에 특정된 기능/작동을 구현하는 명령어들을 포함하는 제조 물품을 생산하도록 하는 특정 방식으로 기능하도록 컴퓨터, 기타 프로그램 가능한 데이터 처리 장치, 또는 기타 디바이스들에게 지시할 수 있는 컴퓨터 판독가능 매체에 저장될 수 있다.
컴퓨터 프로그램 명령어는 또한, 컴퓨터, 기타 프로그램 가능형 데이터 처리 장치 또는 기타 디바이스들에 로드되어 일련의 동작 단계들로 하여금 컴퓨터, 기타 프로그램 가능한 장치 또는 기타 디바이스들 상에서 수행되게 하여, 컴퓨터 또는 기타 프로그램 가능형 장치 상에서 실행되는 명령어들이 흐름도 및/또는 부분도 또는 그 일부분들에서 특정된 기능들/작동들을 구현하기 위한 프로세스들을 제공하도록 하는 컴퓨터 구현형 프로세스를 생성할 수 있다.
전술한 흐름도 및 도면들은 본 발명의 다양한 실시예들에 따른 시스템들, 방법들 및 컴퓨터 프로그램 제품들의 가능한 구현예들의 아키텍처, 기능성 및 동작을 도시한다. 이와 관련하여, 흐름도 또는 부분도들에서의 각 부분은 특정 로직 기능(들)을 구현하기 위한 하나 이상의 실행가능 명령어들을 포함하는 모듈, 세그먼트 또는 코드의 일부분을 나타낼 수 있다. 일부 대안적인 구현예들에서, 상기 부분에서 언급된 기능들은 도면들에서 언급된 순서를 벗어나 발생할 수 있음에 또한 유의해야 한다. 예를 들어, 연속적으로 나타낸 2개의 부분들은 사실상 실질적으로 동시에 실행될 수 있거나, 또는 일부분들은 관련된 기능성에 따라 때로는 역순으로 실행될 수 있다. 부분도들 및/또는 순서도의 각 부분, 그리고 부분도들 및/또는 순서도에서의 일부분들의 조합들은 또한, 특정 기능들 또는 작업들을 수행하는 특수 목적용 하드웨어 기반의 시스템들에 의해, 또는 특수 목적용 하드웨어와 컴퓨터 명령들의 조합들에 의해 구현될 수 있음에 유의하기로 한다.
전술한 바에 있어서, 실시예는 본 발명의 예 또는 구현예이다. "하나의 실시예", "일 실시예", "어떤 실시예들", 또는 "일부 실시예들"의 다양한 형태들이 반드시 모두 동일한 실시예들을 지칭하는 것은 아니다. 본 발명의 다양한 특징들이 단일의 실시예의 맥락에서 설명될 수 있지만, 특징들은 또한 별도로 또는 임의의 적합한 조합으로 제공될 수 있다. 역으로, 본 발명이 본 명세서에서 명확함을 위해 별도의 실시예들의 맥락에서 설명될 수 있지만, 본 발명은 또한 단일의 실시예로 구현될 수 있다. 본 발명의 어떤 실시예들은 위에서 개시된 상이한 실시예들로부터의 특징들을 포함할 수 있으며, 또한 어떤 실시예들은 위에 개시된 다른 실시예들로부터의 요소들을 통합할 수 있다. 특정한 실시예의 맥락에서 본 발명의 요소들의 개시는 특정 실시예에서 단독으로 사용되는 것으로 제한되는 것은 아니다. 게다가, 본 발명은 다양한 방식들로 수행되거나 실시될 수 있으며, 또한 본 발명은 위의 기재에서 서술된 것들 이외의 어떤 실시예들에서 구현될 수 있음은 이해되는 것이다.
본 발명은 이들 도면들에 또는 그 대응하는 기재들에 제한되지 않는다. 예를 들어, 흐름은 각각 도시된 박스 또는 상태를 통해, 또는 도시되고 설명된 바와 같은 정확히 동일한 순서로 이동될 필요는 없다. 본 명세서에 사용된 기술적 및 과학적 용어들의 의미들은, 달리 정의되지 않는 한, 본 발명이 속하는 기술분야에서의 숙련자에 의해 통상적으로 이해되는 것이다. 본 발명이 제한된 개수의 실시예들에 대해 설명되었지만, 이것들은 발명의 범주에 대한 제한으로서 해석되어서는 안되며, 오히려 바람직한 실시예들 중 일부의 예시들로서 해석되어야 한다. 다른 가능한 변경예들, 수정예들, 및 응용예들이 또한 본 발명의 범주 내에 있다. 따라서 본 발명의 범주는 기재된 바에 의해 제한되는 것이 아니라, 첨부된 청구범위 및 그 법적 균등물들에 의해 제한되어야 한다.

Claims (13)

  1. 파인(fine) 피치로 배열된 복수의 요소들 및 코스(coarse) 피치를 갖는 주기적 구조를 포함하고, 리소그래피 인쇄 툴을 사용하여 인쇄가능한, 회절 기반의 포커스 타겟 셀에 있어서,
    상기 코스 피치는 상기 파인 피치의 정수배이되, 상기 파인 피치는 설계 규칙(design-rule) 피치의 1 정수배 내지 2 정수배 사이에 있고 측정 분해능(measurement resolution)보다 작으며, 상기 코스 피치는 상기 측정 분해능보다 크며, 상기 측정 분해능은 측정 툴의 분해능이고,
    상기 요소들은, 산란된 조명의 +1차 및 -1차 회절 차수에서 상이한 진폭을 제공하도록 비대칭이며,
    상기 설계 규칙 피치는 상기 리소그래피 인쇄 툴에 의해 인쇄가능한 최소 피치이고,
    상기 요소들의 제1 서브세트는 상기 설계 규칙 피치보다 큰 CD(critical dimension; 임계 치수)를 가지며, 상기 요소들의 제2 서브세트는 상기 설계 규칙 피치보다 작은 CD를 가지는 것인, 회절 기반의 포커스 타겟 셀.
  2. 제 1 항에 있어서,
    상기 설계 규칙 피치보다 작은 CD를 갖는 라인을 더 포함하고, 상기 라인은 상기 파인 피치로 배열된 상기 요소들의 경계를 정하는(delimit) 것인, 회절 기반의 포커스 타겟 셀.
  3. 제 1 항에 기재된 복수의 회절 기반의 포커스 타겟 셀들을 포함하는 회절 기반의 포커스 타겟에 있어서,
    상기 요소들의 대향 비대칭성(opposite asymmetry)을 갖는 적어도 2쌍의 셀을 가지며, 상기 타겟은 180°회전 대칭성을 가지는 것인, 회절 기반의 포커스 타겟.
  4. 컴퓨터 판독가능 저장 매체에 저장된, 제 3 항에 기재된 타겟의 타겟 설계 파일.
  5. 제 1 항에 기재된 적어도 하나의 회절 기반의 포커스 타겟 셀을 사용하여 인쇄 툴의 포커스 위치를 측정하는 단계를 포함하는, 회절 기반의 포커스 메트롤로지 방법.
  6. 회절 기반의 포커스 메트롤로지 방법에 있어서,
    파인 피치로 배열된 비대칭 요소들을 갖고, 리소그래피 인쇄 툴을 사용하여 인쇄가능한, 적어도 하나의 회절 기반의 포커스 타겟 셀을 사용하여 인쇄 툴의 포커스 위치를 측정하는 단계를 포함하고,
    상기 파인 피치는 설계 규칙 피치의 1 정수배 내지 2 정수배 사이에 있고 측정 분해능보다 작으며, 상기 적어도 하나의 셀은, 상기 파인 피치의 정수배이며 상기 측정 분해능보다 큰 코스 피치를 가지며, 상기 측정 분해능은 측정 툴의 분해능이고,
    상기 설계 규칙 피치는 상기 리소그래피 인쇄 툴에 의해 인쇄가능한 최소 피치이고,
    상기 비대칭 요소들은 산란된 조명의 +1차 및 -1차 회절 차수에서 상이한 진폭을 제공하도록 설계되며, 상기 요소들의 제1 서브세트는 상기 설계 규칙 피치보다 큰 CD를 가지며 상기 요소들의 제2 서브세트는 상기 설계 규칙 피치보다 작은 CD를 가지는 것인, 회절 기반의 포커스 메트롤로지 방법.
  7. 제 6 항에 있어서,
    상기 셀은 180°회전 대칭성을 갖는 포커스 타겟으로 배열되는 것인, 회절 기반의 포커스 메트롤로지 방법.
  8. 제 6 항에 기재된 회절 기반의 포커스 메트롤로지 방법을 구현하도록 구성된 컴퓨터 판독가능 프로그램이 내장된, 비-일시적(non-transitory) 컴퓨터 판독가능 저장 매체.
  9. 제 6 항에 기재된 회절 기반의 포커스 메트롤로지 방법을 구현하도록 구성된 포커스 모듈을 포함하는, 스캐터로메트리(scatterometry) 오버레이 측정 툴.
  10. 회절 기반의 포커스 메트롤로지 방법에 있어서,
    파인 피치로 배열된 비대칭 요소들을 갖도록, 리소그래피 인쇄 툴을 사용하여 인쇄가능한 회절 기반의 포커스 타겟 셀을 설계하는 것 - 상기 파인 피치는 설계 규칙 피치의 1 정수배 내지 2 정수배 사이에 있고 측정 분해능보다 작으며, 상기 설계 규칙 피치는 상기 리소그래피 인쇄 툴에 의해 인쇄가능한 최소 피치이고, 적어도 하나의 상기 회절 기반의 포커스 타겟 셀은, 상기 파인 피치의 정수배이며 상기 측정 분해능보다 큰 코스 피치를 갖고, 상기 측정 분해능은 측정 툴의 분해능임 - ;
    산란된 조명의 +1차 및 -1차 회절 차수에서 상이한 진폭을 제공하도록 상기 비대칭 요소들을 구성하는 것 - 상기 요소들의 제1 서브세트는 상기 설계 규칙 피치보다 큰 CD를 가지며 상기 요소들의 제2 서브세트는 상기 설계 규칙 피치보다 작은 CD를 가짐 - ; 및
    상기 설계된 셀을, 180°회전 대칭성을 갖는 포커스 타겟으로 배열하는 것
    에 의해, 상기 회절 기반의 포커스 타겟을 설계하는 단계
    를 포함하는, 회절 기반의 포커스 메트롤로지 방법.
  11. 제 2 항에 기재된 복수의 회절 기반의 포커스 타겟 셀들을 포함하는 회절 기반의 포커스 타겟에 있어서,
    상기 요소들의 대향 비대칭성을 갖는 적어도 2쌍의 셀을 가지며, 상기 타겟은 180°회전 대칭성을 가지는 것인, 회절 기반의 포커스 타겟.
  12. 컴퓨터 판독가능 저장 매체에 저장된, 제 11 항에 기재된 회절 기반의 포커스 타겟의 타겟 설계 파일.
  13. 제 2 항에 기재된 적어도 하나의 회절 기반의 포커스 타겟 셀을 사용하여 인쇄 툴의 포커스 위치를 측정하는 단계를 포함하는, 회절 기반의 포커스 메트롤로지 방법.
KR1020197013821A 2016-10-14 2017-06-02 회절 기반의 포커스 메트롤로지 KR102234406B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662408238P 2016-10-14 2016-10-14
US62/408,238 2016-10-14
PCT/US2017/035821 WO2018071063A1 (en) 2016-10-14 2017-06-02 Diffraction-based focus metrology

Publications (2)

Publication Number Publication Date
KR20190057152A KR20190057152A (ko) 2019-05-27
KR102234406B1 true KR102234406B1 (ko) 2021-03-31

Family

ID=61905858

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197013821A KR102234406B1 (ko) 2016-10-14 2017-06-02 회절 기반의 포커스 메트롤로지

Country Status (6)

Country Link
US (1) US10761023B2 (ko)
EP (1) EP3507653A4 (ko)
KR (1) KR102234406B1 (ko)
CN (1) CN109844647B (ko)
TW (1) TWI726163B (ko)
WO (1) WO2018071063A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10705435B2 (en) 2018-01-12 2020-07-07 Globalfoundries Inc. Self-referencing and self-calibrating interference pattern overlay measurement
US11256177B2 (en) 2019-09-11 2022-02-22 Kla Corporation Imaging overlay targets using Moiré elements and rotational symmetry arrangements
US11686576B2 (en) 2020-06-04 2023-06-27 Kla Corporation Metrology target for one-dimensional measurement of periodic misregistration
KR20220056726A (ko) * 2020-10-28 2022-05-06 삼성전자주식회사 디포커스 계측방법과 보정방법, 및 그 보정방법을 포함한 반도체 소자 제조방법
CN112433420A (zh) * 2020-11-30 2021-03-02 中国科学院长春光学精密机械与物理研究所 一种航空相机的快速检焦装置及检焦方法
WO2023113850A1 (en) * 2021-12-17 2023-06-22 Kla Corporation Overlay target design for improved target placement accuracy
US11796925B2 (en) 2022-01-03 2023-10-24 Kla Corporation Scanning overlay metrology using overlay targets having multiple spatial frequencies

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216639A (ja) 2005-02-02 2006-08-17 Sony Corp 光源強度分布設計方法、露光装置、露光方法、及び、半導体装置の製造方法
US20070108368A1 (en) 2002-02-26 2007-05-17 Kla-Tencor Corporation Focus masking structures, focus patterns and measurements thereof
US20100209830A1 (en) 2009-02-13 2010-08-19 Tokyo Electron Limited Multi-Pitch Scatterometry Targets
WO2016123552A1 (en) 2015-01-30 2016-08-04 Kla-Tencor Corporation Device metrology targets and methods

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3297423B2 (ja) * 2000-08-09 2002-07-02 株式会社東芝 フォーカステストマスク、並びにそれを用いたフォーカス及び収差の測定方法
US7916284B2 (en) 2006-07-18 2011-03-29 Asml Netherlands B.V. Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
CN100468213C (zh) * 2006-10-18 2009-03-11 上海微电子装备有限公司 用于光刻装置的对准系统及其级结合光栅系统
CN101135860B (zh) * 2007-09-04 2010-05-19 上海微电子装备有限公司 一种光刻装置和用于光刻装置的对准系统及对准方法
US9093458B2 (en) * 2012-09-06 2015-07-28 Kla-Tencor Corporation Device correlated metrology (DCM) for OVL with embedded SEM structure overlay targets
US9454072B2 (en) 2012-11-09 2016-09-27 Kla-Tencor Corporation Method and system for providing a target design displaying high sensitivity to scanner focus change
JP6114538B2 (ja) * 2012-12-04 2017-04-12 株式会社ミツトヨ 光電式絶対位置検出器、及び、その取付方法
CN105814491B (zh) 2013-10-30 2017-12-05 Asml荷兰有限公司 检查设备和方法、具有量测目标的衬底、光刻系统和器件制造方法
KR101982642B1 (ko) 2013-12-17 2019-05-27 에이에스엠엘 네델란즈 비.브이. 검사 방법, 리소그래피 장치, 마스크 및 기판
US9784690B2 (en) * 2014-05-12 2017-10-10 Kla-Tencor Corporation Apparatus, techniques, and target designs for measuring semiconductor parameters
US9766554B2 (en) * 2015-03-16 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for estimating focus and dose of an exposure process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070108368A1 (en) 2002-02-26 2007-05-17 Kla-Tencor Corporation Focus masking structures, focus patterns and measurements thereof
JP2006216639A (ja) 2005-02-02 2006-08-17 Sony Corp 光源強度分布設計方法、露光装置、露光方法、及び、半導体装置の製造方法
US20100209830A1 (en) 2009-02-13 2010-08-19 Tokyo Electron Limited Multi-Pitch Scatterometry Targets
WO2016123552A1 (en) 2015-01-30 2016-08-04 Kla-Tencor Corporation Device metrology targets and methods

Also Published As

Publication number Publication date
EP3507653A1 (en) 2019-07-10
US10761023B2 (en) 2020-09-01
CN109844647B (zh) 2022-06-10
TWI726163B (zh) 2021-05-01
WO2018071063A1 (en) 2018-04-19
KR20190057152A (ko) 2019-05-27
US20190049373A1 (en) 2019-02-14
CN109844647A (zh) 2019-06-04
EP3507653A4 (en) 2020-04-29
TW201818136A (zh) 2018-05-16

Similar Documents

Publication Publication Date Title
KR102234406B1 (ko) 회절 기반의 포커스 메트롤로지
TWI798248B (zh) 在計量量測中之機器學習
TWI623818B (zh) 用於製程參數量測之目標元件類型
JP6770958B2 (ja) ランドスケープの解析および利用
US10685165B2 (en) Metrology using overlay and yield critical patterns
US10228320B1 (en) Achieving a small pattern placement error in metrology targets
US10234280B2 (en) Reflection symmetric scatterometry overlay targets and methods
KR20160142852A (ko) 산란측정 계측을 이용한 초점 측정
US11537043B2 (en) Reduction or elimination of pattern placement error in metrology measurements
TWI603216B (zh) 處理相容分段目標及設計方法
KR102381168B1 (ko) 비대칭 수차의 추정
KR20210033907A (ko) 마크 위치 결정 방법, 리소그래피 방법, 물품제조방법, 프로그램 및 리소그래피 장치
CN113039407A (zh) 单个单元灰度散射术重叠目标及其使用变化照明参数的测量
CN110870052B (zh) 在成像技术中估计振幅及相位不对称性以在叠加计量中达到高精准度
US10197922B2 (en) Focus metrology and targets which utilize transformations based on aerial images of the targets
KR102447611B1 (ko) 레티클 최적화 알고리즘들 및 최적의 타겟 설계
US10204867B1 (en) Semiconductor metrology target and manufacturing method thereof
Boerland et al. Automated mask qualification with new CD metrology in CATS environment

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant