KR102222573B1 - Manufacturing Method of Silane Compound for Fixing TiO2 Nanofiber and Coating agent Using the Silane Compound for Fixing TiO2 Nanofiber - Google Patents

Manufacturing Method of Silane Compound for Fixing TiO2 Nanofiber and Coating agent Using the Silane Compound for Fixing TiO2 Nanofiber Download PDF

Info

Publication number
KR102222573B1
KR102222573B1 KR1020190147382A KR20190147382A KR102222573B1 KR 102222573 B1 KR102222573 B1 KR 102222573B1 KR 1020190147382 A KR1020190147382 A KR 1020190147382A KR 20190147382 A KR20190147382 A KR 20190147382A KR 102222573 B1 KR102222573 B1 KR 102222573B1
Authority
KR
South Korea
Prior art keywords
silane
weight
parts
solution
stirring
Prior art date
Application number
KR1020190147382A
Other languages
Korean (ko)
Inventor
박동철
양완희
이정우
Original Assignee
주식회사 위드엠텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 위드엠텍 filed Critical 주식회사 위드엠텍
Priority to KR1020190147382A priority Critical patent/KR102222573B1/en
Application granted granted Critical
Publication of KR102222573B1 publication Critical patent/KR102222573B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • B01J35/004
    • B01J35/023
    • B01J35/06
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to: a method for manufacturing a silane fixing agent for applying and fixing titanium dioxide nanofibers to a substrate surface so as to ensure long-term stability and excellent adhesion properties; and a photocatalytic reaction coating agent in which titanium dioxide nanofibers are effectively dispersed and fixed in a silane fixing agent manufactured by the manufacturing method. The manufacturing method of a silane fixing agent for fixing titanium dioxide nanofibers according to the present invention comprises: a material preparation step of preparing, based on 1,000 parts by weight of a silane fixing agent to be manufactured, 160 to 460 parts by weight of silane, 400 to 780 parts by weight of ethanol, 15 to 50 parts by weight of acetic acid, and 45 to 90 parts by weight of water; a material classification step of classifying the prepared materials into a solution A containing silane and a solution B containing water, wherein the solution A is prepared by mixing silane and ethanol or silane, ethanol, and acetic acid, and the solution B is prepared by mixing water and acetic acid or water and ethanol; a heating and stirring step of stirring the solution B while heating and maintaining the same at 50-60°C; an adding and stirring step of maintaining stirring while adding the solution A to the solution B under heating and stirring; and a cooling step of cooling the mixture to room temperature after 24 hours of stirring.

Description

이산화티탄 나노섬유 고정용 실란고정화제의 제조방법과 그 제조방법으로 제조된 실란고정화제를 이용한 광촉매반응 코팅제{Manufacturing Method of Silane Compound for Fixing TiO2 Nanofiber and Coating agent Using the Silane Compound for Fixing TiO2 Nanofiber}Manufacturing Method of Silane Compound for Fixing TiO2 Nanofiber and Coating Agent Using the Silane Compound for Fixing TiO2 Nanofiber}

본 발명은 이산화티탄 나노섬유를 기재면에 도포 고정하기 위한 실란고정화제를 장기안정성과 우수한 부착특성이 확보되도록 제조하기 위한 방법과, 그 제조방법으로 제조된 실란고정화제에 이산화티탄 나노섬유가 효과적으로 분산 고정된 광촉매반응 코팅제에 관한 것이다.The present invention is a method for preparing a silane fixing agent for coating and fixing titanium dioxide nanofibers on a substrate surface so that long-term stability and excellent adhesion properties are secured, and titanium dioxide nanofibers are effectively used in the silane fixing agent prepared by the manufacturing method. It relates to a dispersion-fixed photocatalytic reaction coating agent.

광촉매는 빛을 받아서 광화학반응을 가속화시키는 물질을 통칭한다. 밴드갭 에너지(band gap) 이상의 빛을 받아 전자가 가전도대(valence band)에서 전도대(conduction band)로 튀어올라 전기전도도가 증가할 수 있는 물질을 광반도체라고 하며, 이를 유기물 분해를 위한 광촉매공정에 적용하기 위한 연구가 수행되어오고 있다. TiO2, SiO2, ZnO, WO3, Cds, ZnS 등의 금속산화물과 SrTiO3, BaTiO3 등의 페롭스카이트 소재가 광촉매 효과를 나타내는 것으로 알려져 있다. 특히 이산화티탄(TiO2)는 높은 산화·환원력과 더불어 광촉매능이 뛰어나고, 가격이 저렴할 뿐만 아니라 물리화학적으로 매우 안정하며, 인체에 무해한 물질로 알려져 있다. Photocatalyst refers to a substance that receives light and accelerates photochemical reactions. A material that can increase electrical conductivity by receiving light above the band gap energy from the valence band to the conduction band is called an optical semiconductor, and this is a photocatalytic process for decomposing organic matter. Research has been carried out to apply it to. It is known that metal oxides such as TiO 2 , SiO 2 , ZnO, WO 3 , Cds and ZnS and perovskite materials such as SrTiO 3 and BaTiO 3 exhibit photocatalytic effects. In particular, titanium dioxide (TiO 2 ) is known to be a material that is harmless to the human body, as well as high oxidation and reduction power, excellent photocatalytic ability, low price, and very stable physicochemically.

표면적이 큰 이산화티탄 나노미립자는 더욱 우수한 광촉매성을 가질 수 있는데, 일반적으로 금속, 세라믹, 유리 제지, 섬유 등에 코팅을 통하여 고정화시켜 사용된다. 이산화티탄 나노미립자를 기재면에 고정화시키기 위한 방법은 크게 2가지 있다. 첫째, 이산화티탄 분말 현탁액을 직접 도포하는 방법이다, 이 방법은 기재면과의 부착성이 좋지 않아 막강도에 문제가 있으며, 막강도를 개선하기 위하여 400℃ 이상의 열처리 후 사용된다. 고온의 열처리가 가능한 기재면에 코팅한 후 400℃ 이상의 열을 가하여 세라믹 광촉매 박막으로 전환시킨 것이다. 둘째, 저온에서 광촉매를 기재면에 부착시키는 방법으로 고정화제(바인더)를 이용하는 방법이다. 이 방법에서 고정화제로는 광촉매성에 상대적으로 안정한 불소계 수지 고정화제나 물유리 내지 실란을 기본으로 하는 고정화제를 이용한다. 그런데 불소계 수지고정화제를 이용하는 방법은 항균섬유나 항균종이 등에 효과적으로 이용될 수 있는 장점이 있으나 광촉매에 의한 고정화제의 부식문제가 초래될 수 있다. 물유리를 기본으로 하는 고정화제를 이용하는 방법은 이산화티탄 분말의 분산이 불충분하기 쉬워 응집현상에 의한 백색 불투명막으로 형성될 우려가 있고, 실란을 기본으로 하는 고화제는 실란의 가수분해와 안정성 부여를 위해 강산(pH 3이하) 수준으로 제조된 관계로 시멘트나 무기결합재 종류의 기재면에 처리 시 표면부식 우려가 있다.Titanium dioxide nanoparticles having a large surface area may have more excellent photocatalytic properties, and are generally used by being immobilized through coating on metals, ceramics, glass papers, and fibers. There are two methods for immobilizing titanium dioxide nanoparticles on the substrate surface. First, it is a method of directly applying the titanium dioxide powder suspension. This method has a problem in film strength due to poor adhesion to the substrate surface, and is used after heat treatment at 400°C or higher to improve the film strength. It is converted into a ceramic photocatalyst thin film by coating it on a substrate surface capable of high temperature heat treatment and then applying heat of 400°C or higher. Second, it is a method of using a fixing agent (binder) as a method of attaching the photocatalyst to the substrate surface at low temperature. In this method, as the fixing agent, a fluorine-based resin fixing agent, which is relatively stable in photocatalytic properties, or a fixing agent based on water glass or silane, is used. However, the method of using a fluorine-based resin fixing agent has the advantage that it can be effectively used for antibacterial fibers or antibacterial paper, but may cause a corrosion problem of the fixing agent by a photocatalyst. In the method of using a water glass-based fixing agent, the dispersion of titanium dioxide powder is likely to be insufficient, and thus a white opaque film may be formed due to agglomeration, and a silane-based solidifying agent provides stability and hydrolysis of silane. Hazardous Since it is manufactured at the level of strong acid (pH 3 or less), there is a risk of surface corrosion when treated on the surface of a substrate such as cement or inorganic binder.

KR 10-0714849 B1KR 10-0714849 B1

본 발명은 종래 이산화티탄 고정화제의 단점을 개선하고자 개발된 것으로서, 이산화티탄 나노섬유의 분산 고정이 가능하고 더불어 이산화티탄 나노섬유와의 혼합시 장기안정성과 우수한 부착특성을 발현하는 이산화티탄 나노섬유 고정용 실란고정화제를 약산(아세트산)을 사용하여 제조하는 방법과, 그 제조방법으로 제조된 실란고정화제에 이산화티탄 나노섬유가 분산 혼합되어 기재면에 투명하게 도포되어 안정적으로 우수한 광촉매반응을 발현할 수 있는 광촉매반응 코팅제를 제공하는데 기술적 과제가 있다.The present invention was developed to improve the disadvantages of the conventional titanium dioxide immobilizing agent, and it is possible to disperse and fix the titanium dioxide nanofibers, and when mixed with the titanium dioxide nanofibers, the titanium dioxide nanofibers that exhibit long-term stability and excellent adhesion properties are fixed. A method of preparing a solvent silane fixative using a weak acid (acetic acid), and titanium dioxide nanofibers are dispersed and mixed in the silane fixative prepared by the production method and transparently applied to the substrate surface to stably express excellent photocatalytic reaction. There is a technical problem in providing a photocatalytic reaction coating agent that can be used.

상기한 기술적 과제를 해결하기 위해 본 발명은 이산화티탄 나노섬유 분산 고정용 실란고정화제를 제조하는 방법으로, 제조할 실란고정화제 1,000중량부 기준으로, 실란 160~460중량부, 에탄올 400~780중량부, 아세트산 15~50중량부, 물 45~90중량부를 준비하는 재료준비단계; 준비한 재료에서 실란을 포함하는 용액A와 물을 포함하는 용액B로 구분하되, 용액A는 실란과 에탄올을 혼합하거나 실란, 에탄올, 아세트산을 혼합하여 준비하고, 용액B는 물과 아세트산을 혼합하거나 물과 에탄올을 혼합하여 준비하는 재료구분단계; 용액B를 50~60℃에서 가열 유지하면서 교반하는 가열교반단계; 가열 교반 중인 용액B에 용액A를 첨가하여 교반을 유지하는 첨가교반단계; 첨가교반 유지 24시간 경과 후에 상온 냉각하는 냉각단계;를 포함하여 이루어지는 것을 특징으로 하는 이산화티탄 나노섬유 고정용 실란고정화제 제조방법을 제공한다.In order to solve the above technical problem, the present invention is a method of preparing a silane fixative for dispersing and fixing titanium dioxide nanofibers, based on 1,000 parts by weight of the silane fixating agent to be prepared, 160 to 460 parts by weight of silane, 400 to 780 parts by weight of ethanol. A material preparation step of preparing parts, 15 to 50 parts by weight of acetic acid, and 45 to 90 parts by weight of water; The prepared material is divided into a solution A containing silane and a solution B containing water, but solution A is prepared by mixing silane and ethanol or silane, ethanol, and acetic acid, and solution B is mixing water and acetic acid or water. Material classification step of preparing by mixing and ethanol; Heating and stirring step of stirring while maintaining the heating solution B at 50 ~ 60 ℃; Addition and stirring step of maintaining the stirring by adding Solution A to Solution B while heating and stirring; It provides a method for producing a silane fixing agent for fixing titanium dioxide nanofibers, comprising: a cooling step of cooling at room temperature after 24 hours of maintaining the added stirring.

또한 본 발명은 이산화티탄 나노섬유 고정용 실란고정화제를 이용한 광촉매반응 코팅제로, 실란고정화제 100중량부에 대하여, 2~10중량부의 이산화티탄 나노섬유가 분산 혼합된 것을 특징으로 하는 광촉매 반응 코팅제를 제공한다. In addition, the present invention is a photocatalytic reaction coating agent using a silane fixing agent for fixing titanium dioxide nanofibers, and a photocatalytic reaction coating agent characterized in that 2 to 10 parts by weight of titanium dioxide nanofibers are dispersed and mixed with respect to 100 parts by weight of the silane fixing agent. to provide.

본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.

첫째, 이산화티타 나노섬유를 기재면에 도포 고정화하기 위한 실란고정화제로, 무색의 투명 액상으로서 표면장력이 낮아 도포 기재면의 굴곡이나 미세기공 표면까지 침투 도포 고정화가 가능한 실란고정화제를 제조 공급할 수 있다.First, as a silane fixing agent for coating and fixing titanium dioxide nanofibers on the substrate surface, it is a colorless, transparent liquid that has low surface tension and can manufacture and supply a silane fixing agent capable of penetrating and fixing the surface of the coated substrate to bends or micropores. .

둘째, 본 발명에 따라 제조된 실란고정화제는 상온 보관시 6개월 이상 겔화 형성을 차단하면서 장기적인 안정성을 확보하고, 또한 도포기재면 도포 후 자연건조를 통해 박막형태로 건조도막을 형성하면서 우수한 부착성능을 발현하기 때문에 이산화티탄 나노섬유 고정용 실란고정화제로 유리하게 활용할 수 있다. Second, the silane fixing agent prepared according to the present invention secures long-term stability while blocking gelation for more than 6 months when stored at room temperature, and also has excellent adhesion performance while forming a dry coating film in a thin film form through natural drying after applying the coating substrate surface. It can be advantageously used as a silane fixing agent for fixing titanium dioxide nanofibers.

셋째, 본 발명에 따라 제조된 실란고정화제는 건조도막이 얇고 건조 후 도막형성 특성이 우수하므로, 이산화티탄 나노섬유를 혼입하여 코팅제로 적용할 경우 이산화티탄 나노섬유의 외부 노출/접촉을 극대화화여 광촉매로서 우수한 광분해 성능을 발현한다. Third, since the silane fixative prepared according to the present invention has a thin dry coating film and excellent coating film formation properties after drying, when applied as a coating agent by mixing titanium dioxide nanofibers, the external exposure/contact of the titanium dioxide nanofibers is maximized as a photocatalyst. It exhibits excellent photolysis performance.

도 1과 도 2는 각각 본 발명의 시험예2에서의 SEM 측정사진이다.1 and 2 are SEM photographs measured in Test Example 2 of the present invention, respectively.

본 발명은 이산화티탄 나노섬유 분산 고정용 실란고정화제를 제조하는 방법에 관한 것으로, 장기간 겔화 형성을 차단할 수 있고 기재면과의 부착성이 우수한 투명의 실란고정화제 제조를 위해 실란, 에탄올, 아세트산, 물을 적합하게 조성하여 일련의 공정을 통해 제조한다는데 특징이 있다. The present invention relates to a method of preparing a silane fixing agent for dispersing and fixing titanium dioxide nanofibers, and for producing a transparent silane fixing agent that can block gelation for a long time and has excellent adhesion to a substrate surface, silane, ethanol, acetic acid, It is characterized in that it is manufactured through a series of processes by appropriately forming water.

구체적으로 본 발명에 따른 실란고정화제 제조방법은, 제조할 실란고정화제 1,000중량부 기준으로, 실란 160~460중량부, 에탄올 400~780중량부, 아세트산 15~50중량부, 물 45~90중량부를 준비하는 재료준비단계; 준비한 재료에서 실란을 포함하는 용액A와 물을 포함하는 용액B로 구분하되, 용액A는 실란과 에탄올을 혼합하거나 실란, 에탄올, 아세트산을 혼합하여 준비하고, 용액B는 물과 아세트산을 혼합하거나 물과 에탄올을 혼합하여 준비하는 재료구분단계; 용액B를 50~60℃에서 가열 유지하면서 교반하는 가열교반단계; 가열 교반 중인 용액B에 용액A를 첨가하여 교반을 유지하는 첨가교반단계; 첨가교반 유지 24시간 경과 후에 상온 냉각하는 냉각단계;를 포함하여 이루어진다. Specifically, the method for preparing a silane fixative according to the present invention includes 160 to 460 parts by weight of silane, 400 to 780 parts by weight of ethanol, 15 to 50 parts by weight of acetic acid, and 45 to 90 parts by weight of water based on 1,000 parts by weight of the silane fixative to be prepared. Material preparation step of preparing a wealth; The prepared material is divided into a solution A containing silane and a solution B containing water, but solution A is prepared by mixing silane and ethanol or silane, ethanol, and acetic acid, and solution B is mixing water and acetic acid or water. Material classification step of preparing by mixing and ethanol; Heating and stirring step of stirring while maintaining the heating solution B at 50 ~ 60 ℃; Addition and stirring step of maintaining the stirring by adding Solution A to Solution B while heating and stirring; And a cooling step of cooling at room temperature after 24 hours of maintaining the addition agitation.

재료준비단계는 실란고정화제의 원재료로 실란, 에탄올, 아세트산, 물을 준비하는 단계이다. 실란은 부착특성을 부여하는 역할을 하는데, 알콕시실란(alkoxysilane)류로서 알칼기가 산소와 결합된 형태인 CnH2n+1O- (약식으로 -OR 표기) 작용기(메톡시(CH3O-), 에톡시(C2H5O-), 프로폭시(C3H7O-), 부톡시(C4H9O-), 펜틸옥시(C5H11O-), 헥실옥시(C6H13O-))를 가지는 것이면 적당하다. 실란은 실란고정화제 1000중량비 기준으로 160~460중량부 사용한다. 실란이 160중량부 미만이면 실란고정화제로서의 도막 고정특성이 낮아 부착특성 저하가 우려되며, 460중량부 초과하면 실란고정화제 제조과정에서 겔화가 진행된다.The material preparation step is a step of preparing silane, ethanol, acetic acid, and water as raw materials for the silane fixative. Silane plays a role of imparting adhesion properties, as alkoxysilanes, CnH2n+10- (represented as -OR for short) functional groups (methoxy (CH3O-), ethoxy (C2H5O)), in which an alkali group is bonded to oxygen. -), propoxy (C3H7O-), butoxy (C4H9O-), pentyloxy (C5H11O-), hexyloxy (C6H13O-)). Silane is used in an amount of 160 to 460 parts by weight based on 1000 parts by weight of the silane fixing agent. If the amount of silane is less than 160 parts by weight, the fixing property of the coating film as a silane fixing agent is low, so there is a concern that adhesion properties are deteriorated.

에탄올은 실란 용매로서, 실란과 물이 혼합될 때 실란과 물이 분리되지 않고 반응하여 가수분해 가능하게 한다. 에탄올은 780중량부 사용하는데, 400중량부 미만이면 실란고정화제의 분산성이 낮고 점성이 높아져 코팅제로서의 사용성이 떨어지며, 780중량부 초과하면 코팅제로 적용할 경우 급격한 건조로 인해 도막에 크랙이 발생한다. Ethanol is a silane solvent, and when silane and water are mixed, the silane and water react without being separated to enable hydrolysis. Ethanol is used in 780 parts by weight.If it is less than 400 parts by weight, the dispersibility of the silane fixing agent is low and its viscosity is high, so its usability as a coating agent is inferior.If it exceeds 780 parts by weight, cracks are generated in the coating film due to rapid drying when applied as a coating agent. .

아세트산은 가수분해된 실란의 분산안정성에 기여하는 역할을 하는 재료가 되는데, 종래 실란고정화제는 강산인 질산을 주로 사용하나, 본 발명에서는 약산인 아세트산을 사용한다. 이는 본 발명의 광촉매반응 코팅제를 시멘트 등 무기계 기재면에 도포처리할 경우를 고려한 것인데, 약산인 아세트산에 의해 표면부식이 일어나지 않게 하기 위함이다. 아세트산은 15~50중량부 사용하며, 아세트산이 15중량부 미만이면 가수분해된 실란의 분산안정성이 낮아 겔화되기 쉽고, 50중량부 초과하면 산 특성이 과도하게 발현되어 도포 기재면에 부정적인 영향을 끼친다. Acetic acid is a material that contributes to the dispersion stability of hydrolyzed silane. Conventionally, nitric acid, which is a strong acid, is mainly used as a silane fixative, but acetic acid, which is a weak acid, is used in the present invention. This is to consider the case of applying the photocatalytic reaction coating agent of the present invention to the surface of an inorganic substrate such as cement, in order to prevent surface corrosion by acetic acid, which is a weak acid. 15 to 50 parts by weight of acetic acid is used, and if less than 15 parts by weight of acetic acid is less than 15 parts by weight, the dispersion stability of the hydrolyzed silane is low and gelation is easy, and if it exceeds 50 parts by weight, the acid property is excessively expressed and negatively affects the coated substrate surface. .

물은 실란의 가수분해에 필요한 재료가 되며, 45~90중량부 사용한다. 물이 45중량부 미만이면 실란의 가수분해에 필요한 물의 반응량 부족으로 부분가수분해된 실란이 엉키면서 겔화가 진행되고 나아가 미가수분해 실란에 의해 부착성능 발현이 저하하며, 90중량부 초과하면 과도한 물 혼입으로 인해 기재면 고정화 특성이 저하한다.Water becomes a material necessary for hydrolysis of silane, and 45 to 90 parts by weight is used. If water is less than 45 parts by weight, gelation proceeds as the partially hydrolyzed silane becomes entangled due to insufficient reaction amount of water required for hydrolysis of the silane, and furthermore, adhesion performance decreases due to unhydrolyzed silane.If it exceeds 90 parts by weight, excessive The immobilization properties of the substrate surface are deteriorated due to water incorporation.

재료구분단계는 준비한 재료를 실란을 포함하는 용액A와 물을 포함하는 용액B로 구분하는 과정으로, 실란과 물을 구분하여 준비하는 과정이다. 이때 용액A는 실란과 에탄올을 혼합하거나 실란, 에탄올, 아세트산을 혼합하여 준비하고, 용액B는 물과 아세트산을 혼합하거나 물과 에탄올을 혼합하여 준비한다. 아세트산은 용액A 또는 용액B 어디에도 혼합될 수 있으나, 용액A에 혼합된다면 에탄올은 용액A와 용액B에 나누어 혼합한다. 실란에 물을 직접 가하면 가수분해가 원활하게 일어나지 못하고 서로 분리된 상태가 되기 쉽고 또한 시간 경과 후에 겔현상이 일어나 사용성이 떨어지므로, 이를 감안하여 본 발명에서는 용액A와 용액B를 구분하여 준비하는 것이다.The material classification step is a process of dividing the prepared material into a solution A containing silane and a solution B containing water, and is a process of dividing and preparing silane and water. At this time, Solution A is prepared by mixing silane and ethanol, or silane, ethanol, and acetic acid, and Solution B is prepared by mixing water and acetic acid or water and ethanol. Acetic acid can be mixed with either solution A or solution B, but if mixed with solution A, ethanol is divided into solution A and solution B and mixed. If water is directly added to the silane, hydrolysis does not occur smoothly and easily becomes separated from each other, and a gel phenomenon occurs after a period of time, resulting in poor usability, so in the present invention, Solution A and Solution B are separately prepared in consideration of this. .

가열교반단계와 첨가교반단계는 용액B를 먼저 가열 교반하고 가열 교반 중에 용액A를 첨가 교반함으로써 이루어지는데, 실란의 분산성을 유지하면서 가수분해를 촉진시킴으로써 실란폴리머 성분간의 결합력을 향상시켜 도막화시 도막안정성을 확보하고 도막의 부착특성 또한 확보가능하도록 한 것이다. 가열조건을 적용하지 않을 경우, 초기에는 액상상태였으나 약 3주차 정도에 젤리 형태의 겔화가 진행되고 겔화 후 무색투명에서 약간 노란색으로 변색되며 부착특성 또한 저하하는 등 전반적으로 사용성이 떨어진다. 특히 가열교반단계는 상부에 응축기가 구비된 가열교반기를 이용하면서 실시하는 것이 바람직한데, 증발에 의한 용액(특히 휘발성의 에탄올)의 소실을 최소화하기 위함이다.The heating and stirring step and the addition stirring step are performed by heating and stirring Solution B first, and then adding and stirring Solution A while heating and stirring.By promoting hydrolysis while maintaining the dispersibility of silane, the bonding strength between the silane polymer components is improved and the film is formed. This is to ensure the stability of the coating film and to ensure the adhesion characteristics of the coating film. If the heating condition is not applied, it was in a liquid state at the beginning, but gelation in the form of a jelly proceeds about 3 weeks after gelation, and after gelation, it changes color from colorless and transparent to slightly yellow, and the adhesion characteristics are also deteriorated, and overall usability is poor. In particular, the heating and stirring step is preferably carried out while using a heating agitator equipped with a condenser on the top, in order to minimize loss of a solution (especially volatile ethanol) by evaporation.

냉각단계를 거침으로써 가수분해되어 안정확된 실란고정화제가 제조되는데, 냉각단계는 첨가교반 유지 24시간 경과 후에 상온에서 서냉하여 진행하면 적당하다. 나아가 냉각단계 후에는, 총중량이 1,000중량부가 되도록 에탄올을 추가 투입하면서 총중량을 맞추는 정량맞춤단계;를 더 수행할 수 있다. 제조할 실란고정화제 1,000중량부 기준으로 정량으로 맞춰 원재료를 조성하더라도 가열교반을 통해 용액, 특히 에탄올의 증발이 일어날 수 있기 때문에 에탄올 추가 투입을 통해 실란고정화제의 농도를 일정하게 맞춘 것이다. 감량만큼 에탄올을 추가하지 않는 경우 가수분해된 실란의 농도가 높아 장기보관성 면에서 겔화되는 문제가 발생할 우려가 있다. 이로써 일정한 농도의 안정화된 실란고정화제로 제조되며, 이렇게 제조된 실란고정화제는 아래 시험예1에서와 같이 장기안정성과 우수한 부착특성을 나타냈다.By going through the cooling step, hydrolyzed and stable silane fixing agent is prepared. The cooling step is appropriate to proceed with slow cooling at room temperature after 24 hours of addition and stirring maintenance. Furthermore, after the cooling step, a quantitative adjustment step of adjusting the total weight while adding ethanol so that the total weight is 1,000 parts by weight; can be further performed. Even if raw materials are prepared according to a quantity based on 1,000 parts by weight of the silane fixing agent to be prepared, since the solution, especially ethanol, may be evaporated through heating and stirring, the concentration of the silane fixing agent is adjusted by adding ethanol. If ethanol is not added as much as the weight loss, the concentration of hydrolyzed silane is high and there is a concern that a problem of gelation may occur in terms of long-term storage. Thereby, it was prepared with a stabilized silane fixing agent of a certain concentration, and the silane fixing agent prepared in this way showed long-term stability and excellent adhesion characteristics as in Test Example 1 below.

위와 같이 제조한 실란고정화제는 이산화티탄 나노섬유와 혼합하여 코팅제로 적용할 수 있다. 코팅제로 적용한다면 실란고정화제 100중량부에 대하여 이산화티탄 나노섬유 2~10중량부를 혼합하고 1,500~3,000W 초음파로 20~60분 처리하여 적용하는 것이 바람직하다. 초음파 처리는 이산화티탄 나노섬유의 효과적인 분산을 위해서이며, 이산화티탄 나노섬유의 혼합량은 광촉매 효과와 경제성을 고려한 결과이다. 여기서 이산화티탄 나노섬유는 에탄올 75~87중량%; 폴리바이닐피롤리돈(PVP) 8.5~10.5중량%; 폴리비닐알코올(PVA) 0.4~1.5중량%; 테트라이소프로폭사이드(TTIP) 2.5~6중량%; 아세틸아세토네이트(ACAC) 1.5~3중량%;를 포함하여 조성된 베이스 조성물 100용적부에, 증류수 1~10용적부가 혼입되고 NaCl이 0.4~1.8M(몰농도)로 혼입되어 조성된 이산화티탄 나노섬유 전기방사용액 조성물로 전기방사하고 열처리하여 제조한 것을 적용하는 것이 바람직한데, 이렇게 제조한 이산화티탄 나노섬유는 방사섬유의 직경과 형상, 미세구조가 효과적으로 제어된 고품질의 것으로 아나타제(anatase) 결정을 가져 광촉매로서 우수한 적합성을 나타낸다.The silane fixative prepared as above can be mixed with titanium dioxide nanofibers and applied as a coating agent. If it is applied as a coating agent, it is preferable to mix 2 to 10 parts by weight of titanium dioxide nanofibers with respect to 100 parts by weight of the silane fixative, and to apply it by treating with 1,500 to 3,000 W ultrasonic waves for 20 to 60 minutes. Ultrasonic treatment is for effective dispersion of titanium dioxide nanofibers, and the amount of titanium dioxide nanofibers mixed is a result of considering the photocatalytic effect and economy. Here, the titanium dioxide nanofibers are 75 to 87% by weight of ethanol; 8.5 to 10.5% by weight of polyvinylpyrrolidone (PVP); 0.4 to 1.5% by weight of polyvinyl alcohol (PVA); 2.5-6% by weight of tetraisopropoxide (TTIP); Acetylacetonate (ACAC) 1.5 to 3% by weight; in 100 parts by volume of the base composition, 1 to 10 parts by volume of distilled water are mixed and NaCl is mixed in 0.4 to 1.8 M (molar concentration). It is preferable to apply a fiber electrospinning liquid composition prepared by electrospinning and heat treatment.The titanium dioxide nanofibers thus prepared are of high quality with effective control of the diameter, shape, and microstructure of the spinning fiber, and are capable of producing anatase crystals. It shows excellent suitability as a photocatalyst.

이하에서는 시험예에 의거하여 본 발명을 상세히 살펴본다. 다만, 아래의 시험예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이로써 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail based on test examples. However, the following test examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

[시험예1] 실란고정화제의 특성[Test Example 1] Characteristics of a silane fixative

1. 실란고정화제의 제조 1. Preparation of silane fixing agent

1,000g의 실란고정화제 제조를 위해 아래 [표 1]과 같은 조성으로 원재료를 준비하였다. In order to prepare 1,000g of a silane fixative, raw materials were prepared in the composition shown in [Table 1] below.

실란고정화제 원재료 조성Raw material composition of silane fixing agent 구성성분(g)Ingredients (g) 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 실시예Example 실란Silane 127127 190 190 340340 350 350 에탄올ethanol 750 750 724 724 610610 544 544 아세트산Acetic acid 45 45 2 2 3030 34 34 water 78 78 84 84 2020 72 72 totaltotal 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 - 실란:3-glycidoxypropyltrimethoxysilane, 비중(25℃) 1.07, 굴절률(25℃) 1.427
- 에탄올: 에탄올(ethanol), 순도 99.5%, 굴절률 1.36
- 아세트산: 비중 1.05, boiling point 118℃, pH(0.1M) 2.4
-Silane: 3-glycidoxypropyltrimethoxysilane, specific gravity (25℃) 1.07, refractive index (25℃) 1.427
-Ethanol: ethanol, purity 99.5%, refractive index 1.36
-Acetic acid: specific gravity 1.05, boiling point 118℃, pH(0.1M) 2.4

위와 같이 준비한 원재료에서 실란과 에탄올을 혼합하여 용액A를 만들고, 아세트산과 물을 혼합하여 용액B를 만들었다. 이어 용액B를 50~60℃에서 가열하면서 교반 유지하고, 가열교반 중인 용액B에 용액A를 첨가 혼합하여 24hr 이상 가열교반 유지하였다. 마지막으로 가열교반 유지 24hr 이상 경과 후 상온 서냉한 후 총중량이 1,000g 되도록 에탄올을 추가 투입(10~35g)하여 총중량을 맞추었다. 이로써 실란고정화제가 제조 완료되었다.From the raw materials prepared as above, silane and ethanol were mixed to make solution A, and acetic acid and water were mixed to make solution B. Then, the solution B was heated at 50 to 60° C. while maintaining the stirring, and the solution A was added and mixed with the solution B during heating and stirring, followed by heating and stirring for 24 hours or more. Finally, after more than 24 hours of heating and stirring, the mixture was slowly cooled to room temperature, and then ethanol was added (10 to 35 g) so that the total weight was 1,000 g to adjust the total weight. Thus, the preparation of the silane fixing agent was completed.

2. 실란고정화제의 특성2. Characteristics of Silane Fixing Agent

위와 같이 제조한 실란고정화제의 코팅제로서의 적용성을 확인하기 위해 실란고정화제의 장기안정성과 부착특성을 평가하였다. 실란고정화제는 가수분해를 통해 제조되기 때문에 장기보관시 겔화되는 문제가 나타나므로 이에 대한 확인으로 장기안정성을 평가하였으며, 장기안정성은 실란고정화제를 상온(20~25℃)에서 보관 방치 시 겔화여부와 겔화 형성 시 경과시간을 확인하였다. 부착특성은 유리판에 실란고정화제를 도포 경화 후 가로10cm×세로10cm 면에 대해 가로1mm×세로1mm 간격으로 칼로 코팅면을 절단(1×1mm 100개)한 후 테이프를 붙이고 1분 이내에 부착된 테이프를 때어내어 가로1mm×세로1mm 의 코팅면이 몇 개 탈락하였는지 측정하는 방법으로 평가하였다. 평가 결과 아래 [표 2]와 같이 나타냈다. In order to confirm the applicability of the silane fixing agent prepared as above as a coating agent, the long-term stability and adhesion characteristics of the silane fixing agent were evaluated. Since the silane fixative is produced through hydrolysis, a problem of gelation occurs during long-term storage, so long-term stability was evaluated by confirming this. Long-term stability is whether or not the silane fixative is gelled when left at room temperature (20~25℃). And the elapsed time at the time of gelation formation was checked. Adhesion characteristics: After curing by applying a silane fixative to a glass plate, cut the coated surface with a knife (100 pieces of 1×1mm) with a knife at intervals of 1mm wide x 1mm long for a 10cm wide x 10cm long surface, and then attached the tape within 1 minute. Was removed and evaluated by a method of measuring how many coated surfaces of 1 mm in width x 1 mm in length were removed. The evaluation results were shown in [Table 2] below.

실란고정화제 특성Silane fixative properties 구성성분(g)Ingredients (g) 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 실시예Example 장기안정성Long-term stability 6개월차 안정성
(겔화 미확인)
Stability at 6 months
(Gelization unconfirmed)
1주일차에 겔화Gelation on week 1 1개월차 겔화1st month gelation 6개월차 안정
(겔화 미확인)
Stable for 6 months
(Gelization unconfirmed)
부착특성Adhesion characteristics 3333 1919 1818 00

위에서 보는 바와 같이 실란을 적게 사용한 비교예1은 장기안정성(겔 형성되지 않음)은 좋으나 실란 함량이 적어 코팅제로서 부착특성이 크게 저하되는 문제점이 나타났다. 아세트산을 적게 사용한 비교예2는 1주일차에 겔화가 나타나고 부착특성 또한 문제를 나타냈다. 물을 적게 사용한 비교예3은 1개월차에 겔화가 나타나고 부착특성에서도 문제를 나타냈다. 본 발명에 따라 조성한 조성비로 제조한 실시예는 양호한 장기안정성과 우수한 부착특성을 나타냈다.As shown above, Comparative Example 1 using less silane had good long-term stability (no gel formation), but had a problem in that adhesion properties as a coating agent were greatly deteriorated due to the low silane content. In Comparative Example 2, where less acetic acid was used, gelation appeared on the first week, and adhesion properties were also problematic. In Comparative Example 3, which used less water, gelation appeared at the first month and also showed problems in adhesion properties. Examples prepared with the composition ratio formulated according to the present invention exhibited good long-term stability and excellent adhesion properties.

[시험예2] 광촉매반응 코팅제의 특성[Test Example 2] Characteristics of photocatalytic reaction coating agent

시험예1에서 실시예의 조성으로 제조된 실란고정화제 100g 대비 이산화티탄 나노섬유를 5g 혼합한 후 1,500watt 이상의 ultrasonic 으로 처리하여 코팅제를 제조하였다. 여기서 이산화티탄 나노섬유를 분산 처리한 광촉매반응 코팅제에 대하여 특성을 평가하였다. 여기서 이산화티탄 나노섬유는, 에탄올 83.2중량%; 폴리바이닐피롤리돈(PVP) 8.7중량%; 폴리비닐알코올(PVA) 1.06중량%; 테트라이소프로폭사이드(TTIP) 4.8중량%; 아세틸아세토네이트(ACAC) 2.24중량%;를 포함하여 조성된 베이스 조성물 100용적부에, 증류수 7.5용적부가 혼입되고 NaCl이 0.9M(몰농도)로 혼입되도록 조성한 전기방사용액을, 10cc 용량의 주사기에 채워 주사기 펌프에 장착하고, 주사기의 끝에 관을 연결하고 반대편 관을 노즐에 연결하고, 노즐에 전극을 연결하고 반대편 전극이 연결된 집적판에 고정시킨 후에, 전압을 두 전극에 가하면서 전기방사(유입속도 1 ml/hr, 노즐-집적판 거리 20cm, 인가전압 20kV 조건)를 실시하여 방사섬유를 제조하고, 제조된 방사섬유를 35℃ 건조기에서 2시간 건조한 후에 가열로에 넣고 400℃에서 2시간 열처리하는 공정을 제조한 것으로 적용하였다.In Test Example 1, 5 g of titanium dioxide nanofibers compared to 100 g of the silane fixing agent prepared in the composition of Example 1 were mixed, and then treated with an ultrasonic wave of 1,500 watts or more to prepare a coating agent. Here, the properties of the photocatalytic reaction coating agent obtained by dispersing titanium dioxide nanofibers were evaluated. Wherein the titanium dioxide nanofibers, ethanol 83.2% by weight; 8.7% by weight of polyvinylpyrrolidone (PVP); 1.06% by weight of polyvinyl alcohol (PVA); 4.8% by weight of tetraisopropoxide (TTIP); An electrospinning solution formulated so that 7.5 parts by volume of distilled water and 0.9 M (molar concentration) of NaCl are mixed in 100 parts by weight of the base composition comprising 2.24 wt% of acetylacetonate (ACAC), in a 10 cc syringe Fill it and mount it on the syringe pump, connect the tube to the end of the syringe, connect the opposite tube to the nozzle, connect the electrode to the nozzle and fix it to the accumulating plate to which the opposite electrode is connected, and apply voltage to the two electrodes while electrospinning (inflow Speed 1 ml/hr, nozzle-integrating plate distance 20cm, applied voltage 20kV) to produce spinning fibers, and after drying the produced spinning fibers in a 35℃ dryer for 2 hours, put them in a heating furnace and heat treatment at 400℃ for 2 hours. The process to be prepared was applied.

제조한 코팅제를 다공성의 골재표면에 분산 도포 처리 후 60~80도 온도 조건에서 12hr 이상 건조처리를 통해 광촉매반응 코팅제가 도포처리된 다공성 골재를 제조하고, 도포처리된 골재 표면에서의 이산화티탄 나노섬유의 고정형상을 SEM 측정을 통해 확인하였다. 더불어 이산화티탄 나노섬유의 고정형상 비교를 위해, 투명한 박막 코팅제로 적용하는 규산소다3호 50% 희석액을 실란고정화제 대신에 동일량 사용하여 광촉매반응 코팅제를 제조한 후 다공성골재 표면에 도포 건조하여 이산화티탄 나노섬유의 고정형상을 SEM 측정하여 확인하였다. Titanium dioxide nanofibers on the surface of the coated aggregate are prepared by dispersing and coating the prepared coating agent on the surface of the porous aggregate and then drying for 12 hours or more at a temperature of 60 to 80 degrees to prepare a porous aggregate coated with a photocatalytic reaction coating agent. The fixed shape of was confirmed through SEM measurement. In addition, in order to compare the fixed shape of the titanium dioxide nanofibers, a photocatalytic reaction coating agent was prepared by using the same amount of sodium silicate 3 50% diluted solution applied as a transparent thin film coating agent instead of the silane fixing agent, and then applied to the surface of the porous aggregate to be subjected to dioxide oxidation. The fixed shape of the titanium nanofibers was confirmed by SEM measurement.

도 1는 본 발명에 따라 제조한 실란고정화제를 사용한 코팅제가 적용된 경우인데, 보는 바와 같이 골재 표면에서 이산화티탄 나노섬유가 침상형태로 표면에 노출 고정되어 있는 것이 확인된다. 도 2는 규산소다3호 50% 희석액을 사용한 코팅제가 적용된 경우인데, 이산화티탄 나노섬유의 표면노출 형태가 극히 적은 것이 학인된다. 이와 같은 결과에 따라 본 발명의 코팅제는 우수한 광촉매반응 효과를 발현할 것으로 기대된다.1 is a case in which a coating agent using a silane fixing agent prepared according to the present invention is applied, and it is confirmed that titanium dioxide nanofibers are exposed and fixed to the surface in a needle-like form on the aggregate surface as shown. 2 is a case in which a coating agent using a 50% diluent of sodium silicate 3 is applied, and it is believed that the surface exposed form of titanium dioxide nanofibers is extremely small. According to these results, the coating agent of the present invention is expected to exhibit an excellent photocatalytic reaction effect.

Claims (6)

이산화티탄 나노섬유 분산 고정용 실란고정화제를 제조하는 방법으로,
제조할 실란고정화제 1,000중량부 기준으로, 실란 160~460중량부, 에탄올 400~780중량부, 아세트산 15~50중량부, 물 45~90중량부를 준비하는 재료준비단계;
준비한 재료에서 실란을 포함하는 용액A와 물을 포함하는 용액B로 구분하되, 용액A는 실란과 에탄올을 혼합하거나 실란, 에탄올, 아세트산을 혼합하여 준비하고, 용액B는 물과 아세트산을 혼합하거나 물과 에탄올을 혼합하여 준비하는 재료구분단계;
용액B를 50~60℃에서 가열 유지하면서 교반하는 가열교반단계;
가열 교반 중인 용액B에 용액A를 첨가하여 교반을 유지하는 첨가교반단계;
첨가교반 유지 24시간 경과 후에 상온 냉각하는 냉각단계;
를 포함하여 이루어지는 것을 특징으로 하는 이산화티탄 나노섬유 고정용 실란고정화제 제조방법.
A method of preparing a silane fixative for dispersing and fixing titanium dioxide nanofibers,
Material preparation step of preparing 160 to 460 parts by weight of silane, 400 to 780 parts by weight of ethanol, 15 to 50 parts by weight of acetic acid, and 45 to 90 parts by weight of water based on 1,000 parts by weight of the silane fixative to be prepared;
The prepared material is divided into a solution A containing silane and a solution B containing water, but solution A is prepared by mixing silane and ethanol or silane, ethanol, and acetic acid, and solution B is mixing water and acetic acid or water. Material classification step of preparing by mixing and ethanol;
Heating and stirring step of stirring while maintaining the heating solution B at 50 ~ 60 ℃;
Addition and stirring step of maintaining the stirring by adding Solution A to Solution B while heating and stirring;
A cooling step of cooling at room temperature after 24 hours of maintaining the added stirring;
A method for producing a silane fixing agent for fixing titanium dioxide nanofibers, characterized in that comprising a.
제1항에서,
상기 냉각단계 후에, 총중량이 1,000중량부가 되도록 에탄올을 추가 투입하면서 총중량을 맞추는 정량맞춤단계;를 더 포함하여 이루어지는 것을 특징으로 하는 이산화티탄 나노섬유 고정용 실란고정화제 제조방법.
In claim 1,
After the cooling step, a quantitative adjustment step of adjusting the total weight while adding ethanol so that the total weight is 1,000 parts by weight; a method for producing a silane fixative for fixing titanium dioxide nanofibers, characterized in that it further comprises.
제1항 또는 제2항에서
상기 가열교반단계는, 상부에 응축기가 구비된는 가열교반기를 이용하면서 이루어지는 것을 특징으로 하는 이산화티탄 나노섬유 고정용 실란고정화제 제조방법.
In paragraph 1 or 2
The heating and stirring step is performed while using a heating stirrer having a condenser provided thereon.
제1항 또는 제2항에 따라 제조된 이산화티탄 나노섬유 고정용 실란고정화제를 이용한 광촉매 반응 코팅제로,
실란고정화제 100중량부에 대하여, 2~10중량부의 이산화티탄 나노섬유가 분산 혼합된 것을 특징으로 하는 광촉매 반응 코팅제.
A photocatalytic reaction coating agent using a silane fixing agent for fixing titanium dioxide nanofibers prepared according to claim 1 or 2,
A photocatalytic reaction coating agent, characterized in that 2 to 10 parts by weight of titanium dioxide nanofibers are dispersed and mixed with respect to 100 parts by weight of the silane fixing agent.
제4항에서,
상기 광촉매 반응 코팅제는, 1,500~3,000W 초음파로 20~60분 처리된 것을 특징으로 하는 광촉매 반응 코팅제.
In claim 4,
The photocatalytic reaction coating agent, a photocatalytic reaction coating agent, characterized in that the treatment for 20 to 60 minutes with 1,500 to 3,000W ultrasonic waves.
제4항에서,
상기 이산화티탄 나노섬유는,
에탄올 75~87중량%; 폴리바이닐피롤리돈(PVP) 8.5~10.5중량%; 폴리비닐알코올(PVA) 0.4~1.5중량%; 테트라이소프로폭사이드(TTIP) 2.5~6중량%; 아세틸아세토네이트(ACAC) 1.5~3중량%;를 포함하여 조성된 베이스 조성물 100용적부에, 증류수 1~10용적부가 혼입되고 NaCl이 0.4~1.8M(몰농도)로 혼입되어 조성된 이산화티탄 나노섬유 전기방사용액 조성물로 전기방사하여 제조된 것임을 특징으로 하는 광촉매 반응 코팅제.
In claim 4,
The titanium dioxide nanofibers,
75-87% by weight of ethanol; 8.5 to 10.5% by weight of polyvinylpyrrolidone (PVP); 0.4 to 1.5% by weight of polyvinyl alcohol (PVA); 2.5-6% by weight of tetraisopropoxide (TTIP); Acetylacetonate (ACAC) 1.5 to 3% by weight; titanium dioxide nano formed by mixing 1 to 10 parts by volume of distilled water and 0.4 to 1.8 M (molar concentration) of NaCl in 100 volumes of the base composition comprising; A photocatalytic reaction coating agent, characterized in that produced by electrospinning with a fiber electrospinning liquid composition.
KR1020190147382A 2019-11-18 2019-11-18 Manufacturing Method of Silane Compound for Fixing TiO2 Nanofiber and Coating agent Using the Silane Compound for Fixing TiO2 Nanofiber KR102222573B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190147382A KR102222573B1 (en) 2019-11-18 2019-11-18 Manufacturing Method of Silane Compound for Fixing TiO2 Nanofiber and Coating agent Using the Silane Compound for Fixing TiO2 Nanofiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190147382A KR102222573B1 (en) 2019-11-18 2019-11-18 Manufacturing Method of Silane Compound for Fixing TiO2 Nanofiber and Coating agent Using the Silane Compound for Fixing TiO2 Nanofiber

Publications (1)

Publication Number Publication Date
KR102222573B1 true KR102222573B1 (en) 2021-03-04

Family

ID=75174125

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190147382A KR102222573B1 (en) 2019-11-18 2019-11-18 Manufacturing Method of Silane Compound for Fixing TiO2 Nanofiber and Coating agent Using the Silane Compound for Fixing TiO2 Nanofiber

Country Status (1)

Country Link
KR (1) KR102222573B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240063233A (en) 2022-10-28 2024-05-10 (주) 이오텍 A Photocatalyst Coating Material and An Ionizer Apparatus Using That

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050079288A (en) * 2004-02-05 2005-08-10 주식회사 티오즈 The manufacture procedure of the photocatalysis coating composition
KR100714849B1 (en) 2005-11-17 2007-05-04 경희대학교 산학협력단 Photocatalyst composition, fixing method thereof and continuous reactor using the photocatalyst
KR20080093483A (en) * 2007-04-17 2008-10-22 주식회사 나노그린 Synthesis method of coating agent for antipollution
KR20160024470A (en) * 2014-08-26 2016-03-07 창성나노텍 주식회사 Manufacturing method for titanium dioxide coating solution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050079288A (en) * 2004-02-05 2005-08-10 주식회사 티오즈 The manufacture procedure of the photocatalysis coating composition
KR100714849B1 (en) 2005-11-17 2007-05-04 경희대학교 산학협력단 Photocatalyst composition, fixing method thereof and continuous reactor using the photocatalyst
KR20080093483A (en) * 2007-04-17 2008-10-22 주식회사 나노그린 Synthesis method of coating agent for antipollution
KR20160024470A (en) * 2014-08-26 2016-03-07 창성나노텍 주식회사 Manufacturing method for titanium dioxide coating solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240063233A (en) 2022-10-28 2024-05-10 (주) 이오텍 A Photocatalyst Coating Material and An Ionizer Apparatus Using That

Similar Documents

Publication Publication Date Title
KR100541750B1 (en) Non-acidic, non-basic colloid solution containing dispersed titanium dioxide, method for preparing the same, and coating material comprising the colloid solution
KR930001258B1 (en) High-dispersion sol or gel of monoclinic zirconia supermicrocrystals and production of the same
KR100657229B1 (en) Titania nanosheet alignment thin film, process for producing the same and article including the titania nanosheet alignment thin film
KR101175607B1 (en) Making method of tungsten trioxide nano powder having excellent nano dispersion and electrochromism and nano dispersion sol containing tungsten trioxide manufactured by the method
KR100678524B1 (en) Method for Producing of Titania Solution
US5460738A (en) Modified stannic oxide-zirconium oxide composite sol and process for preparing the same
KR102222573B1 (en) Manufacturing Method of Silane Compound for Fixing TiO2 Nanofiber and Coating agent Using the Silane Compound for Fixing TiO2 Nanofiber
CN111074379A (en) Alumina-zirconia composite short fiber and preparation method thereof
KR20070105102A (en) Yttrium oxide composition, a method of forming the yttrium oxide composition and a method of forming a yttrium oxide layer using the same
JPWO2008007708A1 (en) Method for producing modified zirconium oxide-stannic oxide composite sol
JPS63185820A (en) Production of modified titania sol
JP2001172019A (en) Dispersed gel and solution of titanium oxide fine particle and method for producing the gel and solution
KR101483680B1 (en) Process for preparation high refractive index organic-inorganic composite containing enhanced hydrophobic organic compounds
KR101959045B1 (en) Process for preparing high refractive organic-inorganic hybrid sol
JP2820251B2 (en) Titanium oxide sol
KR960003239B1 (en) Titanium oxide sol and the preparation process thereof
TWI392590B (en) Compound semiconductor thin film with fog resist function and the manufacturing method thereof
KR20080004723A (en) Photocatalyst coating solution
JP3642490B1 (en) Method for producing titania solution
JPH0248418A (en) Zirconia composite sol
KR101795751B1 (en) Preparation of high refractive index zironia organic-inorganic composit
JPH03218928A (en) Zirconia organosol and production thereof
JPH02174929A (en) Silica-antimony oxide sol, its preparation and flame retardant derived therefrom
JPS62207717A (en) Sol of crystalline tin oxide and its preparation
JPS62262734A (en) Production of ceramic microball

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant