WO2011145890A2 - 상향링크 전력제어 방법 및 사용자기기 - Google Patents

상향링크 전력제어 방법 및 사용자기기 Download PDF

Info

Publication number
WO2011145890A2
WO2011145890A2 PCT/KR2011/003696 KR2011003696W WO2011145890A2 WO 2011145890 A2 WO2011145890 A2 WO 2011145890A2 KR 2011003696 W KR2011003696 W KR 2011003696W WO 2011145890 A2 WO2011145890 A2 WO 2011145890A2
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
power
transmission
power control
pusch
Prior art date
Application number
PCT/KR2011/003696
Other languages
English (en)
French (fr)
Other versions
WO2011145890A3 (ko
Inventor
이문일
정재훈
고현수
한승희
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/698,896 priority Critical patent/US9185658B2/en
Publication of WO2011145890A2 publication Critical patent/WO2011145890A2/ko
Publication of WO2011145890A3 publication Critical patent/WO2011145890A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/545Signalisation aspects of the TPC commands, e.g. frame structure modifying TPC bits in special situations

Definitions

  • the present invention relates to a wireless communication system.
  • the present invention relates to a power control method and apparatus for uplink transmission through multiple antennas.
  • a power control technique is used as one method for reducing inter-cell interference due to path-loss and interference from adjacent cells according to a distance between a base station and a user equipment.
  • the power control technique is a technique for adjusting the transmission power to transmit data at the lowest power level while maintaining a certain quality of service (QoS) of the wireless communication system.
  • QoS quality of service
  • user equipments near the cell boundary are affected by path loss and inter-cell interference.
  • the user equipment shall determine the appropriate transmission power and transmit the data so that the quality of service does not deteriorate due to path loss without interfering with neighboring cells.
  • the base station may include a plurality of power amplifiers, and may perform downlink transmission through one or a plurality of antenna ports. Therefore, in the existing wireless communication system, the asymmetry of peak / total system throughput between uplink and downlink has been regarded as a major drawback. Therefore, in order to improve uplink peak / total system throughput, it is considered to adopt transmission through multiple antenna ports in uplink.
  • the uplink power control according to the existing wireless communication standard has been processed by adjusting the uplink total power.
  • an appropriate power control mechanism for the plurality of antennas it is required that an appropriate power control mechanism for the plurality of antennas be devised.
  • N t pieces by the user device having an antenna port, the method comprising: receiving a power control command for controlling transmission power of an uplink signal from a base station; Determining a transmission power of the uplink signal using the power control command; And transmitting the uplink signal to the base station at the determined transmission power, wherein the number of antenna ports used for transmitting the uplink signal is N1 (where N1 is a positive integer less than or equal to N t ).
  • the power control command is mapped to a first correction value to determine the transmission power based on the first correction value, and the number of the used antenna ports is N2 (where N1 And a positive integer equal to or less than N t ), the power control command is mapped to a second correction value to determine the transmission power based on the second correction value.
  • N t pieces (here, N t> 1) a receiver configured according to a user device having an antenna port, for receiving a power control command for controlling transmission power of an uplink signal from the base station ; And a processor configured to determine a transmission power of the uplink signal using the power control command. And a transmitter configured to transmit the uplink signal to the base station at the determined transmission power, wherein the processor includes: N1 used antenna ports used for transmission of the uplink signal, where N1 is equal to or less than N t.
  • the power control command is mapped to a first correction value to determine the transmission power based on the first correction value, and the number of the antenna ports used is N2 (where N1 And a positive integer equal to or less than N t ), the user device is configured to map the power control command to a second correction value to determine the transmission power based on the second correction value.
  • the number of used antenna ports may be determined based on precoding matrix indication information received from the base station.
  • the method may include transmitting the uplink signal at the determined power.
  • FIG. 1 is a block diagram illustrating components of a user equipment (UE) and a base station (BS) for carrying out the present invention.
  • UE user equipment
  • BS base station
  • FIG. 2 illustrates an example of a structure of a transmitter in a user equipment and a base station.
  • FIG 3 shows an example of a radio frame structure used in a wireless communication system.
  • FIG. 4 shows an example of a DL / UL slot structure in a wireless communication system.
  • FIG. 5 shows an example of a downlink subframe structure in a wireless communication system.
  • FIG. 6 shows an example of an uplink subframe structure in a wireless communication system.
  • FIG. 7 is a diagram illustrating a basic concept of uplink power control.
  • FIG 8 illustrates a general structure of an uplink transmitter having a single antenna port in an LTE system.
  • 9 and 10 illustrate a general structure of an uplink transmitter having a plurality of transmit antenna ports.
  • 11 and 12 illustrate one embodiment of the present invention for mapping TPC commands and power correction factors.
  • FIG. 13 illustrates a flowchart of uplink power control according to embodiments of the present invention.
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • CDMA may be implemented in a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented in wireless technologies such as Global System for Mobile Communication (GSM), General Packet Radio Service (GPRS), Enhanced Data Rates for GSM Evolution (EDGE), and the like.
  • GSM Global System for Mobile Communication
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE802-20, evolved-UTRA (E-UTRA), and the like.
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Wi-Fi
  • WiMAX WiMAX
  • IEEE802-20 evolved-UTRA
  • UTRA is part of Universal Mobile Telecommunication System (UMTS)
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • 3GPP LTE adopts OFDMA in downlink and SC-FDMA in uplink.
  • LTE-advanced (LTE-A) is an evolution of 3GPP LTE. For convenience of explanation, hereinafter, it will be described on the assumption that the present invention is applied to 3GPP LTE / LTE-A.
  • a user equipment may be fixed or mobile, and various devices which communicate with a base station to transmit and receive user data and / or various control information belong to the same.
  • the user equipment may be a terminal equipment, a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), a wireless modem ( It may be called a wireless modem, a handheld device, or the like.
  • a base station generally refers to a fixed station that communicates with a user equipment and / or another base station, and communicates with the user equipment and other base stations for various data and control information. Replace it.
  • the base station may be called in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • the rank or transmission rank means the number of layers multiplexed / assigned on one OFDM symbol or one data element (RE).
  • Physical Downlink Control CHannel PDCCH
  • Physical Control Format Indicator CHannel PCFICH
  • PHICH Physical Hybrid automatic retransmit request Indicator CHannel
  • PDSCH Physical Downlink Shared CHannel
  • DCI Downlink Control Information
  • CFI Means a set of resource elements that carry Control Format Indicator (DAC) / Downlink ACK / NACK (ACKnowlegement / Negative ACK) / Downlink data
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • Resource elements assigned to or belonging thereto are called PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH RE or PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resources, respectively.
  • the expression that the user equipment transmits the PUCCH / PUSCH / PRACH is used in the same sense as transmitting uplink control information / uplink data / random access signal on the PUSCH / PUCCH / PRACH, respectively.
  • the expression that the base station transmits the PDCCH / PCFICH / PHICH / PDSCH is used in the same sense as transmitting downlink data / control information on the PDCCH / PCFICH / PHICH / PDSCH, respectively.
  • FIG. 1 is a block diagram illustrating components of a user equipment (UE) and a base station (BS) for carrying out the present invention.
  • UE user equipment
  • BS base station
  • the UE operates as a transmitter in uplink and as a receiver in downlink.
  • the BS may operate as a receiver in uplink and as a transmitter in downlink.
  • the UE and BS are antennas 500a and 500b capable of receiving information and / or data, signals, messages, and the like, transmitters 100a and 100b for transmitting messages by controlling the antennas, and messages by controlling the antennas.
  • the UE and BS each include processors 400a and 400b operatively connected to components such as a transmitter, a receiver, and a memory included in the UE or BS to control the components to perform the present invention. .
  • the transmitter 100a, the receiver 300a, the memory 200a, and the processor 400a in the UE may be implemented as independent components by separate chips, respectively, and two or more are one chip. It may be implemented by.
  • the transmitter 100b, the receiver 300b, the memory 200b, and the processor 400b in the BS may be implemented as separate components by separate chips, respectively, and two or more may be implemented as one chip ( chip).
  • the transmitter and the receiver may be integrated to be implemented as one transceiver in the UE or BS.
  • the antennas 500a and 500b transmit a signal generated by the transmitters 100a and 100b to the outside, or receive a radio signal from the outside and transmit the signal to the receivers 300a and 300b.
  • Antennas 500a and 500b are also called antenna ports.
  • Each antenna port may correspond to one physical antenna or may be configured by a combination of more than one physical antenna elements.
  • the signal transmitted from each antenna port can no longer be resolved by the receiver 300a in the UE.
  • the reference signal transmitted corresponding to the corresponding antenna port defines an antenna port viewed from the UE's point of view, and whether the channel is a single radio channel from one physical antenna or a plurality of physical antenna elements including the antenna port.
  • a transceiver supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas may be connected to two or more antennas.
  • MIMO multi-input multi-output
  • Processors 400a and 400b typically control the overall operation of various modules in a UE or BS.
  • the processor 400a or 400b includes various control functions for performing the present invention, a medium access control (MAC) frame variable control function according to service characteristics and a propagation environment, a power saving mode function for controlling idle mode operation, and a hand. Handover, authentication and encryption functions can be performed.
  • the processors 400a and 400b may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like. Meanwhile, the processors 400a and 400b may be implemented by hardware or firmware, software, or a combination thereof.
  • firmware or software When implementing the present invention using hardware, application specific integrated circuits (ASICs) or digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays) may be provided in the processors 400a and 400b.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and configured to perform the present invention.
  • the firmware or software may be provided in the processors 400a and 400b or may be stored in the memory 200a and 200b to be driven by the processors 400a and 400b.
  • the transmitters 100a and 100b perform a predetermined encoding and modulation on a signal and / or data to be transmitted from the processor 400a or 400b or a scheduler connected to the processor to be transmitted to the outside, and then an antenna ( 500a, 500b).
  • the transmitters 100a and 100b convert the data sequence to be transmitted into K layers through demultiplexing, channel encoding, and modulation.
  • the K layers are transmitted through the transmit antennas 500a and 500b through a transmitter in the transmitter.
  • the transmitters 100a and 100b and the receivers 300a and 300b of the UE and BS may be configured differently according to a process of processing a transmission signal and a reception signal.
  • the memories 200a and 200b may store a program for processing and controlling the processors 400a and 400b and may temporarily store information input and output.
  • the memory 200a, 200b may be utilized as a buffer.
  • the memory may be a flash memory type, a hard disk type, a multimedia card micro type or a card type memory (e.g. SD or XD memory, etc.), RAM Access Memory (RAM), Static Random Access Memory (SRAM), Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Programmable Read-Only Memory (PROM), Magnetic Memory, Magnetic Disk, It can be implemented using an optical disk or the like.
  • FIG. 2 illustrates an example of a structure of a transmitter in a user equipment and a base station. The operation of the transmitters 100a and 100b will be described in more detail with reference to FIG. 2 as follows.
  • a transmitter 100a or 100b in a UE or a base station includes a scrambler 301 and a modulation mapper 302, a layer mapper 303, a precoder 304, a resource element mapper 305, and an OFDM signal generator. 306 may include.
  • the transmitters 100a and 100b may transmit one or more codewords. Coded bits in each codeword are scrambled by the scrambler 301 and transmitted on a physical channel. Codewords are also referred to as data streams and are equivalent to data blocks provided by the MAC layer. The data block provided by the MAC layer may also be referred to as a transport block.
  • the scrambled bits are modulated into complex-valued modulation symbols by the modulation mapper 302.
  • the modulation mapper may be arranged as a complex modulation symbol representing a position on a signal constellation by modulating the scrambled bit according to a predetermined modulation scheme.
  • m-PSK m-Phase Shift Keying
  • m-QAM m-Quadrature Amplitude Modulation
  • the complex modulation symbol is mapped to one or more transport layers by the layer mapper 303.
  • the complex modulation symbol on each layer is precoded by the precoder 304 for transmission on the antenna port.
  • the precoder 304 processes the complex modulation symbol in a MIMO scheme according to the multiple transmit antennas 500-1, ..., 500-N t to output antenna specific symbols, and applies the antenna specific symbols.
  • the resource element mapper 305 is distributed. That is, mapping of the transport layer to the antenna port is performed by the precoder 304.
  • the precoder 304 may be output to the matrix z of the layer mapper 303, an output x N t ⁇ M t precoding matrix W is multiplied with N t ⁇ M F of the.
  • the resource element mapper 305 maps / assigns the complex modulation symbols for each antenna port to appropriate resource elements.
  • the resource element mapper 305 may assign a complex modulation symbol for each antenna port to an appropriate subcarrier and multiplex it according to a user.
  • the OFDM signal generator 306 modulates a complex modulation symbol for each antenna port, that is, an antenna specific symbol by an OFDM or SC-FDM scheme, thereby complex-valued time domain (OFDM) orthogonal frequency division multiplexing (OFDM).
  • a symbol signal or a single carrier frequency division multiplexing (SC-FDM) symbol signal is generated.
  • the OFDM signal generator 306 may perform an inverse fast fourier transform (IFFT) on an antenna specific symbol, and a cyclic prefix (CP) may be inserted into a time domain symbol on which the IFFT is performed.
  • IFFT inverse fast fourier transform
  • CP cyclic prefix
  • the OFDM symbol is transmitted to the receiving apparatus through each of the transmission antennas 500-1, ..., 500-N t through digital-to-analog conversion, frequency up-conversion, and the like.
  • the OFDM signal generator 306 may include an IFFT module and a CP inserter, a digital-to-analog converter (DAC
  • the transmitters 100a and 100b may use a discrete Fourier transform module 307. (Or a Fast Fourier Transform module).
  • the Discrete Fourier Transformer performs a Discrete Fourier Transform (DFT) or a Fast Fourier Transform (FFT) (hereinafter referred to as DFT / FFT) on the antenna specific symbol, and outputs the DFT / FFT symbol to the resource element mapper 305.
  • DFT Discrete Fourier Transform
  • FFT Fast Fourier Transform
  • SC-FDMA Single Carrier FDMA
  • PAPR Peak-to-Average Power Ratio
  • CM Cubic Metric
  • the transmitted signal can be transmitted avoiding the non-linear distortion period of the power amplifier. Therefore, even if the transmitter transmits a signal at a lower power than the conventional OFDM scheme, the receiver can receive a signal satisfying a certain strength and error rate. That is, according to SC-FDMA, the power consumption of the transmitter can be reduced.
  • the SC-FDMA transmitter performs more DFT or FFT operations before the OFDM signal generator, so that the PAPR increases at the IFFT input terminal and then passes through the IFFT to reduce the PAPR of the final transmission signal.
  • This form is equivalent to the addition of a DFT module (or FFT module) 307 in front of an existing OFDM signal generator, so SC-FDMA is also called DFT-s-OFDM (DFT-spreaded OFDM).
  • the signal processing of the receivers 300a and 300b consists of the inverse of the signal processing of the transmitter.
  • the receivers 300a and 300b decode and demodulate the radio signals received through the antennas 500a and 500b from the outside and transmit them to the corresponding processors 400a and 400b.
  • the antennas 500a and 500b connected to the receivers 300a and 300b may include N r multiple receive antennas, and each of the signals received through the receive antennas is restored to a baseband signal and then multiplexed and MIMO demodulated.
  • the transmitters 100a and 100b restore the data sequence originally intended to be transmitted.
  • the receivers 300a and 300b may include a signal restorer for restoring a received signal to a baseband signal, a multiplexer for combining and multiplexing the received processed signals, and a channel demodulator for demodulating the multiplexed signal sequence with a corresponding codeword.
  • the signal restorer, the multiplexer, and the channel demodulator may be composed of one integrated module or each independent module for performing their functions. More specifically, the signal restorer is an analog-to-digital converter (ADC) for converting an analog signal into a digital signal, a CP remover for removing a CP from the digital signal, and a fast fourier transform (FFT) to the signal from which the CP is removed.
  • ADC analog-to-digital converter
  • FFT fast fourier transform
  • FFT module for outputting a frequency domain symbol by applying a, and may include a resource element demapper (equalizer) to restore the frequency domain symbol to an antenna-specific symbol (equalizer).
  • the antenna specific symbol is restored to a transmission layer by a multiplexer, and the transmission layer is restored to a codeword intended to be transmitted by a transmitting device by a channel demodulator.
  • the receiver 300a, 300b when the receiver 300a, 300b receives a signal transmitted by the SC-FDMA scheme, the receiver 300a, 300b is an Inverse Discrete Fourier Transform (IDFT) module (or IFFT module) ) Is further included.
  • IDFT Inverse Discrete Fourier Transform
  • the IDFT / IFFT module performs IDFT / IFFT on the antenna specific symbol recovered by the resource element demapper and outputs the IDFT / IFFT symbol to the multiplexer.
  • the scrambler 301, the modulation mapper 302, the layer mapper 303, the precoder 304, the resource element mapper 305, and the OFDM signal generator 306 include the transmitter 100a, 100b), the processor 400a, 400b of the transmitting apparatus includes the scrambler 301, the modulation mapper 302, the layer mapper 303, the precoder 304, the resource element mapper 305, and OFDM. It is also possible to be configured to include a signal generator 306. Similarly, in FIG. 1 and FIG. 2, the signal restorer, the multiplexer, and the channel demodulator are included in the receivers 300a and 300b.
  • the processor 400a and 400b of the receiver is the signal restorer, the multiplexer, and the channel demodulator. It is also possible to be configured to include a demodulator.
  • the scrambler 301, the modulation mapper 302, the layer mapper 303, the precoder 304, the resource element mapper 305, and the OFDM signal generator 306 (SC-FDMA method) Is further included in the transmitter (100a, 100b) separate from the processor (400a, 400b) for controlling their operation, the signal restorer, multiplexer, channel demodulator It will be described as being included in the receiver (300a, 300b) separate from the processor (400a, 400b) for controlling the operation.
  • the scrambler 301 and the modulation mapper 302, the layer mapper 303, the precoder 304, the resource element mapper 305, and the OFDM signal generator 306 and 307 are included in the processors 400a and 400b.
  • the embodiments of the present invention can be equally applied to a signal restorer, a multiplexer, and a channel demodulator (in the case of the SC-FDMA method, the IFFT module is further included) and the processor 400a and 400b. .
  • FIG. 3 shows an example of a radio frame structure used in a wireless communication system.
  • the frame structure of FIG. 3 may be applied to a frequency division duplex (FDD) mode, a half FDD (H-FDD) mode, a time division duplex (TDD) mode, and the like.
  • FDD frequency division duplex
  • H-FDD half FDD
  • TDD time division duplex
  • a radio frame used in 3GPP LTE / LTE-A has a length of 10 ms (307200 Ts) and is composed of 10 equally sized subframes. Can be given.
  • Each subframe has a length of 1 ms and consists of two slots.
  • 20 slots in one radio frame may be sequentially numbered from 0 to 19.
  • Each slot is 0.5ms long.
  • the time for transmitting one subframe is defined as a transmission time interval (TTI).
  • the time resource may be classified by a radio frame number (also called a radio frame index), a subframe number (also called a subframe number), a slot number (or slot index), and the like.
  • the radio frame may be configured differently according to the duplex mode. For example, in the FDD mode, since downlink transmission and uplink transmission are divided by frequency, a radio frame includes only one of a downlink subframe or an uplink subframe.
  • FIG. 4 shows an example of a DL / UL slot structure in a wireless communication system.
  • FIG. 4 shows a structure of a resource grid of a 3GPP LTE / LTE-A system. There is one resource grid per antenna port.
  • a slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • An OFDM symbol may mean a symbol period.
  • the RB includes a plurality of subcarriers in the frequency domain.
  • the OFDM symbol may be called an OFDM symbol, an SC-FDM symbol, or the like according to a multiple access scheme.
  • the number of OFDM symbols included in one slot may vary depending on the channel bandwidth and the length of the CP. For example, one slot includes seven OFDM symbols in the case of a normal CP, but one slot includes six OFDM symbols in the case of an extended CP.
  • FIG. 4 for convenience of description, a subframe in which one slot includes 7 OFDM symbols is illustrated. However, embodiments of the present invention may be applied to subframes having other numbers of OFDM symbols in the same manner.
  • a resource composed of one OFDM symbol and one subcarrier is called a resource element (RE) or tone.
  • RE resource element
  • a signal transmitted in each slot is represented by a resource grid composed of N DL / UL RB N RB sc subcarriers and N DL / UL symb OFDM or SC-FDM symbols.
  • N DL RB represents the number of resource blocks (RBs) in a downlink slot
  • N UL RB represents the number of RBs in an uplink slot.
  • N DL RB and N UL RB depend on downlink transmission bandwidth and uplink transmission bandwidth, respectively.
  • Each OFDM symbol includes N DL / UL RB N RB sc subcarriers in the frequency domain. The number of subcarriers for one carrier is determined according to the fast fourier transform (FFT) size.
  • FFT fast fourier transform
  • the types of subcarriers may be divided into data subcarriers for data transmission, reference signal subcarriers for transmission of reference signals, null subcarriers for guard bands, and DC components.
  • the null subcarrier for the DC component is a subcarrier left unused and is mapped to a carrier frequency f 0 during the OFDM signal generation process.
  • the carrier frequency is also called the center frequency.
  • N DL symb represents the number of OFDM or SC-FDM symbols in a downlink slot
  • N UL symb represents the number of OFDM or SC-FDM symbols in an uplink slot.
  • N RB sc represents the number of subcarriers constituting one RB.
  • a physical resource block is defined as N DL / UL symb consecutive OFDM symbols or SC-FDM symbols in the time domain and is defined by N RB sc consecutive subcarriers in the frequency domain. . Therefore, one PRB is composed of N DL / UL symb x N RB sc resource elements.
  • Each resource element in the resource grid may be uniquely defined by an index pair (k, 1) in one slot.
  • k is an index given from 0 to N DL / UL RB N RB sc -1 in the frequency domain
  • l is an index given from 0 to N DL / UL symb -1 in the time domain.
  • FIG. 5 shows an example of a downlink subframe structure in a wireless communication system.
  • each subframe may be divided into a control region and a data region.
  • the control region includes one or more OFDM symbols starting from the first OFDM symbol.
  • the number of OFDM symbols used as a control region in a subframe may be independently set for each subframe, and the number of OFDM symbols is transmitted through a physical control format indicator channel (PCFICH).
  • PCFICH physical control format indicator channel
  • the base station may transmit various control information to the user device (s) through the control area.
  • a physical downlink control channel (PDCCH), a PCFICH, and a physical hybrid automatic retransmit request indicator channel (PHICH) may be allocated to the control region.
  • the base station includes information related to resource allocation of paging channel (PCH) and downlink-shared channel (DL-SCH), uplink scheduling grant (Uplink Scheduling Grant), HARQ information, downlink assignment index (DAI), and transmitter (TPC) Power Control) command and the like can be transmitted to each user equipment or user equipment group on the PDCCH.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • uplink scheduling grant Uplink Scheduling Grant
  • HARQ information downlink assignment index
  • DAI downlink assignment index
  • TPC transmitter Power Control
  • the base station may transmit data for the user equipment or the user equipment group through the data area. Data transmitted through the data area is also called user data.
  • a physical downlink shared channel (PDSCH) may be allocated to the data area.
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH.
  • the user equipment may read the data transmitted through the PDSCH by decoding the control information transmitted through the PDCCH. Information indicating to which user equipment or group of user equipments the PDSCH data is transmitted, and how the user equipment or user equipment group should receive and decode PDSCH data is included in the PDCCH and transmitted.
  • the PDCCH is transmitted in a combination of one or more consecutive Control Channel Elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH at a coding rate based on the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of available bits are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI transmitted to the user equipment, and adds a cyclic redundancy check (CRC) to the control information.
  • CRC is masked with an identifier called a Radio Network Temporary Identifier (RNTI) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • a plurality of PDCCHs may be transmitted in the control region.
  • the UE may detect its own PDCCH by monitoring the plurality of PDCCHs.
  • the DCI carried by one PDCCH has a different size and use depending on the PUCCH format, and its size may vary depending on a coding rate.
  • One DL scheduling of one PDSCH codeword 1A DL scheduling of compact scheduling (single antenna port, port 0 or TxD (Transmit Diversity) can be used) 1B DL scheduling of closed-loop single-rank transmission 1C DL scheduling of compact format 1D DL scheduling of single layer MU-MIMO transmission mode 2 DL scheduling of rank-adapted closed-loop spatial multiplexing mode 2A DL scheduling of rank-adapted open-loop spatial multiplexing mode 2B DL scheduling of dual-layer beamforming using antenna port 7, port 8 3 TPC commands for PUCCH and PUSCH with 2-bit power adjustments 3A TPC commands for PUCCH and PUSCH with 1-bit power adjustments
  • the DCI format is independently applied to each UE, and PDCCHs of multiple UEs may be multiplexed in one subframe.
  • the PDCCH of each UE is independently channel coded to add a cyclic redundancy check (CRC).
  • CRC cyclic redundancy check
  • the CRC is masked with a unique identifier called a Radio Network Temporary Identifier (RNTI) according to a transmission target or a transmission purpose.
  • RNTI Radio Network Temporary Identifier
  • the TPC-PUSCH-RNTI may be masked to the CRC.
  • blind detection also called blind decoding
  • a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A", a radio resource (eg, frequency location) of "B” and a transmission type information of "C" (eg, It is assumed that information on data transmitted using a transport block size, modulation scheme, coding information, etc.) is transmitted through a specific subframe.
  • RNTI Radio Network Temporary Identity
  • C transmission type information
  • the UE of the cell monitors the PDCCH using its own RNTI information, and the UE having the "A" RNTI detects the PDCCH and is indicated by "B” and "C” through the received PDCCH information. Detect the PDSCH.
  • FIG. 6 shows an example of an uplink subframe structure in a wireless communication system.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • One or several physical uplink control channels may be allocated to the control region to carry uplink control information (UCI).
  • One or more physical uplink shared channels may be allocated to the data area to carry user data.
  • subcarriers having a long distance based on a direct current (DC) subcarrier are used as a control region.
  • subcarriers located at both ends of the uplink transmission bandwidth are allocated for transmission of uplink control information.
  • the DC subcarrier is a component that is not used for signal transmission and is mapped to a carrier frequency f 0 during the frequency upconversion process by the OFDM / SC-FDM signal generator 306.
  • the PUCCH for one UE is allocated to an RB pair in one subframe, and the RBs belonging to the RB pair occupy different subcarriers in two slots.
  • the PUCCH allocated in this way is expressed as that the RB pair allocated to the PUCCH is frequency hopped at the slot boundary. However, if frequency hopping is not applied, RB pairs occupy the same subcarrier. Regardless of whether or not frequency hopping, since the PUCCH for one UE is allocated to the RB pair in one subframe, the same PUCCH may be transmitted twice, once through one RB in each slot in one UL subframe.
  • uplink power control is based on closed-loop correction and / or open-loop power control.
  • Open loop power control is handled by calculation of user equipment (UE), and closed loop correction is performed by a power control command from an evolved Nod B (eNB).
  • UE user equipment
  • eNB evolved Nod B
  • the uplink transmit power control (TPC) command is defined in the DCI format of the PDCCH and may be provided to the terminal from the base station through the PDCCH.
  • DCI format 3 and DCI format 3A of the PDCCH are for uplink transmission power control and may include a group TPC command for a terminal group.
  • the TPC-PUCCH-RNTI may be masked (or scrambled) to the CRC parity bit of the PDCCH, and if it is for PUSCH transmit power control.
  • the TPC-PUSCH-RNTI may be masked (scrambled) to the CRC parity bits of the PDCCH.
  • the UE blindly decodes DCI format 3 / 3A existing in a common search space in downlink using a corresponding RNTI (for example, TPC-PUCCH-RNTI or TPC-PUSCH-RNTI) to DCI format 3
  • a corresponding RNTI for example, TPC-PUCCH-RNTI or TPC-PUSCH-RNTI
  • TPC-index TPC-index
  • the uplink (PUCCH or PUSCH) transmission power level may be determined by applying a corresponding TPC command value to a power control equation.
  • FIG. 7 is a diagram illustrating a basic concept of uplink power control.
  • Uplink power control determines the average power over a predetermined time period, eg, one OFDM symbol, of the corresponding physical channel (eg, PUSCH, PUCCH, SRS, etc.).
  • the uplink power is mainly measured by the user equipment by the closed loop method, and the BS may adjust the uplink power by the closed loop correction factor ⁇ .
  • FIG 8 illustrates a general structure of an uplink transmitter having a single antenna port in an LTE system.
  • the uplink transmitter of the LTE system has only one power amplifier. Therefore, when the transmission power of the uplink physical channel is determined, the uplink physical channel is transmitted at the antenna port connected to the uplink transmitter at the determined transmission power.
  • one PUSCH may be transmitted in a PUSCH transmission power P PUSCH in a predetermined time interval
  • one PUCCH may be transmitted in a PUCCH transmission power P PUCCH in a predetermined time interval.
  • the transmit power of the PUSCH can be obtained through Equation 1 below.
  • Equation 1 the unit of P PUSCH (i) is dBm.
  • i represents a time index (or subframe index)
  • P MAX represents the maximum allowable power
  • the maximum allowable power depends on the class of the user equipment.
  • M (i) is determined according to the number of allocated resource blocks, and may have a value from 1 to 110.
  • M (i) is updated every subframe.
  • ⁇ ⁇ PL is for path loss compensation, where PL represents downlink path loss estimated by the user equipment, and ⁇ is a scaling value and is expressed as 3 bits or less. do. If ⁇ is 1, the path loss is completely compensated, and if ⁇ is less than 1, the path loss is partially compensated.
  • Equation 1 P O (j) may be calculated as Equation 2 below.
  • P O_CELL_SPECIFIC (j) is cell-specifically provided by a higher layer
  • P O_UE_SPECIFIC (j) is given to user equipment-specifically by a higher layer.
  • ⁇ TF (i) is a value that is determined based on a value that is specifically provided by a user device by an upper layer.
  • f (i) is a UE-specific parameter controlled by a base station, and may be defined as follows.
  • ⁇ PUSCH may be referred to as a transmission power control (TPC) command as a UE-specific correction value.
  • TPC transmission power control
  • ⁇ PUSCH is included in the PDCCH of DCI format 0 or joint coded with other TPC commands in the PDCCH of DCI format 3 / 3A.
  • ⁇ PUSCH (iK PUSCH ) may be a value signaled on a PDCCH of DCI format 0 or 3 / 3A in a subframe iK PUSCH .
  • ⁇ PUSCH may be defined as shown in Tables 2 and 3.
  • Table 2 may be used when 2 bits in DCI format 0/3 are used for TPC commands, and
  • Table 3 may be used when 1 bit in DCI format 3A is used for TPC commands.
  • a UE having a single antenna port may perform PUSCH transmission in subframe i with P PUSCH (i) determined as described above, through the single antenna port.
  • power control for PUCCH may be defined as follows.
  • Equation 4 the unit of P PUCCH (i) is dBm.
  • ⁇ F_PUCCH (F) is provided by an upper layer, and each ⁇ F_PUCCH (F) corresponds to a PUCCH format (F) associated with PUCCH format 1a.
  • Each PUCCH format may be defined as follows.
  • Equation 4 h (n CQI , n HARQ ) is a PUCCH format dependent value, n CQI corresponds to a number of information bits for channel quality information, and n HARQ corresponds to a number of HARQ bits (Hybrid Automatic Repeat Request).
  • h (n CQI , n HARQ ) may be defined as follows.
  • h (n CQI , n HARQ ) may be defined as follows.
  • h (n CQI , n HARQ ) may be defined as follows.
  • P_O_PUCCH (j) is a parameter consisting of the sum of P O_NOMINAL_PUCCH (j) and P O_NOMINAL_SPECIFIC (j).
  • P O_NOMINAL_PUSCH (j) is cell-specifically provided by a higher layer
  • P O_UE_SPECIFIC (j) is user-specifically provided by a higher layer.
  • Equation 4 g (i) represents a current PUCCH power control adjustment state, and may be defined as follows.
  • Equation 8 g (0) represents the first value after reset.
  • M and k m may be defined as shown in the following table.
  • ⁇ PUCCH is a UE-specific correction value, also referred to as a transmission power control (TPC) command.
  • TPC transmission power control
  • ⁇ PUCCH is provided to the UE included in a PDCCH in DCI format 1A / 1B / 1D1 / 2A / 2 / 2B, or coded together with other UE-specific PUCCH correction values to be UE on PDCCH in DCI format 3 / 3A It may be provided to.
  • the CRC parity bit of the PDCCH in DCI format 3 / 3A is scrambled with the Radio Network Temporary Identifier (TPC-PUCCH-RNTI).
  • TPC commands may be mapped to ⁇ PUCCH as shown in Tables 5 and 5.
  • Table 6 shows the mapping relationship between the TPC commands of the DCI format 1A / 1B / 1D / 1 / 2A / 2/3 and ⁇ PUCCH
  • Table 7 shows the mapping relationship between the TPC commands of the DCI format 3A and ⁇ PUCCH .
  • a UE having a single antenna port may perform PUCCH transmission in subframe i with P PUCCH (i) determined as described above, through the single antenna port.
  • the power of the sounding reference signal (SRS) may be controlled according to the following equation (9).
  • Equation 9 the unit of P SRS (i) is expressed in dBm.
  • i represents a time index (or subframe index)
  • P MAX represents the maximum allowable power
  • the maximum allowable power depends on the class of the user equipment.
  • P SRS_OFFSET is a 4-bit UE-specific parameter set semi-statically by an upper layer.
  • M SRS is a bandwidth of SRS transmission in subframe i and is expressed by the number of resource blocks.
  • f (i) represents the current power control adjustment state for the PUSCH.
  • P _O_PUCCH (j) is a parameter consisting of the sum of P O_NOMINAL_PUCCH (j) and P O_NOMINAL_SPECIFIC (j), P O_NOMINAL_PUSCH (j) is cell-specifically provided by a higher layer, and P O_UE_SPECIFIC (j) is Provided by the upper layer to the user equipment specific.
  • the j value is given as 1 for PUSCH transmission (or retransmission) corresponding to the dynamically scheduled uplink grant.
  • ⁇ ⁇ PL denotes a path loss compensation method
  • PL denotes a downlink path loss measured by a user equipment
  • denotes a scaling value and a value of 1 or less, expressed as a 3-bit value.
  • is 1, it means that the path loss is completely compensated, and means that if ⁇ is less than 1, that part of the path loss compensation.
  • j is 1, ⁇ ⁇ 0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 ⁇ is a 3-bit cell specific parameter provided by an upper layer.
  • PL is a downlink path loss measurement and is estimated by the UE, and its unit is dB.
  • a UE having a single antenna port may perform SRS transmission in subframe i with P SRS (i) determined as described above, through the single antenna port.
  • the uplink transmitter has more than one transmit antenna, for example two antenna ports or four, for higher throughput performance.
  • Antenna ports may be provided.
  • FIG. 9 and 10 illustrate a general structure of an uplink transmitter having a plurality of transmit antenna ports.
  • FIG. 9 illustrates an uplink transmitter having two antenna ports
  • FIG. 10 illustrates an uplink transmitter having four antenna ports.
  • P PUSCH / PUCCH / SRS may be evenly distributed to two antenna ports connected to an uplink transmitter.
  • P PUSCH / PUCCH / SRS can be evenly distributed across the four antenna ports.
  • P PUSCH / PUCCH / SRS P 1 + P 2.
  • the Type 1 uplink transmitter of FIG. 10 may include one power amplifier connected to the four antenna ports. Can be configured.
  • the power of two antenna ports of the four antenna ports is equal to P 1 , but the power of the other two antenna ports is P 2 .
  • the uplink transmitter may be configured to have two power amplifiers each connected to two antenna ports.
  • the uplink transmitter 100a may include a precoder 304. If precoding is used for uplink transmission, the codebook should be considered in the uplink power control mechanism. Table 8 illustrates a codebook for two antenna ports in uplink transmission.
  • precoding vectors may be used for single layer transmission, that is, rank-1 transmission, and one precoding matrix may be used for two rare transmissions, that is, rank-2 transmission.
  • Table 9 and Table 10 illustrate codebooks for four antenna ports, Table 9 is a codebook that can be used for rank-1 transmission, and Table 10 is a codebook that can be used for rank-2 transmission.
  • the precoding vector / matrix can be used to turn off some antenna ports of the plurality of antenna ports.
  • the BS may inform the UE of information about a precoding matrix to be used by the UE in uplink transmission, based on an uplink signal received from each antenna port of the UE.
  • the BS may inform the UE of information corresponding to a precoding matrix for avoiding the use of the antenna port determined that the uplink transmission quality is not good among the antenna ports provided in the UE.
  • codebook index 4 or codebook index 5 for rank-1 transmission may be used to turn off one of the two antenna ports.
  • the BS may turn off two of the four antenna ports by transmitting codebook indexes 16 to 23.
  • each precoding matrix has a power scaling factor.
  • each precoding matrix in Table 8 has a power scaling factor of 1 / ⁇ 2, whereby the transmit power of the transmit signal per antenna port, which has passed through the precoder 304, is the transmit power for all antenna ports. Is scaled to 1/2 the size of.
  • each precoding matrix of Tables 9 and 10 has a power scaling factor of 1/2, and accordingly, the transmit power of the transmit signal for each antenna port, which has passed through the precoder 304, is the transmit power for all antenna ports. Scales to the size of 1/4.
  • ⁇ PUSCH / PUCCH is used to determine P PUSCH / PUCCH / SRS , regardless of the actual number of antenna ports used for PUSCH / PUCCH / SRS transmission.
  • Table 2 when the BS sets the TPC command field to 0 and transmits a PDCCH having DCI format 0 or 3 to the UE, the UE enables accumulation by the higher layer. In the case of a UE, the UE calculates f (i) by setting ⁇ PUSCH to ⁇ 1 in Equation 3.
  • f (i-1) 0 in Equation 3 and ⁇ PUSCH to ⁇ 4.
  • P PUSCH / PUCCH / SRS is determined according to Equations 1 to 9
  • P PUSCH / PUCCH / SRS is corrected by a single power control factor, it is used for actual transmission of the uplink signal. If the number of antenna ports is smaller than the number of antenna ports configured for transmission of the corresponding uplink signal, power consumption of the UE is reduced.
  • the transmission power used by the UE for the corresponding uplink transmission is reduced to 1/2, and codebook index 16 to codebook of Table 9 are used.
  • the transmission power used by the UE for the corresponding uplink transmission is reduced to 1/2.
  • the antenna port may mean inefficient use of UE transmit power. For example, if some antenna ports are turned off because of specific antenna port-specific power imbalances, such as hand gripping, power calibration using a single power control factor may hinder the UE's power utilization. Can be.
  • embodiments of the present invention provide granularity of power control according to a situation such as a transmission scheme, a transmission rank, a precoder element, or the like. Adjust the granularity. To this end, the present invention introduces multiple TPC command types.
  • the TPC command and the uplink physical according to the DCI format of the PDCCH carrying the TPC command and the type of the uplink physical channel.
  • the mapping relationship of the power correction factor ⁇ to the channel was defined.
  • the present invention considers not only the DCI format of the PDCCH carrying the TPC command and the type of uplink physical channel, but also the situation of uplink transmission in defining the mapping relationship between the TPC command and the power correction factor ⁇ .
  • mapping table (s) may be defined in addition to or in place of Tables 2 and 3 and Tables 6 and 7 so that the TPC commands can be mapped to different ⁇ values depending on the situation.
  • the UE and BS according to the present invention know the mapping table (s) defined differently according to the situation.
  • the mappings (tables) may be stored in the memory (200a, 200b) of the UE and BS.
  • mapping relationship of TPC commands to ⁇ values for a situation in which the number of antenna ports used for uplink transmission is smaller than the number of antenna ports configured in the UE is shown in Tables 2, 3, 6, and 7
  • Embodiments of the present invention will be described taking as an example the case defined in addition to the relationship.
  • new mapping relationship (s) it is also possible for new mapping relationship (s) to be defined that replace existing mapping relationships.
  • Tables 11 and 12 illustrate mapping relationships between TPC commands and ⁇ values that can be used in situations different from existing situations.
  • Table 11 illustrates the mapping relationship between the TPC command of DCI format 0/3 and ⁇ PUSCH , applicable in the other situations
  • Table 12 shows the TPC command and ⁇ of DCI format 3A, applicable in the other situations. The mapping relationship between PUSCHs is illustrated.
  • ⁇ PUSCH values mapped to the bit values set in the TPC command fields of Tables 11 and 12 are merely examples, and ⁇ PUSCH values having different sizes may be defined for specific TPC command bits. Further, in this description, but illustrating only the mapping table, Table 11 and Table 12 to be used to transmit power in the determination of P PUSCH for PUSCH, the mapping tables used in the determination of the P PUCCH transmission power of the PUCCH, the table 6 and 7 It may be defined in addition or in replacement of Tables 6 and 7.
  • TPC command mapping tables may be defined for one transmission mode so that the uplink power may be optimized according to the situation of the uplink transmission.
  • mapping table of TPC type 1 a mapping table between the existing TPC command and the power correction factor
  • mapping table of TPC type 2 a mapping table in consideration of the uplink transmission situation
  • the same TPC command may be mapped to different ⁇ values.
  • the BS may determine the power correction factor ⁇ in consideration of the total number of antenna ports that the UE can configure for uplink transmission and the number of antenna ports that the UE actually uses for the uplink transmission. For example, if the number of antenna ports that the UE actually uses for uplink transmission is less than the number of transmit antenna ports that the UE can configure, the BS uses a TPC type 2 mapping table to issue a TPC command. May transmit to the UE.
  • the number of uplink antenna ports of a UE may be notified to the BS when the UE connects to the BS's network or random access.
  • the UE provides the BS with capability information indicating the number, power levels, and the like of the transmit antenna ports supported by the UE, upon BS network connection, random access, or periodically, or upon request of the BS. Can be sent to.
  • the antenna port that the UE actually uses for uplink transmission to the BS may be signaled to the UE by the BS. Accordingly, the BS and the UE can know the number N t of antenna ports that the UE can configure for transmission of PUSCH or PUCCH or SRS, and also the number of antenna ports actually used for uplink physical channel transmission. It can also be seen.
  • the BS may determine the power correction factor ⁇ PUSCH of the UE, and transmit the corresponding TPC command to the UE using a PDCCH of DCI format 0/3. .
  • the BS sets the corresponding bit in the TPC command field according to Table 2 to the determined ⁇ PUSCH .
  • PDCCH may be transmitted to the UE.
  • the BS can transmit the PDCCH to the UE by setting a corresponding bit in the TPC command field according to the determined ⁇ PUSCH according to Table 11 above. Since the UE knows the number N t of antenna ports that the UE can configure for the PUSCH transmission and the number of antenna ports actually used for the PUSCH transmission, the UE transmits the TPC command to Table 2 or Table 11 according to circumstances. ⁇ PUSCH value can be determined. When the accumulation is enabled, the UE determines P PUSCH by substituting the cumulative ⁇ PUSCH value indicated by the bit of the corresponding TPC command field into Equation 3, and when the accumulation is not enabled, the absolute indicated by the corresponding bit.
  • ⁇ PUSCH value in f (i) ⁇ PUSCH ( iK PUSCH) and may determine the PUSCH.
  • the determined P PUSCH may be equally distributed to the antenna port (s) used for the actual transmission. For example, when four antenna ports are used for actual PUSCH transmission, the UE processor 400a may control the UE transmitter 100a to transmit the PUSCH at the transmit power of P PUSCH / 4.
  • the BS estimates a channel state between the UE and the BS with reference to an uplink signal transmitted by the UE, and based on the estimation result, information about a precoding matrix to be used for uplink transmission, for example, a codebook index, is obtained. May transmit to the UE.
  • the UE may use codebook index 4 and codebook index 5 of Table 8 and codebook index 16 to codebook index 23 of Table 9.
  • the precoding vectors / matrices corresponding to Codebook Index 4 and Codebook Index 5, Codebook Index 16 to Codebook Index 23 in Table 8 are also referred to as antenna port turn off vectors / matrices because they are used to turn off some antenna ports.
  • uplink precoding matrix information transmitted by the BS to the UE may be utilized as information indicating the number of antenna ports that the UE uses for actual uplink transmission.
  • FIG. 11 and 12 illustrate one embodiment of the present invention for mapping TPC commands and power correction factors.
  • FIG. 11 is a codebook for a UE capable of configuring two transmit antenna ports
  • FIG. 12 illustrates a codebook for a UE capable of configuring four transmit antenna ports.
  • the UE when a BS transmits any one of codebook index 1 to codebook index 3 to a UE capable of configuring two transmit antennas, the UE types a TPC command transmitted by the BS. According to the mapping table of 1, the uplink transmission power may be determined by mapping to the value ⁇ . When the BS transmits codebook index 4 or codebook index 5 to the UE, the UE may determine the uplink transmission power by mapping the TPC command transmitted by the BS to a value ⁇ according to a mapping table of type 2.
  • the UE may determine the uplink transmission power by mapping the TPC command transmitted by the BS to a value ⁇ according to a type 1 mapping table.
  • the UE maps the TPC command transmitted by the BS to a value ⁇ according to a type 2 mapping table. Uplink transmission power may be determined.
  • TPC command mapping tables are used depending on the transmission rank, rather than the number of antenna ports or turn off.
  • the type-1 mapping table may be defined as used for single layer transmission, that is, rank-1 transmission
  • the type-2 mapping table may be used for multi-layer transmission, that is, rank-2 or higher transmission.
  • a rank-specific TPC command mapping table can be defined and used.
  • the type of the TPC command mapping table is implicitly determined according to the number of antenna ports, whether antenna ports are turned off, a codebook index, or the like.
  • the TPC command mapping type may be defined in an explicit manner so that the BS can configure the type of the TPC command mapping table in a semi-static or dynamic manner. If the TPC command mapping type is configured semi-statically, Radio Resource Control (RRC) configuration or higher layer signaling should be supported.
  • RRC Radio Resource Control
  • the TPC command type field may be included in the DCI to configure the TPC command mapping type in a dynamic manner.
  • Semi-static or dynamic constructs of the TPC command type can be used with implicit constructs. For example, if some antenna ports are turned off due to lack of battery capacity of the UE, the BS may signal semi-statically or dynamically to the UE to use the existing mapping table, that is, the type-1 mapping table. have.
  • FIG. 13 illustrates a flow of uplink power control according to embodiments of the present invention.
  • the BS of the present invention may transmit TPC command type information indicating the TPC command mapping type to the UE (1010a).
  • the TPC command type information may be information indicating the number of antenna ports used for actual uplink transmission, may be precoding matrix information (eg, a codebook index), or may be rank information.
  • the information may be semi-statically configured by the BS to inform the UE by RRC signaling or higher layer signaling.
  • the information may be information included in the DCI and dynamically signaled to the UE.
  • the BS sends a TPC command to the UE indicating a power correction factor ⁇ used to determine the transmit power of the UE (1010b).
  • the BS may generate a specific TPC command corresponding to the power correction factor ⁇ according to the TPC command mapping type to be used by the UE. For example, referring to FIG. 12 to 11, when the BS transmits codebook index 4 to the UE, the BS generates a TPC command corresponding to the power correction factor ⁇ according to a type-2 mapping table.
  • the PDCCH carrying the TPC command may be transmitted to the UE.
  • the UE determines a power correction factor ⁇ indicated by the TPC command received from the BS according to the mapping table of the type based on the TPC command type information (1020).
  • the UE determines the transmit power P for the corresponding uplink transmission using the determined power correction factor ⁇ (S1030). For example, the UE may substitute the power correction factor ⁇ into Equation 3 and determine the transmit power P PUSCH of the PUSCH according to Equation 1. As another example, the UE may substitute the power correction factor ⁇ into Equation 8 and determine the transmit power P PUCCH of the PUCCH according to Equation 1.
  • the UE performs uplink transmission with the determined transmission power P (S1040).
  • the determined transmission power P can be equally distributed to the antenna port (s) used for the actual transmission.
  • Each antenna port used for the uplink transmission performs uplink transmission with the distributed transmission power.
  • the BS may receive the uplink transmission and determine a new power correction factor ⁇ to control the uplink transmission power of the UE based on the strength, quality, etc. of the received signal by the uplink transmission.
  • the BS may generate a TPC command corresponding to the new power correction factor ⁇ according to the corresponding TPC command type and transmit the TPC command to the UE.
  • the BS processor 400b configured according to an embodiment of the present invention may transmit the TPC command type information indicating the TPC command mapping type to the UE (1010a).
  • the TPC command type information may be information indicating the number of antenna ports used for actual uplink transmission, may be precoding matrix information (eg, a codebook index), or may be rank information.
  • the information may be semi-statically configured by the BS to inform the UE by RRC signaling or higher layer signaling.
  • the information may be information included in the DCI and dynamically signaled to the UE.
  • the BS processor 400b generates a TPC command indicating a power correction factor ⁇ used to determine the transmit power of the UE, and controls the BS transmitter 100b to transmit the TPC command to the UE (1010b).
  • the UE receiver 300a receives the TPC command information and the TPC command and transmits the received TPC command to the UE processor 400a.
  • the UE processor 400a determines a power correction factor ⁇ indicated by the TPC command received from the BS according to the mapping table of the type based on the TPC command type information (1020).
  • the UE processor 400a determines the transmit power P for the corresponding uplink transmission using the determined power correction factor ⁇ (S1030).
  • the UE processor 400a controls the UE transmitter 100a to perform uplink transmission with the determined transmission power P (S1040).
  • the UE processor 400a may control the UE transmitter 100a to equally distribute the determined transmit power P to antenna port (s) used for actual transmission.
  • the UE transmitter 100a performs uplink transmission with the distributed transmission power through each antenna port used for the uplink transmission under the control of the UE processor 400a.
  • the BS receiver 100b may receive the uplink transmission, measure the strength, quality, and the like of the received signal due to the uplink transmission, and transmit the received signal to the BS processor 400b.
  • the BS processor 400b may determine a new power correction factor ⁇ to control the uplink transmission power of the UE based on the received uplink transmission.
  • the BS processor 400b may generate a TPC command corresponding to the new power correction factor ⁇ according to the corresponding TPC command type, and control the BS transmitter 100b to transmit the generated TPC command to the UE.
  • the BS processor 400b estimates a channel state between the UE and the BS based on an uplink signal from the UE, for example, an uplink reference signal, and based on the estimated channel state, A codebook index corresponding to a precoding matrix / vector to be used for uplink transmission may be generated as precoding matrix information.
  • the BS processor 400b may control the BS transmitter 100b to transmit the precoding matrix information to the UE.
  • the BS processor 400b may generate rank information indicating an uplink transmission rank based on the estimated channel state, and control the BS transmitter 100b to transmit to the UE.
  • the UE receiver 300a receives the precoding matrix information and the rank information and transmits it to the UE processor 400a.
  • the UE processor 400a may select a corresponding precoding matrix / vector based on the precoding matrix information and the rank information, and configure a precoder 304 according to the selected precoding matrix / vector. 100a) can be controlled.
  • the precoder 304 multiplies the output x of the layer mapper 303 corresponding to M t layers by the precoding matrix / vector W of the selected N t ⁇ M t to the matrix / vector z of N t ⁇ M F. You can print
  • the UE processor 400a may use the power correction factor ⁇ indicated by the TPC command received from the BS in determining the transmission power of the uplink physical channel. For example, when one of codebook indexes 0 to 3 is received from the BS, the UE processor 400a may be configured in Table 2 (TPC command in DCI format 0/3) or Table 3 (TPC command in DCI format 3A). Accordingly, the power correction factor ⁇ PUSCH for the PUSCH may be determined from the TPC command. The UE processor 400a may determine a P PUSCH using the determined ⁇ PUSCH and control the UE transmitter 100a to perform a PUSCH transmission with transmission power of P PUSCH / 2 at each of two antenna ports. .
  • the UE processor 400a when the codebook index 4 or 5 is received from the BS, the UE processor 400a performs the TPC command according to Table 11 (TPC command in DCI format 0/3) or Table 12 (TPC command in DCI format 3A). From the power correction factor ⁇ PUSCH for the PUSCH can be determined. The UE processor 400a may determine a P PUSCH using the determined ⁇ PUSCH and control the UE transmitter 100a to perform a PUSCH transmission with the transmission power of the determined P PUSCH at an antenna port that is not turned off. .
  • the uplink power can be controlled more efficiently.
  • the TPC command mapping table may be defined differently according to the number of ports or the number of antenna ports that are turned off. For example, if a codebook for an 8-Tx transmit antenna port is defined and the codebook includes a precoding matrix / vector that turns off two antenna ports and a precoding matrix / vector that turns off four antenna ports, TPC command mapping table for 8 cases, TPC command mapping table for 4 cases, and TPC command mapping table for 2 cases are defined separately for uplink transmission. It can also be used for.
  • the description of the uplink transmission power control may refer to a standard document (for example, 3GPP TS36.213), and details thereof are omitted for clarity.
  • a standard document for example, 3GPP TS36.213
  • the information disclosed in the above standard document for the uplink transmission power control reveals that it can be applied to the uplink transmission power control used in various embodiments of the present invention described below.
  • a carrier aggregation or bandwidth aggregation using a larger uplink / downlink bandwidth by collecting a plurality of uplink / downlink frequency blocks may be used to use a wider frequency band.
  • Each frequency block is also called a cell, component carrier, or band, and each frequency block operates on a center frequency.
  • a UE supporting carrier aggregation in uplink may perform uplink transmission using a plurality of center frequencies.
  • P MAX may correspond to a maximum transmit power for a specific frequency block configured in the UE.
  • the uplink transmission power is determined by the same power correction factor value as that even when the antenna port is off. Accordingly, the transmit power allocated to the antenna port that is turned off is not used for uplink transmission, and only the transmit power allocated to the antenna port that is not turned off is used for uplink transmission.
  • the UE determines the uplink transmission power by mapping a specific TPC command received from the BS to another power correction factor according to the TPC command type, the uplink transmission having a different size according to the TPC command type. Power is determined.
  • the same TPC command can be mapped to different levels of power correction factor values, so that uplink power can be controlled more efficiently than if it is controlled by a single power correction factor. .
  • Embodiments of the present invention may be used in a base station or user equipment or other equipment in a wireless communication system.

Abstract

본 발명의 상향링크 전력제어와 사용자기기는 안테나 포트의 개수를 고려하여 전력 보정 인자를 결정한다. 본 발명에 의하면, 기지국이 동일한 전력 제어 정보를 사용자기기에 전송하더라도 상기 사용자기기는 상향링크 전송 상황에 따라 상기 전력 제어 정보를 다른 전력 보정 인자에 맵핑하여 상향링크 전송전력을 결정할 수 있다. 이에 따라, 보다 효율적인 상향링크 전력제어가 가능해진다.

Description

상향링크 전력제어 방법 및 사용자기기
본 발명은 무선 통신 시스템에 관한 것이다. 특히, 본 발명은 다중 안테나를 통한 상향링크 전송을 위한 전력 제어 방법 및 장치에 관한 것이다.
무선통신 시스템에서, 기지국과 사용자기기 간의 거리에 따른 경로손실(path-loss) 및 인접 셀로부터의 간섭에 의한 셀간 간섭(inter-cell interference)을 줄이기 위한 하나의 방법으로 전력제어 기법이 사용된다. 전력제어 기법은 무선통신 시스템의 서비스 품질(quality of service; QoS)을 어느 정도 유지하면서 가장 낮은 전력 레벨로 데이터를 전송할 수 있도록 송신전력을 조절하는 기법이다. 특히, 다중 셀 환경에서 셀 경계 부근에 있는 사용자기기들은 경로손실과 셀간 간섭 등에 많은 영향을 받는다. 사용자기기는 인접 셀에 간섭을 주지 않으면서 경로손실에 따라 서비스 품질이 저하되지 않도록 적절한 송신전력을 결정하여 데이터를 전송하여야 한다.
기존의 사용자기기는 단일 전력 증폭기(amplifier)만을 구비하고, 1개의 안테나 포트를 통한 상향링크 전송만을 수행할 수 있었다. 이에 반해, 기지국은 복수의 전력 증폭기를 구비할 수 있고, 1개 또는 복수개의 안테나 포트를 통한 하향링크 전송을 수행할 수 있었다. 따라서, 기존 무선 통신 시스템에서는 상향링크와 하향링크 간 피크/전체 시스템 처리량(throughput)의 비대칭성(asymmetry)이 주요한 결점(drawback)으로 간주되어 왔다. 따라서, 상향링크 피크/전체 시스템 처리량을 개선하기 위하여 상향링크에서도 복수 안테나 포트를 통한 전송을 채택하는 것이 고려되고 있다.
기존 무선 통신 표준(standard)은 사용자기기가 단일 전력 증폭기를 구비한다고 가정하였으므로, 기존 무선 통신 표준에 따른 상향링크 전력 제어는 상향링크 총 전력을 조정(adjust)하는 방식으로 처리되어 왔다. 그러나, 복수의 안테나가 상향링크 전송에 채택되는 경우, 상기 복수의 안테나를 위한 적절한 전력 제어 메커니즘(mechanism)이 고안될 것이 요구된다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, Nt개(여기서, Nt>1)의 안테나 포트를 구비한 사용자기기에 있어서, 기지국으로부터 상향링크 신호의 전송전력을 제어하기 위한 전력제어 커맨드를 수신하는 단계; 및 상기 전력제어 커맨드를 이용하여 상기 상향링크 신호의 전송전력을 결정하는 단계; 상기 결정된 전송전력으로 상기 상향링크 신호를 상기 기지국으로 전송하는 단계를 포함하되, 상기 상향링크 신호의 전송에 사용되는 사용 안테나 포트의 개수가 N1개(여기서, N1은 Nt이하인 양의 정수)이면 상기 전력제어 커맨드를 제1보정값에 맵핑하여 상기 제1보정값을 바탕으로 상기 전송전력을 결정하고, 상기 사용 안테나 포트의 개수가 N2개(여기서, N1
Figure PCTKR2011003696-appb-I000001
N2이고, Nt이하인 양의 정수)이면 상기 전력제어 커맨드를 제2보정값에 맵핑하여 상기 제2보정값을 바탕으로 상기 전송전력을 결정하는,상향링크 전력제어 방법이 제공된다.
본 발명의 또 다른 양상으로, Nt개(여기서, Nt>1)의 안테나 포트를 구비한 사용자기기에 있어서, 기지국으로부터 상향링크 신호의 전송전력을 제어하기 위한 전력제어 커맨드를 수신하도록 구성된 수신기; 및 상기 전력제어 커맨드를 이용하여 상기 상향링크 신호의 전송전력을 결정하도록 구성된 프로세서; 상기 결정된 전송전력으로 상기 상향링크 신호를 상기 기지국으로 전송하도록 구성된 송신기를 포함하되, 상기 프로세서는, 상기 상향링크 신호의 전송에 사용되는 사용 안테나 포트의 개수가 N1개(여기서, N1은 Nt이하인 양의 정수)이면 상기 전력제어 커맨드를 제1보정값에 맵핑하여 상기 제1보정값을 바탕으로 상기 전송전력을 결정하고, 상기 사용 안테나 포트의 개수가 N2개(여기서, N1
Figure PCTKR2011003696-appb-I000002
N2이고, Nt이하인 양의 정수)이면 상기 전력제어 커맨드를 제2보정값에 맵핑하여 상기 제2보정값을 바탕으로 상기 전송전력을 결정하도록 구성된, 사용자기기가 제공된다.
본 발명의 각 양상에 있어서, 상기 사용 안테나 포트의 개수는 상기 기지국으로부터 수신된 프리코딩 행렬 지시 정보를 기반으로 결정될 수 있다.
본 발명의 각 양상에 있어서, 상기 결정된 전력으로 상기 상향링크 신호를 전송하는 단계를 포함할 수 있다.
상기 기술적 해결방법들은 본 발명의 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명에 의하면, 무선 통신 시스템에서 상향링크 전력이 보다 효율적으로 제어되는 것이 가능해진다.
본 발명에 따른 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과는 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 본 발명을 수행하는 사용자기기(UE) 및 기지국(BS)의 구성요소를 나타내는 블록도이다.
도 2는 사용자기기 및 기지국 내 송신기 구조의 일 예를 도시한 것이다.
도 3은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 예를 나타낸다.
도 4는 무선 통신 시스템에서 DL/UL 슬롯 구조의 일례를 나타낸 것이다.
도 5는 무선 통신 시스템에서 하향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 6은 무선 통신 시스템에서 상향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 7은 상향링크 전력 제어의 기본 개념을 설명하는 도면이다.
도 8은 LTE 시스템에서 단일 안테나 포트를 구비한 상향링크 송신기의 일반적인 구조를 나타낸 것이다.
도 9 및 도 10은 복수의 전송 안테나 포트를 구비한 상향링크 송신기의 일반적인 구조를 예시한 것이다.
도 11 및 도 12는 TPC 커맨드와 전력 보정 인자를 맵핑하는 본 발명의 일 실시예들을 예시한 것이다.
도 13은 본 발명의 실시예들에 따른 상향링크 전력 제어의 흐름도를 예시한 것이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
또한, 이하에서 설명되는 기법(technique) 및 장치, 시스템은 다양한 무선 다중 접속 시스템에 적용될 수 있다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다. CDMA는 UTRA (Universal Terrestrial Radio Access) 또는 CDMA2000과 같은 무선 기술(technology)에서 구현될 수 있다. TDMA는 GSM(Global System for Mobile communication), GPRS(General Packet Radio Service), EDGE(Enhanced Data Rates for GSM Evolution) 등과 같은 무선 기술에서 구현될 수 있다. OFDMA는 IEEE(Institute of Electrical and Electronics Engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE802-20, E-UTRA(evolved-UTRA) 등과 같은 무선 기술에서 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunication System)의 일부이며, 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 이용하는 E-UMTS의 일부이다. 3GPP LTE는 하향링크에서는 OFDMA를 채택하고, 상향링크에서는 SC-FDMA를 채택하고 있다. LTE-A(LTE-advanced)는 3GPP LTE의 진화된 형태이다. 설명의 편의를 위하여, 이하에서는 본 발명이 3GPP LTE/LTE-A에 적용되는 경우를 가정하여 설명한다. 그러나, 본 발명의 기술적 특징이 이에 제한되는 것은 아니다. 예를 들어, 이하의 상세한 설명이 이동통신 시스템이 3GPP LTE/LTE-A 시스템에 대응하는 이동통신 시스템을 기초로 설명되더라도, 3GPP LTE/LTE-A에 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명에 있어서, 사용자기기(UE: User Equipment)는 고정되거나 이동성을 가질 수 있으며, 기지국과 통신하여 사용자데이터 및/또는 각종 제어정보를 송수신하는 각종 기기들이 이에 속한다. 사용자기기는 단말(Terminal Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscribe Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등으로 불릴 수 있다. 또한, 본 발명에 있어서, 기지국(Base Station, BS)은 일반적으로 사용자기기 및/또는 다른 기지국과 통신하는 고정된 지점(fixed station)을 말하며, 사용자기기 및 타 기지국과 통신하여 각종 데이터 및 제어정보를 교환한다. 기지국은 eNB(evolved-NodeB), BTS(Base Transceiver System), 엑세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
본 발명에서, 특정 신호가 프레임/서브프레임/슬롯/반송파/부반송파에 할당된다는 것은, 상기 특정 신호가 해당 프레임/서브프레임/슬롯/심볼의 기간/타이밍 동안 해당 반송파/부반송파를 통해 전송되는 것을 의미한다.
본 발명에서 랭크 혹은 전송랭크라 함은 일 OFDM 심볼 혹은 일 데이터 RE(Resource Element) 상에 다중화된/할당된 레이어의 개수를 의미한다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다.
따라서, 본 발명에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, 기지국이 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
도 1은 본 발명을 수행하는 사용자기기(UE) 및 기지국(BS)의 구성요소를 나타내는 블록도이다.
UE는 상향링크에서는 송신장치로 동작하고 하향링크에서는 수신장치로 동작한다. 이와 반대로, BS는 상향링크에서는 수신장치로 동작하고, 하향링크에서는 송신장치로 동작할 수 있다.
UE 및 BS는 정보 및/또는 데이터, 신호, 메시지 등을 수신할 수 있는 안테나 (500a, 500b)와, 안테나를 제어하여 메시지를 전송하는 송신기(Transmitter; 100a, 100b), 안테나를 제어하여 메시지를 수신하는 수신기(Receiver; 300a, 300b), 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(200a, 200b)를 포함한다. 또한, UE 및 BS는 UE 또는 BS에 포함된 송신기 및 수신기, 메모리 등의 구성요소와 동작적으로 연결되어, 상기 구성요소를 제어하여 본 발명을 수행하도록 구성된 프로세서(400a, 400b)를 각각 포함한다. 상기 UE 내 송신기(100a), 수신기(300a), 메모리(200a), 프로세서(400a)는 각각 별개의 칩(chip)에 의해 독립된 구성요소로서 구현될 수도 있고, 둘 이상이 하나의 칩(chip)에 의해 구현될 수도 있다. 마찬가지로, 상기 BS 내 송신기(100b), 수신기(300b), 메모리(200b), 프로세서(400b)는 각각 별개의 칩(chip)에 의해 독립된 구성요소로서 구현될 수도 있고, 둘 이상이 하나의 칩(chip)에 의해 구현될 수도 있다. 송신기와 수신기가 통합되어 UE 또는 BS 내에서 한 개의 송수신기(transceiver)로 구현될 수도 있다.
안테나(500a, 500b)는 송신기(100a, 100b)에서 생성된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 수신기(300a, 300b)로 전달하는 기능을 수행한다. 안테나(500a, 500b)는 안테나 포트로 불리기도 한다. 각 안테나 포트는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될 수 있다. 각 안테나 포트로부터 전송된 신호는 UE 내 수신기(300a)에 의해 더 이상 분해될 수 없다. 해당 안테나 포트에 대응하여 전송된 참조신호는 UE의 관점에서 본 안테나 포트를 정의하며, 채널이 일 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나 포트를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 UE로 하여금 상기 안테나 포트에 대한 채널 추정을 가능하게 한다. 즉, 안테나 포트는 상기 안테나 포트 상의 심볼을 전달하는 채널이 상기 동일 안테나 포트 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의된다. 다수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 송수신기의 경우에는 2개 이상의 안테나와 연결될 수 있다.
프로세서(400a, 400b)는 통상적으로 UE 또는 BS 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(400a, 400b)는 본 발명을 수행하기 위한 각종 제어 기능, 서비스 특성 및 전파 환경에 따른 MAC(Medium Access Control) 프레임 가변 제어 기능, 유휴모드 동작을 제어하기 위한 전력절약모드 기능, 핸드오버(Handover) 기능, 인증 및 암호화 기능 등을 수행할 수 있다. 프로세서(400a, 400b)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 한편, 프로세서(400a, 400b)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(400a, 400b)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(400a, 400b) 내에 구비되거나 메모리(200a, 200b)에 저장되어 프로세서(400a, 400b)에 의해 구동될 수 있다.
송신기(100a, 100b)는 프로세서(400a, 400b) 또는 상기 프로세서와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 안테나(500a, 500b)에 전달한다. 예를 들어, 송신기(100a, 100b)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 변조과정 등을 거쳐 K개의 레이어로 변환한다. 상기 K개의 레이어는 송신기 내 송신처리기를 거쳐 송신 안테나(500a, 500b)를 통해 전송된다. UE 및 BS의 송신기(100a, 100b) 및 수신기(300a, 300b)는 송신신호 및 수신신호를 처리하는 과정에 따라 다르게 구성될 수 있다.
메모리(200a, 200b)는 프로세서(400a, 400b)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입출력되는 정보를 임시 저장할 수 있다. 메모리(200a, 200b)가 버퍼로서 활용될 수 있다. 메모리는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type) 또는 카드 타입의 메모리(예를 들어, SD 또는 XD 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(Read-Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory), 자기 메모리, 자기 디스크, 광디스크 등을 이용하여 구현될 수 있다.
도 2는 사용자기기 및 기지국 내 송신기 구조의 일 예를 도시한 것이다. 도 2를 참조하여 송신기(100a, 100b)의 동작을 보다 구체적으로 설명하면 다음과 같다.
도 2를 참조하면, UE 또는 기지국 내 송신기(100a, 100b)는 스크램블러(301) 및 변조맵퍼(302), 레이어맵퍼(303), 프리코더(304), 자원요소맵퍼(305), OFDM 신호생성기(306)를 포함할 수 있다.
상기 송신기(100a, 100b)는 하나 이상의 코드워드(codeword)를 송신할 수 있다. 각 코드워드 내 부호화된 비트(coded bits)는 각각 상기 스크램블러(301)에 의해 스크램블링되어 물리채널 상에서 전송된다. 코드워드는 데이터열로 지칭되기도 하며, MAC 계층이 제공하는 데이터 블록과 등가이다. MAC 계층이 제공하는 데이터 블록은 전송 블록으로 지칭되기도 한다.
스크램블된 비트는 상기 변조맵퍼(302)에 의해 복소변조심볼(complex-valued modulation symbols)로 변조된다. 상기 변조맵퍼는 상기 스크램블된 비트를 기결정된 변조 방식에 따라 변조하여 신호 성상(signal constellation) 상의 위치를 표현하는 복소변조심볼로 배치할 수 있다. 변조 방식(modulation scheme)에는 제한이 없으며, m-PSK(m-Phase Shift Keying) 또는 m-QAM(m-Quadrature Amplitude Modulation) 등이 상기 부호화된 데이터의 변조에 이용될 수 있다.
상기 복소변조심볼은 상기 레이어맵퍼(303)에 의해 하나 이상의 전송 레이어로 맵핑된다.
각 레이어 상의 복소변조심볼은 안테나 포트상에서의 전송을 위해 프리코더(304)에 의해 프리코딩된다. 구체적으로, 프리코더(304)는 상기 복소변조심볼을 다중 송신 안테나(500-1,..., 500-Nt)에 따른 MIMO 방식으로 처리하여 안테나 특정 심볼들을 출력하고 상기 안테나 특정 심볼들을 해당 자원요소맵퍼(305)로 분배한다. 즉, 전송 레이어의 안테나 포트로의 매핑은 프리코더(304)에 의해 수행된다. 프리코더(304)는 레이어맵퍼(303)의 출력 x를 Nt×Mt의 프리코딩 행렬 W와 곱해 Nt×MF의 행렬 z로 출력할 수 있다.
상기 자원요소맵퍼(305)는 각 안테나 포트에 대한 복소변조심볼을 적절한 자원요소(resource elements)에 맵핑/할당한다. 상기 자원요소맵퍼(305)는 상기 각 안테나 포트에 대한 복소변조심볼을 적절한 부반송파에 할당하고, 사용자에 따라 다중화할 수 있다.
OFDM 신호생성기(306)는 상기 각 안테나 포트에 대한 복소변조심볼, 즉, 안테나 특정 심볼을 OFDM 또는 SC-FDM 방식으로 변조하여, 복소시간도메인(complex-valued time domain) OFDM(Orthogonal Frequency Division Multiplexing) 심볼 신호 또는 SC-FDM(Single Carrier Frequency Division Multiplexing) 심볼 신호를 생성한다. OFDM 신호생성기(306)는 안테나 특정 심볼에 대해 IFFT(Inverse Fast Fourier Transform)을 수행할 수 있으며, IFFT가 수행된 시간 도메인 심볼에는 CP(Cyclic Prefix)가 삽입될 수 있다. OFDM 심볼은 디지털-아날로그(digital-to-analog) 변환, 주파수 상향변환 등을 거쳐, 각 송신 안테나(500-1,...,500-Nt)를 통해 수신장치로 송신된다. OFDM 신호생성기(306)는 IFFT 모듈 및 CP 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
한편, 상기 송신기(100a, 100b)가 코드워드의 송신에 SC-FDM 접속(SC-FDMA) 방식을 채택하는 경우, 상기 송신기(100a, 100b)는 이산푸리에변환기(Discrete Fourier Transform) 모듈(307)(혹은 고속푸리에변환기(Fast Fourier Transform) 모듈)를 포함할 수 있다. 상기 이산푸리에변환기는 상기 안테나 특정 심볼에 DFT(Discrete Fourier Transform) 혹은 FFT(Fast Fourier Transform)(이하, DFT/FFT)를 수행하고, 상기 DFT/FFT된 심볼을 상기 자원요소맵퍼(305)에 출력한다. SC-FDMA(Single Carrier FDMA), 전송신호의 PAPR(Peak-to-Average Power Ratio) 혹은 CM(Cubic Metric)을 낮게 하여 전송하는 방식이다. SC-FDMA에 의하면, 전송되는 신호가 전력 증폭기(power amplifier)의 비선형(non-linear) 왜곡 구간을 피하여 전송될 수 있다. 따라서, 송신기가 기존의 OFDM 방식보다 낮은 전력으로 신호를 전송하더라도, 수신기가 일정 강도와 오류율을 만족하는 신호를 수신할 수 있게 된다. 즉, SC-FDMA에 의하면, 송신장치의 전력 소모를 줄일 수 있다.
기존 OFDM 신호 생성기에서는, 각 부반송파에 실려 있던 신호들이 IFFT를 통과하면서 다중반송파변조(Multi Carrier Modulation, MCM)에 의하여, 동시에 병렬로 전송됨에 따라 전력 증폭기 효율이 떨어지는 문제가 있었다. 반면에, SC-FDMA에서는 부반송파에 신호를 맵핑하기 이전에 먼저 정보를 DFT/FFT한다. DFT/FFT 모듈(307)를 통과한 신호들은, DFT/FFT의 효과에 의하여, PAPR이 증가한다. DFT/FFT된 신호는 자원요소맵퍼(305)에 의해 부반송파에 맵핑된 후, 다시 IFFT되어 시간 도메인 신호로 변환된다. 즉, SC-FDMA 송신기는 OFDM 신호 생성기 이전에 DFT 혹은 FFT 연산을 더 수행함으로써, PAPR이 IFFT 입력단에서 증가했다가 다시 IFFT를 거치면서 최종 전송신호의 PAPR이 줄어들게 만든다. 이 형태는 기존의 OFDM 신호 생성기 앞에 DFT 모듈(혹은 FFT 모듈)(307)이 추가된 것과 같아서, SC-FDMA는 DFT-s-OFDM(DFT-spreaded OFDM)이라고도 불린다.
수신기(300a, 300b)의 신호 처리 과정은 송신기의 신호 처리 과정의 역으로 구성된다. 구체적으로, 수신기(300a, 300b)는 외부에서 안테나(500a, 500b)를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여 해당 프로세서(400a, 400b)로 전달한다. 상기 수신기(300a, 300b)에 연결된 안테나(500a, 500b)는 Nr개의 다중 수신 안테나를 포함할 수 있으며, 수신 안테나를 통해 수신된 신호 각각은 기저대역 신호로 복원된 후 다중화 및 MIMO 복조화를 거쳐 송신기(100a, 100b)가 본래 전송하고자 했던 데이터열로 복원된다. 수신기(300a, 300b)는 수신된 신호를 기저대역 신호로 복원하기 위한 신호복원기, 수신 처리된 신호를 결합하여 다중화하는 다중화기, 다중화된 신호열을 해당 코드워드로 복조하는 채널복조기를 포함할 수 있다. 상기 신호복원기 및 다중화기, 채널복조기는 이들의 기능을 수행하는 통합된 하나의 모듈 또는 각각의 독립된 모듈로 구성될 수 있다. 조금 더 구체적으로, 상기 신호복원기는 아날로그 신호를 디지털 신호로 변환하는 ADC(analog-to-digital converter), 상기 디지털 신호로부터 CP를 제거하는 CP 제거기, CP가 제거된 신호에 FFT(fast Fourier transform)를 적용하여 주파수 도메인 심볼을 출력하는 FFT 모듈, 상기 주파수 도메인 심볼을 안테나 특정 심볼로 복원하는 자원요소디맵퍼(resource element demapper)/등화기(equalizer)를 포함할 수 있다. 상기 안테나 특정 심볼은 다중화기에 의해 전송레이어로 복원되며, 상기 전송레이어는 채널복조기에 의해 송신장치가 전송하고자 했던 코드워드로 복원된다.
한편, 상기 수신기(300a, 300b)가 SC-FDMA 방식에 의해 전송된 신호를 수신하는 경우, 상기 수신기는(300a, 300b)는 역이산푸리에변환(Inverse Discrete Fourier Transform, IDFT) 모듈(혹은 IFFT 모듈)을 추가로 포함한다. 상기 IDFT/IFFT 모듈은 자원요소디맵퍼에 의해 복원된 안테나 특정 심볼에 IDFT/IFFT를 수행하여, IDFT/IFFT된 심볼을 다중화기에 출력한다.
참고로, 도 1 및 도 2에서 스크램블러(301) 및 변조맵퍼(302), 레이어맵퍼(303), 프리코더(304), 자원요소맵퍼(305), OFDM 신호생성기(306)가 송신기(100a, 100b)에 포함되는 것으로 설명하였으나, 송신장치의 프로세서(400a, 400b)가 스크램블러(301) 및 변조맵퍼(302), 레이어맵퍼(303), 프리코더(304), 자원요소맵퍼(305), OFDM 신호생성기(306)를 포함하도록 구성되는 것도 가능하다. 마찬가지로, 도 1 및 도 2에서는 신호복원기 및 다중화기, 채널복조기가 수신기(300a, 300b)에 포함되는 것으로 설명하였으나, 수신장치의 프로세서(400a, 400b)가 상기 신호복원기 및 다중화기, 채널복조기를 포함하도록 구성되는 것도 가능하다. 이하에서는 설명의 편의를 위하여, 스크램블러(301) 및 변조맵퍼(302), 레이어맵퍼(303), 프리코더(304), 자원요소맵퍼(305), OFDM 신호생성기(306)가(SC-FDMA방식의 경우는 DFT 모듈(307)을 더 포함), 이들의 동작을 제어하는 프로세서(400a, 400b)와 분리된 송신기(100a, 100b)에 포함되고, 신호복원기 및 다중화기, 채널복조기가 이들의 동작을 제어하는 프로세서(400a, 400b)와는 분리된 수신기(300a, 300b)에 포함된 것으로 설명한다. 그러나, 스크램블러(301) 및 변조맵퍼(302), 레이어맵퍼(303), 프리코더(304), 자원요소맵퍼(305), OFDM 신호생성기(306)(307)가 프로세서(400a, 400b)에 포함된 경우 및 신호복원기 및 다중화기, 채널복조기가(SC-FDMA방식의 경우는 IFFT 모듈을 더 포함), 프로세서(400a, 400b)에 포함된 경우에도 본 발명의 실시예들이 동일하게 적용될 수 있다.
도 3은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 예를 나타낸다. 특히, 도 3의 프레임 구조는 FDD(Frequency Division Duplex) 모드, 반(half) FDD(H-FDD) 모드, TDD(Time Division Duplex) 모드 등에 적용될 수 있다.
도 3을 참조하면, 3GPP LTE/LTE-A에서 사용되는 무선프레임은 10ms(307200Ts)의 길이를 가지며, 10개의 균등한 크기의 서브프레임으로 구성된다.일 무선프레임 내 10개의 서브프레임에는 각각 번호가 부여될 수 있다. 여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(2048x15kHz)로 표시된다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯으로 구성된다. 일 무선프레임 내에서 20개의 슬롯들은 0부터 19까지 순차적으로 넘버링될 수 있다. 각각의 슬롯은 0.5ms의 길이를 가진다. 일 서브프레임을 전송하기 위한 시간은 전송시간간격(TTI: transmission time interval)로 정의된다. 시간 자원은 무선프레임 번호(혹은 무선 프레임 인덱스라고도 함)와 서브프레임 번호(혹은 서브프레임 번호라고도 함), 슬롯 번호(혹은 슬롯 인덱스) 등에 의해 구분될 수 있다.
무선 프레임은 듀플레스(duplex) 모드에 따라 다르게 구성될 수 있다. 예를 들어, FDD 모드에서, 하향링크 전송 및 상향링크 전송은 주파수에 의해 구분되므로, 무선 프레임은 하향링크 서브프레임 또는 상향링크 서브프레임 중 하나만을 포함한다.
도 4는 무선 통신 시스템에서 DL/UL 슬롯 구조의 일례를 나타낸 것이다. 특히, 도 4는 3GPP LTE/LTE-A 시스템의 자원격자(resource grid)의 구조를 나타낸다. 안테나 포트당 1개의 자원격자가 있다.
도 4를 참조하면, 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포함하고, 주파수 도메인에서 다수의 자원블록(resource block, RB)을 포함한다. OFDM 심볼은 일 심볼 구간을 의미하기도 한다. 자원블록은 주파수 도메인에서 다수의 부반송파를 포함한다. OFDM 심볼은 다중 접속 방식에 따라 OFDM 심볼, SC-FDM 심볼 등으로 불릴 수 있다. 하나의 슬롯에 포함되는 OFDM 심볼의 수는 채널 대역폭, CP의 길이에 따라 다양하게 변경될 수 있다. 예를 들어, 정상(normal) CP의 경우에는 하나의 슬롯이 7개의 OFDM 심볼을 포함하나, 확장(extended) CP의 경우에는 하나의 슬롯이 6개의 OFDM 심볼을 포함한다. 도 4에서는 설명의 편의를 위하여 하나의 슬롯이 7 OFDM 심볼로 구성되는 서브프레임을 예시하였으나, 본 발명의 실시예들은 다른 개수의 OFDM 심볼을 갖는 서브프레임들에도 마찬가지의 방식으로 적용될 수 있다. 참고로, 하나의 OFDM 심볼과 하나의 부반송파로 구성된 자원을 자원요소(resource element, RE) 혹은 톤(tone)이라고 한다.
도 4를 참조하면, 각 슬롯에서 전송되는 신호는 NDL/UL RBNRB sc개의 부반송파(subcarrier)와 NDL/UL symb개의 OFDM 혹은 SC-FDM 심볼로 구성되는 자원격자(resource grid)로 표현될 수 있다. 여기서, NDL RB은 하향링크 슬롯에서의 자원블록(resource block, RB)의 개수를 나타내고, NUL RB은 상향링크 슬롯에서의 RB의 개수를 나타낸다. NDL RB와 NUL RB은 하향링크 전송 대역폭과 상향링크 전송 대역폭에 각각 의존한다. 각 OFDM 심볼은, 주파수 도메인에서, NDL/UL RBNRB sc개의 부반송파를 포함한다. 일 반송파에 대한 부반송파의 개수는 FFT(Fast Fourier Transform) 크기에 따라 결정된다. 부반송파의 유형은 데이터 전송을 위한 데이터 부반송파, 참조신호의 전송 위한 참조신호 부반송파, 가드 밴드(guard band) 및 DC 성분을 위한 널 부반송파로 나뉠 수 있다. DC 성분을 위한 널 부반송파는 미사용인채 남겨지는 부반송파로서, OFDM 신호 생성과정에서 반송파 주파수(carrier frequency, f0)로 맵핑된다. 반송파 주파수는 중심 주파수(center frequency)라고도 한다. NDL symb은 하향링크 슬롯 내 OFDM 혹은 SC-FDM 심볼의 개수를 나타내며, NUL symb은 상향링크 슬롯 내 OFDM 혹은 SC-FDM 심볼의 개수를 나타낸다. NRB sc는 하나의 RB를 구성하는 부반송파의 개수를 나타낸다.
다시 말해, 물리자원블록(physical resource block, PRB)는 시간 도메인에서 NDL/UL symb개의 연속하는 OFDM 심볼 혹은 SC-FDM 심볼로서 정의되며, 주파수 도메인에서 NRB sc개의 연속하는 부반송파에 의해 정의된다. 따라서, 하나의 PRB는 NDL/UL symb×NRB sc개의 자원요소로 구성된다.
자원격자 내 각 자원요소는 일 슬롯 내 인덱스쌍 (k,1)에 의해 고유하게 정의될 수 있다. k는 주파수 도메인에서 0부터 NDL/UL RBNRB sc-1까지 부여되는 인덱스이며, l은 시간 도메인에서 0부터 NDL/UL symb-1까지 부여되는 인덱스이다.
도 5는 무선 통신 시스템에서 하향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 5를 참조하면, 각 서브프레임은 제어영역(control region)과 데이터영역(data region)으로 구분될 수 있다. 제어영역은 첫번째 OFDM 심볼로부터 시작하여 하나 이상의 OFDM 심볼을 포함한다. 서브프레임 내 제어영역으로 사용되는 OFDM 심볼의 개수는 서브프레임별로 독립적으로 설정될 수 있으며, 상기 OFDM 심볼의 개수는 PCFICH(Physical Control Format Indicator CHannel)를 통해 전송된다. 기지국은 제어영역을 통해 각종 제어정보를 사용자기기(들)에 전송할 수 있다. 제어정보의 전송을 위하여, 상기 제어영역에는 PDCCH(Physical Downlink Control CHannel), PCFICH, PHICH(Physical Hybrid automatic retransmit request Indicator CHannel) 등이 할당될 수 있다.
기지국은 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보, DAI(Downlink Assignment Index), TPC(Transmitter Power Control) 커맨드 등을 PDCCH 상에서 각 사용자기기 또는 사용자기기 그룹에게 전송할 수 있다.
기지국은 데이터영역을 통해 사용자기기 혹은 사용자기기그룹을 위한 데이터를 전송할 수 있다. 상기 데이터영역을 통해 전송되는 데이터를 사용자데이터라 칭하기도 한다. 사용자데이터의 전송을 위해, 데이터영역에는 PDSCH(Physical Downlink Shared CHannel)가 할당될 수 있다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 사용자기기는 PDCCH를 통해 전송되는 제어정보를 복호하여 PDSCH를 통해 전송되는 데이터를 읽을 수 있다. PDSCH의 데이터가 어떤 사용자기기 혹은 사용자기기 그룹에게 전송되는지, 상기 사용자기기 혹은 사용자기기그룹이 어떻게 PDSCH 데이터를 수신하고 복호해야 하는지 등을 나타내는 정보가 PDCCH에 포함되어 전송된다.
PDCCH는 하나 이상의 연속하는 제어채널요소(Control Channel Element; CCE)의 조합으로 전송된다. CCE는 무선 채널의 상태에 기초한 코딩 레이트로 PDCCH를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대응한다. PDCCH의 포맷과 이용가능한 비트 수는 CCE의 개수와 CCE에 의해 제공되는 코딩 레이트 간의 상관관계에 따라서 결정된다. 기지국은 사용자기기에게 전송되는 DCI에 따라서 PDCCH 포맷을 결정하고, 제어 정보에 순환잉여검사(Cyclic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자(Radio Network Temporary Identifier; RNTI)라 하는 식별자로 마스킹된다.
복수의 PDCCH가 제어영역에서 전송될 수 있다. UE는 상기 복수의 PDCCH를 모니터하여, 자신의 PDCCH를 검출할 수 있다. 일 PDCCH가 나르는 DCI는 PUCCH 포맷에 따라서 그 크기와 용도가 다르며, 부호화율에 따라 그 크기가 달라질 수 있다.
다음 표는 용도에 따른 DCI 포맷의 예를 나타낸다.
표 1
DCI format Objectives
0 UL scheduling of PUSCH
1 DL scheduling of one PDSCH codeword
1A DL scheduling of compact scheduling (single antenna port, port 0 or TxD(Transmit Diversity) can be used)
1B DL scheduling of closed-loop single-rank transmission
1C DL scheduling of compact format
1D DL scheduling of single layer MU-MIMO transmission mode
2 DL scheduling of rank-adapted closed-loop spatial multiplexing mode
2A DL scheduling of rank-adapted open-loop spatial multiplexing mode
2B DL scheduling of dual-layer beamforming using antenna port 7, port 8
3 TPC commands for PUCCH and PUSCH with 2-bit power adjustments
3A TPC commands for PUCCH and PUSCH with 1-bit power adjustments
DCI 포맷은 각 UE별로 독립적으로 적용되며, 일 서브프레임 안에 여러 UE의 PDCCH가 다중화될 수 있다. 각 UE의 PDCCH는 독립적으로 채널코딩되어 CRC(cyclic redundancy check)가 부가된다. CRC는 각 UE가 자신의 PDCCH를 수신할 수 있도록 하기 위하여, 전송 대상 혹은 전송 용도에 따라 무선 네트워크 임시 식별자(Radio Network Temporary Identifier; RNTI)라 하는 고유 식별자로 마스크(mask)된다. 예를 들어, PDCCH가 물리상향링크제어채널(PUCCH)을 위한 TPC 커맨드에 대한 것이면 TPC-PUCCH-RNTI 가 CRC에 마스킹될 수 있고, PDCCH가 물리상향링크공유채널(PUSCH)을 위한 TPC 커맨드에 대한 것이면 TPC-PUSCH-RNTI 가 CRC에 마스킹될 수 있다. 그러나, 기본적으로 UE는 자신의 PDCCH가 전송되는 위치를 모르기 때문에, 매 서브프레임마다 해당 DCI 포맷의 모든 PDCCH를 자신의 식별자를 가진 PDCCH를 수신할 때까지 블라인드 검출(블라인드 복호(decoding)이라고도 함)을 수행한다.
예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 해당 셀의 UE는 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A" RNTI를 가지고 있는 UE는 PDCCH를 검출하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 검출한다.
도 6은 무선 통신 시스템에서 상향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 6을 참조하면, 상향링크 서브프레임은 주파수 도메인에서 제어영역과 데이터영역으로 구분될 수 있다. 하나 또는 여러 PUCCH(physical uplink control channel)가 UCI(uplink control information)을 나르기 위해, 상기 제어영역에 할당될 수 있다. 하나 또는 여러 PUSCH(physical uplink shared channel)가 사용자 데이터를 나르기 위해, 상기 데이터영역에 할당될 수 있다.
상향링크 서브프레임에서는 DC(Direct Current) 부반송파를 기준으로 거리가 먼 부반송파들이 제어영역으로 활용된다. 다시 말해, 상향링크 전송 대역폭의 양쪽 끝부분에 위치하는 부반송파들이 상향링크 제어정보의 전송에 할당된다. DC 부반송파는 신호 전송에 사용되지 않고 남겨지는 성분으로, OFDM/SC-FDM 신호 생성기(306)에 의한 주파수 상향 변환 과정에서 반송파 주파수 f0로 맵핑된다.
일 UE에 대한 PUCCH는 일 서브프레임 내 RB 쌍에 할당되며, 상기 RB 쌍에 속한 RB들은 두 개의 슬롯에서 각각 다른 부반송파를 점유한다. 이와 같이 할당되는 PUCCH를, PUCCH에 할당된 RB쌍이 슬롯 경계에서 주파수 호핑된다고 표현한다. 다만, 주파수 호핑이 적용되지 않는 경우에는, RB 쌍이 동일한 부반송파를 점유한다. 주파수 호핑 여부와 관계없이, 일 UE에 대한 PUCCH는 일 서브프레임 내 RB 쌍에 할당되므로, 동일 PUCCH가 일 UL 서브프레임 내 각 슬롯에서 한 개의 RB를 통해 한 번씩, 두 번 전송될 수 있다.
상향링크 전송 전력 제어
기존 시스템에서, 상향링크 전력 제어는 폐루프 보정(closed-loop correction) 및/또는 개루프(open-loop) 전력 제어에 기초한다. 개루프 전력 제어는 사용자 기기(User Equipment; UE)의 계산에 의해 처리되고, 폐루프 보정은 기지국(evolved Nod B; eNB)으로부터의 전력 제어 명령(power control command)에 의해 수행된다.
상향링크 전송 전력 제어(Transmit Power Control; TPC) 명령(command)은 PDCCH 의 DCI 포맷에서 정의되어, PDCCH를 통해 기지국으로부터 단말에게 제공될 수 있다. 예를 들어, PDCCH의 DCI 포맷 3 및 DCI 포맷 3A 는 상향링크 전송 전력 제어에 대한 것이며, 단말 그룹에 대한 그룹 TPC 커맨드를 포함할 수 있다. DCI 포맷 3/3A 를 포함하는 PDCCH가, PUCCH 전송 전력 제어에 대한 것이면 TPC-PUCCH-RNTI가 PDCCH의 CRC 패리티 비트(parity bit)에 마스킹(또는 스크램블링)될 수 있고, PUSCH 전송 전력 제어에 대한 것이면 TPC-PUSCH-RNTI가 PDCCH의 CRC 패리티 비트에 마스킹(스크램블링)될 수 있다. 단말은 하향링크에서 공통 탐색 공간(common search space) 내에 존재하는 DCI 포맷 3/3A 를 해당 RNTI(예를 들어, TPC-PUCCH-RNTI 또는 TPC-PUSCH-RNTI)를 이용하여 블라인드 디코딩하여 DCI 포맷 3/3A 정보를 획득한 후, 상위 계층(예를 들어, RRC 계층)에서 제공되는 TPC-인덱스(TPC-index) 파라미터를 이용하여 DCI 포맷 3/3A 내에서 해당 단말에게 제공되는 TPC 커맨드를 찾은 후, 전력 제어(power control) 수식에 해당 TPC 커맨드 값을 적용하여 상향링크(PUCCH 또는 PUSCH) 전송 전력 레벨을 결정할 수 있다.
도 7은 상향링크 전력 제어의 기본 개념을 설명하는 도면이다.
상향링크 전력 제어는 해당 물리채널(예를 들어, PUSCH, PUCCH, SRS 등)의 소정 시간 구간, 예를 들어, 일 OFDM 심볼에 걸친, 평균 전력을 결정한다. 도 7을 참조하면, 상향링크 전력은 주로 폐루프 방식에 의해 사용자기기에 의해 측정되고 BS는 폐루프 보정 인자(factor) δ에 의해 상향링크 전력을 조정할 수 있다.
도 8은 LTE 시스템에서 단일 안테나 포트를 구비한 상향링크 송신기의 일반적인 구조를 나타낸 것이다.
LTE 시스템의 상향링크 송신기는 오직 1개의 전력 증폭기만을 구비한다. 따라서, 상향링크 물리채널의 전송 전력이 결정되면, 상기 상향링크 물리채널은 결정된 전송 전력으로 상기 상향링크 송신기와 연결된 안테나 포트에서 전송된다.
도 8을 참조하면, 예를 들어, 일 PUSCH는 소정 시간 구간에서 PUSCH 전송 전력 PPUSCH로 전송될 수 있으며, 일 PUCCH는 소정 시간 구간에서 PUCCH 전송 전력 PPUCCH로 전송될 수 있다.
예를 들어, PUSCH의 전송 전력은 다음의 수학식 1을 통해 구할 수 있다.
수학식 1
Figure PCTKR2011003696-appb-M000001
수학식 1에서, PPUSCH(i)의 단위는 dBm이다. 수학식 1에서, i는 시간 인덱스(또는 서브프레임 인덱스)를 나타내고, PMAX는 최대 허용 전력을 나타내고, 최대 허용 전력은 사용자기기의 클래스(class)에 따른다. 또한, M(i)는 할당된 자원 블록들의 개수에 따라 결정되며, 1개부터 110개까지의 값을 가질 수 있다. M(i)는 매 서브프레임마다 갱신된다. α·PL는 경로 손실 보상을 위한 것으로서, 여기서, PL은 사용자 기기에 의해 추정(estimate)된 하향링크 경로 손실을 나타내고, α는 스케일링(scaling) 값이며 1이하의 값으로 3비트의 값으로 표현된다. α가 1이면 경로 손실이 완전히 보상되며, α가 1보다 작으면 경로 손실이 부분적으로 보상된다.
수학식 1에서, PO(j)는 다음의 수학식 2와 같이 계산될 수 있다.
수학식 2
Figure PCTKR2011003696-appb-M000002
수학식 2에서, PO_CELL_SPECIFIC(j) 는 상위계층(higher layer)에 의해 셀 특정적으로 제공되고, PO_UE_SPECIFIC(j) 는 상위 레이어에 의해 사용자기기 특정적으로 주어진다. j는 PUSCH 전송의 특성에 따라 정해질 수 있다. 예를 들어, 반-지속적(semi-persistent) 그랜트에 대응한 PUSCH (재)전송에 대해서는 j=0, 동적으로 스케줄된 그랜트에 대응한 PUSCH (재)전송에 대해서는 j=1, 임의 접속 응답 그랜트에 대한 PUSCH (재)전송에 대해서는 j=2로 정의될 수 있다.
수학식 1에서, △TF(i)는 상위 레이어에 의해 사용자기기 특정적으로 제공되는 값을 기반으로 결정되는 값이다.
수학식 1에서, f(i)는 기지국에 의해 제어되는, 사용자기기-특정(UE-specific) 파라미터(parameter)로서, 다음과 같이 정의될 수 있다.
수학식 3
Figure PCTKR2011003696-appb-M000003
수학식 3에서, δPUSCH 는 UE-특정 보정 값(correction value)으로서, 전송전력제어(TPC) 명령으로 칭할 수도 있다. δPUSCH는 DCI 포맷 0 의 PDCCH에 포함되거나, 혹은 DCI 포맷 3/3A의 PDCCH에 다른 TPC 커맨드들과 함께 조인트 코딩된다. 예를 들어, δPUSCH(i-KPUSCH)는 서브프레임 i-KPUSCH에서 DCI 포맷 0 혹은 3/3A의 PDCCH 상으로 시그널링된 값일 수 있다. δPUSCH의 누적(accumulation)이 가능화(enable)된 경우, f(0)는 누적(accumulation)의 재설정 이후의 첫번째 값이다. 상위 레이어에 의해 δPUSCH의 누적(accumulation)이 불능화(disable)된 경우, f(i)=f(i-1)이 된다.
TPC 커맨드를 위한 비트 수에 따라, δPUSCH 는 표 2 및 표 3과 같이 정의될 수 있다. 표 2는 DCI 포맷 0/3에서 2비트가 TPC 커맨드용으로 사용될 때 사용될 수 있고, 표 3은 DCI 포맷 3A에서 1비트가 TPC 커맨드용으로 사용될 때 사용될 수 있다.
표 2
TPC Commnad Field in DCI format 0/3 Accumulated δPUSCH [dB] Absolute δPUSCH [dB] only DCI format 0
0 -1 -4
1 0 -1
2 1 1
3 3 4
표 3
TPC Commnad Field in DCI format 3A Accumulated δPUSCH [dB]
0 -1
1 1
도 8을 참조하면, 단일 안테나 포트를 구비한 UE는, 상기 단일 안테나 포트를 통해, 상기와 같이 결정된 PPUSCH(i)로 서브프레임 i에서 PUSCH 전송을 수행할 수 있다.
한편, PUCCH를 위한 전력 제어는 다음과 같이 정의될 수 있다.
수학식 4
Figure PCTKR2011003696-appb-M000004
수학식 4에서, PPUCCH(i)의 단위는 dBm이다. 수학식 4에서, △F_PUCCH(F)는 상위 레이어에 의해 제공되며, 각 △F_PUCCH(F)는 PUCCH 포맷 1a와 연관된 PUCCH 포맷 (F)에 대응한다. 각 PUCCH 포맷은 다음과 같이 정의될 수 있다.
표 4
PUCCH format Modulation scheme Number of bits per subframe Usage Etc.
1 N/A N/A (exist or absent) SR (Scheduling Request)
1a BPSK 1 ACK/NACK orSR + ACK/NACK One codeword
1b QPSK 2 ACK/NACK orSR + ACK/NACK Two codeword
2 QPSK 20 CQI/PMI/RI Joint coding ACK/NACK (extended CP)
2a QPSK+BPSK 21 CQI/PMI/RI + ACK/NACK Normal CP only
2b QPSK+QPSK 22 CQI/PMI/RI + ACK/NACK Normal CP only
3 QPSK 48 ACK/NACK orSR + ACK/NACK orCQI/PMI/RI + ACK/NACK
수학식 4에서, h(nCQI,nHARQ)는 PUCCH 포맷 종속적(dependent) 값으로서, nCQI는 채널품질정보(channel quality information)을 위한 정보 비트수(number of information bits)에 해당하고, nHARQ는 HARQ(Hybrid Automatic Repeat request) 비트수(number of HARQ bits)에 해당한다.
PUCCH 포맷 1, 1a 및 1b에 대하여, h(nCQI,nHARQ)는 다음과 같이 정의될 수 있다.
수학식 5
Figure PCTKR2011003696-appb-M000005
PUCCH 포맷 2, 2a, 2b 및 정상 순환전치(normal cyclic prefix)에 대하여, h(nCQI,nHARQ)는 다음과 같이 정의될 수 있다.
수학식 6
Figure PCTKR2011003696-appb-M000006
PUCCH 포맷 2 및 확장 순환전치(extended cyclic prefix)에 대하여, h(nCQI,nHARQ)는 다음과 같이 정의될 수 있다.
수학식 7
Figure PCTKR2011003696-appb-M000007
수학식 4에서, P_O_PUCCH(j)는 PO_NOMINAL_PUCCH(j) 과 PO_NOMINAL_SPECIFIC(j) 합으로 구성된 파라미터이다. PO_NOMINAL_PUSCH(j) 는 상위 레이어(higher layer)에 의해 셀 특정적으로 제공되며, PO_UE_SPECIFIC(j) 는 상위 레이어에 의해 사용자기기 특정적으로 제공된다.
수학식 4에서, g(i)는 현재 PUCCH 전력 제어 조정 상태(adjustment state)를 나타내고, 다음과 같이 정의될 수 있다.
수학식 8
Figure PCTKR2011003696-appb-M000008
수학식 8에서, g(0)는 재설정(reset) 이후의 첫번째 값을 나타낸다. FDD의 경우, M=1이고 k0=4이며, TDD의 경우 M 및 km은 다음 표와 같이 정의될 수 있다.
표 5
Downlink association set index K: {k0, k1,...kM-1} for TDD
UL-DLConfiguration Subframe n
0 1 2 3 4 5 6 7 8 9
0 - - 6 - 4 - - 6 - 4
1 - - 7, 6 4 - - - 7, 6 4 -
2 - - 8, 7, 4, 6 - - - - 8, 7, 4, 6 - -
3 - - 7, 6, 11 6, 5 5, 4 - - - - -
4 - - 12, 8, 7, 11 6, 5, 4, 7 - - - - - -
5 - - 13, 12, 9, 8, 7, 5, 4, 11, 6 - - - - - - -
6 - - 7 7 5 - - 7 7 -
수학식 8에서, δPUCCH 는 UE-특정 보정 값(correction value)으로서, 전송 전력 제어 (Transmission Power Control; TPC) 커맨드로 불리기도 한다. δPUCCH는 DCI 포맷 1A/1B/1D1/2A/2/2B인 PDCCH에 포함되어 UE에게 제공되거나, 또는 다른 UE-특정 PUCCH 보정 값과 함께 코딩(coding)되어 DCI 포맷 3/3A인 PDCCH 상에서 UE에게 제공될 수 있다. DCI 포맷 3/3A인 PDCCH의 CRC 패리티 비트(parity bit)는 TPC-PUCCH-RNTI(Radio Network Temporary Identifier)와 함께 스크램블링(scrambling)된다.
DCI 포맷에 따라, TPC 커맨드가 표 5 및 표 5와 같이 δPUCCH로 맵핑될 수 있다. 표 6은 DCI 포맷 1A/1B/1D/1/2A/2/3의 TPC 커맨드와 δPUCCH 사이의 맵핑관계를 나타내며, 표 7은 DCI 포맷 3A의 TPC 커맨드와 δPUCCH 사이의 맵핑관계를 나타낸다.
표 6
TPC Commnad Field in DCI format 1A/1B/1D/1/2A/2/3 δPUSCH [dB]
0 -1
1 0
2 1
3 3
표 7
TPC Commnad Field in DCI format 3A Accumulated δPUSCH [dB]
0 -1
1 1
도 8을 참조하면, 단일 안테나 포트를 구비한 UE는, 상기 단일 안테나 포트를 통해, 상기와 같이 결정된 PPUCCH(i)로 서브프레임 i에서 PUCCH 전송을 수행할 수 있다.
한편, PUCCH와 PUSCH 외에, 사운딩참조신호(Sounding Reference Signal; SRS)는 다음 수학식 9에 따라 전력이 제어될 수 있다.
수학식 9
Figure PCTKR2011003696-appb-M000009
상기 수학식 9에서, PSRS(i)의 단위는 dBm으로 표현된다. i는 시간 인덱스(또는 서브프레임 인덱스)를 나타내고, PMAX는 최대 허용 전력을 나타내고, 최대 허용 전력은 사용자 기기의 클래스(class)에 따른다. PSRS_OFFSET 은 상위 레이어에 의하여 반-정적(semi-static)으로 설정되는 4 비트의 UE-특정 파라미터이다. MSRS 는 서브프레임 i에서의 SRS 전송의 대역폭(bandwidth)이며, 자원블록의 개수로 표현된다. f(i)는 PUSCH를 위한 현재 전력 제어 조정 상태를 나타낸다. P_O_PUCCH(j)는 PO_NOMINAL_PUCCH(j) 과 PO_NOMINAL_SPECIFIC(j) 합으로 구성된 파라미터이고, PO_NOMINAL_PUSCH(j) 는 상위 레이어(higher layer)에 의해 셀 특정적으로 제공되며, PO_UE_SPECIFIC(j)는 상위계층에 의해 사용자기기 특정적으로 제공된다. 여기서, 동적 스케줄링된 상향링크 그랜트에 대응하는 PUSCH 전송 (또는 재전송) 에 대해서 j 값은 1 로 주어진다. α·PL 는 경로 손실 보상을 위한 식으로 PL은 사용자 기기에 의해 측정되는 하향링크 경로 손실을 나타내고, α는 스케일링(scaling) 값이며 1이하의 값으로 3비트의 값으로 표현된다. 만약 α가 1이면 경로 손실이 완전히 보상된 것을 의미하며, α가 1보다 작으면, 경로 손실의 일부가 보상되었다는 것을 의미한다. j 가 1 인 경우, α∈{0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}는 상위 레이어에 의해 제공되는 3 비트의 셀 특정 파라미터이다. PL은 하향링크 경로손실 측정값으로서 UE에 의해 추정되고 그 단위는 dB 이다.
도 8을 참조하면, 단일 안테나 포트를 구비한 UE는, 상기 단일 안테나 포트를 통해, 상기와 같이 결정된 PSRS(i)로 서브프레임 i에서 SRS 전송을 수행할 수 있다.
오직 1개의 전송 안테나를 구비한 LTE 시스템과 달리 LTE-A 시스템에서는, 상향링크 송신기가, 보다 높은 처리 성능(throughput performance)을 위해, 하나 보다 많은 전송 안테나, 예를 들어, 2개의 안테나 포트 혹은 4개의 안테나 포트를 구비할 수 있다.
도 9 및 도 10은 복수의 전송 안테나 포트를 구비한 상향링크 송신기의 일반적인 구조를 예시한 것이다. 특히, 도 9는 2개 안테나 포트를 구비한 상향링크 송신기를 예시한 것이고, 도 10은 4개 안테나 포트를 구비한 상향링크 송신기를 예시한 것이다.
복수의 안테나 포트가 상향링크 물리채널의 전송에 이용되는 경우, 상기 상향링크 물리채널을 위한 전송 전력은 상기 복수의 안테나 포트로 분배된다. 예를 들어, 도 9의 타입-A를 참조하면, PPUSCH/PUCCH/SRS가 상향링크 송신기에 연결된 2개의 안테나 포트에 균등하게 분배될 수 있으며, 도 10의 타입-1을 참조하면, PPUSCH/PUCCH/SRS가 4개의 안테나 포트에 균등하게 분배될 수 있다. 도 9의 타입-B를 참조하면, PPUSCH/PUCCH/SRS는 PPUSCH/PUCCH/SRS=P1+P2가 되도록 2개의 안테나 포트에 분배될 수 있으며, 도 10의 타입-3를 참조하면, PPUSCH/PUCCH/SRS는 PPUSCH/PUCCH/SRS=P1+P2+P3+P4가 되도록 P1 4개의 안테나 포트에 분배될 수 있다. 도 10의 타입-2를 참조하면, PPUSCH/PUCCH/SRS는 PPUSCH/PUCCH/SRS=P1/2+P1/2+P2/2+P2/2로 4개의 안테나 포트에 분배될 수 있다.
도 8 내지 도 10에서는 전력 증폭기 당 1개의 안테나 포트가 연결된 것으로 도시되었다. 그러나, 이는 예시에 불과하며, 일 전력 증폭기가 복수의 안테나 포트에 연결된 것도 가능하다. 특히, 복수의 안테나 포트가 동일한 전송 전력으로 상향링크 전송을 수행해야 하는 경우, 일 전력 증폭기가 상기 복수의 안테나 포트에 연결되어 상기 복수의 안테나 포트를 통해 전송되는 상향링크 신호를 증폭할 수도 있다. 예를 들어, 도 10의 타입-1을 참조하면, 4개의 안테나 포트의 전력이 P로 동일하므로, 도 10의 타입-1 상향링크 송신기는 상기 4개 안테나 포트와 연결된 1개의 전력 증폭기를 구비하도록 구성될 수 있다. 또 다른 예로, 도 10의 타입-2를 참조하면, 4개의 안테나 포트 중 2개 안테나 포트의 전력은 P1으로 동일하나, 나머지 2개 안테나 포트의 전력이 P2이므로, 도 10의 타입-2 상향링크 송신기는 각각 2개의 안테나 포트와 연결된 2개의 전력 증폭기를 구비하도록 구성될 수 있다.
한편, 도 3을 참조하면, 상향링크 송신기(100a)는 프리코더(304)를 구비할 수 있다. 상향링크 전송에 프리코딩이 이용되는 경우, 코드북이 상향링크 전력 제어 메커니즘에 고려되어야 한다. 표 8은 상향링크 전송에서 2개 안테나 포트를 위한 코드북을 예시한 것이다.
표 8
Figure PCTKR2011003696-appb-T000001
표 8을 참조하면, 6개의 프리코딩 벡터가 단일 레이어 전송, 즉, 랭크-1 전송에 사용될 수 있으며, 1개의 프리코딩 행렬이 2개의 레어어 전송, 즉, 랭크-2 전송에 사용될 수 있다.
표 9 및 표 10은 4개 안테나 포트를 위한 코드북을 예시한 것으로서, 표 9는 랭크-1 전송에 사용될 수 있는 코드북이며, 표 10은 랭크-2 전송에 사용될 수 있는 코드북이다.
표 9
Figure PCTKR2011003696-appb-T000002
표 10
Figure PCTKR2011003696-appb-T000003
프리코딩 벡터/행렬은 복수의 안테나 포트 중 일부 안테나 포트를 끄는(turn off) 데 사용될 수 있다. 예를 들어, BS는 UE의 각 안테나 포트로부터 수신한 상향링크 신호를 기반으로, 상기 UE가 상향링크 전송시에 사용할 프리코딩 행렬에 관한 정보를 상기 UE에 알려줄 수 있다. 이때, 상기 BS는 상기 UE에 구비된 안테나 포트 중 상향링크 전송 품질이 좋지 않다고 판단된 안테나 포트가 사용되지 않도록 하는 프리코딩 행렬에 대응하는 정보를 상기 UE에 알려줄 수 있다. 예를 들어, 표 8을 참조하면, 랭크-1 전송에 대한 코드북 인덱스 4 또는 코드북 인덱스 5는 2개의 안테나 포트 중 1개의 안테나 포트를 오프(off)하는 데 이용될 수 있다. 표 9를 참조하면, BS는 코드북 인덱스 16 내지 23을 전송함으로써, 4개의 안테나 포트 중 2개의 안테나 포트를 오프할 수 있다.
이와 같이, 상향링크 물리채널의 전송을 위해 구성된 안테나 포트들 중 일부가 오프되는 경우, 전체 안테나 포트 중 일부 안테나 포트만이 상향링크 전송에 이용되는 경우, UE에서의 전력 소모가 줄어들게 된다. 각 프리코딩 행렬은 전력 스케일링 인자(power scaling factor)를 가지고 있기 때문이다. 예를 들어, 표 8의 각 프리코딩 행렬은 1/√2라는 전력 스케일링 인자를 가지며, 이에 따라, 프리코더(304)를 거친, 안테나 포트별 전송 신호의 전송 전력은 전체 안테나 포트에 대한 전송 전력의 1/2 크기로 스케일링된다. 또한, 표 9 및 표 10의 각 프리코딩 행렬은 1/2라는 전력 스케일링 인자를 가지며, 이에 따라, 프리코더(304)를 거친, 안테나 포트별 전송 신호의 전송 전력은 전체 안테나 포트에 대한 전송 전력의 1/4 크기로 스케일링된다.
종래의 상향링크 전력 제어는 단일 전력 증폭기를 갖는 UE 구조 때문에, 안테나 포트의 개수에 관계없이, 단일 전력 제어 인자가 폐루프 보정 인자로서 활용되어 왔다. 예를 들어, 수학식 1 내지 수학식 9를 참조하면, δPUSCH/PUCCH가 PUSCH/PUCCH/SRS 전송에 사용되는 실제 안테나 포트의 개수에 관계없이, PPUSCH/PUCCH/SRS의 결정에 사용된다. 예를 들어, 표 2를 참조하면, BS가 TPC 커맨드 필드를 0으로 설정하여 DCI 포맷 0 또는 3인 PDCCH를 UE에 전송하면, 상기 UE가 상위 레이어에 의해 누적(accumulation)이 가능화(enable)된 UE인 경우, 상기 UE는 수학식 3에서 δPUSCH를 -1로 설정하여 f(i)를 계산한다. 누적이 가능화되지 않은 경우, 상기 UE는 수학식 3의 f(i-1)=0으로 설정하고, δPUSCH를 -4로 설정하여 f(i)를 계산한다. 이와 같이, 수학식 1 내지 수학식 9에 따라 PPUSCH/PUCCH/SRS의 결정하고, 단일 전력 제어 인자에 의해, PPUSCH/PUCCH/SRS을 보정하는 경우, 해당 상향링크 신호의 실제 전송에 사용되는 안테나 포트의 개수가, 상기 해당 상향링크 신호의 전송을 위해 구성된 안테나 포트의 개수보다 줄어들면, UE의 전력 소모가 줄어들게 된다. 예를 들어, 표 8의 코드북 인덱스 4 또는 코드북 인덱스 5가 사용된 상향링크 전송의 경우에는 UE가 해당 상향링크 전송에 사용하는 전송 전력이 1/2로 감소하며, 표 9의 코드북 인덱스 16 내지 코드북 인덱스 23 중 어느 하나가 사용된 상향링크 전송의 경우에는 UE가 해당 상향링크 전송에 사용하는 전송 전력이 1/2로 감소하게 된다. 그러나, UE가 낮은 전송 전력으로 상향링크 신호를 전송하는 경우, 일반적으로 BS에서 상기 상향링크 신호의 수신 강도가 약해지는 문제가 있다. 따라서, UE의 배터리 용량의 부족으로 인하여 안테나 포트를 오프하는 등의 특별한 경우를 제외하고, 안테나 포트의 오프는 UE 전송 전력의 비효율적 사용을 의미할 수 있다. 예를 들어, 핸드 그립핑(gripping)과 같은, 핸드셋의 특정 상황때문에 안테나 포트별 전력 불균형이 초래되어 일부 안테나 포트가 오프된 경우, 단일 전력 제어 인자를 이용한 전력 보정은 UE의 전력 활용도를 저해할 수 있다.
따라서, 상향링크 전력 제어를 보다 효과적으로 지원하기 위해, 본 발명의 실시예들은 전송 방식(transmission scheme), 전송 랭크(transmission rank), 프리코더 요소(precoder element) 등과 같은 상황에 따라, 전력 제어의 입도(granularity)를 조절한다. 이를 위해, 본 발명은 다중 TPC 커맨드 타입을 도입한다.
다중 TPC 커맨드 타입
종래의 무선 통신 시스템에서는, 표 2 및 표 3과 표 6 및 표 7로부터 알 수 있듯이, TPC 커맨드를 나르는 PDCCH의 DCI 포맷과 상향링크 물리채널의 종류에 따라, 상기 TPC 커맨드와, 상기 상향링크 물리채널에 대한 전력 보정 인자 δ의 맵핑관계가 정의되었다. 그러나, 상향링크 전송에 사용되는 실제 안테나 포트의 개수와 관계없이, 특정 TPC 커맨드가 단일 δ값으로 맵핑되는 경우, UE의 전송 전력이 효율적으로 사용될 수 없다는 문제점이 있다. 따라서, 본 발명은 TPC 커맨드와 전력 보정 인자 δ의 맵핑관계를 정의함에 있어서, 상기 TPC 커맨드를 나르는 PDCCH의 DCI 포맷 및 상향링크 물리채널의 종류뿐만 아니라, 상향링크 전송의 상황을 고려한다. 예를 들어, 상향링크 전송에 실제로 사용되는 안테나 포트의 개수, 전송 랭크, 프리코더 요소 등이 TPC 커맨드와 전력 보정 인자 δ의 맵핑관계를 정의하는 데 고려될 수 있다. 이에 따라, 상황에 따라 TPC 커맨드가 다른 δ값으로 맵핑될 수 있도록, 표 2 및 표 3과 표 6 및 표 7에 추가하여 혹은 이들을 교체하는 다른 맵핑 표(들)이 정의될 수 있다. 본 발명에 따른 UE와 BS는 상황에 따라 다르게 정의된 상기 맵핑 표(들)을 알고 있다. 상기 맵핑(표)들은 UE와 BS의 메모리(200a, 200b)에 저장되어 있을 수 있다.
이하에서는, UE에 구성된 안테나 포트의 개수보다 실제 상향링크 전송에 사용되는 안테나 포트의 개수가 적은 상황을 위한 TPC 커맨드 대 δ값의 맵핑 관계가, 표 2, 표 3, 표 6, 표 7의 맵핑관계에 추가하여 정의되는 경우를 예로 하여, 본 발명의 실시예들을 설명한다. 그러나, 앞서 언급한 바와 같이, 기존의 맵핑 관계들을 교체하는 새로운 맵핑관계(들)이 정의되는 것도 가능하다.
표 11 및 표 12는 기존의 상황과는 다른 상황에서 사용될 수 있는 TPC 커맨드와 δ값 사이의 맵핑관계를 예시한 것이다. 특히, 표 11은 상기 다른 상황에서 적용가능한, DCI 포맷 0/3의 TPC 커맨드와 δPUSCH 사이의 맵핑관계를 예시한 것이며, 표 12는 상기 다른 상황에서 적용가능한, DCI 포맷 3A의 TPC 커맨드와 δPUSCH 사이의 맵핑관계를 예시한 것이다.
표 11
TPC Commnad Field in DCI format 0/3 Accumulated δPUSCH [dB] Absolute δPUSCH [dB] only DCI format 0
0 -1 -8
1 0 -2
2 3 2
3 6 8
표 12
TPC Commnad Field in DCI format 3A Accumulated δPUSCH [dB]
0 -1
1 3
표 11 및 표 12의 TPC 커맨드 필드에 설정된 비트 값에 맵핑되는 해당 δPUSCH 값은 예시에 불과하며, 특정 TPC 커맨드 비트에 대해 다른 크기를 갖는 δPUSCH 값이 정의될 수 있다. 또한, 본 설명에서는 PUSCH의 전송 전력인 PPUSCH의 결정에 사용되는 맵핑 표, 표 11 및 표 12만을 예시하였으나, PUCCH의 전송 전력인 PPUCCH의 결정에 사용되는 맵핑 표가 표 6 및 표 7에 추가하여 혹은 표 6 및 표 7을 교체하도록 정의될 수도 있다.
이와 같이, 상향링크 전력이 상향링크 전송의 상황에 따라 최적화될 수 있도록, 다양한 타입의 TPC 커맨드 맵핑 표가 일 전송 모드에 대해 정의될 수 있다.
본 발명에 의하면, DCI 포맷 및 상향링크 물리채널의 종류가 동일하더라도, 상황에 따라, 동일한 TPC 커맨드에 대해 다른 맵핑 표가 사용될 수 있다. 이하에서는 기존의 TPC 커맨드 대 전력 보정 인자 사이의 맵핑 표를 TPC 타입 1의 맵핑 표라 칭하고, 상향링크 전송 상황을 고려하여 새로이 정의된 맵핑 표를 TPC 타입 2의 맵핑 표라 칭하여, 본 발명의 실시예들을 설명한다.
안테나 포트 개수 특정 TPC 커맨드
UE가 실제 전송에 사용하는 안테나 포트의 개수에 따라, 동일한 TPC 커맨드가 다른 δ값으로 맵핑될 수 있다. BS는 UE가 상향링크 전송을 위해 구성할 수 있는 전체 안테나 포트의 개수와 상기 UE가 상기 상향링크 전송에 실제 사용하는 안테나 포트의 개수를 고려하여, 전력 보정 인자 δ를 결정할 수 있다. 예를 들어, 상기 UE가 상향링크 전송에 실제 사용하는 안테나 포트의 개수가 상기 UE가 구성할 수 있는 전송 안테나 포트의 개수보다 적은 경우, 상기 BS는 TPC 타입 2의 맵핑 표를 이용하여 TPC 커맨드를 상기 UE에 전송할 수 있다.
UE의 상향링크 안테나 포트의 개수는 상기 UE가 BS의 네트워크에 접속시, 혹은 랜덤 엑세스시에 상기 BS로 통지될 수 있다. UE는 BS에 상기 UE가 지원가능한 전송 안테나 포트의 개수, 전력 레벨 등을 나타내는 성능(capability)정보를 BS의 네트워크 접속시, 혹은 랜덤 엑세스시, 혹은 주기적으로, 혹은 상기 BS의 요청시에 상기 BS에 전송할 수 있다. 한편, 상기 BS에 UE가 실제로 상향링크 전송에 사용하는 안테나 포트는 BS에 의해 상기 UE로 시그널링될 수 있다. 따라서, BS와 UE는 상기 UE가 PUSCH 혹은 PUCCH 혹은 SRS의 전송을 위해 구성할 수 있는 안테나 포트의 개수 Nt를 알 수 있으며, 또한, 해당 상향링크 물리채널 전송을 위해 실제로 사용하는 안테나 포트의 개수도 알 수 있다.
예를 들어, 표 2 및 표 11을 참조하면, 본 발명에 따른 BS는 UE의 전력 보정 인자 δPUSCH를 결정하고, 해당 TPC 커맨드를 DCI 포맷 0/3의 PDCCH를 이용하여 상기 UE에 전송할 수 있다. 이때, 상기 BS는 상기 UE가 PUSCH 전송을 위해 구성할 수 있는 Nt개의 안테나 포트가 상기 PUSCH의 전송에 모두 사용되면, 상기 결정된 δPUSCH를 표 2에 따라 TPC 커맨드 필드에 대응 비트를 설정하여 상기 PDCCH를 상기 UE에 전송할 수 있다. 반면, 상기 Nt개의 안테나 포트 중 일부가 오프되면, 상기 BS는 상기 결정된 δPUSCH를 상기 표 11에 따라 TPC 커맨드 필드에 대응 비트를 설정하여 상기 PDCCH를 상기 UE에 전송할 수 있다. 상기 UE는 상기 UE가 상기 PUSCH 전송을 위해 구성할 수 있는 안테나 포트의 개수 Nt와 상기 PUSCH 전송에 실제로 사용하는 안테나 포트의 개수를 알고 있으므로, 상황에 따라 상기 TPC 커맨드를 표 2 또는 표 11를 이용하여 δPUSCH값을 결정할 수 있다. 누적이 가능화된 경우에는 상기 UE는 해당 TPC 커맨드 필드의 비트가 지시하는 누적 δPUSCH값을 수학식 3에 대입하여 PPUSCH를 결정하고, 누적이 가능화되지 않은 경우에는 해당 비트가 지시하는 절대 δPUSCH값을 f(i)=δPUSCH(i-KPUSCH)에 대입하여 PUSCH를 결정할 수 있다. 상기 결정된 PPUSCH는 실제 전송에 사용되는 안테나 포트(들)에 동등하게 분배될 수 있다. 예를 들어, 4개의 안테나 포트가 실제 PUSCH 전송에 사용되는 경우, UE 프로세서(400a)는 PPUSCH/4의 전송 전력으로 PUSCH를 전송하도록 UE 송신기(100a)를 제어할 수 있다.
프리코더 요소 특정 TPC 커맨드
BS는 UE가 전송한 상향링크 신호를 참조하여 상기 UE와 상기 BS 사이의 채널 상태를 추정하고, 상기 추정 결과를 바탕으로 상향링크 전송에 사용할 프리코딩 행렬에 관한 정보, 예를 들어, 코드북 인덱스를 상기 UE에 전송할 수 있다.
한편, 핸드 그립핑 등으로 인한 안테나 이득 불균형을 제어하기 위해, UE는 표 8의 코드북 인덱스 4 및 코드북 인덱스 5, 표 9의 코드북 인덱스 16 내지 코드북 인덱스 23이 이용될 수 있다. 표 8의 코드북 인덱스 4 및 코드북 인덱스 5, 코드북 인덱스 16 내지 코드북 인덱스 23에 대응하는 프리코딩 벡터/행렬들은 일부 안테나 포트를 끄는 데 사용되므로, 안테나 포트 턴 오프 벡터/행렬이라 칭해지기도 한다. 안테나 포트 턴 오프의 관점에서, BS가 UE에게 전송하는 상향링크 프리코딩 행렬 정보는 상기 UE가 실제 상향링크 전송에 사용하는 안테나 포트의 개수를 나타내는 정보로서 활용될 수 있다.
도 11 및 도 12는 TPC 커맨드와 전력 보정 인자를 맵핑하는 본 발명의 일 실시예들을 예시한 것이다. 특히, 도 11은 2개의 전송 안테나 포트를 구성할 수 있는 UE를 위한 코드북이며, 도 12는 4개의 전송 안테나 포트를 구성할 수 있는 UE를 위한 코드북을 예시한다.
예를 들어, 도 11을 참조하면, 2개의 전송 안테나를 구성할 수 있는 UE에 BS가 코드북 인덱스 1 내지 코드북 인덱스 3 중 어느 하나를 전송하는 경우, 상기 UE는 상기 BS가 전송한 TPC 커맨드를 타입 1의 맵핑 표에 따라 δ값으로 맵핑하여 상향링크 전송 전력을 결정할 수 있다. 상기 BS가 코드북 인덱스 4 또는 코드북 인덱스 5를 상기 UE에 전송하는 경우, 상기 UE는 상기 BS가 전송한 TPC 커맨드를 타입 2의 맵핑 표에 따라 δ값으로 맵핑하여 상향링크 전송 전력을 결정할 수 있다.
또 다른 예로, 도 12를 참조하면, 4개의 전송 안테나를 구성할 수 있는 UE에 BS가 랭크-1 전송을 지시하고 코드북 인덱스 9 내지 코드북 인덱스 15 중 어느 하나를 전송하는 경우, 혹은 상기 BS가 상기 UE에 랭크-2 전송을 지시하는 경우, 상기 UE는 상기 BS가 전송한 TPC 커맨드를 타입 1의 맵핑 표에 따라 δ값으로 맵핑하여 상향링크 전송 전력을 결정할 수 있다. 상기 BS가 랭크 -1 전송을 지시하고 코드북 인덱스 16 내지 코드북 인덱스 23 중 어느 하나를 상기 UE에 전송하는 경우, 상기 UE는 상기 BS가 전송한 TPC 커맨드를 타입 2의 맵핑 표에 따라 δ값으로 맵핑하여 상향링크 전송 전력을 결정할 수 있다.
전송 랭크 특정 TPC 커맨드
앞서 상향링크 전송 안테나 포트의 개수 혹은 안테나 포트의 턴 오프 여부에 따라, 다양한 TPC 커맨드 맵핑 표를 사용하는 실시예들을 설명하였다. 안테나 포트의 개수 혹은 턴-오프가 아닌, 전송 랭크에 따라 다른 TPC 커맨드 맵핑 표가 사용되는 것도 가능하다. 예를 들어, 타입-1의 맵핑 표는 단일 레이어 전송, 즉, 랭크-1 전송에 사용되고, 타입-2의 맵핑 표는 다중 레이어 전송, 즉, 랭크-2 이상의 전송에 사용되는 것으로 정의될 수 있다. 즉, 랭크-특정 TPC 커맨드 맵핑 표가 정의되어 사용될 수 있다.
TPC 타입 구성(TPC type configuration)
전술한 실시예들에서는 TPC 커맨드 맵핑 표의 타입이 안테나 포트의 개수, 안테나 포트 턴-오프 여부, 코드북 인덱스 등에 따라 암묵적으로 결정된다. 이와 달리, BS가 TPC 커맨드 맵핑 표의 타입을 반-정적(semi-static) 혹은 동적(dynamic) 방식으로 구성할 수 있도록, TPC 커맨드 맵핑 타입이 명시적 방식으로 정의될 수 있다. TPC 커맨드 맵핑 타입이 반-정적으로 구성되는 경우에는, RRC(Radio Resource Control) 구성 혹은 상위 레이어 시그널링이 지원되어야 한다. 아니면, TPC 커맨드 타입 필드를 DCI에 포함시켜, TPC 커맨드 맵핑 타입이 동적 방식으로 구성될 수도 있다.
TPC 커맨드 타입의 반-정적 혹은 동적 구성은 암묵적 구성과 함께 사용될 수 있다. 예를 들어, UE의 배터리 용량 부족으로 인하여 일부 안테나 포트가 턴-오프되는 경우, BS는 기존의 맵핑 표, 즉, 타입-1의 맵핑 표를 사용하도록 UE에 반-정적 혹은 동적으로 시그널링할 수 있다.
도 13은 본 발명의 실시예들에 따른 상향링크 전력 제어의 흐름을 예시한 것이다.
도 13을 참조하면, 본 발명의 BS는 TPC 커맨드 맵핑 타입을 나타내는 TPC 커맨드 타입 정보를 UE에 전송할 수 있다(1010a). 상기 TPC 커맨드 타입 정보는, 실제 상향링크 전송에 사용되는 안테나 포트의 개수를 나타내는 정보일 수도 있고, 프리코딩 행렬 정보(예를 들어, 코드북 인덱스)일 수도 있고, 랭크 정보일 수도 있다. 또는, BS가 반-정적으로 구성하여 RRC 시그널링 혹은 상위 레이어 시그널링에 의해 UE에 통지하는 정보일 수도 있다. 또는, DCI에 포함되어 동적으로 UE에 시그널링되는 정보일 수도 있다.
BS는 상기 UE의 전송전력의 결정에 사용되는 전력 보정 인자 δ를 지시하는 TPC 커맨드를 상기 UE에 전송한다(1010b). 이때, 상기 BS는 상기 UE가 사용할 TPC 커맨드 맵핑 타입에 따라 상기 전력 보정 인자 δ에 대응하는 특정 TPC 커맨드를 생성할 수 있다. 예를 들어, 도 12를 11을 참조하면, 상기 BS가 코드북 인덱스 4를 상기 UE에 전송하는 경우, 상기 BS는 타입-2의 맵핑 표에 따라 상기 전력 보정 인자 δ에 대응하는 TPC 커맨드를 생성하고, 상기 TPC 커맨드를 나르는 PDCCH를 상기 UE에 전송할 수 있다.
UE는 상기 TPC 커맨드 타입 정보를 바탕으로 해당 타입의 맵핑 표에 따라 상기 BS로부터 수신한 TPC 커맨드가 지시하는 전력 보정 인자 δ를 결정한다(1020). 상기 UE는 상기 결정된 전력 보정 인자 δ를 이용하여 해당 상향링크 전송을 위한 전송전력 P를 결정한다(S1030). 예를 들어, 상기 UE는 상기 전력 보정 인자 δ를 수학식 3에 대입하고, 수학식 1에 따라 PUSCH의 전송전력 PPUSCH를 결정할 수 있다. 또 다른 예로, 상기 UE는 상기 전력 보정 인자 δ를 수학식 8에 대입하고, 수학식 1에 따라 PUCCH의 전송전력 PPUCCH를 결정할 수 있다.
상기 UE는 상기 결정된 전송전력 P로 상향링크 전송을 수행한다(S1040). 이때, 본 발명에 의하면, 상기 결정된 전송전력 P는 실제 전송에 사용되는 안테나 포트(들)에 균등하게 분배될 수 있다. 상기 상향링크 전송에 사용되는 각 안테나 포트는 상기 분배된 전송전력으로 상향링크 전송을 수행한다.
상기 BS는 상기 상향링크 전송을 수신하고, 상기 상향링크 전송에 의한 수신 신호의 강도, 품질 등을 바탕으로 상기 UE의 상향링크 전송전력을 제어할 새로운 전력 보정 인자 δ를 결정할 수 있다. 상기 BS는 상기 새로운 전력 보정 인자 δ에 대응하는 TPC 커맨드를 해당 TPC 커맨드 타입에 따라 생성하여, 상기 UE에 전송할 수 있다.
본 발명의 일 실시예에 따라 구성된 BS 프로세서(400b)는 TPC 커맨드 맵핑 타입을 나타내는 TPC 커맨드 타입 정보를 UE에 전송할 수 있다(1010a). 상기 TPC 커맨드 타입 정보는, 실제 상향링크 전송에 사용되는 안테나 포트의 개수를 나타내는 정보일 수도 있고, 프리코딩 행렬 정보(예를 들어, 코드북 인덱스)일 수도 있고, 랭크 정보일 수도 있다. 또는, BS가 반-정적으로 구성하여 RRC 시그널링 혹은 상위 레이어 시그널링에 의해 UE에 통지하는 정보일 수도 있다. 또는, DCI에 포함되어 동적으로 UE에 시그널링되는 정보일 수도 있다.
상기 BS 프로세서(400b)는 상기 UE의 전송전력의 결정에 사용되는 전력 보정 인자 δ를 지시하는 TPC 커맨드 생성하고, BS 송신기(100b)를 제어하여 상기 TPC 커맨드를 상기 UE에 전송한다(1010b).
UE 수신기(300a)는 상기 TPC 커맨드 정보와 상기 TPC 커맨드를 수신하여 UE 프로세서(400a)에 전달한다. 상기 UE 프로세서(400a)는 상기 TPC 커맨드 타입 정보를 바탕으로 해당 타입의 맵핑 표에 따라 상기 BS로부터 수신한 TPC 커맨드가 지시하는 전력 보정 인자 δ를 결정한다(1020). 상기 UE 프로세서(400a)는 상기 결정된 전력 보정 인자 δ를 이용하여 해당 상향링크 전송을 위한 전송전력 P를 결정한다(S1030).
상기 UE 프로세서(400a)는 상기 결정된 전송전력 P로 상향링크 전송을 수행하도록 UE 송신기(100a)를 제어한다(S1040). 상기 UE 프로세서(400a)는 상기 결정된 전송전력 P는 실제 전송에 사용되는 안테나 포트(들)에 균등하게 분배하도록 상기 UE 송신기(100a)를 제어할 수 있다. 상기 UE 송신기(100a)는 상기 UE 프로세서(400a)의 제어 하에, 상기 상향링크 전송에 사용되는 각 안테나 포트를 통해 상기 분배된 전송전력으로 상향링크 전송을 수행한다.
상기 BS 수신기(100b)는 상기 상향링크 전송을 수신하고, 상기 상향링크 전송에 의한 수신 신호의 강도, 품질 등을 측정하여 상기 BS 프로세서(400b)에 전달할 수 있다. 상기 BS 프로세서(400b)는 상기 수신된 상향링크 전송을 바탕으로 상기 UE의 상향링크 전송전력을 제어할 새로운 전력 보정 인자 δ를 결정할 수 있다. 상기 BS 프로세서(400b)는 상기 새로운 전력 보정 인자 δ에 대응하는 TPC 커맨드를 해당 TPC 커맨드 타입에 따라 생성하고, 상기 BS 송신기(100b)를 제어하여 상기 생성된 TPC 커맨드를 상기 UE에 전송할 수 있다.
UE의 전송 안테나 포트의 개수가 2개인 경우를 예로 하여, 본 발명의 실시예들에 따른 상향링크 전력 제어의 흐름을 좀 더 구체적으로 다시 설명하면 다음과 같다. BS 프로세서(400b)는 UE로부터의 상향링크 신호, 예를 들어, 상향링크 참조신호를 바탕으로, 상기 UE와 상기 BS 사이의 채널 상태를 추정하고, 상기 추정된 채널 상태를 바탕으로, 상기 UE가 상향링크 전송에 사용할 프리코딩 행렬/벡터에 대응하는 코드북 인덱스를 프리코딩 행렬 정보로서 생성할 수 있다. 상기 BS 프로세서(400b)는 상기 프리코딩 행렬 정보를 상기 UE에 전송하도록 BS 송신기(100b)를 제어할 수 있다. 또한, 상기 BS 프로세서(400b)는 상기 추정된 채널 상태를 바탕으로 상향링크 전송 랭크를 지시하는 랭크 정보를 생성하고, 상기 BS 송신기(100b)를 제어하여 상기 UE에 전송할 수 있다.
UE 수신기(300a)는 상기 프리코딩 행렬 정보와 상기 랭크 정보를 수신하여 UE 프로세서(400a)에 전달한다. 상기 UE 프로세서(400a)는 상기 프리코딩 행렬 정보와 상기 랭크 정보를 바탕으로 해당 프리코딩 행렬/벡터를 선택할 수 있으며, 상기 선택된 프리코딩 행렬/벡터에 따라 프리코더(304)를 구성하도록 UE 송신기(100a)를 제어할 수 있다. 상기 프리코더(304)는 Mt개의 레이어에 해당하는 레이어맵퍼(303)의 출력 x를 상기 선택된 Nt×Mt의 프리코딩 행렬/벡터 W와 곱해 Nt×MF의 행렬/벡터 z로 출력할 수 있다.
UE 프로세서(400a)는 상향링크 물리채널의 전송전력을 결정함에 있어서 BS로부터 수신한 TPC 커맨드가 지시하는 전력 보정 인자 δ를 사용할 수 있다. 예를 들어, 상기 BS로부터 코드북 인덱스 0 내지 3 중 하나를 수신한 경우, 상기 UE 프로세서(400a)는 표 2(DCI 포맷 0/3 내 TPC 커맨드) 또는 표 3(DCI 포맷 3A 내 TPC 커맨드)에 따라 상기 TPC 커맨드로부터 PUSCH를 위한 전력 보정 인자 δPUSCH를 결정할 수 있다. 상기 UE 프로세서(400a)는 상기 결정된 δPUSCH를 이용하여 PPUSCH를 결정할 수 있으며, 2개의 안테나 포트 각각에서 PPUSCH/2의 전송전력으로 PUSCH 전송을 수행하도록 UE 송신기(100a)를 제어할 수 있다.
반면, 상기 BS로부터 코드북 인덱스 4 또는 5를 수신한 경우, 상기 UE 프로세서(400a)는 표 11(DCI 포맷 0/3 내 TPC 커맨드) 또는 표 12(DCI 포맷 3A 내 TPC 커맨드)에 따라 상기 TPC 커맨드로부터 PUSCH를 위한 전력 보정 인자 δPUSCH를 결정할 수 있다. 상기 UE 프로세서(400a)는 상기 결정된 δPUSCH를 이용하여 PPUSCH를 결정할 수 있으며, 오프되지 않은 안테나 포트에서 상기 결정된 PPUSCH의 전송전력으로 PUSCH 전송을 수행하도록 UE 송신기(100a)를 제어할 수 있다.
본 발명 실시예에, 실제 전송에 사용되는 안테나 포트의 개수에 따라, 전력 보정 값의 입도가 달라지게 되므로, 상향링크 전력이 보다 효율적으로 제어될 수 있다.
상기에서는 안테나 포트가 오프되지 않는 경우와 안테나 포트가 오프되는 경우를 예로 하여 본 발명의 실시예를 설명하였으나, 오프되는 안테나 포트의 개수가 다를 수 있도록 코드북이 정의되는 경우, 실제 전송에 사용되는 안테나 포트의 개수에 따라 혹은 오프되는 안테나 포트의 개수에 따라 TPC 커맨드 맵핑 표가 달리 정의될 수도 있다. 예를 들어, 8-Tx 전송 안테나 포트를 위한 코드북이 정의되고, 상기 코드북이 2개의 안테나 포트를 오프하는 프리코딩 행렬/벡터와 4개의 안테나 포트를 오프하는 프리코딩 행렬/벡터를 포함하는 경우, 상향링크 전송에 사용되는 안테나 포트의 개수가 8개인 경우를 위한 TPC 커맨드 맵핑 표와, 4개인 경우를 위한 TPC 커맨드 맵핑 표와, 2개인 경우를 위한 TPC 커맨드 맵핑 표가 따로 정의되어 상향링크 전력 제어에 활용될 수도 있다.
전술한 사항 이외에 상향링크 전송 전력 제어에 대한 설명은 표준문서 (예를 들어, 3GPP TS36.213)를 참조할 수 있으며, 그 구체적인 내용은 설명의 명확성을 위하여 생략한다. 그러나, 상향링크 전송 전력 제어에 대하여 상기 표준문서에 개시된 내용은 이하에서 설명하는 본 발명의 다양한 실시형태에서 이용되는 상향링크 전송 전력 제어에 적용될 수 있음을 밝힌다.
참고로, LTE-A 시스템에서는 보다 넓은 주파수 대역을 사용하기 위하여 복수의 상/하향링크 주파수 블록을 모아 더 큰 상/하향링크 대역폭을 사용하는 반송파 병합(carrier aggregation 또는 bandwidth aggregation)이 사용될 수 있다. 각 주파수 블록을 셀(cell) 혹은 컴포넌트 반송파(component carrier), 밴드(band)라고도 하며, 각 주파수 블록은 중심 주파수 상에서 동작한다. 예를 들어, 상향링크에서 반송파 병합을 지원하는 UE는 복수의 중심 주파수를 사용하여 상향링크 전송을 수행할 수 있다. UE이 반송파 병합을 지원하는 경우, 수학식 1, 수학식 4, 수학식 9에서, PMAX는 상기 UE에 구성된 특정 주파수 블록을 위한 최대 전송 전력에 해당할 수 있다.
기존의 상향링크 전력 제어 방법에 의하면, 안테나 포트가 오프되더라도 오프되지 않는 경우와 동일한 전력 보정 인자 값에 의해 상향링크 전송전력이 결정된다. 이에 따라, 오프되는 안테나 포트에 할당된 전송전력은 상향링크 전송에 사용되지 않으며, 오프되지 않은 안테나 포트에 할당된 전송전력만이 상향링크 전송에 사용되게 된다. 그러나, 본 발명에 의하면, UE는 BS로부터 수신한 특정 TPC 커맨드를 TPC 커맨드 타입에 따라 다른 전력 보정 인자에 맵핑하여 상향링크 전송 전력을 결정하게 되므로, TPC 커맨드 타입에 따라 다른 크기를 갖는 상향링크 전송전력이 결정된다. 본 발명에 의하면, 상향링크 전송의 상황에 따라, 동일 TPC 커맨드가 다른 레벨의 전력 보정 인자값에 맵핑될 수 있어, 상향링크 전력이 단일 전력 보정 인자에 의해 제어되는 경우보다 효율적으로 제어될 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명의 실시예들은 무선 통신 시스템에서, 기지국 또는 사용자기기, 기타 다른 장비에 사용될 수 있다.

Claims (6)

  1. Nt개(여기서, Nt>1)의 안테나 포트를 구비한 사용자기기에 있어서,
    기지국으로부터 상향링크 신호의 전송전력을 제어하기 위한 전력제어 커맨드를 수신하는 단계; 및
    상기 전력제어 커맨드를 이용하여 상기 상향링크 신호의 전송전력을 결정하는 단계;
    상기 결정된 전송전력으로 상기 상향링크 신호를 상기 기지국으로 전송하는 단계를 포함하되,
    상기 상향링크 신호의 전송에 사용되는 사용 안테나 포트의 개수가 N1개(여기서, N1은 Nt이하인 양의 정수)이면 상기 전력제어 커맨드를 제1보정값에 맵핑하여 상기 제1보정값을 바탕으로 상기 전송전력을 결정하고, 상기 사용 안테나 포트의 개수가 N2개(여기서, N1
    Figure PCTKR2011003696-appb-I000003
    N2이고, Nt이하인 양의 정수)이면 상기 전력제어 커맨드를 제2보정값에 맵핑하여 상기 제2보정값을 바탕으로 상기 전송전력을 결정하는,
    상향링크 전력제어 방법.
  2. 제1항에 있어서,
    상기 사용 안테나 포트의 개수는 상기 기지국으로부터 수신된 프리코딩 행렬 지시 정보를 기반으로 결정되는,
    상향링크 전력제어 방법.
  3. 제1항 또는 제2항에 있어서,
    상기 결정된 전력으로 상기 상향링크 신호를 전송하는 단계를 포함하는,
    상향링크 전력제어 방법.
  4. Nt개(여기서, Nt>1)의 안테나 포트를 구비한 사용자기기에 있어서,
    기지국으로부터 상향링크 신호의 전송전력을 제어하기 위한 전력제어 커맨드를 수신하도록 구성된 수신기; 및
    상기 전력제어 커맨드를 이용하여 상기 상향링크 신호의 전송전력을 결정하도록 구성된 프로세서;
    상기 결정된 전송전력으로 상기 상향링크 신호를 상기 기지국으로 전송하도록 구성된 송신기를 포함하되,
    상기 프로세서는, 상기 상향링크 신호의 전송에 사용되는 사용 안테나 포트의 개수가 N1개(여기서, N1은 Nt이하인 양의 정수)이면 상기 전력제어 커맨드를 제1보정값에 맵핑하여 상기 제1보정값을 바탕으로 상기 전송전력을 결정하고, 상기 사용 안테나 포트의 개수가 N2개(여기서, N1
    Figure PCTKR2011003696-appb-I000004
    N2이고, Nt이하인 양의 정수)이면 상기 전력제어 커맨드를 제2보정값에 맵핑하여 상기 제2보정값을 바탕으로 상기 전송전력을 결정하도록 구성된,
    사용자기기.
  5. 제4항에 있어서,
    상기 프로세서는, 상기 기지국으로부터 수신된 프리코딩 행렬 정보를 기반으로 상기 사용 안테나 포트의 개수를 결정하도록 구성된,
    사용자기기.
  6. 제4항 또는 제5항에 있어서,
    상기 프로세서는 상기 결정된 전력으로 상기 상향링크 신호를 전송하도록 상기 송신기를 제어하는,
    사용자기기.
PCT/KR2011/003696 2010-05-20 2011-05-19 상향링크 전력제어 방법 및 사용자기기 WO2011145890A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/698,896 US9185658B2 (en) 2010-05-20 2011-05-19 Uplink power control method and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34647410P 2010-05-20 2010-05-20
US61/346,474 2010-05-20

Publications (2)

Publication Number Publication Date
WO2011145890A2 true WO2011145890A2 (ko) 2011-11-24
WO2011145890A3 WO2011145890A3 (ko) 2012-04-19

Family

ID=44992223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003696 WO2011145890A2 (ko) 2010-05-20 2011-05-19 상향링크 전력제어 방법 및 사용자기기

Country Status (2)

Country Link
US (1) US9185658B2 (ko)
WO (1) WO2011145890A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140119700A (ko) * 2012-01-27 2014-10-10 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8830883B2 (en) * 2010-11-16 2014-09-09 Qualcomm Incorporated Method and apparatus for improving acknowledgement/negative acknowledgement feedback
KR101943821B1 (ko) * 2011-06-21 2019-01-31 한국전자통신연구원 무선 통신 시스템에서 제어채널 송수신 방법
WO2013023337A1 (zh) * 2011-08-12 2013-02-21 富士通株式会社 一种上行功率控制方法和装置
US9277511B2 (en) * 2011-12-02 2016-03-01 St-Ericsson Sa Method of setting UE mode switching for RPD reduction
US9210670B2 (en) * 2013-03-18 2015-12-08 Samsung Electronics Co., Ltd. Uplink power control in adaptively configured TDD communication systems
RU2615493C1 (ru) * 2013-03-22 2017-04-05 Хуавэй Текнолоджиз Ко., Лтд. Система, устройство и способ управления мощностью
US9344167B2 (en) * 2013-06-06 2016-05-17 Broadcom Corporation Codebook subsampling for multi-antenna transmit precoder codebook
WO2015069072A1 (ko) * 2013-11-09 2015-05-14 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송 전력 제어 방법 및 이를 위한 장치
KR102298357B1 (ko) 2014-03-21 2021-09-07 삼성전자 주식회사 무선통신 시스템에서 다중 기지국과 랜덤 엑세스 수행 방법 및 장치
JP6418334B2 (ja) * 2014-10-29 2018-11-07 日本電気株式会社 通信システム及び方法、基地局、及びユーザ端末
WO2016124457A1 (en) * 2015-02-02 2016-08-11 Telefonaktiebolaget Lm Ericsson (Publ) Selective codeword-to-layer mapping for mimo transmissions
JP6019182B1 (ja) * 2015-06-24 2016-11-02 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN106559198B (zh) 2015-09-25 2019-09-17 电信科学技术研究院 一种基于pucch的上行控制信息传输方法及装置
CN109997318B (zh) * 2016-09-30 2023-02-17 瑞典爱立信有限公司 用于通信系统中的上行链路预编码的系统和方法
WO2018107358A1 (zh) * 2016-12-13 2018-06-21 广东欧珀移动通信有限公司 控制上行功率的方法和设备
US20180368083A1 (en) * 2017-06-16 2018-12-20 Mediatek Inc. Method And Apparatus For Uplink Transmissions In Mobile Communications
CN109039978B (zh) 2017-08-11 2020-03-20 华为技术有限公司 基于序列的信号处理方法、通信设备及通信系统
CN111434137B (zh) * 2017-11-10 2023-05-12 上海诺基亚贝尔股份有限公司 用于波束特定的上行链路流量传输的闭环功率控制
CN114449639A (zh) * 2018-04-06 2022-05-06 瑞典爱立信有限公司 用于新无线上行链路单用户多输入多输出通信的功率控制
US10476567B2 (en) * 2018-04-06 2019-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Power control for new radio uplink single-user multiple-input-multiple- output communication
WO2019197526A1 (en) * 2018-04-13 2019-10-17 Telefonaktiebolaget Lm Ericsson (Publ) Sounding reference signal power control in new radio
CN110475330B (zh) 2018-05-11 2021-05-25 电信科学技术研究院有限公司 一种上行功率控制方法、终端及网络设备
CN109792622B (zh) * 2018-06-11 2021-11-09 香港应用科技研究院有限公司 物理随机接入信道prach信号恢复的方法和频域prach滤波器
CN110769491B (zh) * 2018-07-27 2021-10-12 维沃移动通信有限公司 上行功率控制方法和设备
US10763926B2 (en) * 2018-10-10 2020-09-01 Nokia Technologies Oy Enhanced sounding reference symbol sounding technique for uplink codebook-based transmission
US11012129B2 (en) * 2019-04-29 2021-05-18 Telefonaktiebolaget Lm Ericsson (Publ) Transmission of reference signals from a terminal device
WO2020222275A1 (ja) * 2019-05-02 2020-11-05 株式会社Nttドコモ ユーザ端末及び無線通信方法
US11496968B2 (en) * 2020-01-16 2022-11-08 Qualcomm Incorporated Uplink power control parameters for repetitions of physical uplink shared channel transmissions
CN113498201A (zh) * 2020-04-02 2021-10-12 大唐移动通信设备有限公司 上行功率、调度信息确定方法、终端和网络侧设备
CN113596975B (zh) * 2020-04-30 2022-12-06 华为技术有限公司 一种上行功率控制方法及装置
US20240054089A1 (en) * 2022-08-12 2024-02-15 Hamilton Sundstrand Corporation Signal reflection mitigation systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030049031A (ko) * 2001-12-13 2003-06-25 주식회사 에이스테크놀로지 전력제어 기능을 갖는 중간 주파수 방식의 중계기와전력제어 방법
KR20090063085A (ko) * 2007-12-12 2009-06-17 엘지전자 주식회사 다중화율을 고려한 상향링크 전력제어 방법
KR20100006411A (ko) * 2008-07-09 2010-01-19 김광섭 합성고무 자동포장기

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8359059B2 (en) 2008-07-08 2013-01-22 Lg Electronics Inc. Method of controlling uplink power in wireless communication system
KR101297877B1 (ko) * 2008-10-31 2013-08-20 인터디지탈 패튼 홀딩스, 인크 다수의 상향링크 반송파를 사용하는 무선 전송 방법 및 장치
US8379581B2 (en) * 2008-12-08 2013-02-19 Sharp Kabushiki Kaisha Systems and methods for uplink power control
CN102217206B (zh) * 2009-01-05 2014-10-08 马维尔国际贸易有限公司 用于mimo通信系统的预编码码本

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030049031A (ko) * 2001-12-13 2003-06-25 주식회사 에이스테크놀로지 전력제어 기능을 갖는 중간 주파수 방식의 중계기와전력제어 방법
KR20090063085A (ko) * 2007-12-12 2009-06-17 엘지전자 주식회사 다중화율을 고려한 상향링크 전력제어 방법
KR20100006411A (ko) * 2008-07-09 2010-01-19 김광섭 합성고무 자동포장기

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140119700A (ko) * 2012-01-27 2014-10-10 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
CN104205710A (zh) * 2012-01-27 2014-12-10 Lg电子株式会社 在无线通信系统中发送上行链路控制信息的方法和装置
EP2797253A4 (en) * 2012-01-27 2015-08-12 Lg Electronics Inc METHOD AND APPARATUS FOR TRANSMITTING UPDATE CONTROL INFORMATION IN A WIRELESS COMMUNICATION SYSTEM
US9467984B2 (en) 2012-01-27 2016-10-11 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in wireless communication system
EP3104545A1 (en) * 2012-01-27 2016-12-14 LG Electronics, Inc. Method and apparatus for transmitting uplink control information in wireless communication system
KR101690396B1 (ko) * 2012-01-27 2016-12-27 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
US9730199B2 (en) 2012-01-27 2017-08-08 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in wireless communication system
CN107196747A (zh) * 2012-01-27 2017-09-22 Lg电子株式会社 在无线通信系统中接收上行链路控制信息的方法和装置
EP3264660A1 (en) * 2012-01-27 2018-01-03 LG Electronics Inc. Method and apparatus for transmitting uplink control information in wireless communication system
US9999035B2 (en) 2012-01-27 2018-06-12 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in wireless communication system
EP3528414A1 (en) * 2012-01-27 2019-08-21 BlackBerry Limited Method and apparatus for transmitting uplink control information in wireless communication system
US10492186B2 (en) 2012-01-27 2019-11-26 Blackberry Limited Method and apparatus for transmitting uplink control information in wireless communication system
CN107196747B (zh) * 2012-01-27 2020-04-28 黑莓有限公司 在无线通信系统中接收上行链路控制信息的方法和装置
US10912069B2 (en) 2012-01-27 2021-02-02 Blackberry Limited Method and apparatus for transmitting uplink control information in wireless communication system
EP3799343A1 (en) * 2012-01-27 2021-03-31 BlackBerry Limited Method and apparatus for transmitting uplink control information in wireless communication system
US11395276B2 (en) 2012-01-27 2022-07-19 Blackberry Limited Method and apparatus for transmitting uplink control information in wireless communication system
EP4087169A1 (en) * 2012-01-27 2022-11-09 BlackBerry Limited Method and apparatus for transmitting uplink control information in wireless communication system
US11765013B2 (en) 2012-01-27 2023-09-19 Blackberry Limited Method and apparatus for transmitting uplink control information in wireless communication system

Also Published As

Publication number Publication date
WO2011145890A3 (ko) 2012-04-19
US20130128833A1 (en) 2013-05-23
US9185658B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
WO2011145890A2 (ko) 상향링크 전력제어 방법 및 사용자기기
WO2011090282A2 (ko) 하향링크 데이터 전송방법 및 기지국과, 하향링크 데이터 수신방법 및 사용자기기
WO2011016691A2 (ko) 다중 안테나 전송을 지원하는 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
WO2017171516A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보의 전송 또는 수신 방법 및 이를 위한 장치
WO2017105135A2 (ko) 무선 통신 시스템에서 상향링크 참조 신호 전송 또는 수신 방법 및 이를 위한 장치
WO2018164452A1 (ko) 무선 통신 시스템에서 하향링크 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
WO2016126063A1 (ko) 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
WO2018203732A1 (ko) 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2011008023A2 (en) Method and apparatus for controlling uplink power in a wireless communication system
WO2011149286A2 (ko) 상향링크 다중 안테나 전송을 위한 제어 정보 송수신 방법 및 장치
WO2018203694A1 (ko) 무선 통신 시스템에서 전력 헤드룸 보고 방법 및 이를 위한 장치
WO2016105121A1 (ko) 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
WO2016126057A1 (en) Method and apparatus for controlling uplink control information transmission in wireless communication system providing widebandwidth services via carrier aggregation
WO2018030714A1 (ko) 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2013172674A1 (ko) 채널 상태 정보 보고 방법 및 장치
WO2013062359A1 (en) Method for determining transmission power information of downlink subframe and apparatus therefor
WO2012021041A2 (en) Apparatus and method for transmission of uplink sounding reference signals in a wireless network
WO2011034369A2 (ko) 다중 반송파 지원 무선 통신 시스템에서 스케줄링 신호 송수신 방법 및 장치
WO2011155777A2 (ko) 다중 반송파 지원 무선 통신 시스템에서 채널상태정보 송수신 방법 및 장치
WO2019143131A1 (ko) 무선 통신 시스템에서 상향링크 신호를 송신하는 방법 및 장치
WO2011078631A2 (ko) 다중 반송파 지원 무선 통신 시스템에서 상향링크 전송 전력 제어 방법 및 장치
WO2016144050A1 (ko) 무선 통신 시스템에서 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2012108616A1 (en) Method for transmitting uplink control information and user equipment, and method for receiving uplink control information and base station
WO2011055989A2 (en) A method and a base station for controlling downlink transmission power, and a method and a user equipment for receiving a pdsch
WO2013043026A2 (ko) 상향링크 신호 전송방법 및 사용자기기와, 상향링크 신호 수신방법 및 기지국

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13698896

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11783772

Country of ref document: EP

Kind code of ref document: A2