KR102224490B1 - 무선 통신 시스템에서 상향링크 전송 전력 제어 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 상향링크 전송 전력 제어 방법 및 이를 위한 장치 Download PDF

Info

Publication number
KR102224490B1
KR102224490B1 KR1020167009839A KR20167009839A KR102224490B1 KR 102224490 B1 KR102224490 B1 KR 102224490B1 KR 1020167009839 A KR1020167009839 A KR 1020167009839A KR 20167009839 A KR20167009839 A KR 20167009839A KR 102224490 B1 KR102224490 B1 KR 102224490B1
Authority
KR
South Korea
Prior art keywords
uplink
subframe
power control
mode
subframe set
Prior art date
Application number
KR1020167009839A
Other languages
English (en)
Other versions
KR20160082236A (ko
Inventor
이승민
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20160082236A publication Critical patent/KR20160082236A/ko
Application granted granted Critical
Publication of KR102224490B1 publication Critical patent/KR102224490B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/246TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/248TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/58Format of the TPC bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Abstract

본 발명은 무선 통신 시스템에서 단말의 상향링크 전송 전력을 제어하는 방법에 있어서, 서빙 셀에 대하여 미리 정해진 상향링크-하향링크 설정(Uplink-Downlink configuration)에 따라 상향링크 신호를 송신하는 단계, 서빙 셀로부터 제 1 상향링크 서브프레임 집합에 대한 제 1 전송 전력 제어 정보 및 제 2 상향링크 서브프레임 집합에 대한 제 2 전송 전력 제어 정보를 수신하는 단계 및 제 2 상향링크 서브프레임 집합에 포함된 특정 서브프레임 상에서, 제 2 전송 전력 제어 정보에 따라 상향링크 데이터 채널(Physical Uplink Shared CHannel, PUSCH)을 전송하는 단계를 포함하며, 제 2 상향링크 서브프레임 집합은, 미리 정해진 상향링크-하향링크 설정에 따른 다수의 상향링크 서브프레임들 중, 상위 계층 시그널링을 통하여 지정된 적어도 하나의 상향링크 서브프레임으로 구성된 것을 특징으로 한다.

Description

무선 통신 시스템에서 상향링크 전송 전력 제어 방법 및 이를 위한 장치{METHOD FOR CONTROLLING UPLINK TRANSMISSION POWER IN WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREFOR}
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 상향링크 전송 전력 제어 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE(3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향링크(Downlink; DL) 데이터에 대해 기지국은 하향링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향링크(Uplink; UL) 데이터에 대해 기지국은 상향링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
최근 3GPP는 LTE에 대한 후속 기술에 대한 표준화 작업을 진행하고 있다. 본 명세서에서는 상기 기술을 'LTE-A'라고 지칭한다. LTE-A 시스템은 최대 100MHz의 광대역을 지원할 것을 목표로 하고 있으며, 이를 위해 복수의 주파수 블록을 사용하여 광대역을 달성하는 반송파 병합(carrier aggregation; CA) 기술을 사용하도록 하고 있다. CA는 보다 넓은 주파수 대역을 사용하기 위하여 복수의 주파수 블록을 하나의 커다란 논리 주파수 대역으로 사용하도록 한다. 각 주파수 블록의 대역폭은 LTE 시스템에서 사용되는 시스템 블록의 대역폭에 기초하여 정의될 수 있다. 각각의 주파수 블록은 콤포넌트 캐리어(CC) 또는 셀(Cell)이라고 칭할 수 있다.
또한, LTE 시스템에서는, 전체 가용 자원을 하향링크 자원(즉, 기지국이 단말로 신호를 전송하는데 사용하는 자원)과 상향링크 자원(즉, 단말이 기지국으로 신호를 전송하는데 사용하는 자원)으로 분할하는 듀플렉스(duplex) 동작이 지원될 수 있다. 예를 들어, 주파수 분할 듀플렉스(FDD) 방식, 또는 시간 분할 듀플렉스(TDD) 방식이 적용될 수 있다. 이와 같이 각각의 자원의 용도가 하향링크(DL) 또는 상향링크(UL) 중에서 어느 하나로 설정될 수 있는데, 기존의 LTE 시스템에서는 이를 시스템 정보를 통해서 지정하는 것으로 정의되어 있다.
최근에는 LTE/LTE-A 시스템의 개선 방안 중의 하나로, 이러한 듀플렉스 동작에 있어서 DL-UL 설정을 동적(dynamic)으로 지정하는 방안이 논의되고 있다.
본 발명에서는 상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 상향링크 전송 전력을 제어하는 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 해결하기 위한 본 발명의 일 형태로, 무선 통신 시스템에서 단말의 상향링크 전송 전력을 제어하는 방법에 있어서, 서빙 셀에 대하여 미리 정해진 상향링크-하향링크 설정(Uplink-Downlink configuration)에 따라 상향링크 신호를 송신하는 단계; 상기 서빙 셀로부터 제 1 상향링크 서브프레임 집합에 대한 제 1 전송 전력 제어 정보 및 제 2 상향링크 서브프레임 집합에 대한 제 2 전송 전력 제어 정보를 수신하는 단계; 및 상기 제 2 상향링크 서브프레임 집합에 포함된 특정 서브프레임 상에서, 상기 제 2 전송 전력 제어 정보에 따라 상향링크 데이터 채널(Physical Uplink Shared CHannel, PUSCH)을 전송하는 단계를 포함하며, 상기 제 2 상향링크 서브프레임 집합은, 상기 미리 정해진 상향링크-하향링크 설정에 따른 다수의 상향링크 서브프레임들 중, 상위 계층 시그널링을 통하여 지정된 적어도 하나의 상향링크 서브프레임으로 구성된 것을 특징으로 한다.
나아가, 상기 제 2 전송 전력 제어 정보는, 상기 특정 서브프레임 인덱스에 대한 현재 PUSCH 전력 제어 조정 상태(current PUSCH power control adjustment state)를 나타내는 값을 포함하는 것을 특징으로 할 수 있다.
나아가, 상기 현재 PUSCH 전력 제어 조정 상태는, 상기 제 2 상향링크 서브프레임 집합에 대한 정보를 수신하는 경우, 리셋되는 것을 특징으로 할 수 있다.
나아가, 상기 현재 PUSCH 전력 제어 조정 상태는, 상기 제 2 상향링크 서브프레임 집합에 대한 정보를 수신하는 경우, 0으로 설정되는 것을 특징으로 할 수 있다.
나아가, 상기 제 1 상향링크 서브프레임 집합은, 무선 자원의 용도가 변경되지 않도록 설정된 서브프레임에 대응되며, 상기 제 2 상향링크 서브프레임 집합은, 무선 자원의 용도가 변경되도록 설정된 서브프레임에 대응하는 것을 특징으로 할 수 있다.
나아가, 상기 제 1 상향링크 서브프레임 집합과 상기 제 2 상향링크 서브프레임 집합은, 이웃 셀(neighbor cell)과의 간섭 특성이 서로 상이한 것을 특징으로 할 수 있다.
나아가, 상기 제 2 상향링크 서브프레임 집합은, 용도 변경 메시지에 의하여 지시되는 것을 특징으로 할 수 있다.
나아가, 상기 특정 서브프레임은, DCI 포맷(DCI format) 0/4 상의 하향링크 제어 정보를 통하여 지시되는 것을 특징으로 할 수 있다.
상기의 기술적 과제를 해결하기 위한 본 발명의 다른 형태로, 무선 통신 시스템에서 상향링크 전송 전력을 제어하는 단말은, 무선 주파수 유닛(Radio Frequency Unit); 및 프로세서(processor)를 포함하며, 상기 프로세서는, 서빙 셀에 대하여 미리 정해진 상향링크-하향링크 설정(Uplink-Downlink configuration)에 따라 상향링크 신호를 송신하고, 상기 서빙 셀로부터 제 1 상향링크 서브프레임 집합에 대한 제 1 전송 전력 제어 정보 및 제 2 상향링크 서브프레임 집합에 대한 제 2 전송 전력 제어 정보를 수신하며, 상기 제 2 상향링크 서브프레임 집합에 포함된 특정 서브프레임 상에서, 상기 제 2 전송 전력 제어 정보에 따라 상향링크 데이터 채널(Physical Uplink Shared CHannel, PUSCH)을 전송하도록 구성되며, 상기 제 2 상향링크 서브프레임 집합은, 상기 미리 정해진 상향링크-하향링크 설정에 따른 다수의 상향링크 서브프레임들 중, 상위 계층 시그널링을 통하여 지정된 적어도 하나의 상향링크 서브프레임으로 구성된 것을 특징으로 한다.
본 발명의 실시예에 따르면 무선 통신 시스템에서 단말이 상향링크 전송 전력을 효율적으로 제어할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 4는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면이다.
도 5는 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 6은 LTE TDD 시스템에서 무선 프레임의 구조를 예시한다.
도 7은 반송파 집성(carrier aggregation) 기법을 설명하는 개념도이다.
도 8은 무선 자원의 용도가 변경되는지에 따라 하나의 무선 프레임을 서브프레임 세트 #1와 서브프레임 세트 #2로 구분한 예이다.
도 9는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서에서, 기지국의 명칭은 RRH(remote radio head), 송신 포인트(transmission point; TP), 수신 포인트(reception point; RP), eNB, 중계기(relay)등을 포함하는 포괄적인 용어로 사용된다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Trans안테나 포트 Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
기지국(eNB)을 구성하는 하나의 셀은 1.4, 3, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
도 4는 하향링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 4를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 참조 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element 그룹)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파×하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 상향링크 HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산 인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH(그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE(Control Channel Element)로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원 할당과 관련된 정보, 상향링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야하는지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC(cyclic redundancy check) 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 5는 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 5을 참조하면, 상향링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 전송되는 제어정보는 HARQ에 사용되는 ACK/NACK, 하향링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), MIMO를 위한 RI(Rank Indicator), 상향링크 자원 할당 요청인 SR(Scheduling Request) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑(frequency hopping)된다. 특히, 도 5는 m=0인 PUCCH, m=1인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
또한, 한 서브프레임 내에서 사운딩 참조 신호가 전송될 수 있는 시간은 하나의 서브프레임에서 시간 축 상에서 가장 마지막에 위치하는 심볼이 있는 구간이며, 주파수 상으로는 데이터 전송 대역을 통하여 전송된다. 동일한 서브프레임의 마지막 심볼로 전송되는 여러 단말의 사운딩 참조 신호들은 주파수 위치에 따라 구분이 가능하다.
도 6은 LTE TDD 시스템에서 무선 프레임의 구조를 예시한다. LTE TDD 시스템에서 무선 프레임은 2개의 하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 2개의 슬롯을 포함하는 4개의 일반 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간(Guard Period, GP) 및 UpPTS(Uplink Pilot Time Slot)을 포함하는 특별 서브프레임(special subframe)으로 구성된다.
상기 특별 서브프레임에서, DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 즉, DwPTS는 하향링크 전송으로, UpPTS는 상향링크 전송으로 사용되며, 특히 UpPTS는 PRACH 프리앰블이나 SRS 전송의 용도로 활용된다. 또한, 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
한편, LTE TDD 시스템에서 상향링크/하향링크 서브프레임 설정(UL/DL configuration)은 아래의 표 1과 같다.
Figure 112016035800917-pct00001
상기 표 1에서 D는 하향링크 서브프레임, U는 상향링크 서브프레임을 지시하며, S는 상기 특별 서브프레임을 의미한다. 또한, 상기 표 1는 각각의 시스템에서 상향링크/하향링크 서브프레임 설정에서 하향링크-상향링크 스위칭 주기 역시 나타나있다.
이하에서는 반송파 집성(carrier aggregation) 기법에 관하여 설명한다. 도 7은 반송파 집성(carrier aggregation)을 설명하는 개념도이다.
반송파 집성은 무선 통신 시스템이 보다 넓은 주파수 대역을 사용하기 위하여, 단말이 상향링크 자원(또는 콤포넌트 반송파) 및/또는 하향링크 자원(또는 콤포넌트 반송파)으로 구성된 주파수 블록 또는(논리적 의미의) 셀을 복수 개 사용하여 하나의 커다란 논리 주파수 대역으로 사용하는 방법을 의미한다. 이하에서는 설명의 편의를 위하여 콤포넌트 반송파라는 용어로 통일하도록 한다.
도 7을 참조하면, 전체 시스템 대역(System Bandwidth; System BW)은 논리 대역으로서 최대 100 MHz의 대역폭을 가진다. 전체 시스템 대역은 다섯 개의 콤포넌트 반송파를 포함하고, 각각의 콤포넌트 반송파는 최대 20 MHz의 대역폭을 가진다. 콤포넌트 반송파는 물리적으로 연속된 하나 이상의 연속된 부반송파를 포함한다. 도 7에서는 각각의 콤포넌트 반송파가 모두 동일한 대역폭을 가지는 것으로 도시하였으나, 이는 예시일 뿐이며 각각의 콤포넌트 반송파는 서로 다른 대역폭을 가질 수 있다. 또한, 각각의 콤포넌트 반송파는 주파수 영역에서 서로 인접하고 있는 것으로 도시되었으나, 상기 도면은 논리적인 개념에서 도시한 것으로서, 각각의 콤포넌트 반송파는 물리적으로 서로 인접할 수도 있고, 떨어져 있을 수도 있다.
중심 반송파(Center frequency)는 각각의 콤포넌트 반송파에 대해 서로 다르게 사용하거나 물리적으로 인접된 콤포넌트 반송파에 대해 공통된 하나의 중심 반송파를 사용할 수도 있다. 일 예로, 도 7에서 모든 콤포넌트 반송파가 물리적으로 인접하고 있다고 가정하면 중심 반송파 A를 사용할 수 있다. 또한, 각각의 콤포넌트 반송파가 물리적으로 인접하고 있지 않은 경우를 가정하면 각각의 콤포넌트 반송파에 대해서 별도로 중심 반송파 A, 중심 반송파 B 등을 사용할 수 있다.
본 명세서에서 콤포넌트 반송파는 레거시 시스템의 시스템 대역에 해당될 수 있다. 콤포넌트 반송파를 레거시 시스템을 기준으로 정의함으로써 진화된 단말과 레거시 단말이 공존하는 무선 통신 환경에서 역지원성(backward compatibility)의 제공 및 시스템 설계가 용이해질 수 있다. 일 예로, LTE-A 시스템이 반송파 집성을 지원하는 경우에 각각의 콤포넌트 반송파는 LTE 시스템의 시스템 대역에 해당될 수 있다. 이 경우, 콤포넌트 반송파는 1.25, 2.5, 5, 10 또는 20 Mhz 대역폭 중에서 어느 하나를 가질 수 있다.
반송파 집성으로 전체 시스템 대역을 확장한 경우에 각 단말과의 통신에 사용되는 주파수 대역은 콤포넌트 반송파 단위로 정의된다. 단말 A는 전체 시스템 대역인 100 MHz를 사용할 수 있고 다섯 개의 콤포넌트 반송파를 모두 사용하여 통신을 수행한다. 단말 B1~B5는 20 MHz 대역폭만을 사용할 수 있고 하나의 콤포넌트 반송파를 사용하여 통신을 수행한다. 단말 C1 및 C2는 40 MHz 대역폭을 사용할 수 있고 각각 두 개의 콤포넌트 반송파를 이용하여 통신을 수행한다. 상기 두 개의 콤포넌트 반송파는 논리/물리적으로 인접하거나 인접하지 않을 수 있다. 단말 C1은 인접하지 않은 두 개의 콤포넌트 반송파를 사용하는 경우를 나타내고, 단말 C2는 인접한 두 개의 콤포넌트 반송파를 사용하는 경우를 나타낸다.
LTE 시스템의 경우 1개의 하향링크 콤포넌트 반송파와 1개의 상향링크 콤포넌트 반송파를 사용하는 반면, LTE-A 시스템의 경우 도 6과 같이 여러 개의 콤포넌트 반송파들이 사용될 수 있다. 이때 제어 채널이 데이터 채널을 스케줄링하는 방식은 기존의 링크 반송파 스케쥴링(Linked carrier scheduling) 방식과 크로스 반송파 스케쥴링(Cross carrier scheduling) 방식으로 구분될 수 있다.
보다 구체적으로, 링크 반송파 스케쥴링은 단일 콤포넌트 반송파를 사용하는 기존 LTE 시스템과 같이 특정 콤포넌트 반송파를 통하여 전송되는 제어채널은 상기 특정 콤포넌트 반송파를 통하여 데이터 채널만을 스케줄링 한다.
한편, 크로스 반송파 스케쥴링은 반송파 지시자 필드(Carrier Indicator Field; CIF)를 이용하여 주 콤포넌트 반송파(Primary CC)를 통하여 전송되는 제어채널이 상기 주 콤포넌트 반송파를 통하여 전송되는 혹은 다른 콤포넌트 반송파를 통하여 전송되는 데이터 채널을 스케줄링 한다.
이하, LTE 시스템에서 상향링크 전송 전력 제어 방법에 관하여 설명한다.
단말이 자신의 상향링크 전송 전력을 제어하는 방법은 개루프 전력 제어(Open Loop Power Control; OLPC)와 폐루프 전력 제어(Closed Loop Power Control; CLPC))를 포함한다. 이 중에서, 전자는 단말이 속하는 셀의 기지국으로부터의 하향링크 신호 감쇄를 추정하고 이를 보상하는 형태로 전력 제어를 하기 위한 인자로서, 단말에서부터 기지국까지의 거리가 더 멀어져서 하향링크의 신호 감쇄가 크면 상향링크의 전송 전력을 더 높이는 방식으로 상향링크 전력을 제어한다. 그리고 후자는 기지국에서 상향링크 전송 전력을 조절하는데 필요한 정보(즉, 제어 신호)를 직접 전달하는 방식으로 상향링크 전력을 제어한다.
다음 수학식 1은 반송파 집성 기법을 지원하는 시스템에 있어서 서빙 셀 c 에서 서브프레임 인덱스 i 상에서 PUSCH와 PUCCH를 동시에 전송하지 않고 PUSCH만 전송하는 경우의 단말의 전송 전력을 결정하기 위한 식이다
Figure 112016035800917-pct00002
다음 수학식 2는 반송파 집성 기법을 지원하는 시스템에 있어서 서빙 셀 c 의 서브프레임 인덱스 i 에서 PUCCH와 PUSCH를 동시에 전송하는 경우에, PUSCH 전송 전력을 결정하기 위한 식이다.
Figure 112016035800917-pct00003
이하에서 상기 수학식 1 및 수학식 2와 관련하여 기술할 파라미터들은 서빙 셀 c 에서의 단말의 상향링크 전송 전력을 결정하는 것이다. 여기서, 상기 수학식 1의 P CMAX,c(i) 는 서브프레임 인덱스 i 에서의 단말의 전송 가능한 최대 전력을 나타내고, 상기 수학식 2의
Figure 112016035800917-pct00004
P CMAX,c(i) 의 선형 값(linear value)을 나타낸다. 상기 수학식 2의
Figure 112016035800917-pct00005
P PUCCH(i) 의 선형 값(linear value)을 나타낸다(여기서, P PUCCH(i) 는 서브프레임 인덱스 i 에서의 PUCCH 전송 전력을 나타낸다.
다시 수학식 1에서, M PUSCH,c(i)는 서브프레임 인덱스 i 에 대해 유효한 자원 블록 수로 표현된 PUSCH 자원 할당의 대역폭을 나타내는 파라미터로서, 기지국이 할당하는 값이다. P O_PUSCH,c(j) 는 상위 계층으로부터 제공된 셀-특정 노미널 콤포넌트(nominal component) P O_NOMINAL_PUSCH,c(j) 와 상위 계층에서 제공된 단말-특정 콤포넌트 P O_UE_PUSCH,c(j) 의 합으로 구성된 파라미터로서, 기지국이 단말에게 알려주는 값이다.
이 때, 상향링크 그랜트에 따른 PUSCH 전송/재전송의 경우 j 는 1이고, 랜덤 액세스 응답에 따른 PUSCH 전송/재전송의 경우 j 는 2이다. 그리고, P O_UE_PUSCH,c(2)=0 이고 P O_NOMINAL_PUSCH,c(2)=P O_PREPREAMBLE_Msg3 이며, 파라미터 P O_PRE 와 ΔPREAMBLE_Msg3 는 상위 계층에서 시그널링된다.
α c(j) 는 경로손실 보상 인자(pathloss compensation factor)로서, 상위 계층에서 제공되어 기지국이 3 비트로 전송해 주는 셀-특정 파라미터로서 j 는 0 또는 1일 때, α c ∈{0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}이고, j 는 2일 때, α c(j)=1이다. α c(j) 는 기지국이 단말에게 알려주는 값이다.
ΔTF(i) 는 동적인 채널 변화를 변조 및 코딩 기법(MCS)을 통하여 보상하는 값을 나타내며,
Figure 112016035800917-pct00006
와 같이 표현될 수 있다.
경로 손실 PL c 는 단말이 dB 단위로 계산한 하향링크 경로손실(또는 신호 손실) 추정치로서, PL c =referenceSignalPower - higher layer filteredRSRP 로 표현되며 여기서 referenceSignalPower는 기지국이 상위 계층으로 단말에게 알려줄 수 있다.
δ PUSCH,c 는 보정 값(correction value)로서, 전송 전력 제어(TPC) 명령으로 칭할 수 도 있다. δ PUSCH,c 는 서빙 셀 c 의 DCI 포맷 0/4의 PDCCH/EDPCCH에 포함되거나, 또는 TPC-PUSCH-RNTI로 스크램블된 CRC 패리티 비트를 가지는 DCI 포맷 3/3A의 PDCCH에 다른 TPC 명령들과 함께 조인트 코딩되어 단말에게 시그널링될 수 있다. 현재 서빙 셀 c 의 PUSCH 전력 제어 조정 상태는 만약, 상위 계층에 의하여 제공되는 파라미터 Accumulation-Enabled에 기반하여 누적 모드가 활성화되는 것으로 설정되는 경우, 혹은 임시 C-RNTI(temporary C-RNTI)로 스크램블링된 서빙 셀 c 의 DCI 포맷 0의 PDCCH/EPDCCH에 포함된 TPC 명령 δ PUSCH,c 가 포함된 경우에 f c(i)는, f c(i)=f c(i-1)+δ PUSCH,c(i-K PUSCH)로 정의된다.
즉, f c(i)는 서브프레임 인덱스 i 에 대해 현재 PUSCH 전력 제어 조정 상태를 나타내는 값으로서, 현재의 비누적값 또는 누적된 값으로 표현될 수 있다. 누적(accumulation)이 상위 계층으로부터 제공되는 파라미터에 기초하여 인에이블(enable)되거나 또는 TPC command δ PUSCH,c 가 CRC가 임시(Temporary) C-RNTI로 스크램블링된 서빙 셀 c 에 대한 DCI 포맷 0와 함께 PDCCH에 포함되면 f c(i)=f c(i-1)+δ PUSCH,c(i-K PUSCH) 을 만족한다. δ PUSCH,c(i-K PUSCH) 는 서브프레임 i-K PUSCH 에서 DCI 포맷 0/4 또는 3/3A와 함께 PDCCH/EPDCCH로 시그널링되며, 여기서, f c(0) 는 누적값의 리셋(reset) 후의 첫 번째 값이다. 만약, 누적이 상위 계층으로부터 제공되는 파라미터에 기초하여 인에이블(enable)되지 않았을 경우, f c(i)=δ PUSCH,c(i-K PUSCH) 을 만족한다. 이 때, δ PUSCH,c(i-K PUSCH) 는 서브프레임 i-K PUSCH 에서 DCI 포맷 0/4과 함께 PDCCH/EPDCCH 로 시그널링 된다.
K PUSCH 의 값은 LTE 표준에서 다음과 같이 정의되어 있다.
FDD(Frequency Division Duplex)에 대해서는, K PUSCH 의 값은 4이다. TDD에서, 적어도 두 개의 설정된 서빙 셀의 TDD 상향링크/하향링크 설정이 동일하지 않은 경우, 서빙 셀 c 의 "TDD 상향링크/하향링크 설정" 은 상향링크-참조 상향링크/하향링크 설정(UL-reference UL/DL configuration)을 참조한다
TDD에서, 만약 단말에 대하여 하나 이상의 서빙 셀이 설정되고 적어도 둘 이상의 설정된 서빙 셀들의 TDD 상향링크/하향링크 설정(TDD UL/DL configuration)이 동일하지 않은 경우, 서빙 셀을 위한 상기 TDD 상향링크/하향링크 설정은, 서빙 셀을 위한 상향링크-참조 UL/DL 설정(UL-reference UL/DL configuration)를 참조한다.
또한 TDD에서, 상향링크/하향링크 설정 1 내지 6의 경우 K PUSCH 의 값은 다음 표 2와 같다.
Figure 112016035800917-pct00007
TDD에서 상향링크/하향링크 설정 0인 경우, 만약 상향링크 인덱스의 LSB가 1로 설정된 DCI 포맷 0/4의 PDCCH/EPDCCH 와 함께 서브프레임 2 또는 7에서 PUSCH 전송이 스케줄되었다면, K PUSCH 는 7이며, 다른 모든 PUSCH 전송에 대하여 K PUSCH 는 표 2를 따른다.
서빙 셀 c가 비활성(deactivate)상태 이거나 DRX 상태일 경우를 제외하고, 매 서브프레임에서 단말은 단말의 C-RNTI를 이용하여 DCI 포맷 0/4의 PDCCH/EPDCCH를 또는 SPS C-RNTI를 이용해 DCI 포맷 0의 PDCCH/EPDCCH를, 그리고 단말의 TPC-PUSCH-RNTI를 이용하여 DCI 포맷 3/3A의 PDCCH 를 디코딩하려고 시도한다. 서빙 셀 c에 대한 DCI 포맷 0/4 및 DCI 포맷 3/3A가 동일 서브프레임에서 검출되면, 단말은 DCI 포맷 0/4에서 제공되는 δ PUSCH,c 를 이용하여야 한다. 서빙 셀 c를 위해 디코딩되는 TPC 명령(command)가 없거나 DRX가 상태이거나 또는 인덱스 i 인 서브프레임이 TDD에서 상향링크 서브프레임이 아닌 서브프레임에 대해 δ PUSCH,c 은 0 dB 이다.
DCI 포맷 0/4와 함께 PDCCH 상에서 시그널링되는 δ PUSCH,c 누적값은 다음 표 3과와 같다. DCI 포맷 0과 함께하는 PDCCH/EPDCCH가 SPS activation/ release PDCCH/EPDCCH로 인증(validation)되는 경우, δ PUSCH,c 는 0dB 이다. DCI 포맷 3/3A와 함께 PDCCH 상에서 시그널링되는 δ PUSCH,c 누적값은 다음 표 3의 SET1의 하나이거나 상위 계층에서 제공되는 TPC-인덱스(index) 파라미터에 의해 결정되는 다음 표 4의 SET2의 하나이다.
Figure 112016035800917-pct00008
Figure 112016035800917-pct00009
서빙 셀 c 에서의 단말의 전송 전력이 전송 최대 전력
Figure 112016035800917-pct00010
에 도달하면, 서빙 셀 c에 대해 양(positive)의 TPC 명령(command)이 누적되지 않는다. 반면, 단말이 최저 전력에 도달하면, 음(negative)의 TPC 명령이 누적되지 않는다.
단말은 P O_UE_PUSCH,c 값이 상위 계층에 의해 변경되거나 랜덤 액세스 응답 메시지를 수신할 때 누적(accumulation)을 리셋한다.
여기서, 누적(accumulation) 연산 타입 혹은 현재 비누적(current absolute) 연산 타입에 대하여, 만약 P O_UE_PUSCH,c 값이 상위 계층에 의해 변경되고 서빙 셀 c 이 프라이머리 셀인 경우 혹은 P O_UE_PUSCH,c 값이 상위 계층에 의해 변경되고 서빙 셀 c 이 세컨더리 셀인 경우, f c(*) 의 초기 값은 모두 f c(0)=0 으로 설정/리셋/초기화된다.
나아가, LTE 시스템에서의 PUSCH에 대한 상향링크 전력과 관련하여서는, LTE/LTE-A 관련 표준 문서인 3GPP TS 36.213의 5.1.1절을 참조할 수 있다.
다음 수학식 3은 LTE 시스템에서의 PUCCH에 대한 상향링크 전력 제어 관련 식이다.
Figure 112016035800917-pct00011
상기 수학식 3에서, i 는 서브프레임 인덱스, c 는 셀(cell) 인덱스이다. 단말이 두 개의 안테나 포트 상에서 PUCCH를 전송하도록 상위 계층에 의해 설정되어 있다면 ΔTxD(F') 의 값은 상위 계층에 의해 단말에 제공되며 그 이외의 경우에는 0이다. 이하 설명하는 파라미터는 셀 인덱스 c 인 서빙 셀에 대한 것이다.
여기서, P CMAX,c(i) 는 단말의 전송가능한 최대 전력을 나타내고, P O_PUCCH 는 셀-특정(cell-specific) 파라미터의 합으로 구성된 파라미터로서 기지국이 상위 계층 시그널링을 통해 알려주며, PL c 은 단말이 dB 단위로 계산한 하향링크 경로손실(또는 신호 손실) 추정치로서, PL c =referenceSignalPower - higher layer filteredRSRP 로 표현된다. h(n) 은 PUCCH 포맷에 따라 달라지는 값이고, n CQI 는 채널 품질 정보(CQI)에 대한 정보 비트의 수이고, n HARQ 는 HARQ 비트의 수를 나타낸다. ΔF_PUCCH(F)값은 PUCCH 포맷 1a에 대해 상대적인 값으로 PUCCH 포맷 #F에 대응하는 값으로 기지국이 상위 계층 시그널링을 통해 알려주는 값이다. g(i) 는 인덱스 i 서브프레임의 현재 PUCCH 전력 제어 조정 스테이트(adjustment state)를 나타낸다.
P O_UE_PUCCH 값이 상위 계층에서 변경될 때, g(0)=0 이고 그렇지 않으면, g(0)=ΔP rampup+δ msg2 이다. δ msg2 는 랜덤 액세스 응답에서 지시되는 TPC 명령(command)이며, ΔP rampup 는 상위 계층에서 제공하는 첫 번째부터 마지막 프리앰블까지 총 전력 램프-업(ramp-up)에 해당한다.
프라이머리 셀에서의 전송 최대 전력 P CMAX,c(i)에 도달하면, 프라이머리 셀에 대해 양(positive)의 TPC 명령이 누적되지 않는다. 반면, 단말이 최저 전력에 도달하면, 음(negative)의 TPC 명령이 누적되지 않는다. 단말은 P O_UE_PUCCH 값이 상위 계층에 의해 변경되거나 랜덤 액세스 응답 메시지를 수신할 때 누적(accumulation)을 리셋한다.
한편, 다음 표 5 및 표 6은 DCI 포맷에서의 TPC 명령(Command) 필드가 지시하는 δ PUCCH 값을 나타낸다. 특히, 표 5는 DCI 포맷 3A를 제외한 나머지 DCI에서 지시하는 δ PUCCH 값이고, 표 6은 DCI 포맷 3A에서 지시하는 δ PUCCH 값이다.
Figure 112016035800917-pct00012
Figure 112016035800917-pct00013
다음 수학식 4은 LTE 시스템에서의 사운딩 참조 신호(SRS)의 전력 제어 관련 식이다.
Figure 112016035800917-pct00014
상기 수학식 4에서 i 는 서브프레임 인덱스, c 는 셀(cell) 인덱스이다. 여기서, P CMAX,c(i) 는 단말의 전송가능한 최대 전력을 나타내고, P SRS_OFFSET,c(m) 는 상위 계층으로 설정되는 값으로, m 이 0인 경우는 주기적(periodic) 사운딩 참조 신호를, m 이 0인 경우는 비주기적(aperiodic) 사운딩 참조 신호를 송신하는 경우에 대응한다. M SRS,c 는 서빙 셀 c 의 서브프레임 인덱스 i 상에서의 사운딩 참조 신호 대역폭으로서, 자원 블록의 개수로 표현된다.
f c(i) 는 서빙 셀 c 의 서브프레임 인덱스 i 에 대해 현재 PUSCH 전력 제어 조정 상태를 나타내는 값이고, P O_PUSCH,c(j) 및 α c(j) 역시 상기 수학식 1 및 2에서 설명한 것과 같다.
이하, 사운딩 참조 신호에 대하여 설명한다.
사운딩 참조 신호는 CAZAC(Constant Amplitude Zero Auto Correlation) 시퀀스로 구성되며, 여러 단말로부터 전송된 사운딩 참조 신호들은 아래 수학식 5에 따른 서로 다른 순환 천이(cyclic shift) 값( α )을 갖는 CAZAC 시퀀스(
Figure 112016035800917-pct00015
)이다.
Figure 112016035800917-pct00016
여기서
Figure 112016035800917-pct00017
는 상위 계층에 의하여 각 단말에 설정되는 값으로, 0 내지 7 사이의 정수 값을 갖는다. 따라서, 순환 천이 값은
Figure 112016035800917-pct00018
에 따라 8개의 값을 가질 수 있다.
하나의 CAZAC 시퀀스로부터 순환 천이를 통하여 발생된 CAZAC 시퀀스들은 각자 자신과 다른 순환 천이 값을 갖는 시퀀스들과 영의 상관 값(zero-correlation)을 갖는 특성이 있다. 이러한 특성을 이용하여 동일한 주파수 영역의 사운딩 참조 신호들은 CAZAC 시퀀스 순환 천이 값에 따라 구분될 수 있다. 각 단말의 사운딩 참조 신호는 기지국에서 설정하는 파라미터에 따라 주파수 상에 할당된다. 단말은 상향링크 데이터 전송 대역폭 전체로 사운딩 참조 신호를 전송할 수 있도록 사운딩 참조 신호의 주파수 도약을 수행한다.
이하에서는 LTE 시스템에서 사운딩 참조 신호를 송신하기 위한 물리 자원을 맵핑하는 구체적인 방법에 관하여 살펴본다.
사운딩 참조 신호 시퀀스 r SRS(n)는 우선 단말의 전송 전력 P SRS 를 만족하기 위하여 진폭 스케일링 인자 β SRS 가 곱해진 후, 인덱스가 (k,l) 인 자원 요소(Resource Element; RE)에 r SRS(0)부터 아래 수학식 6에 의하여 맵핑된다.
Figure 112016035800917-pct00019
여기서 k 0 는 사운딩 참조 신호의 주파수 영역 시작 지점을 지칭하며, 아래 수학식 7과 같이 정의된다.
Figure 112016035800917-pct00020
단, n b 는 주파수 위치 인덱스를 지시한다. 또한, 일반적인 상향링크 서브프레임을 위한 k'0 는 아래 수학식 8과 같이 정의되며, 상향링크 파일럿 타임 슬롯(UpPTS)를 위한 k'0 는 아래 수학식 9와 같이 정의된다.
Figure 112016035800917-pct00021
Figure 112016035800917-pct00022
수학식 8 및 수학식 9에서 k TC 는 상위 계층을 통하여 단말로 시그널링되는 전송 콤(transmissionComb) 파라미터로서, 0 또는 1의 값을 갖는다. 또한, n hf 는 제 1 하프프레임(half frame)의 상향링크 파일럿 타임 슬롯에서는 0이고, 제 2 하프프레임의 상향링크 파일럿 타임 슬롯에서는 0이다.
Figure 112016035800917-pct00023
는 아래 수학식 10과 같이 정의된 부반송파 단위로 표현된 사운딩 참조 신호 시퀀스의 길이, 즉 대역폭이다.
Figure 112016035800917-pct00024
수학식 10에서 m SRS,b 는 상향링크 대역폭
Figure 112016035800917-pct00025
에 따라 기지국으로부터 시그널링되는 값이다.
상향링크 데이터 전송 대역폭 전체로 사운딩 참조 신호를 전송할 수 있도록 단말은 사운딩 참조 신호의 주파수 도약(frequency hopping)을 수행할 수 있으며, 이러한 주파수 도약은 상위 계층으로부터 주어진 0 내지 3의 값을 갖는 파라미터 b hop 에 의하여 설정된다.
사운딩 참조 신호의 주파수 도약이 비활성화된 경우, 즉 b hop B SRS 인 경우, 주파수 위치 인덱스 n b 는 아래 수학식 11과 같이 일정한 값을 갖는다. 여기서 n RRC 는 상위 계층에서 주어지는 파라미터이다.
Figure 112016035800917-pct00026
한편, 사운딩 참조 신호의 주파수 도약이 활성화된 경우, 즉 b hop B SRS 인 경우, 주파수 위치 인덱스 n b 는 아래 수학식 12 및 수학식 13에 의하여 정의된다.
Figure 112016035800917-pct00027
Figure 112016035800917-pct00028
여기서 n SRS 는 사운딩 참조 신호를 송신한 횟수를 계산하는 파라미터이며 아래 수학식 14에 의한다.
Figure 112016035800917-pct00029
수학식 14에서 T SRS 는 사운딩 참조 신호의 주기이며, T offset 은 사운딩 참조 신호의 서브프레임 오프셋을 지칭한다. 또한, n s 는 슬롯 번호, n f 는 프레임 번호를 지칭한다.
사운딩 참조 신호의 주기 T SRS 와 서브프레임 오프셋 T offset 를 설정하기 위한 사운딩 참조 신호 설정 인덱스(I SRS)는 FDD 시스템과 TDD 시스템인지 여부에 따라 아래 표 7 내지 표 10 와 같이 정의된다. 특히 표 7은 FDD 시스템인 경우, 표 8은 TDD 시스템인 경우를 나타낸다. 또한, 아래 표 7 및 표 8은 트리거링 타입 0, 즉 주기적 SRS에 관한 주기와 오프셋 정보이다.
Figure 112016035800917-pct00030
Figure 112016035800917-pct00031
아래 표 9 및 표 10은 트리거링 타입 1, 즉 비주기적 SRS에 관한 주기와 오프셋 정보이다. 특히 표 9는 FDD 시스템인 경우, 표 10은 TDD 시스템인 경우를 나타낸다.
Figure 112016035800917-pct00032
Figure 112016035800917-pct00033
최근 무선 통신 시스템에서는, eNB가 전체 가용 자원을 하향링크 자원과 상향링크 자원으로 분할하여 듀플렉스 동작을 수행함에 있어서, 각 자원의 용도를 하향링크 자원과 상향링크 자원 중 하나로 선택하는 동작을 보다 유연하기 변경하는 기술에 관하여 논의 중이다.
상기 동적 자원 용도 변환은 하향링크 트래픽과 상향링크 트래픽의 크기가 동적으로 변화하는 상황에서 매 시점 최적의 자원 분배를 수행할 수 있다는 장점이 있다. 예를 들어, FDD 시스템은 주파수 대역을 하향링크 밴드와 상향링크 밴드로 분할하여 운영하는데, 이러한 동적 자원 용도 변환을 위해서 eNB는 RRC나 MAC 계층, 혹은 물리 계층 신호를 통하여 특정 시점에서 특정 밴드가 하향링크 자원인지 상향링크 자원인지를 지정해줄 수 있다.
특히, TDD 시스템은 전체 서브프레임을 상향링크 서브프레임과 하향링크 서브프레임으로 분할하고 각각 UE의 상향링크 송신과 eNB의 하향링크 송신으로 사용한다. 이러한 자원 분할은 일반적으로 상술한 표 1의 상향링크/하향링크 서브프레임 설정에 따라 시스템 정보의 일부로 주어질 수 있다. 물론 표 1의 상향링크/하향링크 서브프레임 설정 이외에도 새로운 상향링크/하향링크 서브프레임 설정이 추가적으로 제공될 수 있다. TDD 시스템에서 동적 자원 용도 변환을 위해서 eNB는 RRC 계층이나 MAC 계층, 혹은 물리 계층 신호를 통하여 특정 시점에서 특정 서브프레임이 하향링크 자원인지 상향링크 자원인지를 지정해줄 수 있다.
기존의 LTE 시스템에서 하향링크 자원과 상향링크 자원은 시스템 정보를 통하여 지정되며 이 시스템 정보는 불특정 다수의 UE에게 전송되어야 하는 정보이므로 동적으로 변환하는 경우에 레거시 UE들의 동작에 문제가 발생할 수 있다. 따라서 동적 자원 용도 변환에 대한 정보는 시스템 정보가 아닌, 현재 eNB에 연결을 유지하고 있는 UE들에게 새로운 시그널링, 특히 단말 특정 시그널링을 통하여 전달하는 것이 바람직하다. 이 새로운 시그널링은 동적으로 변화한 자원의 구성, 예를 들어 TDD 시스템에서 시스템 정보 상에서 지시된 것과는 상이한 상향링크/하향링크 서브프레임 설정 정보를 지시할 수도 있다.
추가적으로 이러한 새로운 시그널링에는 HARQ와 관련된 정보가 포함될 수 있다. 특히 스케줄링 메시지와 이에 상응하는 PDSCH/PUSCH 송신 시점, 그리고 이에 대한 HARQ-ACK 송신 시점으로 정의되는 HARQ 타이밍이 동적으로 변화하는 경우, 변화 시점 사이에서 HARQ 타이밍이 연속되지 못하는 문제를 해결하기 위해서, 동적으로 자원 구성이 달라지더라도 안정적인 HARQ 타이밍을 유지할 있는 HARQ 타이밍 구성 정보를 포함할 수 있다. TDD 시스템의 경우, 이 HARQ 타이밍 구성 정보는 하향링크 HARQ 타이밍 그리고/또는 상향링크 HARQ 타이밍을 정의할 때 참조하게 되는 상향링크/하향링크 서브프레임 설정으로 나타날 수 있다.
상술한 바에 따르면, 동적으로 자원 용도를 변화하는 시스템에 접속한 UE는 자원 구성에 대한 여러 가지 정보를 수신하게 된다. 특히 TDD 시스템의 경우, 한 UE는 특정 시점에서 아래의 정보를 획득할 수 있다.
1) 시스템 정보에서 지시한 상향링크/하향링크 서브프레임 설정
2) 별도의 시그널링을 통하여 각 서브프레임의 용도를 지시하는 목적으로 전달된 상향링크/하향링크 서브프레임 설정
3) 하향링크 HARQ 타이밍, 즉 특정 시점에서 수신한 PDSCH에 대한 HARQ-ACK을 언제 송신할 것인지를 정의하기 위해서 전달된 상향링크/하향링크 서브프레임 설정
4) 상향링크 HARQ 타이밍, 즉 특정 시점에서 수신한 상향링크 그랜트에 대한 PUSCH를 언제 송신할 것인지 그리고 특정 시점에서 송신한 PUSCH에 대한 PHICH를 언제 수신할 것인지를 정의하기 위해서 전달된 상향링크/하향링크 서브프레임 설정
특정 UE가 동적으로 자원 용도를 변화하는 eNB에 접속하게 되면 해당 eNB는 시스템 정보를 통해서는 가급적 상향링크 서브프레임이 많은 상향링크/하향링크 서브프레임 설정을 지정하도록 동작하는 경우가 많을 수 있다. 이는 시스템 정보 상에서 하향링크 서브프레임으로 설정된 서브프레임을 상향링크 서브프레임으로 동적으로 변화하는데 제약이 따를 수 있기 때문이다. 예를 들어, 레거시 UE들은 시스템 정보를 통하여 하향링크 서브프레임으로 규정된 서브프레임에서 항상 CRS의 송신을 기대하고 측정하고 있으므로 이를 동적으로 상향링크 서브프레임으로 변환하는 경우 레거시 UE의 CRS 측정에 큰 오류가 생길 수 있기 때문이다. 따라서, eNB는 시스템 정보 상으로는 상향링크 서브프레임을 많이 설정하되, 하향링크 트래픽이 증가하는 경우 상향링크 서브프레임 중 일부를 하향링크 서브프레임으로 동적으로 변화하여 운영하는 것이 바람직하다.
이러한 원리에 따라 동작하는 TDD 시스템에서, UE는 특정 시점에서 시스템 정보로는 상향링크/하향링크 서브프레임 설정 #0를 지시 받지만, 실제 각 서브프레임에서의 자원 용도는 상향링크/하향링크 서브프레임 설정 #1이 되도록 지시 받을 수 있다.
또한, 하향링크 HARQ 타이밍의 기준은 상향링크/하향링크 서브프레임 설정 #2가 될 수도 있다. 이는, 상향링크 서브프레임이 적고 하향링크 서브프레임이 많은 상향링크/하향링크 서브프레임 설정을 하향링크 HARQ 타이밍의 기준으로 하여 하향링크 서브프레임이 최대가 되어 HARQ-ACK을 전송하기에 가장 어려운 상황을 만들고, 이에 맞추어 하향링크 HARQ 타이밍을 운영하게 되면 동적으로 상향링크/하향링크 서브프레임 설정을 변환하여도 HARQ 타이밍은 지속될 수 있기 때문이다. 마찬가지 원리로 상향링크 HARQ 타이밍의 기준은 상향링크/하향링크 서브프레임 설정 #0와 같이 상향링크 서브프레임이 많은 상향링크/하향링크 서브프레임 설정이 될 수 있다.
한편, 상술한 바와 같이, 단말의 상향링크 전송 전력 제어에서는, 개방 루프 전력 제어 파라미터(Open Loop Power Control, OLPC)와 폐쇄 루프 전력 제어 파라미터(Closed Loop Power Control, CLPC)를 포함한다. 전자는 단말이 속하는 셀의 기지국으로부터의 하향링크 신호 감쇄를 추정하고 이를 보상하는 형태로 전력 제어를 하기 위한 인자이다. 예를 들어, 단말에서부터 그 단말이 연결된 기지국까지의 거리가 더 멀어져서 하향링크의 신호 감쇄가 크면 상향링크의 전송 전력을 더 높이는 방식으로 상향링크 전력을 제어한다. 후자는 기지국에서 상향링크 전송 전력을 조절하는데 필요한 정보(예를 들어, 제어 신호)를 직접 전달하는 방식으로 상향링크 전력을 제어한다.
하지만 이러한 종래의 상향링크 전력을 제어하는 방법은 상기 동적으로 자원 용도를 변환하는 eNB에 접속된 UE의 경우와 같은 상황을 고려하지 않은 것으로서, 만일 상기 동적 자원 용도 변환이 적용된 상향링크 서브프레임에서 특정 상향링크 송신이 이루어졌지만 종래의 전력제어 방식을 그대로 적용하면, 인접 셀의 하향링크 송신 등으로 인하여 간섭 환경이 크게 변화하는 이유 등으로 인해 심각한 상향링크 송신 성능 열화를 초래할 수 있다.
이와 같은 이유로, 최근 LTE 시스템에서는 다수 개의 서브프레임 세트를 지정하고 각 서브프레임 세트 별로 상이한 전력 제어 방식을 적용하는 방식이 논의 중이다. 상기 다수 개의 서브프레임 세트 정보는 RRC 시그널링과 같은 상위 계층 신호를 통해 UE에게 제공될 수 있다. 특히, 다른 용도로 사용 중인 서브프레임 세트 정보와 연동되어 제공될 수도 있고, 독립적으로 RRC 시그널링될 수도 있다.
설명의 편의상 이하에서는, 상기 다수 개의 서브프레임 세트가 총 2개가 시그널링되는 상황을 가정하며, 이 때 2개의 서브프레임 세트를 각각 서브프레임 세트 #1 및 서브프레임 세트 #2로 칭하기로 한다. 서브프레임 세트 #1 및 서브프레임 세트 #2는 각각 특정 L 비트 사이즈의 서브프레임 비트맵 형태로 정의될 수 있다 특히, 상기 서브프레임 세트 #1 및 서브프레임 세트 #2는 각각 정적 서브프레임(Static SF) 및 동적 서브프레임(Flexible SF)에 대응할 수 있다.
도 8은 하나의 무선 프레임을 서브프레임 세트 #1와 서브프레임 세트 #2로 구분한 예이다.
도 8을 참조하면, 정적 서브프레임이란 동적 자원 용도 변환이 적용되지 않는 종래와 같은 서브프레임들을 의미할 수 있다. 또한, 동적 서브프레임이란 상기 동적 자원 용도 변환이 적용되는 또는 적용될 수 있는 서브프레임들을 의미할 수 있다. 즉, 이러한 동적 서브프레임에서는 정적 서브프레임에서와 달리 UE의 상향링크 송신 시의 간섭 환경이 크게 달라질 수 있으므로, 별도의 상향링크 전력제어 방식이 적용될 수 있도록 하는 것이 바람직하다.
특히, 도 8에서는 셀 A(서빙 셀)과 셀 B(인접 셀)이 각각 시스템 정보를 통해서 상향링크/하향링크 서브프레임 설정 #0(즉, DSUUUDSUUU)을 모두 설정한 상태에서, 셀 B가 #(n+3), #(n+4), #(n+8), 및 #(n+9)번째 서브프레임들을 하향링크 서브프레임으로 용도 변경하는 경우를 예시하였다.
이러한 경우 셀 A는 셀 A에 속한 UE(들)에게 도 8과 같이 서브프레임 세트 #1과 서브프레임 세트 #2를 설정해주고, 각 서브프레임 세트 별로 상이한 전력 제어 방식을 적용하도록 할 수 있다. 즉, 셀 간 협력이 가능하다면, 특정 셀이 동적 자원 용도 변환을 적용할 때에 주변 셀들이 이를 고려하여 서브프레임 세트들을 적절히 설정하는 것이 가능하며, 혹은 사전에 셀 간에 상기 소정의 서브프레임 세트 설정들만이 적용되는 것으로 규정하여 동적 자원 용도 변환은 특정 서브프레임 세트(예를 들어, 도 8의 서브프레임 세트 #2)에서만 적용할 수 있다.
구체적으로, 특정 서브프레임 세트(예를 들어, 서브프레임 세트 #2로서 동적 서브프레임)에서의 종래의 PUSCH PC가 또 다른 특정 서브프레임 세트(예를 들어, 서브프레임 세트 #1로서 정적 서브프레임)에서도 그대로 적용한다면, 서브프레임 세트 별로의 큰 간섭 환경의 차이에 의해 성능 열화가 발생할 수 있으므로, 각 서브프레임 세트 별로 분리된 PUSCH 전력 제어 프로세스를 적용하는 것이 바람직하다.
전술한 내용을 바탕으로, 본 발명에서는 다수의 셀들이 자신들의 시스템 부하 상태에 따라서 무선 자원의 용도를 동적으로 변경할 경우에, 단말의 상향링크 데이터 정보 채널(PUSCH)/상향링크 제어 정보 채널(PUCCH)의 전송 전력을 효율적으로 제어/운영하는 방법을 설명한다.
이하에서는 설명의 편의를 위해, 3GPP LTE 시스템을 기반으로 본 발명을 설명한다. 하지만, 본 발명이 적용되는 시스템의 범위는 3GPP LTE 시스템 외에 다른 시스템으로도 확장 가능하다.
나아가, 본 발명의 실시예들은 반송파 집성 기법(CA)이 적용된 환경 하에서 특정 셀(Cell) 혹은 컴포넌트 케리어(CC) 상의 자원을, 시스템의 부하 상태에 따라 동적으로 변경할 경우에도 확장 적용 가능하다.
또한, 본 발명의 실시예들은 TDD 시스템 혹은 FDD 시스템 하에서 무선 자원의 용도를 동적으로 변경할 경우에도 확장 적용 가능하다. 이하에서는 본 발명에 대한 설명의 편의를 위해서 TDD 시스템 환경 하에서 각각의 셀들이 자신의 시스템 부하 상태에 따라 기존 무선 자원의 용도를 동적으로 변경하는 상황을 가정하였다.
상술한 내용에 따르면, 개방 루프 파라미터(Open-Loop Control Parameter)는 PO_PUSCH,c(j)와 αc(j)이며, 폐쇄 루프 파라미터(Closed-Loop Control Parameter)는 fc(i)와 ΔTF,c(i)이다. 또한, 기존 상향링크 데이터 채널의 전력 제어는 (상위 계층 시그널 관련 파라미터인) "Accumulation-enabled" 의 설정에 따라 수신된 폐쇄 루프 파라미터(즉, fc(i))의 누적 연산 모드(Accumulative TPC command) 혹은 비누적 연산 모드(Absolute TPC command)로 결정됨을 알 수 가 있다.
특히, 특정 서브프레임 시점(즉, SF #i)에서 전송되는 상향링크 데이터 채널(PUSCH)의 전송 전력을 결정할 때에, 만약 상향링크 데이터 채널의 전송 전력이 이미 단말의 최대 전송 전력 값(즉, PCMAX,c(i))에 도달해 있는 경우에는, 해당 특정 서브프레임 시점(즉, SF #i)의 상향링크 데이터 채널 전송과 연동된 스케줄링 정보(UL grant) 수신 시점을 포함하여 이전에 수신한 양(Positive)의 값의 폐쇄 루프 파라미터(즉, δPUSCH,c(i-KPUSCH)) 혹은 TPC(Transmission Power Control) 명령들을 누적 연산하지 않도록 설정되어 있다. 또한, 특정 서브프레임 시점(즉, SF #i)에서 전송되는 상향링크 데이터 채널(PUSCH)의 전송 전력을 결정할 때에 만약 상향링크 데이터 채널의 전송 전력이 이미 단말의 최소 전송 전력 값에 도달해 있는 경우에는, 해당 특정 서브프레임 시점(즉, SF #i)의 상향링크 데이터 채널 전송과 연동된 스케줄링 정보(UL grant) 수신 시점을 포함하여, 이전에 수신한 음(Negative)의 값의 폐쇄 루프 파라미터(즉, δPUSCH,c(i-KPUSCH)) 혹은 TPC 명령들을 누적 연산하지 않도록 설정되어 있다.
나아가, 상술한 바와 같이 TDD 시스템에서 상향링크 데이터 채널(PUSCH)의 동적인(Dynamic) 전력 제어는 상향링크 스케줄링 정보(UL grant)가 수신되는 (사전에 정의된) 서브프레임 시점들 상에서 수신되는 DCI 포맷 0/4 혹은 DCI 포맷 3/3A의 TPC 필드를 기반으로 수행된다.
인접 셀(Neighbor Cell)이 무선 자원 용도의 동적 변경 동작을 수행할 경우, 특정 셀(예, Serving Cell)의 임의의 시점(즉, SF #n)의 상향링크 서브프레임에는 인접 셀이 해당 시점의 서브프레임을 어떠한 용도로 사용하는지에 따라 다른 형태의 간섭이 들어오게 된다.
예를 들어, 만약 인접 셀이 해당 시점(즉, SF #n)의 서브프레임을 하향링크 용도로 (재)변경하여 사용한다면, 특정 셀의 동일 시점(즉, SF #n)의 상향링크 서브프레임 상에는 하향링크 간섭(이하, I_DU)이 들어오게 된다. 여기서, 특정 셀의 동일 시점의 상향링크 서브프레임은 상대적으로 높은 IoT 특성을 가지게 된다. 반면에, 만약 인접 셀이 해당 시점(즉, SF #n)의 서브프레임을 상향링크 용도로 (재)변경하여 사용한다면, 특정 셀의 동일 시점(즉, SF #n)의 상향링크 서브프레임 상에는 상향링크 간섭(즉, I_UU)이 들어오게 된다(여기서, 특정 셀의 동일 시점의 상향링크 서브프레임은 상대적으로 낮은 IoT 특성을 가지게 됨).
따라서, 특정 셀(예, Serving Cell)은 상이한 간섭 특성(즉, I_DU, I_UU)을 가지는 서브프레임 집합들을 고려하여 서브프레임-종속적 상향링크 전력 제어(Subframe-dependent Uplink Power Control, 이하, SD_PC) 동작을 설정해줄 수 가 있다. 여기서, SD_PC는 i)상이한 간섭 특성을 가지는 서브프레임 집합 별로 독립적인(예를 들어, 서로 상이한) 개방 루프 전력 제어 파라미터(Open-Loop Power Control Parameter, OLPC)(예, Po(즉, A semi-static base level), α(즉, An open-loop path-loss compensation component))를 설정(혹은 시그널링)해주는 동작 그리고/혹은 ii)상이한 간섭 특성을 가지는 서브프레임 집합 별로 폐쇄 루프 전력 제어 파라미터(Closed-Loop Power Control Parameter, CLPC)(예, Accumulative TPC command, Absolute TPC command, A component dependent on the MCS)의 누적(Accumulation)을 분리시키는 동작 등을 포함한다. 또한, 서브프레임-종속적 상향링크 전력 제어 동작을 설정해줌으로써, 특정 셀은 상이한 간섭 특성을 가지는 상향링크 서브프레임들에 상관없이 안정적인 상향링크 통신 혹은 동일한 품질의 상향링크 통신을 보장해줄 수 가 있다.
특정 셀(Serving Cell)이 자신과 상향링크 통신을 수행하는 단말(예, Serving UE)에게 서브프레임-종속적 상향링크 전력 제어 모드(이하, SD_PC 모드)를 설정(혹은 시그널링) 해주는 이유는, 인접 셀이 무선 자원 용도의 동적 변경 동작을 수행함으로써 특정 셀의 상향링크 서브프레임 집합 별로 상이한 간섭 특성(즉, I_DU, I_UU)이 나타나기 때문이다. 다시 말하면, 특정 셀의 관점에서 SD_PC 모드 설정(혹은 시그널링) 여부는 외부 간섭의 변화(예를 들어, 무선 자원 용도의 동적 변경을 수행하는 인접 셀의 존재 유무)에 따라 상이할 수 가 있다.
또한, 단말(Serving UE)에 대하여 SD_PC 모드 설정(혹은 시그널링) 여부에 따라, 독립적인 상향링크 전력 제어 프로세스(Uplink Power Control Process, UL PC Process)가 적용되는 상향링크 서브프레임 집합의 개수가 변경된다. 여기서, SD_PC 모드가 설정되지 않았을 경우에는 모든 상향링크 서브프레임들이 하나의 집합으로 간주되며 기존과 동일한 하나의 상향링크 전력 제어 프로세스가 적용될 수 가 있다. 반면에 SD_PC 모드가 설정되었을 경우에는 특정 셀이 시그널링해주는 상향링크 전력 제어 서브프레임 집합(Uplink Power Control Subframe Set, UL PC SF SET) 설정 정보에 따라, 최대 두 개의 상향링크 서브프레임 집합이 존재하여, 각각의 상향링크 서브프레임 집합 별로 독립적인 상향링크 전력 제어 프로세스가 적용될 수 있다.
이하에서는 본 발명에 따라, SD_PC 모드가 설정된 단말이 SD_PC 모드가 설정되기 이전(즉, Non-SD_PC 모드)의 상향링크 통신 관련 폐쇄 루프 전력 제어(CLPC) 파라미터(예, fc(i))의 누적 값을 효율적으로 반영/승계 하는 방법, 혹은 SD_PC 모드가 설정된 상태에서 상향링크 서브프레임 집합의 개수가 1 개에서 2개로 변경(혹은 시그널링)되는 경우에 이전(즉, 상향링크 서브프레임 집합의 개수가 1 개로 설정된 경우)의 상향링크 통신 관련 폐쇄 루프 전력 제어(CLPC) 파라미터(예, fc(i))의 누적 값을 효율적으로 반영/승계 하는 방법을 설명한다. 즉, 단말이 서빙 셀 c 로부터 두 개의 상향링크 서브프레임 집합에 관한 파라미터가 설정되는 경우, PUSCH 전력 제어 조정 상태의 값에 대하여 설명한다.
이하에서는, 설명의 편의를 위해서 SD_PC 모드가 설정되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2 개로 설정된 경우에, I_UU의 간섭 특성을 가지는 상향링크 서브프레임 집합을 "SD_PC_SET0" (예, 일종의 정적 상향링크 서브프레임 집합(Static UL SF Set))로 명명하고, I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합을 "SD_PC_SET1" (예, 일종의 유동적 상향링크 서브프레임 집합(Flexible UL SF Set))로 명명한다.
또한, 본 발명의 실시예들은 SD_PC 모드 설정 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써, 형성된 상향링크 서브프레임 집합(즉, SD_PC_SET0, SD_PC_SET1) 별로 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적을 분리시키는 경우(혹은 모드)에만 한정적으로 적용되도록 설정될 수 도 있다. 나아가, SD_PC 모드가 설정되지 않은 상태는, 상향링크 전력 제어 동작의 관점에서 SD_PC 모드가 설정된 상태에서 상향링크 서브프레임 집합의 개수가 1개로만 지정된 경우와 동일하게 동작될 수 가 있다. 따라서, 이하 본 발명의 실시예들은 SD_PC 모드가 설정된 상태에서 상향링크 서브프레임 집합의 개수가 i)1 개에서 2개로 변경되거나 ii)1 개에서 2개로 시그널링되는 경우에도 확장 적용이 가능하다.
<제 1 실시예>
본 발명의 제 1 실시예에 따르면, SD_PC 모드가 설정되기 이전 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 설정된 경우의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값은, SD_PC 모드 설정으로 인하여 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 변경됨으로써 형성된 SD_PC_SET0과 SD_PC_SET1에 모두 반영/승계 되지 않도록 설정될 수 가 있다.
즉, 본 발명의 제 1 실시예에 따르는 경우, SD_PC모드가 설정되기 이전의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이 SD_PC모드 설정으로 인해 초기화/리셋될 수 있으며, 또한 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 설정된 경우의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터의 누적 값이 SD_PC 모드에서 상향 링크 서브프레임 집합의 개수가 2개로 변경됨으로써 초기화/리셋 될수 있다.
<제 2 실시예>
본 발명의 제 2 실시예에 따르면, SD_PC 모드가 설정되기 이전 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 설정된 경우의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값은, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 변경됨으로써 형성된 SD_PC_SET0(즉, I_UU의 간섭 특성을 가지는 상향링크 서브프레임 집합)에만 반영/승계되도록 설정될 수 가 있다.
즉, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 변경됨으로써 형성된 SD_PC_SET1(즉, I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합)에 대하여, SD_PC 모드가 설정되기 이전 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 설정된 경우의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이, SD_PC 모드 설정으로 인해 초기화/리셋(예, 0)되거나, 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 변경됨으로써 초기화/리셋될 수 있다.
나아가, SD_PC 모드가 설정되기 이전 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 설정된 경우의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 변경됨으로써 형성된 SD_PC_SET0에 반영/승계 될 경우에, 사전에 정의된(혹은 시그널링)된 가중치가 곱해진 결과 값이 반영/승계 되도록 설정될 수 도 있다.
또 다른 예로, SD_PC 모드가 설정되기 이전 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 설정된 경우의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 변경됨으로써 형성된 SD_PC_SET1(즉, I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합)에만 반영/승계 되도록 설정될 수 도 있다.
나아가, SD_PC 모드가 설정되기 이전 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 설정된 경우의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 변경됨으로써 형성된 SD_PC_SET1에 반영/승계 될 경우에, 사전에 정의된(혹은 시그널링)된 가중치가 곱해진 결과 값이 반영/승계 되도록 설정될 수 도 있다.
<제 3 실시예>
본 발명의 제 3 실시예에 따르면, SD_PC 모드가 설정되기 이전 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 설정된 경우의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값은, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 변경됨으로써 형성된 SD_PC_SET0과 SD_PC_SET1에 모두 반영/승계 되도록 설정될 수 가 있다.
여기서, SD_PC 모드가 설정되기 이전 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 설정된 경우의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 변경됨으로써 형성된 SD_PC_SET0과 SD_PC_SET1에 반영/승계 될 경우에, 상이한 간섭 특성을 가지는 상향링크 서브프레임 집합(즉, SD_PC_SET0, SD_PC_SET1) 별로 사전에 정의된(혹은 시그널링)된 i)상이한 가중치 혹은 ii)동일한 가중치들이 곱해진 결과 값들이 반영/승계 되도록 설정될 수 도 있다.
<제 4 실시예>
본 발명의 제 4 실시예에 따르면, SD_PC 모드가 설정되기 이전 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 설정된 경우의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 변경됨으로써 형성된 SD_PC_SET0(즉, I_UU의 간섭 특성을 가지는 상향링크 서브프레임 집합)에만 반영/승계 되는 동작은, 해당 SD_PC_SET0 관련 적어도 일부(즉, 일부 혹은 모든) 개방 루프 전력 제어(OLPC) 파라미터들(예, PO_UE_PUSCH,c, PO_NOMINAL_PUSCH,c, αc)이 SD_PC 모드가 설정되기 이전의 값들과 동일하게 유지되거나, 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 설정된 경우의 값들과 동일하게 유지되는 경우에만 한정적으로 적용되도록 설정될 수 가 있다.
또 다른 예로, SD_PC 모드가 설정되기 이전 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 설정된 경우의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 변경됨으로써 형성된 SD_PC_SET1(즉, I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합)에만 반영/승계 되는 동작은, 해당 SD_PC_SET1 관련 적어도 일부(즉, 일부 혹은 모든) 개방 루프 전력 제어(OLPC) 파라미터들(예, PO_UE_PUSCH,c, PO_NOMINAL_PUSCH,c, αc)이 SD_PC 모드가 설정되기 이전의 값들과 동일하게 유지되거나, 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 설정된 경우의 값들과 동일하게 유지되는 경우에만 한정적으로 적용되도록 설정될 수 가 있다.
<제 5 실시예>
본 발명의 제 5 실시예에 따르면, SD_PC 모드가 설정되기 이전 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 설정된 경우의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 변경됨으로써 형성된 간섭 특성이 상이한 상향링크 서브프레임 집합들 중에 가장 낮거나 혹은 상대적으로 낮은 서브프레임 집합 인덱스(Subframe Set Index)(예, 0)를 가지는 상향링크 서브프레임 집합에만 반영/승계 되도록 설정될 수 가 있다. 예를 들어, I_UU의 간섭 특성을 가지는 상향링크 서브프레임 집합에 가장 낮은 서브프레임 집합 인덱스(예, 0)를 할당하도록 설정되거나, 혹은 I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합에 가장 낮은 서브프레임 집합 인덱스(예, 0)를 할당하도록 설정될 수 가 있다.
또 다른 일례로, SD_PC 모드가 설정되기 이전 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 설정된 경우의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 변경됨으로써 형성된 간섭 특성이 상이한 상향링크 서브프레임 집합들 중에 가장 높거나 혹은 상대적으로 높은 서브프레임 집합 인덱스(Subframe Set Index)(예, 1)를 가지는 상향링크 서브프레임 집합에만 반영/승계 되도록 설정될 수 가 있다. 예를 들어, I_UU의 간섭 특성을 가지는 상향링크 서브프레임 집합에 가장 높은 서브프레임 집합 인덱스(예, 1)를 할당하도록 설정되거나, 혹은 I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합에 가장 높은 서브프레임 집합 인덱스(예, 1)를 할당하도록 설정될 수 가 있다.
<제 6 실시예>
본 발명의 제 6 실시예에 따르면, SD_PC 모드가 설정되기 이전 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 설정된 경우의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이 승계/반영 되는 i)상향링크 서브프레임 집합 인덱스 혹은 ii)상향링크 전력 제어 프로세스(UL PC Process) 인덱스(여기서, 특정 하나의 상향링크 전력 제어 프로세스 인덱스는 특정 하나의 상향링크 서브프레임 집합 인덱스와 연동되어 있음)를 기지국(혹은 셀)이 단말에게 알려주도록(혹은 시그널링해주도록) 설정될 수 가 있다.
여기서, 본 제 6 실시예에 따른 상기 정보는 (사전에 정의된 주기를 기반으로 전송되는) 용도 변경 메시지(Reconfiguration Message) 상에 포함되어 전송되도록 설정되거나 혹은 사전에 정의된 (추가적인) 시그널(예, 상위 계층 시그널 혹은 물리 계층 시그널)을 통해서 전송되도록 설정될 수 가 있다.
이하에서는 본 발명에 따라, SD_PC 모드가 설정된 단말이 SD_PC 모드가 해제(Disable)되었을 경우에 특정 상향링크 서브프레임 집합(예, SD_PC_SET1 그리고/혹은 SD_PC_SET2) 관련 폐쇄 루프 전력 제어(CLPC) 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값을 효율적으로 반영/승계 하는 방법, 혹은 SD_PC 모드가 설정된 상태에서 상향링크 서브프레임 집합의 개수가 2 개에서 1개로 변경(혹은 시그널링)되는 경우에 상향링크 서브프레임 집합의 개수가 2개로 설정된 경우의 특정 상향링크 서브프레임 집합(예, SD_PC_SET1 그리고/혹은 SD_PC_SET2) 관련 폐쇄 루프 전력 제어(CLPC) 파라미터(즉, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값을 효율적으로 반영/승계 하는 방법을 설명한다.
또한, 이하의 실시예들은 SD_PC 모드 설정으로 인해 형성되거나, 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 상향링크 서브프레임 집합(예, SD_PC_SET0, SD_PC_SET1) 별로 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적을 분리시키는 경우(혹은 모드)에만 한정적으로 적용되도록 설정될 수 도 있다. 나아가, SD_PC 모드가 해제되는 상태는, 상향링크 전력 제어 동작의 관점에서 SD_PC 모드가 설정된 상태에서 상향링크 서브프레임 집합의 개수가 2 개에서 1 개로 변경(혹은 시그널링)되는 경우와 동일하게 동작될 수 가 있다. 따라서, 본 발명의 실시예들은 SD_PC 모드가 설정된 상태에서 상향링크 서브프레임 집합의 개수가 i)2 개에서 1개로 변경되거나 혹은 i)2 개에서 1개로 시그널링되는 경우에도 확장 적용이 가능하다.
<제 7 실시예>
본 발명의 제 7 실시예에 따르면, SD_PC 모드 설정되어 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 SD_PC_SET0과 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값들이 모두 반영/승계 되지 않도록 설정될 수 가 있다.
즉, 본 발명의 제 7 실시예에 따르면, SD_PC 모드 설정으로 인해 형성되거나, 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 SD_PC_SET0과 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(즉, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값들이, SD_PC 모드 해제(Disable)로 인해 초기화/리셋되거나, 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 변경됨으로써 초기화/리셋될 수 있다.
<제 8 실시예>
본 발명의 제 8 실시예에 따르면, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 SD_PC_SET0 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i))의 누적 값만이 반영/승계 되도록 설정될 수 가 있다.
즉, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 SD_PC_SET1(즉, I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합)에 대하여, SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET1,c(i))의 누적 값이 SD_PC 모드 해제(Disable)로 인해 초기화/리셋되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 변경됨으로써 초기화/리셋될 수 있다. 나아가, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 SD_PC_SET0 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i))의 누적 값만이 반영/승계 될 경우에 사전에 정의된(혹은 시그널링)된 가중치가 곱해진 결과 값이 반영/승계 되도록 설정될 수 도 있다.
또 다른 일례로 SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET1,c(i))의 누적 값만이 반영/승계 되도록 설정될 수 가 있다. 나아가, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET1,c(i))의 누적 값만이 반영/승계 될 경우에 사전에 정의된(혹은 시그널링)된 가중치가 곱해진 결과 값이 반영/승계 되도록 설정될 수 도 있다.
<제 9 실시예>
본 발명의 제 9 실시예에 따르면, 사전에 정의된 설정/규칙/함수를 기반으로, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 SD_PC_SET0과 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값들이 비율적(Proportionally)으로 반영/승계 되도록 설정될 수 가 있다.
여기서, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 SD_PC_SET0과 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(즉, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값들의 i)산술/기하/가중 평균(Average) 값, 혹은 ii)최소 값, 혹은 iii)최대 값이 반영/승계 되도록 설정될 수 가 있다.
<제 10 실시예>
본 발명의 제 10 실시예에 따르면, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 SD_PC_SET0과 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값들 중에 최대 값이 반영/승계 되도록 설정될 수 가 있다. 또는, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 SD_PC_SET0과 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값들 중에 최소 값이 반영/승계 되도록 설정될 수 도 있다.
<제 11 실시예>
본 발명의 제 11실시예에 따르면, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 SD_PC_SET0 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i))의 누적 값만이 반영/승계 되도록 하는 동작은, SD_PC 모드 해제(Disable) 이후 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 변경된 이후에 해당 SD_PC_SET0 관련 적어도 일부(즉, 일부 혹은 모든) 개방 루프 전력 제어(OLPC) 파라미터들(예, PO_UE_PUSCH,c, PO_NOMINAL_PUSCH,c, αc)과 동일한 값으로 개방 루프 전력 제어 파라미터들이 설정(혹은 유지)될 경우에만 한정적으로 적용되도록 설정될 수 가 있다.
또는, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET1,c(i))의 누적 값만이 반영/승계 되도록 하는 동작은, SD_PC 모드 해제(Disable) 이후 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 1개로 변경된 이후에 해당 SD_PC_SET1 관련 적어도 일부(즉, 일부 혹은 모든) 개방 루프 전력 제어(OLPC) 파라미터들(예, PO_UE_PUSCH,c, PO_NOMINAL_PUSCH,c, αc)과 동일한 값으로 개방 루프 전력 제어 파라미터들이 설정(혹은 유지)될 경우에만 한정적으로 적용되도록 설정될 수 가 있다.
<제 12 실시예>
본 발명의 제 12 실시예에 따르면, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 간섭 특성이 상이한 상향링크 서브프레임 집합들 중에, 가장 낮거나 혹은 상대적으로 낮은 서브프레임 집합 인덱스(Subframe Set Index)(예, 0)를 가지는 상향링크 서브프레임 집합 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값만이 반영/승계 되도록 설정될 수 가 있다. 예를 들어, I_UU의 간섭 특성을 가지는 상향링크 서브프레임 집합에 가장 낮은 서브프레임 집합 인덱스(예, 0)이 할당되거나 혹은 I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합에 가장 낮은 서브프레임 집합 인덱스(예, 0)이 할당되도록 설정될 수 가 있다.
또는, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 간섭 특성이 상이한 상향링크 서브프레임 집합들 중에, 가장 높거나 혹은 상대적으로 높은 서브프레임 집합 인덱스(Subframe Set Index)(예, 1)를 가지는 상향링크 서브프레임 집합 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값만이 반영/승계 되도록 설정될 수 가 있다. 예를 들어, I_UU의 간섭 특성을 가지는 상향링크 서브프레임 집합에 가장 높은 서브프레임 집합 인덱스(예, 1)이 할당되거나 혹은 I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합에 가장 높은 서브프레임 집합 인덱스(예, 1)이 할당되도록 설정될 수 가 있다.
<제 13 실시예>
본 발명의 제 13 실시예에 따르면, SD_PC 모드 설정으로 인해 형성되거나 혹은 SD_PC 모드에서 상향링크 서브프레임 집합의 개수가 2개로 설정됨으로써 형성된 SD_PC_SET0과 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값들 중에, 승계/반영 되는 폐쇄 루프 전력 제어 파라미터의 누적 값 관련 i)상향링크 서브프레임 집합 인덱스 혹은 ii)상향링크 전력 제어 프로세스(UL PC Process) 인덱스(즉, 특정 하나의 상향링크 전력 제어 프로세스 인덱스는 특정 하나의 상향링크 서브프레임 집합 인덱스와 연동되어 있음)를 기지국(혹은 셀)이 단말에게 알려주도록(혹은 시그널링해주도록) 설정될 수 가 있다.
여기서, 본 실시예에 따른 정보는 (사전에 정의된 주기를 기반으로 전송되는) 용도 변경 메시지(Reconfiguration Message) 상에 포함되어 전송되도록 설정되거나 혹은 사전에 정의된(추가적인) 시그널(예, 상위 계층 시그널 혹은 물리 계층 시그널)을 통해서 전송되도록 설정될 수 가 있다.
이하에서는 본 발명에 따라, SD_PC 모드가 설정된 상태에서 서브프레임 집합(예, SD_PC_SET0, SD_PC_SET1)별 폐쇄 루프 전력 제어(CLPC) 파라미터(예, fc(i))의 누적 분리(Separate Accumulation)가 해제(Disable)(즉, 서로 다른 상향링크 서브프레임 집합이 공통된 폐쇄 루프 전력 제어 파라미터(즉, fc(i))의 누적을 가정) 되었을 경우에, 특정 상향링크 서브프레임 집합(예, SD_PC_SET1 그리고/혹은 SD_PC_SET2) 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값을 효율적으로 반영/승계 하는 방법을 설명한다.
이하에서는 설명의 편의를 위해서 서브프레임 집합 별 폐쇄 루프 전력 제어(CLPC) 파라미터의 누적 분리 해제를 "SEPERATE_ACCUMULATION-DISABLE" 로 명명한다. 또한, 서브프레임 집합 별 폐쇄 루프 전력 제어(CLPC) 파라미터의 누적 분리 설정(Enable)을 "SEPERATE_ACCUMULATION-ENABLE" 로 명명한다.
<제 14 실시예>
본 발명의 제 14 실시예에 따르면, SD_PC_SET0과 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값들이 모두 반영/승계 되지 않도록 설정될 수 가 있다. 즉, SD_PC_SET0과 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(즉, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값들이 SEPERATE_ACCUMULATION-DISABLE로 인해 초기화/리셋 되는 것으로 동작할 수 가 있다.
<제 15 실시예>
본 발명의 제 15 실시예에 따르면, SD_PC_SET0 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i))의 누적 값만이 반영/승계 되도록 설정될 수 가 있다. 즉, SD_PC_SET1(즉, I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합)에 대하여 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET1,c(i))의 누적 값이 SEPERATE_ACCUMULATION-DISABLE로 인해 초기화/리셋될 수 있다. 나아가, SD_PC_SET0 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i))의 누적 값만이 반영/승계 될 경우에 사전에 정의된(혹은 시그널링)된 가중치가 곱해진 결과 값이 반영/승계 되도록 설정될 수 도 있다.
또는, SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET1,c(i))의 누적 값만이 반영/승계 되도록 설정될 수 가 있다. 이러한 경우에도, SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET1,c(i))의 누적 값만이 반영/승계될 경우에 사전에 정의된(혹은 시그널링)된 가중치가 곱해진 결과 값이 반영/승계 되도록 설정될 수 도 있다.
<제 16 실시예>
본 발명의 제 16 실시예에 따르면, 사전에 정의된 설정/규칙/함수를 기반으로 SD_PC_SET0과 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값들이 비율적(Proportionally)으로 반영/승계 되도록 설정될 수 가 있다. 예를 들어, SD_PC_SET0과 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값들의 i)산술/기하/가중 평균(Average) 값 혹은 ii)최소 값 혹은 iii)최대 값이 반영/승계 되도록 설정될 수 가 있다.
<제 17 실시예>
본 발명의 제 17 실시예에 따르면, SD_PC_SET0과 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값들 중에 최대 값이 반영/승계 되도록 설정될 수 가 있다. 또는, SD_PC_SET0과 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값들 중에 최소 값이 반영/승계 되도록 설정될 수 가 있다.
<제 18 실시예>
본 발명의 제 18 실시예에 따르면, SD_PC_SET0 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i))의 누적 값만이 반영/승계 되도록 하는 동작은 SEPERATE_ACCUMULATION-DISABLE 이후에 해당 SD_PC_SET0 관련 적어도 일부(즉, 일부 혹은 모든) 개방 루프 전력 제어(OLPC) 파라미터들(예, PO_UE_PUSCH,c, PO_NOMINAL_PUSCH,c, αc)이 이전(즉, SEPERATE_ACCUMULATION-ENABLE)의 값들과 동일하게 유지될 경우에만 한정적으로 적용되거나 혹은 SD_PC_SET0과 SD_PC_SET1 관련 적어도 일부(즉, 일부 혹은 모든) 개방 루프 전력 제어 파라미터들이 이전(즉, SEPERATE_ACCUMULATION-ENABLE)의 값들과 동일하게 유지될 경우)에만 한정적으로 적용되도록 설정될 수 가 있다.
또 다른 일례로 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET1,c(i))의 누적 값만이 반영/승계 되도록 하는 동작은, SEPERATE_ACCUMULATION-DISABLE 이후에 해당 SD_PC_SET1 관련 적어도 일부(즉, 일부 혹은 모든) 개방 루프 전력 제어(OLPC) 파라미터들(예, PO_UE_PUSCH,c, PO_NOMINAL_PUSCH,c, αc)이 이전(즉, SEPERATE_ACCUMULATION-ENABLE)의 값들과 동일하게 유지될 경우에만 한정적으로 적용되거나, 혹은 SD_PC_SET1과 SD_PC_SET0 관련 적어도 일부(즉, 일부 혹은 모든) 개방 루프 전력 제어 파라미터들이 이전(즉, SEPERATE_ACCUMULATION-ENABLE)의 값들과 동일하게 유지될 경우에만 한정적으로 적용되도록 설정될 수 가 있다
<제 19 실시예>
본 발명의 제 19 실시예에 따르면, 간섭 특성이 상이한 상향링크 서브프레임 집합들 중에 가장 낮거나 혹은 상대적으로 낮은 서브프레임 집합 인덱스(Subframe Set Index)(예, 0)를 가지는 상향링크 서브프레임 집합 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값만이 반영/승계 되도록 설정될 수 가 있다. 예를 들어, I_UU의 간섭 특성을 가지는 상향링크 서브프레임 집합 혹은 I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합에 가장 낮은 서브프레임 집합 인덱스(예, 0)이 할당되도록 설정될 수 가 있다.
또는, 간섭 특성이 상이한 상향링크 서브프레임 집합들 중에 가장 높거나 혹은 상대적으로 높은 서브프레임 집합 인덱스(Subframe Set Index)(예, 1)를 가지는 상향링크 서브프레임 집합 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값만이 반영/승계 되도록 설정될 수 가 있다. 예를 들어, I_UU의 간섭 특성을 가지는 상향링크 서브프레임 집합 혹은 I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합에 가장 높은 서브프레임 집합 인덱스(예, 1)이 할당되도록 설정될 수 가 있다.
<제 20 실시예>
본 발명의 제 20 실시예에 따르면, SD_PC_SET0과 SD_PC_SET1 관련 폐쇄 루프 전력 제어 파라미터(예, fSD_PC_SET0,c(i), fSD_PC_SET1,c(i))의 누적 값들 중에 승계/반영되는 폐쇄 루프 전력 제어 파라미터의 누적 값 관련 i)상향링크 서브프레임 집합 인덱스 혹은 ii)상향링크 전력 제어 프로세스(UL PC Process) 인덱스(여기서, 특정 하나의 UL PC Process 인덱스는 특정 하나의 상향링크 서브프레임 집합 인덱스과 연동되어 있음)를, 기지국(혹은 셀)이 단말에게 알려주도록(혹은 시그널링해주도록) 설정될 수 가 있다. 여기서, 해당 정보는(사전에 정의된 주기를 기반으로 전송되는) 용도 변경 메시지(Reconfiguration Message) 상에 포함되어 전송되도록 설정되거나 혹은 사전에 정의된 (추가적인) 시그널(예, 상위 계층 시그널 혹은 물리 계층 시그널)을 통해서 전송되도록 설정될 수 가 있다.
이하에서는, 본 발명에 따라 SD_PC 모드가 설정된 상태에서 SEPERATE_ACCUMULATION-DISABLE에서 SEPERATE_ACCUMULATION-ENABLE로 변경되었을 때에, SEPERATE_ACCUMULATION-DISABLE 동작에서의 상향링크 통신 관련 폐쇄 루프 전력 제어(CLPC) 파라미터(예, fc(i))의 누적 값을 효율적으로 반영/승계 하는 방법을 설명한다.
<제 21 실시예>
본 발명의 제 21 실시예에 따르면, SEPERATE_ACCUMULATION-DISABLE 동작에서의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값은 SD_PC_SET0과 SD_PC_SET1에 모두 반영/승계 되지 않도록 설정될 수 가 있다. 즉, 본 실시예에 따르면, SEPERATE_ACCUMULATION-DISABLE 동작에서의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이 SEPERATE_ACCUMULATION-ENABLE로 인해 초기화/리셋될 수 있다.
<제 22 실시예>
본 발명의 제 22 실시예에 따르면, SEPERATE_ACCUMULATION-DISABLE 동작에서의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값은 SD_PC_SET0(즉, I_UU의 간섭 특성을 가지는 상향링크 서브프레임 집합)에만 반영/승계 되도록 설정될 수 가 있다.
즉, SD_PC_SET1(즉, I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합)에 대하여 SEPERATE_ACCUMULATION-DISABLE 동작에서의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이 SEPERATE_ACCUMULATION-ENABLE로 인해 초기화/리셋될 수 있다. 나아가, SEPERATE_ACCUMULATION-DISABLE 동작에서의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이 SD_PC_SET0에 반영/승계 될 경우에 사전에 정의된(혹은 시그널링)된 가중치가 곱해진 결과 값이 반영/승계 되도록 설정될 수 도 있다.
또는, SEPERATE_ACCUMULATION-DISABLE 동작에서의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값은 SD_PC_SET1(즉, I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합)에만 반영/승계 되도록 설정될 수 가 있다. 여기서, SEPERATE_ACCUMULATION-DISABLE 동작에서의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이 SD_PC_SET1에 반영/승계 될 경우에 사전에 정의된(혹은 시그널링)된 가중치가 곱해진 결과 값이 반영/승계 되도록 설정될 수 도 있다.
<제 23 실시예>
본 발명의 제 23 실시예에 따르면, SEPERATE_ACCUMULATION-DISABLE 동작에서의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값은 SD_PC_SET0과 SD_PC_SET1에 모두 반영/승계 되도록 설정될 수 가 있다.
여기서, SEPERATE_ACCUMULATION-DISABLE 동작에서의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이 SD_PC_SET0과 SD_PC_SET1에 반영/승계 될 경우에 상이한 간섭 특성을 가지는 상향링크 서브프레임 집합(즉, SD_PC_SET0, SD_PC_SET1) 별로 사전에 정의된(혹은 시그널링)된 독립된(예를 들어, 서로 상이한 혹은 서로 동일한) 가중치들이 곱해진 결과 값들이 반영/승계 되도록 설정될 수 도 있다.
<제 24 실시예>
본 발명의 제 24 실시예에 따르면, SEPERATE_ACCUMULATION-DISABLE 동작에서의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이 SD_PC_SET0(즉, I_UU의 간섭 특성을 가지는 상향링크 서브프레임 집합)에만 반영/승계 되는 동작은 SEPERATE_ACCUMULATION-ENABLE 이후에 해당 SD_PC_SET0 관련 적어도 일부(즉, 일부 혹은 모든) 개방 루프 전력 제어(OLPC) 파라미터들(예, PO_UE_PUSCH,c, PO_NOMINAL_PUSCH,c, αc)이 이전(즉, SEPERATE_ACCUMULATION-DISABLE)의 값들과 동일하게 유지될 경우에만 한정적으로 적용되거나, 혹은 SD_PC_SET0과 SD_PC_SET1 관련 적어도 일부(즉, 일부 혹은 모든) 개방 루프 전력 제어 파라미터들이 이전(즉, SEPERATE_ACCUMULATION-DISABLE)의 값들과 동일하게 유지될 경우)에만 한정적으로 적용되도록 설정될 수 가 있다.
또는, SEPERATE_ACCUMULATION-DISABLE 동작에서의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이 SD_PC_SET1(즉, I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합)에만 반영/승계 되는 동작은, SEPERATE_ACCUMULATION-ENABLE 이후에 해당 SD_PC_SET1 관련 적어도 일부(즉, 일부 혹은 모든) 개방 루프 전력 제어(OLPC) 파라미터들(예, PO_UE_PUSCH,c, PO_NOMINAL_PUSCH,c, αc)이 이전(즉, SEPERATE_ACCUMULATION-DISABLE)의 값들과 동일하게 유지될 경우에만 한정적으로 적용되거나, 혹은 SD_PC_SET1과 SD_PC_SET0 관련 적어도 일부(즉, 일부 혹은 모든) 개방 루프 전력 제어 파라미터들이 이전(즉, SEPERATE_ACCUMULATION-DISABLE)의 값들과 동일하게 유지될 경우에만 한정적으로 적용되도록 설정될 수 가 있다.
<제 25 실시예>
본 발명의 제 25 실시예에 따르면, SEPERATE_ACCUMULATION-DISABLE 동작에서의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값은, 간섭 특성이 상이한 상향링크 서브프레임 집합들 중에 가장 낮거나 혹은 상대적으로 낮은 서브프레임 집합 인덱스(Subframe Set Index)(예, 0)를 가지는 상향링크 서브프레임 집합에만 반영/승계 되도록 설정될 수 가 있다. 예를 들어, I_UU의 간섭 특성을 가지는 상향링크 서브프레임 집합 혹은 I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합에, 가장 낮은 서브프레임 집합 인덱스(예, 0)를 할당하도록 설정될 수 가 있다.
또는, SEPERATE_ACCUMULATION-DISABLE 동작에서의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값은 간섭 특성이 상이한 상향링크 서브프레임 집합들 중에 가장 높거나 혹은 상대적으로 높은 서브프레임 집합 인덱스(예, 1)를 가지는 상향링크 서브프레임 집합에만 반영/승계 되도록 설정될 수 가 있다. 예를 들어, I_UU의 간섭 특성을 가지는 상향링크 서브프레임 집합 혹은 I_DU의 간섭 특성을 가지는 상향링크 서브프레임 집합에, 가장 높은 서브프레임 집합 인덱스(예, 1)를 할당하도록 설정될 수 가 있다.
<제 26 실시예>
본 발명의 제 26 실시예에 따르면, SEPERATE_ACCUMULATION-DISABLE 동작에서의 상향링크 통신 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이 승계/반영 되는 상향링크 서브프레임 집합 인덱스 혹은 상향링크 전력 제어 프로세스(UL PC Process) 인덱스(즉, 특정 하나의 UL PC Process 인덱스는 특정 하나의 상향링크 서브프레임 집합 인덱스과 연동되어 있음)를 기지국(혹은 셀)이 단말에게 알려주도록(혹은 시그널링해주도록) 설정될 수 가 있다.
여기서, 해당 정보는 (사전에 정의된 주기를 기반으로 전송되는) 용도 변경 메시지(Reconfiguration Message) 상에 포함되어 전송되도록 설정되거나 혹은 사전에 정의된(추가적인) 시그널(예, 상위 계층 시그널 혹은 물리 계층 시그널)을 통해서 전송되도록 설정될 수 가 있다.
이하에서는 본 발명에 따라, SD_PC 모드가 적용되는 환경 하에서 서브프레임 집합 별 폐쇄 루프 전력 제어(CLPC) 파라미터(예, fc(i))의 누적 값을 효율적을 초기화(Reset)하는 방법을 설명한다.
<제 27 실시예>
본 발명의 제 27 실시예에 따르면, SD_PC 모드가 적용되는 환경 하에서 서브프레임 집합 별 폐쇄 루프 전력 제어(CLPC) 파라미터(예, fc(i))의 누적 값은 아래의 적어도 일부(즉, 일부 혹은 모든) 파라미터들에 변화가 발생될 경우(그리고/혹은 사전에 정의된 특정 정보/메시지를 수신한 경우)에 초기화(Reset) 되도록 설정될 수 가 있다. 여기서, 초기화(Reset) 동작은 서브프레임 집합 별 폐쇄 루프 전력 제어(CLPC) 파라미터(예, fc(i))의 누적 값이 사전에 정의된(혹은 시그널링된) 특정 값으로 재설정될 수 있다.
- 상향링크 서브프레임 집합(UL Subframe Set)의 개수 변화
- 상향링크 서브프레임 집합 패턴(UL Subframe Set Pattern)의 변화
- 서브프레임 집합 별 폐쇄 루프 전력 제어(CLPC) 파라미터의 누적 분리(SEPERATE_ACCUMULATION-ENABLE, SEPERATE_ACCUMULATION-DISABLE) 여부의 변화
- (서브프레임 집합 별) 적어도 일부(즉, 일부 혹은 모든) 개방 루프 전력 제어(OLPC) 파라미터들(예, PO_UE_PUSCH,c, PO_NOMINAL_PUSCH,c, αc)의 변화
- 단말이 RAR 메시지(Random Access Response Message (예, RAR Message for PCell))를 수신한 경우
- 단말이 (사전에 정의된 주기 기반의) 용도 변경 메시지(Reconfiguration Message)를 수신한 경우, 여기서, 수신된 용도 변경 메시지 상의 (갱신된) 상향링크-하향링크 설정(UL-DL Configuration)이, 이전(혹은 현재)의 상향링크-하향링크 설정과 상이한 경우에만 한정적으로 서브프레임 집합 별 폐쇄 루프 전력 제어(CLPC) 파라미터(예, fc(i))의 누적 값을 초기화(Reset)하도록 설정될 수 도 있음
서브프레임 종속적 상향링크 전력 제어 모드 상의 TPC 명령(TPC command)
기존 상향링크-하향링크 설정(UL-DL Configuration)#0에서 특정 하향링크 서브프레임 시점에서 (특정 상향링크 인덱스(UL INDEX) 필드 값 설정(예, 11)과 함께) 수신되는 (누적(Accumulative) 그리고/혹은 비누적(Absolute)) TPC 명령(예, DCI 포맷 0/4/3/3A)는, 다수 개(예, 2)의 상향링크 서브프레임 시점들에 동시에 적용되거나 혹은 다수 개의 상향링크 서브프레임 시점들 상에서 전송되는 상향링크 데이터 채널들에 동시에 적용되도록 정의되어 있다. 예를 들어서, 상향링크 데이터 채널 스케줄링 그리고/혹은 상향링크 전송 전력 제어와 관련된 DCI 포맷 0/4의 상향링크 인덱스 필드(즉, 2 비트)가 "11" (즉, 특정 하향링크 서브프레임 시점에서 수신되는 하나의 상향링크 스케줄링 정보(UL Grant)에 의해서 2 개의 상향링크 서브프레임 시점들 상에서 상향링크 데이터 채널(PUSCH)들이 전송됨) 혹은 "10" 으로 설정된 경우가 이에 해당된다.
하지만, SD_PC 모드가 설정된 상태에서 해당 다수 개의 상향링크 서브프레임 시점들이 서로 다른 상향링크 서브프레임 집합(예, SD_PC_SET0, SD_PC_SET1(즉, 간섭 특성이 상이한 상향링크 서브프레임 집합))에 각각 속해 있다면, 상기 특정 하향링크 서브프레임 시점에서 (특정 UL INDEX 필드 값 설정(예, 11)과 함께) 수신되는 (누적(Accumulative) 그리고/혹은 비누적(Absolute)) TPC 명령이 어떠한 상향링크 서브프레임 집합을 대상(혹은 타겟팅)하는지를 정확하게 파악할 수 가 없다.
따라서, 상기 특정 하향링크 서브프레임 시점에서 (특정 UL INDEX 필드 값 설정(예, 11)과 함께) 수신되는 TPC 명령을 효율적으로 처리/반영하기 위한 설정들을 이하 설정 #A 내지 설정 #F와 같이 제안한다. 여기서, 이하의 설정들은 (누적(Accumulative) 그리고/혹은 비누적(Absolute)) TPC 명령(TPC command) 정보를 알려주는 특정 DCI 포맷(즉, DCI 포맷 3/3A 혹은 DCI 포맷 0/4)에만 한정적으로 적용되도록 설정될 수 도 있다. 또한, 이하의 설정들은 독립적으로 각각 구현/적용 되거나 혹은 일부 조합(예, [설정 #B]와 [설정 #C]의 조합)으로 구현/적용 되도록 설정될 수 가 있다.
설정 #A : 특정 하향링크 서브프레임 시점에서 (특정 UL INDEX 필드 값 설정(예, 11)과 함께) 수신되는 (누적(Accumulative) 그리고/혹은 비누적(Absolute)) TPC 명령(TPC command)가, i)다수 개(예, 2)의 상향링크 서브프레임 시점들 혹은 ii)다수 개의 상향링크 서브프레임 시점들 상에서 전송되는 상향링크 데이터 채널들을 대상(혹은 타겟팅)으로 할 수 있다. 이러한 경우, 해당 다수 개의 상향링크 서브프레임 시점들이 서로 다른 상향링크 서브프레임 집합(예, SD_PC_SET0, SD_PC_SET1)에 각각 속해 있다면, 단말은 해당 TPC 명령(TPC command)를 사전에 지정되거나 혹은 시그널링된 특정 상향링크 서브프레임 집합 관련 상향링크 전력 제어 프로세스에만 적용시키도록 설정될 수 있다. 시그널링된 경우를 예로 들면, 특정 하향링크 서브프레임 시점에서 (특정 상향링크 인덱스 필드 값 설정(예, 11)과 함께) 수신되는 TPC 명령(TPC command)가 어떤 상향링크 서브프레임 집합을 대상(혹은 타겟팅)으로 하는지를, 기지국(혹은 셀)이 단말에게 사전에 정의된 길이의 비트맵 형태(예, 비트가 '1' 로 설정된 위치에 해당하는 하향링크 서브프레임 상에서 TPC 명령(TPC command)를 수신한다면 해당 TPC 명령(TPC command)를 SD_PC_SET0에 대한 것으로 해석)로 알려줄 수 있다.
설정 #B : 특정 하향링크 서브프레임 시점에서 (특정 UL INDEX 필드 값 설정(예, 11)과 함께) 수신되는 (누적(Accumulative) 그리고/혹은 비누적(Absolute)) TPC 명령(TPC command)이, i)다수 개(예, 2)의 상향링크 서브프레임 시점들 혹은 ii)다수 개의 상향링크 서브프레임 시점들 상에서 전송되는 상향링크 데이터 채널들을 대상(혹은 타겟팅)으로 할 수 있다. 이러한 경우, 해당 다수 개의 상향링크 서브프레임 시점들이 서로 다른 상향링크 서브프레임 집합(예, SD_PC_SET0, SD_PC_SET1)에 각각 속해 있다면, (기존의 설정에 따라) 해당 (동일한) TPC 명령(TPC command)를 서로 다른 상향링크 서브프레임 집합 관련 상향링크 전력 제어 프로세스(UL PC Process)들에 모두 적용시키도록 설정될 수 가 있다.
설정 #C: 특정 하향링크 서브프레임 시점에서 (특정 UL INDEX 필드 값 설정(예, 11)과 함께) 수신되는 (누적(Accumulative) 그리고/혹은 비누적(Absolute)) TPC 명령(TPC command)이, i)다수 개(예, 2)의 상향링크 서브프레임 시점들 혹은 ii)다수 개의 상향링크 서브프레임 시점들 상에서 전송되는 상향링크 데이터 채널들을 대상(혹은 타겟팅)으로 할 수 있다. 이러한 경우, 해당 다수 개의 상향링크 서브프레임 시점들이 서로 다른 상향링크 서브프레임 집합(예, SD_PC_SET0, SD_PC_SET1)에 각각 속해 있다면, (기존의 설정에 따라) 이와 같은 TPC 명령(TPC command)를 해당 상향링크 서브프레임 집합 관련 상향링크 전력 제어 프로세스(UL PC Process)들에만 적용시키도록 설정될 수 가 있다.
설정 #D: 특정 하향링크 서브프레임 시점에서 (특정 UL INDEX 필드 값 설정(예, 11)과 함께) 수신되는 특정 DCI 포맷 상의 (누적(Accumulative) 그리고/혹은 비누적(Absolute)) TPC 명령(TPC command)가, i)다수 개(예, 2)의 상향링크 서브프레임 시점들 혹은 ii)다수 개의 상향링크 서브프레임 시점들 상에서 전송되는 상향링크 데이터 채널들을 대상(혹은 타겟팅)으로 할 수 있다. 이러한 경우, 사전에 정의된 설정/규칙에 따라 해당 (동일한) TPC 명령(TPC command)를 서로 다른 상향링크 서브프레임 집합 관련 UL PC Process들에 모두 적용시키도록 설정될 수 가 있다.
즉, 본 설정 #D는 특정 하향링크 서브프레임 시점에서 (특정 UL INDEX 필드 값 설정(예, 11)과 함께) 수신되는 특정 DCI 포맷 상의 (누적(Accumulative) 그리고/혹은 비누적(Absolute)) TPC 명령(TPC command)가 대상(혹은 타겟팅)으로 하는 다수 개의 상향링크 서브프레임 시점들이, 서로 다른 상향링크 서브프레임 집합(예, SD_PC_SET0 혹은 SD_PC_SET1)에 각각 속해있는지의 여부에 상관없이, 해당 (동일한) TPC 명령(TPC command)를 서로 다른 상향링크 서브프레임 집합 관련 상향링크 전력 제어 프로세스(UL PC Process)들에 모두 적용시킬 수 있다. 여기서, 이와 같은 설정/규칙이 적용되는 (누적(Accumulative) 그리고/혹은 비누적(Absolute)) TPC 명령(TPC command)가 전송되는 DCI 포맷은 DCI 포맷 3/3A 혹은 DCI 포맷 0/4로 한정할 수 가 있다.
설정 #E: 특정 DCI 포맷 상의 (누적(Accumulative) 그리고/혹은 비누적(Absolute)) TPC 명령(TPC command)는 사전에 정의된 설정/규칙에 따라 해당(동일한) TPC 명령(TPC command)을 서로 다른 상향링크 서브프레임 집합 관련 상향링크 전력 제어 프로세스(UL PC Process)들에 모두 적용시키도록 설정될 수 가 있다. 여기서, 이와 같은 설정/규칙이 적용되는 (누적(Accumulative) 그리고/혹은 비누적(Absolute)) TPC 명령(TPC command)이 전송되는 DCI 포맷은 DCI 포맷 3/3A 혹은 DCI 포맷 0/4로 한정할 수 가 있다.
설정 #F: TPC 명령(TPC command) 정보 전송 관련 DCI 포맷 상에 해당 TPC 명령(TPC command)가 어떠한 상향링크 서브프레임 집합을 대상(혹은 타겟팅)으로 하는지를 알려주는 용도의 필드(예, 1 비트)가 추가될 수 가 있다. 여기서, 또 다른 예로, 이와 같은 용도의 필드가 새롭게 추가되지 않고, 기존 필드의 의미를 재해석하는 형태로 구현될 수 도 있다.
즉, 본 발명에 따라 전력 제어 파라미터 설정 및 PHR을 조정할 수 있다.
두 개의 서브프레임 집합들에 대한 전력 제어 파라미터에 대하여 현재 LTE 무선 통신 시스템 상에서, 단말은 RRC 시그널링을 통하여 단말-특정적 Po 및 셀 특정 α가 설정될 수 있다. 단말이 TDD eIMTA 동작을 위하여 설정된 경우, 단말에 대하여 최대 2 개의 서브프레임 집합이 설정될 수 있다. 각각의 서브프레임 집합에 대하여, 상이한 Po 및 α가 사용될 수 있다. 그러나, 기존(legacy) 파라미터들(예를 들어, 단말-특정적 Po 및 셀 특정 α)와 새로이 설정된 파라미터 Po 및 α 의 관계는 명확하게 정의되어 있지 아니하였다.
특히, 단말에 대하여 두 개의 서브프레임 집합(예를 들어, 집합#1 및 집합#2)이 설정된 경우, 2 서브프레임 집합들에 대한 설정 메시지(즉, two-set configuration message) 상의 각각의 서브프레임 집합이 항상 연관된 파라미터 집합과 함께 전송되는지 결정될 필요가 있다
만약, 두 서브프레임 집합들 중 하나를 위하여 기존(legacy) 파라미터를 재사용하는 것이 허용된다면, 서브프레임별로 Po 및 α 가 관련된 서브프레임 집합 설정의 RRC 시그널링 상의 현재 값으로 선택적으로 설정될 수 있다. 즉, Po 및 α 와 같은 파라미터가 서브프레임 집합을 위한 RRC 메시지 내에 존재하지 않는 경우, 상기 서브프레임 집합들은 상향링크 전력 제어(UL PC)를 위하여 사용되는 기존 파라미터(예를 들어, 단말-특정적 Po 및 셀 특정 α)와 연결된다.
만약, 집합#1에 대하여 동일한 기존 파라미터가 항상 사용되는 것이 일반적이라면, 집합#1을 위한 RRC 메시지 상에서 전력 제어(PC) 파라미터 설정 부분이 생략될 수 도 있다. 또한, 만약 RRC 메시지 내에서 모든 집합들에 대한 전력 제어 파라미터 설정이 필수적인 경우라면, 상향링크 전력 제어는 두 개의 서브프레임 집합들이 설정된 경우에는 항상 리셋될 수 도 있다.
이와 유사하게, RRC 시그널링을 통하여 단말에게 지시된 단 하나의 서브프레임 집합으로 폴백(fallback)하는 경우, 현재 기존 파라미터(예를 들어, 단말-특정적 Po 및 셀 특정 α)를 모든 서브프레임들에 적용할지 혹은 현재 기존 파라미터와 관계없이 폴백 메시지를 통하여 새로운 파라미터를 단말에게 시그널할지 여부를 결정할 필요가 있다.
다른 가능한 옵션으로, 모든 서브프레임들 및 승계된 집합#1에 대한 Po 및 α는 유지하되, 폴백 지시가 수신된 때 집합#2와 연결된 파라미터들만을 폐기(discard)될 수 있다. 만약, 모든 경우를 지원해야 되는 경우, 하나의 서브프레임 집합으로 폴백할 때 사용되던 전력 제어 파라미터를 옵션으로 설정할 수 도 있다.
즉, 본 발명에서는, 최대 2 개의 서브프레임 집합들이 단말에 설정된 경우, 현재 사용되는 기존 파라미터(단말-특정적 Po 및 셀 특정 α)와 새로이 설정된 Po 및 α(서브프레임 집합 별)의 관계는 정의될 필요가 있으며, 하나의 서브프레임 집합으로의 폴백이 RRC 시그널링을 통하여 단말에게 지시된 때, 현재 사용되는 기존 파라미터(즉, 단말-특정적 Po 및 셀 특정 α)가 적용될지 혹은 폴백 메시지를 통하여 새로운 파라미터들이 단말에 시그널되어야 하는지 결정될 필요가 있다.
이어, PHR(Power headroom report)에 대하여 보다 구체적으로 설명한다.
현재 PHR 방식은 두 개의 서브프레임 집합을 위한 PHR을 허용한다. 구체적으로, 현재 표준에 따르면, PHR들은 PUSCH가 전송되는 서브프레임상에서 측정되며 전송된다. 따라서, 각각의 서브프레임 집합에 대하여, PHR은 서브프레임 집합에 포함되는 하나의 서브프레임에서 획득된다. 그러나, 이러한 동작상에서, ENB에 대하여는 두 개의 서브프레임 집합을 위한 PHR들을 획득하는 것에는 일정한 제한이 있었다.
먼저, 두 개의 서브프레임 집합들을 위한 PHR들을 획득하기 위하여는 상향링크 자원 낭비 혹은 상향링크 스케줄링 오버헤드 증가가 발생할 수 있다. 왜냐하면, eNB는 한번에 하나의 서브프레임 집합에 대한 PHR만을 획득할 수 있기 때문이다. 게다가, 이러한 문제점은 eNB가 시간 내에 두 서브프레임 집합들의 PHR들을 획득하기 어려운 추가적인 문제점을 야기할 수 있다.
두번째로, 하나의 서브프레임 집합의 PHR 값을 다른 하나의 서브프레임 집합의 PHR 값으로부터 eNB가 유추하기는 어렵다. 그 이유는 경로 손실 수치(pathloss value)는 일반적으로 eNB가 알기 어렵고, 만약 TPC 누적(accumulation)이 활성화된 경우, 단말이 TPC 명령을 놓칠수도 있으므로 fc(i)도 역시 eNB는 알 수 없기 때문이다.
상술한 현재 PHR 방식의 제한을 해결하기 위하여, PHR 향상 방안이 필요하다. 첫번째, PHR이 트리거링되면, 모든 서브프레임 집합들의 PHR들이 트리거되고 보고될 수 있다. 여기서, 각각의 PHR 값은 각각의 서브프레임 집합에 연관된 전력 제어 파라미터 집합에 기반하여 계산된다.
두번째로, 각각의 서브프레임 집합의 PHR 보고 시점과 관련하여, 두 개의 옵션이 고려될 수 있다. 첫번째 옵션은 모든 서브프레임 집합들에 대한 PHR들을 동일한 서브프레임상에서 동시에 보고하는 것이다. 두번째 옵션은 각각의 서브프레임 집합에 속하는 하나의 서브프레임에서 각각의 서브프레임 집합에 대한 PHR을 보고하는 것이다. 첫번째 옵션은 단일 부반송파의 다수의 서브프레임 집합의 PHR를 운반하기 위한 새로운 컨테이너(contatiner)를 정의할 필요가 있으나, 이는 eNB에 대하여 짧은 시간 안에 모든 서브프레임 집합들에 대한 PHR들을 제공할 수 있다.
세번째로, 만약 PHR이 트리거된 경우, 대표(representative) PHR을 eNB로 보고할 수 있다. 예를 들어, 대표 PHR은 모든 서브프레임 집합들의 PHR들 가운데 최소의 값으로 정의될 수 있다. 이는 다른 통신 그룹에 영향을 주지 않는다.
eIMTA 시스템 상에서 전력 제한에 대하여 서브프레임 집합-특정 전력 제어가 매크로-피코 근접 채널 시나리오상에서 피코 셀로부터 매크 셀로의 간섭을 경감시키는데 유용한다. 따라서, 이러한 경우에 매크로 UE들에 대한 PHR 향상이 보다 유용할 것이다.
즉, 본 발명에서는 파워 헤드룸(PH) 보고 절차에 기반한 PHR이 트리거된다면, 모든 서브프레임 집합에 대한 PH들이 트리거되고 보고될 수 있다. 각각의 서브프레임 집합에 대한 PHR 보고 시점에 관하여, 두가지 옵션이 고려될 수 있다. 첫번째 옵션은 모든 서브프레임 집합들에 대한 PHR들을 동일한 서브프레임상에서 동시에 보고하는 것이다. 두번째 옵션은 각각의 서브프레임 집합에 속하는 하나의 서브프레임에서 각각의 서브프레임 집합에 대한 PHR을 보고하는 것이다. 추가적으로, PHR이 트리거된 경우, 대표 PHR(예를 들어, 모든 서브프레임 집합들의 PHR들 가운데 최소의 값)이 기지국으로 보고될 수 도 있다.
본 발명에서 특정 상향링크 서브프레임 집합 관련 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이 다른 상향링크 서브프레임 집합으로 반영/승계된다는 표현은, 특정 상향링크 서브프레임 집합과 연동된 상향링크 전력 제어 프로세스(UL PC Process)의 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적 값이 다른 상향링크 서브프레임 집합과 연동된 상향링크 전력 제어 프로세스(UL PC Process)의 폐쇄 루프 전력 제어 파라미터(예, fc(i))의 누적의 초기값(예, fc(0))으로 승계(Inherit)/반영 된다는 것을 의미한다.
또한, 상술한 본 발명의 실시예들은, SD_PC 모드 혹은 Non SD_PC 모드 혹은 SEPERATE_ACCUMULATION-DISABLE 모드 혹은 SEPERATE_ACCUMULATION-ENABLE 모드 중 적어도 하나에도 확장 적용이 가능하다.
또한, 상술한 본 발명의 실시예들은 SD_PC 모드에서 독립적인 상향링크 전력 제어 프로세스(UL PC Process)가 적용되는 상이한 간섭 특성을 가지는 상향링크 서브프레임 집합들의 개수가 3 개 이상으로 설정된 경우에도 확장 적용이 가능하다.
또한, 상술한 본 발명의 실시예들은 i)상향링크 서브프레임 집합(UL Subframe Set)의 개수에 변화가 생기는 경우, 그리고/혹은 ii)상향링크 서브프레임 집합 패턴(UL Subframe Set Pattern)에 변화가 생기는 경우, 그리고/혹은 iii)서브프레임 집합 별 폐쇄 루프 전력 제어(CLPC) 파라미터의 누적 분리(SEPERATE_ACCUMULATION-ENABLE, SEPERATE_ACCUMULATION-DISABLE) 여부에 변화가 생기는 경우 그리고/혹은 iv)(서브프레임 집합 별) 적어도 일부(즉, 일부 혹은 모든) 개방 루프 전력 제어(OLPC) 파라미터들(예, PO_UE_PUSCH,c, PO_NOMINAL_PUSCH,c, αc)에 변화가 생기는 경우, 그리고/혹은 v)단말의 RAR 메시지(Random Access Response Message, 예, RAR Message for PCell) 수신 유무에 변화가 생기는 경우에도 확장 적용이 가능하다.
상술한 본 발명의 실시예/설정들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 본 발명의 실시예들은 독립적으로 구현될 수 도 있지만, 일부 실시예들의 조합 혹은 병합 형태로 구현될 수 도 있다.
또한, 상술한 본 발명의 실시예들은, 상향링크 데이터 채널(PUSCH) 그리고/혹은 상향링크 제어 채널(PUCCH) 그리고/혹은 SRS(Sounding Reference Signal) 관련 전력 제어를 위해서도 확장 적용이 가능하다.
또한, 상술한 본 발명의 실시예들은, 무선 자원 용도의 동적 변경 모드가 설정되었을 경우(예, 기지국(혹은 셀)이 단말에게 사전에 정의된 시그널을 통해서 무선 자원 용도의 동적 변경 모드를 설정한 경우)에만 한정적으로 적용되도록 설정될 수 가 있다.
또한, 상기 제안 방법들은 i)(상위 계층 시그널 관련 파라미터인) "Accumulation-enabled" 가 수신된 폐쇄 루프 파라미터 혹은 TPC 명령(예, fc(i))의 누적 연산 모드(Accumulative TPC command)를 지정할 경우에만 한정적으로 적용되도록 설정되거나, 혹은 ii) "Accumulation-enabled" 가 수신된 폐쇄 루프 파라미터 혹은 TPC 명령 (예, fc(i))의 비누적 연산 모드(Absolute TPC command)를 지정할 경우에만 한정적으로 적용되도록 설정되거나, 혹은 iii)폐쇄 루프 파라미터 혹은 TPC 명령이 특정 DCI 포맷(예, DCI 포맷 0/4 혹은 DCI 포맷 3/3A)을 통해서 수신되는 경우에만 한정적으로 적용되도록 설정되거나, 혹은 iv)PUSCH와 PUCCH의 동시 전송 모드가 설정되었을 경우에만 한정적으로 적용되도록 설정되거나, 혹은 v)PUSCH와 PUCCH의 동시 전송 모드가 설정되지 않았을 경우에만 한정적으로 적용되도록 설정되거나, 혹은 vi)PCell 또는 SCell에서만 한정적으로 적용되도록 설정되거나, 혹은 vii)무선 자원 용도의 동적 변경 모드가 설정된 특정 셀 혹은 특정 컴포넌트 캐리어(CC)에서만 한정적으로 적용되도록 설정될 수 도 있다.
나아가, 상술한 본 발명의 실시예/설정들의 적용 여부 정보 혹은 상술한 본 발명의 실시예/설정들에 대한 정보는, 기지국(혹은 셀)이 단말에게 사전에 정의된 시그널(예, 물리 계층 시그널 혹은 상위 계층 시그널)을 통해서 알려주도록 설정될 수 가 있다.
도 9은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 9을 참조하면, 통신 장치(900)는 프로세서(910), 메모리(920), RF 모듈(930), 디스플레이 모듈(940) 및 사용자 인터페이스 모듈(950)을 포함한다.
통신 장치(900)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(900)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(900)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(910)는 도면을 참조하여 예시한 본 발명의 실시예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(910)의 자세한 동작은 도 1 내지 도 8에 기재된 내용을 참조할 수 있다.
메모리(920)는 프로세서(910)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(930)은 프로세서(910)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(930)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(940)은 프로세서(910)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(940)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(950)은 프로세서(910)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 본 발명의 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims (9)

  1. 무선 통신 시스템에서 단말이 상향링크 전송 전력을 제어하는 방법에 있어서,
    기지국으로부터 상위 계층 시그널링을 통하여 상향링크 전력 제어 설정을 수신하고,
    상기 상향링크 전력 제어 설정이 제 1 서브프레임 세트 및 제 2 서브프레임 세트를 포함하는 두 개의 상향링크 서브프레임 세트를 지시하는지 여부를 판단하고,
    상기 상향링크 전력 제어 설정이 상기 두 개의 상향링크 서브프레임 세트를 지시하는 경우:
    상기 제1 서브프레임 세트에 대응하는 제1 누적 값 및 상기 제2 서브프레임 세트에 대응하는 제2 누적 값을 리셋하고,
    상기 제 2 서브프레임 세트에 대응하는 상기 제2 누적 값은 0으로 리셋되는,
    상향링크 전송 전력 제어 방법.
  2. 제 1 항에 있어서,
    상기 제 1 서브프레임 세트는 상기 상향링크 전력 제어 설정이 상기 두 개의 상향링크 서브프레임 세트를 지시하는 경우 간섭의 양이 변하지 않는 상향링크 서브프레임 세트로 구성되고,
    상기 제 2 서브프레임 세트는 상기 상향링크 전력 제어 설정이 상기 두 개의 상향링크 서브프레임 세트를 지시하는 경우 간섭의 양이 변하는 상향링크 서브프레임 세트로 구성되는,
    상향링크 전송 전력 제어 방법.
  3. 제 1 항에 있어서,
    상기 상향링크 전력 제어 설정이 상기 두 개의 상향링크 서브프레임 세트를 지시하는 경우, 상기 제 1 서브프레임 세트에 대응하는 제 1 누적 값은 상기 상향링크 전력 제어 설정이 상기 두 개의 상향링크 서브프레임 세트를 지시하지 않는 경우의 누적 값과 동일한 값으로 리셋되는,
    상향링크 전송 전력 제어 방법.
  4. 삭제
  5. 삭제
  6. 제 1 항에 있어서,
    상기 두 개의 서브프레임 세트 중 하나는 트래픽 적응에 따라 상위계층 시그널링에 의하여 재설정 되는 상향링크 서브프레임으로 구성되는,
    상향링크 전송 전력 제어 방법.
  7. 무선 통신 시스템에서 상향링크 전송 전력을 제어하는 단말에 있어서,
    무선 주파수 유닛(Radio Frequency Unit); 및
    프로세서(processor)를 포함하며,
    상기 프로세서는 기지국으로부터 상위 계층 시그널링을 통하여 상향링크 전력 제어 설정을 수신하고, 상기 상향링크 전력 제어 설정이 제 1 서브프레임 세트 및 제 2 서브프레임 세트를 포함하는 두 개의 상향링크 서브프레임 세트를 지시하는지 여부를 판단하고, 상기 상향링크 전력 제어 설정이 상기 두 개의 상향링크 서브프레임 세트를 지시하는 경우, 상기 제1 서브프레임 세트에 대응하는 제1 누적 값 및 상기 제2 서브프레임 세트에 대응하는 제2 누적 값을 리셋하고, 상기 제 2 서브프레임 세트에 대응하는 상기 제2 누적 값은 0으로 리셋되는,
    단말.
  8. 삭제
  9. 삭제
KR1020167009839A 2013-11-09 2014-11-10 무선 통신 시스템에서 상향링크 전송 전력 제어 방법 및 이를 위한 장치 KR102224490B1 (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201361902216P 2013-11-09 2013-11-09
US61/902,216 2013-11-09
US201361902282P 2013-11-10 2013-11-10
US61/902,282 2013-11-10
US201461933323P 2014-01-30 2014-01-30
US61/933,323 2014-01-30
PCT/KR2014/010733 WO2015069072A1 (ko) 2013-11-09 2014-11-10 무선 통신 시스템에서 상향링크 전송 전력 제어 방법 및 이를 위한 장치

Publications (2)

Publication Number Publication Date
KR20160082236A KR20160082236A (ko) 2016-07-08
KR102224490B1 true KR102224490B1 (ko) 2021-03-08

Family

ID=53041765

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167009839A KR102224490B1 (ko) 2013-11-09 2014-11-10 무선 통신 시스템에서 상향링크 전송 전력 제어 방법 및 이를 위한 장치

Country Status (3)

Country Link
US (2) US9554339B2 (ko)
KR (1) KR102224490B1 (ko)
WO (1) WO2015069072A1 (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5980241B2 (ja) * 2014-01-14 2016-08-31 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN104869625B (zh) * 2014-02-25 2019-04-19 中兴通讯股份有限公司 一种提高下行发射功率的方法及装置
US9814056B2 (en) 2015-08-24 2017-11-07 Qualcomm Incorporated Methods and apparatus for interference management of wireless links with overriding link priority
KR102085901B1 (ko) * 2016-08-02 2020-03-09 주식회사 케이티 차세대 이동통신 서비스 기지국 운용 시스템 및 방법
CN107734622B (zh) * 2016-08-12 2020-12-11 中兴通讯股份有限公司 上行功率控制方法及装置
CN110313199B (zh) * 2017-01-04 2023-03-10 诺基亚技术有限公司 多输入多输出无线系统的探测参考信号功率控制
KR102326416B1 (ko) 2017-05-04 2021-11-15 삼성전자 주식회사 무선 통신 시스템에서 단말의 송신 전력 제어 방법 및 장치
EP3879890A1 (en) 2017-05-05 2021-09-15 Huawei Technologies Co., Ltd. Method of power control for uplink transmission
CN109120381B (zh) * 2017-06-22 2022-09-02 华为技术有限公司 信号发送和接收方法、装置
US10771214B2 (en) * 2017-09-11 2020-09-08 Apple Inc. System and method for uplink power contrl framework
US10897755B2 (en) 2017-12-22 2021-01-19 Samsung Electronics Co., Ltd Method and apparatus for configuring demodulation reference signal information in wireless cellular communication system
BR112019021143A2 (pt) * 2018-01-19 2020-05-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Método de controle de potência, e dispositivo terminal
US10476567B2 (en) 2018-04-06 2019-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Power control for new radio uplink single-user multiple-input-multiple- output communication
KR102450969B1 (ko) 2018-08-09 2022-10-05 삼성전자 주식회사 무선 통신 시스템에서 경로감쇄 결정 방법 및 장치
CN116782354A (zh) * 2019-02-15 2023-09-19 中兴通讯股份有限公司 功率控制参数指示
EP3954158A4 (en) * 2019-04-06 2023-02-22 Qualcomm Incorporated TRANSMISSION POWER CONFIGURATION FOR PHYSICAL UPLINK CONNECTION WITH SPLIT CHANNEL
WO2021030674A1 (en) * 2019-08-14 2021-02-18 Hua Zhou Power control in carrier aggregation with multiple transmission reception points
CN113114433A (zh) * 2020-01-10 2021-07-13 索尼公司 电子设备、无线通信方法和计算机可读存储介质
CN114080013B (zh) * 2020-08-14 2024-03-19 华为技术有限公司 信息传输方法及通信装置
CN117615441A (zh) * 2020-12-29 2024-02-27 Oppo广东移动通信有限公司 上行功率控制方法及终端设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130250875A1 (en) 2012-03-23 2013-09-26 Qualcomm Incorporated Methods and apparatus for uplink power control

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE539579T1 (de) * 2008-05-05 2012-01-15 Nokia Siemens Networks Oy Verfahren, vorrichtung und computerprogramm zur leistungssteuerung in direktzugriffsverfahren
US20110235582A1 (en) * 2010-03-25 2011-09-29 Qualcomm Incorporated Subframe dependent transmission power control for interference management
WO2011145890A2 (ko) * 2010-05-20 2011-11-24 엘지전자 주식회사 상향링크 전력제어 방법 및 사용자기기
KR101430501B1 (ko) 2010-07-16 2014-08-14 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송 전력 제어 방법 및 장치
KR101233186B1 (ko) 2010-10-21 2013-02-15 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
KR101840199B1 (ko) 2010-11-02 2018-03-20 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어정보 송수신 방법 및 장치
KR20130018052A (ko) 2011-08-12 2013-02-20 주식회사 팬택 다중 요소 반송파 시스템에서 데이터 전송 방법 및 장치
US8891402B2 (en) * 2011-09-30 2014-11-18 Sharp Kabushiki Kaisha Devices for reporting uplink information

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130250875A1 (en) 2012-03-23 2013-09-26 Qualcomm Incorporated Methods and apparatus for uplink power control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
표준문서:3GPP R1_134509*

Also Published As

Publication number Publication date
US20160242125A1 (en) 2016-08-18
WO2015069072A1 (ko) 2015-05-14
KR20160082236A (ko) 2016-07-08
US20170094610A1 (en) 2017-03-30
US9788280B2 (en) 2017-10-10
US9554339B2 (en) 2017-01-24

Similar Documents

Publication Publication Date Title
KR102224490B1 (ko) 무선 통신 시스템에서 상향링크 전송 전력 제어 방법 및 이를 위한 장치
KR102196716B1 (ko) 무선 통신 시스템에서 사운딩 참조 신호의 전송 전력을 제어하는 방법 및 이를 위한 장치
US20200389898A1 (en) Transmission power control method for sounding reference signal in wireless communication system and apparatus therefor
KR102081938B1 (ko) 무선 통신 시스템에서 사운딩 참조 신호의 송신 전력을 제어하는 방법 및 이를 위한 장치
JP6599355B2 (ja) 端末と基地局との間の二重接続におけるパワーヘッドルーム報告を送信する方法および端末
KR102102648B1 (ko) 무선 통신 시스템에서 상향링크 송신 전력을 제어하는 방법 및 이를 위한 장치
EP3099119B1 (en) Method for controlling transmission power of sounding reference signal on special subframe in tdd-type wireless communication system and device therefor
KR102052376B1 (ko) 기지국 협력 무선 통신 시스템에서 사운딩 참조 신호를 송신하는 방법 및 이를 위한 장치
US10645656B2 (en) Method for controlling electric power in wireless communication system supporting change in purpose of wireless resource and apparatus therefor
US10165518B2 (en) Method for controlling transmission power of sounding reference signal and apparatus for same
US9838975B2 (en) Method for determining transmission power for direct communication between terminals in wireless communication system, and apparatus for same
US10405285B2 (en) Method for determining transmit power for direct device to device communication in wireless communication system and apparatus therefor
KR20140084133A (ko) 파워 헤드룸 리포팅 전송 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant