KR20240063233A - A Photocatalyst Coating Material and An Ionizer Apparatus Using That - Google Patents

A Photocatalyst Coating Material and An Ionizer Apparatus Using That Download PDF

Info

Publication number
KR20240063233A
KR20240063233A KR1020220141258A KR20220141258A KR20240063233A KR 20240063233 A KR20240063233 A KR 20240063233A KR 1020220141258 A KR1020220141258 A KR 1020220141258A KR 20220141258 A KR20220141258 A KR 20220141258A KR 20240063233 A KR20240063233 A KR 20240063233A
Authority
KR
South Korea
Prior art keywords
ionizer
photocatalyst coating
coating composition
photocatalyst
antibacterial
Prior art date
Application number
KR1020220141258A
Other languages
Korean (ko)
Inventor
오무영
김병호
원재연
백은주
이지은
박재형
Original Assignee
(주) 이오텍
백은주
한국소재융합연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 이오텍, 백은주, 한국소재융합연구원 filed Critical (주) 이오텍
Priority to KR1020220141258A priority Critical patent/KR20240063233A/en
Publication of KR20240063233A publication Critical patent/KR20240063233A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K11/00Use of ingredients of unknown constitution, e.g. undefined reaction products
    • C08K11/005Waste materials, e.g. treated or untreated sewage sludge
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/10Homopolymers or copolymers of propene
    • C09D123/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D155/00Coating compositions based on homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C09D123/00 - C09D153/00
    • C09D155/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Paints Or Removers (AREA)

Abstract

본 발명은 광촉매 코팅제 조성물 및 이를 이용한 이오나이저 장치에 관한 것으로, 광촉매 코팅제 조성물은, 인산은 1중량부 및 인산화티타늄 9중량부로 혼합되는 광촉매와, 실록산계 폴리올과, 에테르계 폴리올 및 과불소계 첨가제가 혼합되는 바인더조성물을 포함하는 것을 특징으로 하며, 상기 과불소계 첨가제는, 부틸아크릴레이트, 계면활성제 및 개시제를 반응한 후, 부틸아크릴레이트, 글리시딜메타아크릴레이트, 퍼플로로알킬에틸아크릴레이트, 개시제 및 황산나트륨을 추가하여 반응하여 제조하는 것을 특징으로 한다. The present invention relates to a photocatalyst coating composition and an ionizer device using the same. The photocatalyst coating composition includes a photocatalyst mixed with 1 part by weight of silver phosphate and 9 parts by weight of titanium phosphate, a siloxane-based polyol, an ether-based polyol, and a perfluorine-based additive. It is characterized in that it contains a binder composition to be mixed, and the perfluorinated additive is, after reacting butylacrylate, a surfactant and an initiator, butylacrylate, glycidyl methacrylate, perfluoroalkyl ethyl acrylate, It is characterized in that it is manufactured by adding an initiator and sodium sulfate to react.

Description

광촉매 코팅제 조성물 및 이를 이용한 이오나이저 장치{A Photocatalyst Coating Material and An Ionizer Apparatus Using That}Photocatalyst coating composition and ionizer apparatus using the same {A Photocatalyst Coating Material and An Ionizer Apparatus Using That}

본 발명은 광촉매 코팅제 조성물 및 이를 이용한 이오나이저 장치에 관한 것으로, 더욱 상세하게는 오존발생이 최소화되는 광촉매 코팅제 조성물과 이를 이용한 이오나이저 장치에 관한 것이다. The present invention relates to a photocatalyst coating composition and an ionizer device using the same, and more specifically, to a photocatalyst coating composition that minimizes ozone generation and an ionizer device using the same.

최근 슈퍼박테리아, 신종플루, COVID-19 등의 세균-바이러스성 질환의 영향으로 호흡기 질환, 천식, 아토피 등에 대한 우려가 전 국민적으로 확산되고 있어 쾌적한 생활환경에 대한 욕구가 점점 높아져 추세에 맞는 항균, 살균 기능의 제품 개발이 요구되고 있다. 또한, 대부분의 항균 기능을 갖는 플라스틱 제품은 표면에 화학합성 항균 코팅을 적용한 제품으로 인체의 유해성과 항균 수명에 문제점이 있어 원칙적인 대안이 요구된다. Recently, due to the influence of bacterial-viral diseases such as super bacteria, new flu, and COVID-19, concerns about respiratory diseases, asthma, and atopy are spreading nationwide. As the desire for a comfortable living environment is increasing, antibacterial, There is a demand for the development of products with sterilizing functions. In addition, most plastic products with antibacterial function are products with a chemically synthesized antibacterial coating applied to the surface, and there are problems with the harmfulness to the human body and the antibacterial lifespan, so a principled alternative is required.

실내공기 질이 사회적 중요성으로 크게 부각됨에 따라 환경부에서는 실내공기 질 관리법을 제정하고 관리 체계를 구축하는 등의 노력을 하고 있으며 전 세계적으로 실내 오염물질인 바이오 에어로졸(Bio aerosol), 휘발성 유기 화합물(Volatile organic compounds, VOCs), 미세 먼지(나노 입자)를 주된 연구 대상으로 하는 등 친환경 항균 및 항곰팡이 제품의 개발이 시급하다. As indoor air quality has become increasingly important to society, the Ministry of Environment is making efforts to enact indoor air quality management laws and establish management systems. Bio aerosols and volatile organic compounds, which are indoor pollutants, are being removed worldwide. There is an urgent need for the development of eco-friendly antibacterial and antifungal products, with the main research targets being organic compounds (VOCs) and fine dust (nanoparticles).

이를 위하여 저탄소 녹색성장과 관련된 환경기술이며 IT & NT & BT를 융합한 환경(ET) 기반 기술로 항균 및 항곰팡이성을 갖는 Passive 제균 기술로서 기능성 플라스틱과 Plasma 제균 시스템 기술을 응용한 Active 제균 기술로서 에코나이저기술이 나타났다. To this end, it is an environmental technology related to low-carbon green growth, an environmental (ET)-based technology that combines IT & NT & BT, a passive sterilization technology with antibacterial and anti-fungal properties, and an active sterilization technology that applies functional plastic and plasma sterilization system technology. Econizer technology appeared.

에코나이저에는 플라즈마를 사용하며, 플라즈마 발생 시 균 등의 미생물에 고전압이 인가됨으로써 세포막 내외의 전위치를 발생시켜 세포막이 파괴되거나, 박테리아/바이러스 등의 미생물 오염물질 주변의 (+)이온클러스트와 과(-)이온클러스트의 충돌 시 에너지에 `OH라디칼이 생성되고 생성된 라디칼에 의해서 미생물 내부의 H+이온과 결합하게 되어 최종적으로 무해한 물로 산화된다. Plasma is used in the economizer, and when plasma is generated, high voltage is applied to microorganisms such as bacteria, causing dislocations inside and outside the cell membrane, which destroys the cell membrane or causes (+) ion clusters and hyperactivity around microbial contaminants such as bacteria/viruses. When (-)ion clusters collide, `OH radicals are generated in the energy, and the generated radicals combine with H+ ions inside microorganisms and are ultimately oxidized into harmless water.

그러나, 종래 기술에서는 다음과 같은 문제점이 있었다. However, the prior art had the following problems.

플라즈마 기술의 응용 시 (+)이온과 (-)전자를 생성할 때 전극 주변에서 급격하게 발생되면서 이온수가 기하급수적으로 발생하고, 전압의 크기에 따라 오존 및 라디칼이 동시에 발생하는 단점이 있다.When applying plasma technology, the number of ions is generated exponentially as (+) ions and (-) electrons are generated rapidly around the electrode, and there is a disadvantage in that ozone and radicals are simultaneously generated depending on the size of the voltage.

등록특허 제 10-2222573호Registered Patent No. 10-2222573

상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은 오존 발생이 최소화되는 이산화티타늄계 광촉매를 조성하여 광촉매 코팅제 조성물을 제공하는 것이다. In order to solve the above-mentioned problems, the purpose of the present invention is to provide a photocatalyst coating composition by formulating a titanium dioxide-based photocatalyst that minimizes ozone generation.

그리고, 본 발명의 다른 목적은 오존발생이 최소화되고 내구성이 높은 광촉매 코팅제와 항균 플리스틱소재가 적용된 광촉매 코팅제를 이용한 이오나이저 장치를 제공하는 것이다. Another object of the present invention is to provide an ionizer device using a photocatalyst coating that minimizes ozone generation and has high durability and an antibacterial plastic material.

상술한 목적을 달성하기 위한 것으로, 본 발명인 광촉매 코팅제의 조성물은, 인산은 1중량부 및 인산화티타늄 9중량부로 혼합되는 광촉매와, 실록산계 폴리올과, 에테르계 폴리올 및 과불소계 첨가제가 혼합되는 바인더조성물을 포함하는 것을 특징으로 한다. In order to achieve the above-described object, the composition of the photocatalyst coating agent of the present invention is a binder composition in which a photocatalyst mixed with 1 part by weight of silver phosphate and 9 parts by weight of titanium phosphate, a siloxane-based polyol, an ether-based polyol, and a perfluorine-based additive are mixed. It is characterized by including.

상기 과불소계 첨가제는, 부틸아크릴레이트, 계면활성제 및 개시제를 반응한 후, 부틸아크릴레이트, 글리시딜메타아크릴레이트, 퍼플로로알킬에틸아크릴레이트, 개시제 및 황산나트륨을 추가하여 반응하여 제조하는 것을 특징으로 한다. The perfluorinated additive is produced by reacting butylacrylate, a surfactant, and an initiator, and then adding butylacrylate, glycidyl methacrylate, perfluoroalkyl ethyl acrylate, an initiator, and sodium sulfate. Do it as

본 발명의 다른 실시예인 광촉매 코팅제 조성물을 이용한 이오나이저 장치는, 이오나이저전극부와, 상기 이오나이저전극부를 제어하는 각종 부품이 실장되는 이오나이저모듈부와, 상기 이오나이저전극부와 상기 이오나이저모듈부를 수용할 수 있도록 내부에 공간이 형성되는 이오나이저하우징부를 포함하고, 상술한 광촉매 코팅제 조성물이 상기 이오나이저모듈부의 표면에 도포되는 것을 특징으로 한다. An ionizer device using a photocatalyst coating composition, which is another embodiment of the present invention, includes an ionizer electrode portion, an ionizer module portion on which various components that control the ionizer electrode portion are mounted, the ionizer electrode portion, and the ionizer module. It includes an ionizer housing part with a space formed therein to accommodate the unit, and the photocatalyst coating composition described above is applied to the surface of the ionizer module part.

상기 이오나이저하우징부는, 굴패막분말에 실란 또는 지방산염을 코팅한 소재가 포함되는 것을 특징으로 한다. The ionizer housing part is characterized in that it contains a material coated with oyster shell membrane powder with silane or fatty acid salt.

상기 이오나이저하우징부는, 폴리프로필렌고분자 또는 ABS고분자에 굴패각분말에 실란 또는 지방산염을 코팅한 소재가 포함되는 것을 특징으로 한다. The ionizer housing part is characterized in that it contains a material made by coating oyster shell powder with silane or fatty acid salt on polypropylene polymer or ABS polymer.

본 발명에 의한 광촉매 코팅제 조성물 및 이를 이용한 이오나이저 장치에서는 다음과 같은 효과가 있다. The photocatalyst coating composition according to the present invention and the ionizer device using the same have the following effects.

이산화티타늄계 광촉매가 이오나이저의 동작 및 사용환경조건에서도 안전하게 고정되고, 이오나이저의 하우징도 항균기능이 높아져 내구성과 사용환경이 개선되는 이점이 있다. The titanium dioxide-based photocatalyst is safely fixed even under the operating and use environment conditions of the ionizer, and the ionizer housing also has an increased antibacterial function, which has the advantage of improving durability and use environment.

도 1은 본 발명에 의한 광촉매 코팅제 조성물을 이용한 이오나이저 장치의 바람직한 구성을 보인 블럭도.
도 2는 본 발명에 사용되는 광촉매의 반응 매커니즘을 보인 도면.
도 3은 본 발명에 사용되는 광촉매의 종류에 따른 전기전도도를 보인 도면.
도 4는 본 발명에 의한 광촉매 코팅제 조성물의 안정성을 보인 도면.
도 5는 본 발명에 의한 광촉매 코팅제의 바인더를 구성하는 Siloxane + Ether계 폴리올 적용 WPU 반응매커니즘을 보인 도면.
도 6은 본 발명에 의한 광촉매 코팅제의 바인더를 구성하는 Perfluoroacryl 첨가제를 적용한 WPU 제조 공정도를 보인 도면.
도 7은 본 발명인 광촉매 코팅제 조성물을 이용한 이오나이저 장치의 하우징부의 항균플라스틱 소재(PP계)의 실험결과를 보인 도면.
도 8은 본 발명인 광촉매 코팅제 조성물을 이용한 이오나이저 장치의 하우징부의 항균플라스틱 소재(ABS계)의 실험결과를 보인 도면.
Figure 1 is a block diagram showing a preferred configuration of an ionizer device using the photocatalyst coating composition according to the present invention.
Figure 2 is a diagram showing the reaction mechanism of the photocatalyst used in the present invention.
Figure 3 is a diagram showing electrical conductivity according to the type of photocatalyst used in the present invention.
Figure 4 is a diagram showing the stability of the photocatalyst coating composition according to the present invention.
Figure 5 is a diagram showing the reaction mechanism of WPU applied with Siloxane + Ether-based polyol, which constitutes the binder of the photocatalyst coating agent according to the present invention.
Figure 6 is a diagram showing the WPU manufacturing process using the perfluoroacryl additive that constitutes the binder of the photocatalyst coating agent according to the present invention.
Figure 7 is a diagram showing the test results of an antibacterial plastic material (PP-based) of the housing portion of an ionizer device using the photocatalyst coating composition of the present invention.
Figure 8 is a diagram showing the test results of an antibacterial plastic material (ABS type) of the housing portion of an ionizer device using the photocatalyst coating composition of the present invention.

이하 본 발명에 의한 광촉매 코팅제 조성물 및 이를 이용한 이오나이저 장치의 바람직한 실시예가 첨부된 도면을 참고하여 상세하게 설명한다. Hereinafter, preferred embodiments of the photocatalyst coating composition according to the present invention and an ionizer device using the same will be described in detail with reference to the attached drawings.

본 발명인 이오나이저 장치에는 플라즈마 이온이 발생되는 이오나이저전극부(10)와, 상기 이오나이저전극부(10)를 제어하는 각종 부품이 실장되는 이오나이저모듈부(20)와, 상기 이오나이저전극부(10)와 상기 이오나이저모듈부(20)를 수용할 수 있도록 내부에 공간이 형성되는 이오나이저하우징부(30)를 포함하여 이루어질 수 있다. The ionizer device of the present invention includes an ionizer electrode unit 10 that generates plasma ions, an ionizer module unit 20 on which various components that control the ionizer electrode unit 10 are mounted, and the ionizer electrode unit. (10) and an ionizer housing portion 30 with a space formed therein to accommodate the ionizer module portion 20.

상기 이오나이저장치에는 이오나이저전극부(10)가 마련된다. 상기 이오나이저전극부(10)는, 방전침-접지링 형태의 구조가 적용될 수 있다. 상기 방전침의 재질은 은(Ag) 또는 금(Au) 등이 적용될 수 있다. The ionizer device is provided with an ionizer electrode unit (10). The ionizer electrode unit 10 may have a discharge needle-ground ring type structure. The material of the discharge needle may be silver (Ag) or gold (Au).

상기 이오나이저전극부(10)에는 이오나이저모듈부(20)가 마련된다. 상기 이오나이저전극부(10)에서 플라즈마 방전이 발생되도록 하기 위하여, 고전압발생회로가 마련된다. The ionizer electrode unit 10 is provided with an ionizer module unit 20. In order to generate plasma discharge in the ionizer electrode unit 10, a high voltage generation circuit is provided.

상기 이오나이저모듈부(20)의 회로는 일반적으로 PCB기판 상에 마련되는데, 상기 PCB기판 상에 본 발명에 의한 광촉매 코팅제 조성물로 코팅된다. 상기 광촉매 코팅제 조성물에 의하여 플라즈마현상 발생시 오존의 발생을 최소화할 수 있게 된다. The circuit of the ionizer module unit 20 is generally provided on a PCB substrate, and the PCB substrate is coated with the photocatalyst coating composition according to the present invention. The photocatalyst coating composition can minimize the generation of ozone when a plasma phenomenon occurs.

그리고, 상기 이오나이저하우징부(30)가 마련된다. 상기 이오나이저하우징부(30)는 내부에 공간이 마련되어 상기 이오나이저전극부(10) 및 이오나이저모듈부(20)가 내부의 공간에 실장되도록 한다. Then, the ionizer housing portion 30 is provided. The ionizer housing portion 30 is provided with a space inside so that the ionizer electrode portion 10 and the ionizer module portion 20 are mounted in the inner space.

상기 이오나이저하우징부(30)는 플라스틱소재로 구성될 수 있으며, 상기 이오나이저하우징부(30)에 의한 오염을 방지하기 위하여 항균플라스틱 재질로 구성될 수 있다. The ionizer housing part 30 may be made of a plastic material, and may be made of an antibacterial plastic material to prevent contamination by the ionizer housing part 30.

먼저, 상기 이오나이저모듈부를 코팅하는 광촉매 코팅제 조성물에 대하여 설명한다. First, the photocatalyst coating composition for coating the ionizer module portion will be described.

광촉매 반응에 가장 많이 이용되는 물질 중의 하나는 이산화티탄(TiO2)이다. TiO2는 이미 photoelectrochemistry의 water splitting 공정(수소 제조)에서 많이 사용되었으며 밴드갭 에너지도 적당하고 화학적 안정성도 우수한 것으로 알려져 있기 때문이다. TiO2 이외의 광촉매로 사용 가능한 물질로는 V2O5, ZnO, Fe2O3, WO3 등이 있다. 이 중에서 Kawaguchi와 Uejima2는 ZnO 현탁액을 이용하여 페놀을 분해하였다. 또한 ZnO는 용액의 pH의 영향을 크게 받아 강한 산성의 용액에서는 Zn 이온이 용해되어 촉매적 성질이 소멸된다는 단점을 지니고 있다. 이외에도 Fe2O3, V2O5 등이 촉매를 사용한 광분해 연구가 진행 중이나 아직은 TiO2만한 광촉매 활성을 지닌 물질은 보고된 바 없다.One of the most widely used materials in photocatalytic reactions is titanium dioxide (TiO 2 ). TiO 2 has already been widely used in the water splitting process (hydrogen production) of photoelectrochemistry and is known to have an appropriate band gap energy and excellent chemical stability. Materials that can be used as photocatalysts other than TiO 2 include V 2 O 5 , ZnO, Fe 2 O 3 , and WO 3 . Among these, Kawaguchi and Uejima2 decomposed phenol using ZnO suspension. In addition, ZnO is greatly affected by the pH of the solution and has the disadvantage that in strongly acidic solutions, Zn ions dissolve and its catalytic properties disappear. In addition, photodecomposition research using catalysts such as Fe2O3 and V2O5 is in progress, but no material with photocatalytic activity comparable to TiO 2 has been reported yet.

이와 같이 여러 종류의 metal oxide 중에서 광촉매로서의 이용하기 위해서는 전자가 부분적으로 채워져 있는 d-orbital로 구성되어 있는 전이 금속 산화물이 유용하다. 금속 산화물류의 촉매들은 그 표면에 각각 자신이 지니고 있는 밴드갭 에너지 이상에 해당하는 파장의 광에너지를 흡수하게 되면 자신이 지니고 있는 전자들로 채워져 있는 가전자대(valence band)로부터 전자가 비어있는 전도대(conduction band)로 이동하여 가전자대와 전도대 사이에 전자(e-)-정공(h+) charge-separated pair를 형성하여 space charge region을 이루면서 야기된다.Among these various types of metal oxides, transition metal oxides composed of d-orbitals with partially filled electrons are useful for use as photocatalysts. When metal oxide catalysts absorb light energy of a wavelength equal to or higher than the bandgap energy they possess on their surface, the valence band filled with electrons changes from the valence band filled with electrons to the conduction band with empty electrons. It is caused by moving to the conduction band and forming an electron (e-)-hole (h+) charge-separated pair between the valence band and the conduction band, forming a space charge region.

이렇게 형성된 전자-정공 쌍은 각각의 산화-환원 반응에 참여하지 않으면 Nano seconds 속도로 식(1)과 같이 재결합이 일어나면서 열이나 빛으로 에너지를 발생시킨다.If the electron-hole pairs formed in this way do not participate in each oxidation-reduction reaction, recombination occurs at the speed of nano seconds as shown in equation (1), generating energy as heat or light.

TiO2 + hν → TiO2 (e-CB + h+ VB) 식 (1)TiO 2 + hν → TiO 2 (e-CB + h+ VB) Equation (1)

TiO2 (e-CB + h+VB) → heat 식 (2)TiO 2 (e-CB + h+VB) → heat equation (2)

생성된 두 전하 운반자(e- 또는 h+)는 매우 빠르게 입자의 표면 쪽으로 확산하는데, 전도대 전자는 Ti(Ⅳ) 표면에서 포획되거나(식(3)), 계면 전자전이(식(4))에 따른 억셉터(acceptor, Aads)에 의해 반응이 진행된다.The two generated charge carriers (e- or h+) diffuse very quickly toward the surface of the particle, and the conduction band electrons are captured on the Ti(IV) surface (Equation (3)) or by interfacial electronic transition (Equation (4)). The reaction proceeds by an acceptor (Aads).

Ti(Ⅳ)surface + e-CB → Ti(Ⅲ)surface 식 (3)Ti(IV)surface + e-CB → Ti(Ⅲ)surface Equation (3)

Aads + e-CB → Aㆍ-ads 식 (4)Aads + e-CB → A·-ads equation (4)

O2ads + e-CB → O2ㆍ-ads 식 (5)O2ads + e-CB → O2ㆍ-ads Equation (5)

그리고 가전자대 정공은 intrinsic 산소자리 식(6)과 입자 표면에서 식(7)과 같이 흡착된 도너(donor, Dads)에 의해 포획될 수 있다.And the valence band hole can be captured by the intrinsic oxygen site equation (6) and the donor (Dads) adsorbed on the particle surface as shown in equation (7).

Ti(Ⅳ)-O2-Ti(Ⅳ) + h+VB → [Ti(Ⅳ)-Oㆍ--Ti(Ⅳ)] 식 (6)Ti(IV)-O 2 -Ti(IV) + h+VB → [Ti(IV)-O·--Ti(IV)] Formula (6)

Dads + h+VB → Dㆍ+ads 식 (7)Dads + h+VB → D·+ads Equation (7)

아주 강하게 hydrated와 hydroxylated된 TiO2 입자의 표면에서 정공의 포획(trapping)은 표면 결합의 OHㆍ+가 된다(식(8)).The trapping of holes on the surface of very strongly hydrated and hydroxylated TiO 2 particles results in surface binding of OH·+ (Equation (8)).

Ti(Ⅳ)surface-OH + h+VB → Ti(Ⅳ)surface-OHㆍ+ 식 (8-a)Ti(IV)surface-OH + h+VB → Ti(IV)surface-OH·+ Formula (8-a)

Ti(Ⅳ)surface-OH2+ + h+VB → Ti(Ⅳ)surface-OHㆍ+ + H+aq. 식 (8-b)Ti(IV)surface-OH2+ + h+VB → Ti(IV)surface-OH·+ + H+aq. Equation (8-b)

Ti(Ⅳ)surface-OHㆍ+ + D → Ti(Ⅳ)surface + Dㆍ+-OH 식 (9)Ti(IV)surface-OHㆍ+ + D → Ti(IV)surface + Dㆍ+-OH Equation (9)

반면 산소 분자(O2)는 촉매 표면에 흡착된 전자의 억셉터(acceptor) 역할을 하며, superoxide radical anion을 만들면서 (식(5)), 금속 양이온이나 다른 유기물들의 산화제로서도 역할을 하거나 물을 산화시켜 hydrogen peroxide(H2O2)를 생성한다. 이렇게 여기된 촉매는 자신의 표면에 흡착되어 있는 수용액 중의 hydroxy ion과 산화 반응하여 강력한 산화제인 OH 라디칼을 생성한다. 이러한 OH 라디칼은 유기성 물질의 분해 반응을 유도하게 된다. 이와 같은 광의 조사에 의하여 형성된 charge-separated pair의 수명은 전도대로 이동한 전자가 흡착된 억셉터(acceptor)에 전달될 시간, 그리고 가전자대에 형성된 정공이 역시 표면에 흡착된 도너(donor)에 전달될 시간이 충분하도록 길어야 한다. 이와 같은 이유로 인하여 태양광이나 이와 유사한 파장을 조사할 수 있는 광원을 광분해 반응의 구동력으로 사용할 경우, 최적의 광촉매를 선택하기 위해서는 고려대상의 밴드갭 에너지 그리고 charge separation behavior 등을 파악하고 있어야 한다.On the other hand, oxygen molecules (O2) act as acceptors of electrons adsorbed on the catalyst surface, creating superoxide radical anions (Equation (5)), and also serve as oxidizers for metal cations and other organic substances or oxidize water. This produces hydrogen peroxide (H 2 O 2 ). The excited catalyst undergoes an oxidation reaction with hydroxy ions in the aqueous solution adsorbed on its surface, generating OH radicals, a powerful oxidizing agent. These OH radicals induce a decomposition reaction of organic substances. The lifespan of the charge-separated pair formed by such irradiation of light is the time required for the electrons moving to the conduction band to be transferred to the adsorbed acceptor, and the time for the holes formed in the valence band to be transferred to the donor adsorbed on the surface. It should be long enough to allow enough time to develop. For this reason, when using sunlight or a light source capable of irradiating similar wavelengths as a driving force for the photodecomposition reaction, the band gap energy and charge separation behavior to be considered must be understood in order to select the optimal photocatalyst.

도 3에 나타나 있는 광촉매 중 광촉매로 이용할 수 있는 여러 종류의 반도체 물질들이 있지만, 이 중에서 이산화티탄(TiO2)이 가장 주목을 받고 있다. 가장 주요한 이유로는 대부분의 산, 염기, 유기 용매에 침식되지 않는 화학적인 안정성 때문이다. 산화아연(ZnO)은 이산화티탄과 유사한 에너지 밴드 구조를 갖고 있으며, 광촉매로서 높은 활성이 있는 것으로 보고되고 있다. 그러나 ZnO는 수용액 중에서 광조사하면 Zn2+로서 녹아버린다(광용해). 염산, 질산 등 일반적인 산에도 쉽게 녹는 성질이 있다. 금속 황화물, 금속칼코겐나이트는 가시광을 사용하지만, 대부분이 ZnO와 같이 물속에서 광촉매로 이용되면 금속이 이온형태로 물에 녹아버린다. CdS나 GaP는 태양빛의 많은 부분을 흡수할 수 있으나, 반복되는 실험에 안정성을 잃는 것(eg. CdS+2h+→Cd2++S)으로 알려져 있다. 게다가 Cd, Se, As 등에는 독성이 있는 것으로 알려지고 있다. 또한 TiO2는 강한 산화력, 저비용, 중독과 발암성이 없는 인체에 무해한 물질로서 광촉매 활용에 적합한 물질이라고 할 수 있다. Among the photocatalysts shown in Figure 3, there are several types of semiconductor materials that can be used as photocatalysts, but among these, titanium dioxide (TiO 2 ) is receiving the most attention. The main reason is its chemical stability, which prevents it from being corroded by most acids, bases, and organic solvents. Zinc oxide (ZnO) has an energy band structure similar to titanium dioxide and is reported to be highly active as a photocatalyst. However, when ZnO is irradiated with light in an aqueous solution, it melts as Zn2+ (photodissolution). It is easily soluble in common acids such as hydrochloric acid and nitric acid. Metal sulfides and metal chalcogenites use visible light, but when most of them, like ZnO, are used as photocatalysts in water, the metals dissolve in water in the form of ions. CdS or GaP can absorb a large portion of sunlight, but are known to lose stability after repeated experiments (eg. CdS+2h+→Cd2++S). In addition, Cd, Se, As, etc. are known to be toxic. In addition, TiO 2 has strong oxidizing power, low cost, is non-toxic and non-carcinogenic, and is harmless to the human body, making it a suitable material for use as a photocatalyst.

다음으로, 광촉매 코팅제 조성물에 대하여 설명한다. Next, the photocatalyst coating composition will be described.

먼저, 본원발명에서 광촉매는 기존에 개발된 인산은과 이산화티타늄의 합성비율이 5:5인 광촉매와 동등 성능을 확보하면서 가격 경쟁력 측면에서는 40~50% 절감 할 수 있는 가시광촉매를 개발 하는 것이다. 본원발명에의 가시광촉매는 인산은 (Ag3PO4)과 이산화티타늄 (TiO2)의 합성 비율이 1:9인 가시광촉매를 나타낸다. First, the photocatalyst in the present invention is to develop a visible light catalyst that can achieve a 40-50% reduction in price competitiveness while securing the same performance as the previously developed photocatalyst with a synthesis ratio of silver phosphate and titanium dioxide of 5:5. The visible light catalyst of the present invention refers to a visible light catalyst in which the synthesis ratio of silver phosphate (Ag 3 PO 4 ) and titanium dioxide (TiO 2 ) is 1:9.

가. 잠재인자와 가인자 선정go. Selection of potential and probable factors

본원발명에서 잠재 인자 중금속 촉매의 종류, 금속 촉매의 첨가량을 가인자(Pre_CTQ)로 선정하고 잠재인자 X중에서 촉매 활성 환경인 온도와 습도는 고정인자로 선정하였다. 온도 범위는 ±25±5℃ 상대 습도는 55±15%로 고정하였다. 첨가물인 금속 촉매 A그룹은 4주기 전이 금속류, B그룹은 귀금속류 C그룹은 알칼리 금속류로 하였다. 또한 광원 조건은 형광등으로 고정하고 강도는 1300~1400 lx 범위에서 실험을 진행하였다. 본원발명의 사전 검토 결과로서 광촉매 코팅 비용은 개발 광촉매의 Cost를 기존 대비 40~50% 수준으로 낮추기 위해 인산은과 이산화 티타늄의 배합 비율을 1 : 9로 고정하였다.In the present invention, the type of heavy metal catalyst and the amount of metal catalyst added were selected as potential factors (Pre_CTQ), and among the potential factors X, temperature and humidity, which are the catalytic activity environment, were selected as fixed factors. The temperature range was fixed at ±25±5℃ and the relative humidity was fixed at 55±15%. The additive metal catalyst group A was made of 4-period transition metals, group B was made of noble metals, and group C was made of alkali metals. In addition, the light source condition was fixed to fluorescent lamps and the intensity was tested in the range of 1300 to 1400 lx. As a result of preliminary review of the present invention, the cost of photocatalyst coating was fixed at 1:9 for the mixing ratio of silver phosphate and titanium dioxide in order to reduce the cost of the developed photocatalyst to 40-50% of the existing level.

나. 치명인자 선정을 위한 DOE 분석 (주효과분석)me. DOE analysis for selection of fatal factors (main effect analysis)

DOE 분석 결과 메틸렌블루 분해 성능의 치명인자 (P-value〈0.05) 이하는 금속촉매 종류(P=0.000) 첨가량 (P=0.000)으로 주 효과 분석 결과 Mn 첨가 < Pt 첨가, 저 농도 > 고 농도로 분석 되었으며 ANOVA 분석과 Pareto chart 분석 결과는 금속 촉매 종류, 금속 촉매 첨가량이 주요인자 CTQ로 분석 되었다.As a result of DOE analysis, the fatal factor for methylene blue decomposition performance (P-value〈0.05) or less is the type of metal catalyst (P=0.000) and the amount added (P=0.000). As a result of the main effect analysis, Mn addition < Pt addition, low concentration > high concentration. The results of the ANOVA analysis and Pareto chart analysis were analyzed as the main factors of the type of metal catalyst and the amount of metal catalyst added, CTQ.

다. 귀금속류 금속 촉매 선정 (Screening Test)all. Precious metal catalyst selection (screening test)

귀금속류 금속촉매 검토 결과 광촉매(인산은과 이산화티탄이 1:9의 합성비율)로 에 백금(Pt)과 금(Au)가 첨가된 경우 약 35~36%의 분해 성능을 나타내었으나, 팔라듐(Pd)의 경우 첨가에 따른 효율 상승효과는 없는 것으로 분석 되었다. 추가적으로 금속 촉매의 Nano 입자화 공정을 추가하여 가시광 광촉매를 합성한 경우 약 4~5% 성능이 향상하는 것을 메틸렌 블루 분해 실험에서 메틸렌블루 용액 50g에 가시광 촉매 1g 혼합하여 교반 후 가시광 광원을 이용하여 광량 1350±50lx에서 흡광도를 측정 하였다. 이때 사용된 흡광도 측정기는 Simadzu UV-1800을 이용하여 측정 되었다.As a result of examining noble metal metal catalysts, when platinum (Pt) and gold (Au) were added as a photocatalyst (synthesis ratio of silver phosphate and titanium dioxide of 1:9), the decomposition performance was about 35-36%, but palladium (Pd) showed a decomposition performance of about 35-36%. ), it was analyzed that there was no increase in efficiency due to addition. In addition, when a visible light photocatalyst was synthesized by adding a nano particle process of a metal catalyst, the performance was improved by about 4 to 5%. In a methylene blue decomposition experiment, 1 g of visible light catalyst was mixed with 50 g of methylene blue solution, stirred, and the amount of light was measured using a visible light source. Absorbance was measured at 1350±50lx. The absorbance meter used at this time was measured using Simadzu UV-1800.

[ 광촉매 코팅제의 성능 평가 ][Performance evaluation of photocatalyst coating]

가. 광촉매 코팅제의 안정성 평가go. Stability evaluation of photocatalytic coatings

상온에서의 경시 변화는 오랜 시간을 두고 평가를 진행해야하므로 코팅액의 가혹 테스트를 진행하여 액 안정성을 평가하고자 하였다. 액 안정성은 제조된 코팅액을 60 ml 용기에 샘플링 하여 60 ℃ 오븐에 보관하여 액의 경시 변화를 관찰하였다. 도 4에 도시된 바와 같이, 60 ℃에서 1일 경과 시 상온에서 1 ~ 2 개월 안정성을 나타내는 것으로 사료되며, 60 ℃에서 2일 경과 시 상온에서 약 2 ~ 4 개월 안정성을 나타내는 것으로 사료된다. 60 ℃에서 3 일 경과 시 상온에서 약 5 ~ 6 개월 안정성을 나타내는 것으로 사료된다고 판단하였으며, 액 안정성 기준은 60 ℃에서 3 일 이상 안정성을 나타내는 것을 안정성이 우수한 것으로 판단하였다. Since changes over time at room temperature must be evaluated over a long period of time, we attempted to evaluate the stability of the coating solution by conducting a severe test of the coating solution. For liquid stability, the prepared coating liquid was sampled in a 60 ml container and stored in an oven at 60°C to observe changes in the liquid over time. As shown in Figure 4, after 1 day at 60°C, it is considered to be stable at room temperature for 1 to 2 months, and after 2 days at 60°C, it is thought to be stable at room temperature for about 2 to 4 months. It was judged to be stable for about 5 to 6 months at room temperature after 3 days at 60 ℃, and the liquid stability standard was judged to be excellent if it showed stability at 60 ℃ for more than 3 days.

나. 광촉매 코팅제의 내약품성 시험me. Chemical resistance test of photocatalyst coating agent

코팅된 시편의 내 화학성을 평가하기 위해서 5% Na2CO3, 5% CH3COOH로 제조된 용액에 코팅된 시편을 넣고 코팅된 시편이 50% 이상 침지시켜 상온의 분위기에 각각 24시간 방치한다. 시험 후 시편을 꺼내어 흐르는 물로 수세하여 코팅(Coating)막의 부풀음 및 변색을 평가한다.To evaluate the chemical resistance of the coated specimen, the coated specimen is placed in a solution prepared with 5% Na 2 CO 3 and 5% CH 3 COOH, the coated specimen is immersed by more than 50%, and left in an atmosphere at room temperature for 24 hours. . After the test, take out the specimen and wash it with running water to evaluate swelling and discoloration of the coating film.

다. 광촉매 박막 코팅 두께에 따른 성능 비교 평가all. Comparative evaluation of performance according to photocatalyst thin film coating thickness

제조된 광촉매 코팅 용액을 이온 발생 전극의 고전압 전극부분을 제외한 판형PCB 전극 부분에 균일하게 스크린 인쇄 방법을 통해서 코팅 한다. 박막 두께에 따른 접착성능 평가는 1차적으로 외관 평가를 통해서 이물질 부착 및 코팅 박막이 PCB 전극 표면에서 탈리하는 현상을 관찰하고 전극 표면에서 탈리된 성분을 회수하여 분석을 실시하였다.The prepared photocatalyst coating solution is uniformly coated on the plate PCB electrode area excluding the high voltage electrode area of the ion generating electrode using a screen printing method. The evaluation of adhesion performance according to thin film thickness was conducted primarily by evaluating the appearance, observing the adhesion of foreign substances and the phenomenon of the coating thin film detaching from the PCB electrode surface, and recovering and analyzing the components detached from the electrode surface.

본원발명에서는 코팅전과 후의 박막을 측정하는 것이 바람직하지만 여기서는 코팅 회수를 1회에서 3회까지 실시하고 코팅막 상태를 관측하였다. 아래 표에 표기한 것처럼 1회 코팅할 경우 박막의 두께가 약 9~11 um으로 얇고 균일하게 코팅되는 것을 확인하였으며 아래 표에 코팅 두께에 따른 최종 결과를 나타내었다.In the present invention, it is preferable to measure the thin film before and after coating, but here, the number of coatings was performed from 1 to 3 times and the state of the coating film was observed. As shown in the table below, when coated once, it was confirmed that the thin film was coated thinly and uniformly with a thickness of approximately 9 to 11 um. The table below shows the final results according to the coating thickness.

박막 두께(㎛)Thin film thickness (㎛) 코팅 회수Coating Recovery 비고note 1010 1회1 time 표면에서 박막 탈리 현상 관측되지 않음(1% 이하)No thin film detachment observed from the surface (less than 1%) 2020 2회Episode 2 박막 탈리 현상 일부 관측 됨(10% 이하)Some thin film detachment phenomenon observed (less than 10%) 3030 3회3rd time 박막 탈리 현상 20% 이상Thin film detachment phenomenon of more than 20%

다음으로, 광촉매용 바인더의 제조에 대하여 설명한다. Next, the production of the binder for photocatalyst will be described.

광촉매 바인더용 수분산 폴리우레탄 수지를 개발하기 위해 폴리올의 종류(Ether계, Ester계, Carbonate계, Siloxane계) 및 조성비별 합성 실험을 실시하고 그 특성을 살펴보았다.To develop a water-dispersed polyurethane resin for photocatalyst binder, synthesis experiments were conducted for each type of polyol (Ether-based, Ester-based, Carbonate-based, Siloxane-based) and composition ratio, and their characteristics were examined.

가, Siloxane + Ether계 폴리올을 적용한 WPU의 제조 A. Manufacturing of WPU using Siloxane + Ether polyol

① 반응원료① Reaction raw materials

이번 실험에는 Siloxane계 폴리올인 Poly(dimethylsiloxane), hydroxy terminated (#550)과 Poly(dimethylsiloxane), bis(hydroxyalkyl) terminated (#5,600)을 Ether계 폴리올인 PTMG와 혼합하여 수분산 우레탄 수지을 제조하였고 이에 사용된 원료들을 아래 표에 정리하였다.In this experiment, poly(dimethylsiloxane), hydroxy terminated (#550), a siloxane polyol, and poly(dimethylsiloxane), bis(hydroxyalkyl) terminated (#5,600) were mixed with PTMG, an ether polyol, to prepare a water-dispersed urethane resin. The raw materials used are summarized in the table below.

구분division 원료명Raw material name 분자량
(Mw)
Molecular Weight
(Mw)
Cas No.Cas No. 제조사manufacturing company
PolyolPolyol PDMSPDMS Poly(dimethylsiloxane), bis(hydroxyalkyl) terminatedPoly(dimethylsiloxane), bis(hydroxyalkyl) terminated 5,6005,600 156327-07-0156327-07-0 AldrichAldrich Poly(dimethylsiloxane), hydroxy terminatedPoly(dimethylsiloxane), hydroxy terminated 550550 70131-67-870131-67-8 AldrichAldrich PTMGPTMG Poly(1,4-butanediol)Poly(1,4-butanediol) 2,0002,000 25190-06-125190-06-1 AldrichAldrich IsocyanateIsocyanate IPDIIPDI Isophorone diisocyanateIsophorone diisocyanate 222.3222.3 4098-71-94098-71-9 AldrichAldrich 이온부가
/중화
Ion addition
/neutralization
DMPADMPA 2,2-Bis(hydroxymethyl) propionic acid2,2-Bis(hydroxymethyl)propionic acid 134.1134.1 2767-03-72767-03-7 AldrichAldrich
TEATEAs Triethylamine Triethylamine 101.2101.2 121-44-8121-44-8 Samchun Samchun Chain extenderChain extender EDAEDAs Ethylenediamine Ethylenediamine 60.160.1 107-15-3107-15-3 KantoKanto

② 합성 방법② Synthesis method

표면처리제용 수분산 PU의 합성 방법으로는 먼저 3구 반응기에 온도계, 교반기, reflux condenser를 설치한 후, 폴리올인 PDMS와 PTMG를 넣고 상온에서 교반시킨 후 80℃에서 진공으로 감압하여 수분을 제거한다. 그 후 이온부가 및 이소시아네이트와의 반응, 중화, chain extender 공정을 진행하여 광촉매 바인더용 수지를 합성하였다.The method of synthesizing water-dispersed PU for surface treatment is to first install a thermometer, stirrer, and reflux condenser in a three-neck reactor, add polyol PDMS and PTMG, stir at room temperature, and remove moisture by vacuum depressurizing at 80°C. . Afterwards, ion addition, reaction with isocyanate, neutralization, and chain extender processes were performed to synthesize a resin for a photocatalyst binder.

③ 실험 결과③ Experiment results

Siloxane계 폴리올과 ether계 폴리올을 단독 또는 혼합하여 아래와 같이 다양한 수분산 폴리우레탄을 제조하였다. Siloxane계 폴리올은 분자량을 달리하였으며 ether계 폴리올은 분자량이 2,000인 PTMG를 사용하여 다양한 조성비를 설계하였으며 그에 따른 수지의 외관 특성, 고형분, 점도, 필름 상태 등을 확인하여 그 물성을 비교 검토하였다.Siloxane-based polyol and ether-based polyol were used alone or in combination to produce various water-dispersed polyurethanes as shown below. Siloxane-based polyols had different molecular weights, and ether-based polyols used PTMG with a molecular weight of 2,000 to design various composition ratios. The physical properties of the resulting resins were compared and reviewed by checking their appearance characteristics, solid content, viscosity, and film state.

siloxane계 폴리올과 ether계 폴리올을 적용한 WPU의 배합비 및 기본특성 Mixing ratio and basic characteristics of WPU using siloxane-based polyol and ether-based polyol 구분division 실시예 1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 실시예6Example 6 실시예7Example 7 실시예8Example 8 PTMG #2,000PTMG #2,000 1.51.5 1.4251.425 1.4251.425 1.351.35 1.21.2 1.11.1 0.90.9 0.750.75 PDMS PDMS #5,600#5,600 -- 0.0750.075 -- 0.150.15 0.30.3 0.450.45 0.60.6 0.750.75 #550#550 -- -- 0.0750.075 -- -- -- -- -- IPDIIPDI 3.03.0 3.03.0 3.03.0 3.03.0 3.03.0 3.03.0 3.03.0 3.03.0 DMPADMPA 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 TEATEAs 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 1.11.1 EDAEDAs 0.40.4 0.40.4 0.40.4 0.40.4 0.40.4 0.40.4 0.40.4 0.40.4 외관Exterior 불투명
백색 에멀젼
opacity
white emulsion
불투명 opacity
백색 에멀젼white emulsion
불투명
백색 에멀젼
opacity
white emulsion
불투명
백색 에멀젼
opacity
white emulsion
불투명
백색 에멀젼
opacity
white emulsion
불투명
백색 에멀젼
opacity
white emulsion
반투명
백색 에멀젼
translucent
white emulsion
반투명
백색 에멀젼
translucent
white emulsion
분산성dispersibility S.C (%)S.C. (%) 19.919.9 20.620.6 21.521.5 26.126.1 26.926.9 23.123.1 27.927.9 18.218.2 Viscosity(cps.)
[S63/60rpm]
Viscosity (cps.)
[S63/60rpm]
848~864848~864 1162~11801162~1180 580~595580~595 1210~12431210~1243 13801380 12101210 859859 352352
FilmFilm 투명필름, NontackyTransparent film, Nontacky 불투명 필름, NontackyOpaque film, Nontacky 반투명필름, Nontacky, 미끌거림Translucent film, nontacky, slippery 불투명 필름, Nontacky, SoftOpaque film, Nontacky, Soft 불투명 필름, Nontacky, SoftOpaque film, Nontacky, Soft 불투명 필름, Nontacky, softOpaque film, nontacky, soft 투명필름, NontackyTransparent film, Nontacky 불투명 필름, NontackyOpaque film, Nontacky

PDMS를 포함한 수분산 폴리우레탄 제조 결과, 불투명 백색 에멀젼을 얻을 수 있었으며 점도는 비교적 높은 양상을 보였다. 특히 분자량이 550인 PDMS를 사용한 경우 점도는 적당한 결과를 보였으나 필름 제조 후 분리가 일어나 필름 표면이 미끌거리는 현상이 나타나 바인더의 사용이 어려울 것으로 판단된다. 또한, 높은 분자량의 PDMS를 사용한 경우에는 수지의 제조 및 안정성에는 문제가 없었으나 필름 제조 후의 필름 특성이 유연한 특성은 지니나 불투명하고 표면의 광택이 심해 바인더로의 적용에는 다소 어려움이 따를 것으로 판단된다. As a result of manufacturing water-dispersed polyurethane including PDMS, an opaque white emulsion was obtained and the viscosity was relatively high. In particular, when PDMS with a molecular weight of 550 was used, the viscosity showed appropriate results, but separation occurred after film production and the film surface became slippery, making use of the binder difficult. In addition, when high molecular weight PDMS was used, there were no problems with the production and stability of the resin. However, although the film characteristics after production are flexible, it is opaque and the surface is highly glossy, so its application as a binder is expected to be somewhat difficult.

나. 과불소계 첨가제를 포함한 수분산 폴레우레탄 제조me. Manufacture of water-dispersed polyurethane containing perfluorinated additives

① 반응원료는 표 4에 나타난 바와 같다. ① Reaction raw materials are as shown in Table 4.

원료명Raw material name 분자량(Mw)Molecular weight (Mw) Cas No.Cas No. 제조사manufacturing company PPGPPG Poly(propylene glycol)Poly(propylene glycol) 2,0002,000 25322-69-425322-69-4 AldrichAldrich DMPADMPA 2,2-Bis(hydroxymethyl) propionic acid2,2-Bis(hydroxymethyl)propionic acid 134.1134.1 2767-03-72767-03-7 AldrichAldrich IPDIIPDI Isophorone diisocyanateIsophorone diisocyanate 222.3222.3 4098-71-94098-71-9 AldrichAldrich HEMAHEMA 2-Hydroxyethyl methacrylate2-Hydroxyethyl methacrylate 130.14130.14 868-77-9868-77-9 AldrichAldrich TEATEAs Triethylamine Triethylamine 101.2101.2 121-44-8121-44-8 Samchun Samchun PFAPFA Perfluoroalkyl ethyl acrylatePerfluoroalkyl ethyl acrylate -- 66605-70-166605-70-1 DAPACKDAPACK SDSSDS Sodium dodecyl sulfateSodium dodecyl sulfate 288.4288.4 151-21-3151-21-3 AldrichAldrich NP-10NP-10 Nonylphenol ethoxylateNonylphenol ethoxylate -- 26027-38-326027-38-3 DongnamDongnam APSAPS Ammonium persulfateAmmonium persulfate 228.2228.2 7727-54-07727-54-0 AldrichAldrich GMAGMA Glycidyl methacrylateGlycidyl methacrylate 142.15142.15 106-91-2106-91-2 AldrichAldrich BAB.A. Butyl acrylateButyl acrylate 128.2128.2 141-32-2141-32-2 AldrichAldrich

② 합성 방법② Synthesis method

과불소계 첨가제를 포함한 수분산 폴리우레탄의 제조를 위해 먼저 perfluoroacryl 첨가제를 제조하였다. 제조 방법으로는 유화제로 사용된 SDS, NP-10을 물에 유화시킨 후, 1 step으로 전체 monomer 무게 대비(wt%) 약 10~30%의 acryl monomer와 Initiator를 적가한 후 75~80℃에서 약 1~2시간 1차 반응을 시킨다. 그 다음 2 step으로 나머지 acryl monomer와 PFA를 Initiator와 동시에 적가하여 진행하였으며 2 step의 경우 75~80℃의 온도에서 Initiator와 monomer를 1~2시간에 걸쳐 적가한 다음 3~5 시간 숙성한다. 다음으로는 앞서 제조한 perfluoroacryl 첨가제를 이용하여 WPU를 제조하기 위해 먼저 질소가 충진된 반응기에 polyol을 투입 후 적정 온도 (75~80 ℃)로 상승 시킨다. Polyol과 DMPA를 완전 혼합시킨 후 Isocyanate 30 분에서 1 시간에 걸쳐 적가한다. 적가 후 90 분 동안 교반하여 NCO-prepolymer를 제조하였다. 50 ℃ 이하로 냉각 후 반응기에 TEA를 10분간 적가하여 중화를 진행하였다. 그다음 urethane-acrylate copolymerization을 진행시키기 위해서 온도를 75~80 ℃로 조절한 다음 neutralized NCO-terminated prepolymer에 PFA와 initiator를 적가하였다. 적가 완료 후 2~4 시간의 숙성을 거친 후 물을 투입하여 과불소계 첨가제를 포함한 WPU 를 제조하였다. 반응 중 점도 상승 시에는 MEK 및 acetone을 투입하여 점도를 조절 하였으며, 투입된 acetone의 경우 반응 완료 후 감압하여 용제를 제거하였다.To produce water-dispersed polyurethane containing perfluorinated additives, perfluoroacryl additives were first prepared. The manufacturing method is to emulsify SDS and NP-10 used as emulsifiers in water, then dropwise add about 10 to 30% of the acryl monomer and initiator relative to the total monomer weight (wt%) in one step, and then incubate at 75 to 80°C. Allow the first reaction to take approximately 1 to 2 hours. Next, step 2 was carried out by adding the remaining acryl monomer and PFA dropwise at the same time as the initiator. In step 2, the initiator and monomer were added dropwise over 1~2 hours at a temperature of 75~80℃ and then aged for 3~5 hours. Next, to manufacture WPU using the perfluoroacryl additive prepared earlier, polyol is first introduced into a nitrogen-filled reactor and then raised to an appropriate temperature (75-80 ℃). After thoroughly mixing Polyol and DMPA, add Isocyanate dropwise over 30 minutes to 1 hour. After dropwise addition, the mixture was stirred for 90 minutes to prepare NCO-prepolymer. After cooling to 50°C or lower, TEA was added dropwise to the reactor for 10 minutes to carry out neutralization. Next, to proceed with urethane-acrylate copolymerization, the temperature was adjusted to 75-80 °C, and then PFA and initiator were added dropwise to the neutralized NCO-terminated prepolymer. After completion of dropwise addition and maturation for 2 to 4 hours, water was added to prepare WPU containing perfluorinated additives. When the viscosity increased during the reaction, MEK and acetone were added to adjust the viscosity, and in the case of the added acetone, the solvent was removed by reducing the pressure after the reaction was completed.

③ 실험 결과③ Experiment results

Perfluoroacryl polymer 조성비 및 기본 물성 Perfluoroacryl polymer composition ratio and basic properties 실시예9Example 9 실시예10Example 10 실시예11Example 11 실시예12Example 12 실시예13Example 13 실시예14Example 14 실시예15Example 15 실시예16Example 16 1
step
One
step
BAB.A. 2020 2020 2020 2020 2020 2020 2020 2020
Surfactant
(SDS;NP-10)
Surfactants
(SDS;NP-10)
10;010;0 7;37;3 5;55;5 3;73;7 5:55:5 5:55:5 5:55:5 5:55:5
InitiatorInitiator 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.30.3 0.20.2 0.30.3 2
step
2
step
BAB.A. 8080 8080 8080 8080 8080 8080 8080 8080
GMAGMA 1010 1010 1010 1010 1010 1010 1010 1010 PFAPFA 55 55 55 55 55 55 33 77 InitiatorInitiator 0.80.8 0.80.8 0.50.5 0.50.5 0.80.8 0.90.9 0.80.8 0.80.8 NaHSO3 NaHSO 3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 AppearanceAppearance 상분리 발생Phase separation occurs 백색 액체white liquid 백색 에멀젼white emulsion 백색 에멀젼white emulsion 백색 액체white liquid 덩어리 발생lump formation 백색 액체white liquid 백색 액체white liquid S.C (%)S.C. (%) -- 25.1225.12 25.1225.12 25.0725.07 25.1125.11 -- 25.0725.07 24.9524.95 Surface tension (mN/m)Surface tension (mN/m) -- 22.9822.98 28.0428.04 20.0220.02 19.6519.65 -- 27.2127.21 19.8519.85

Perfluoroacryl polymer 제조를 위해 아크릴 공중합 반응을 진행한 결과, 개시제의 사용량이 많아질수록 초기 반응 속도가 빨라지면서 공중합물의 분자량이 작아지는 효과로 인해 유화 안정성을 향상되고 표면장력은 낮아지는 것을 알 수 있었다. 하지만 개시제를 1% 이상 사용할 경우 반응속도 조절의 문제점으로 중합물의 안정성이 떨어지거나 속도 조절이 힘들어 제품에 덩어리가 생기는 현상이 나타났다. 또한, 중합체의 표면장력에 영향을 미치는 PFA의 함량이 높아짐에 따라 제품의 물성이 높아지는 양상을 보였고 모노머 대비 5%일 때가 가장 적절하다고 판단된다.As a result of conducting an acrylic copolymerization reaction to produce perfluoroacryl polymer, it was found that as the amount of initiator used increases, the initial reaction speed increases and the molecular weight of the copolymer decreases, thereby improving emulsion stability and lowering surface tension. However, when more than 1% of the initiator was used, the stability of the polymer decreased due to problems in controlling the reaction rate, or lumps formed in the product due to difficulty in controlling the rate. In addition, as the content of PFA, which affects the surface tension of the polymer, increases, the physical properties of the product tend to increase, and it is judged that 5% of the monomer is most appropriate.

Perfluoroacrylate WPU 수지 조성비 및 기본 물성 Perfluoroacrylate WPU resin composition and basic properties 실시예17Example 17 실시예18Example 18 실시예19Example 19 실시예20Example 20 실시예21Example 21 실시예22Example 22 실시예23Example 23 실시예24Example 24 1
step
One
step
PPG 2,000PPG 2,000 1One 1One 1One 1One 1One 1One 1One 1One
DMPADMPA 1.61.6 1.61.6 1.61.6 1.61.6 1.61.6 1.61.6 1.61.6 1.61.6 NMPNMP 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% IPDIIPDI 3.13.1 3.13.1 3.13.1 3.13.1 3.13.1 3.13.1 3.13.1 3.13.1 2
step
2
step
HEMAHEMA 5%5% 5%5% 5%5% 5%5% 5%5% 5%5% 5%5% 5%5%
TEATEAs 1.61.6 1.61.6 1.61.6 1.61.6 1.61.6 1.61.6 1.61.6 1.61.6 3
step
3
step
WP-F-5WP-F-5 0%0% 3%3% 5%5% 8%8% 10%10% 12%12% 15%15% 20%20%
SDSSDS 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% NMPNMP 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% Initiator(APS)Initiator(APS) 0.05%0.05% 0.05%0.05% 0.05%0.05% 0.05%0.05% 0.05%0.05% 0.05%0.05% 0.05%0.05% 0.05%0.05% H2OH 2 O Solid content 20%Solid content 20% AppearanceAppearance 반투명 yellowtranslucent yellow 반투명 yellowtranslucent yellow 반투명 yellowtranslucent yellow 반투명 yellowtranslucent yellow 반투명 yellowtranslucent yellow 반투명 yellowtranslucent yellow 반투명 yellowtranslucent yellow 반투명 yellowtranslucent yellow CharacteristicsCharacteristics Nontacky, 물성양호Nontacky, good physical properties Non tacky, 물성미흡Non tacky, poor physical properties StiffnessStiffness medium-hardmedium-hard medium-hardmedium-hard medium-hardmedium-hard Surface tension (mN/m)Surface tension (mN/m) 49.5449.54 39.4539.45 24.9424.94 22.6622.66 23.1123.11 22.0822.08 21.9521.95 20.0120.01

과불소 알킬 아크릴레이트 적용 WPU 수지 제조 결과 표면장력에 직접적인 영향을 미치는 과불소계 첨가제의 적용량이 많아짐에 따라 제품의 물리적 성질이 높아지는 경향을 확인 할 수 있었으며 폴리올 대비 약 5~8% 사용하였을 때가 가장 적절함을 알 수 있었다. As a result of manufacturing WPU resin using perfluorinated alkyl acrylate, it was confirmed that the physical properties of the product tend to increase as the amount of perfluorinated additives that directly affect surface tension increases. It is most appropriate when used at about 5 to 8% compared to polyol. It was found that

다음으로, 이오나이저하우징부의 소재의 제조에 대하여 상세하게 설명한다. Next, the manufacturing of the material of the ionizer housing portion will be described in detail.

가. 무기 항균제 제조 연구go. Inorganic antibacterial agent manufacturing research

패각의 표면 이물질의 제거와 분쇄 효율을 향상시키기 위해 원료의 세척-1차 분쇄 및 건조 공정을 진행하고, 700℃ 이상에서 고온 소성하여 고순도화 공정을 진행한 후, 다양한 설비를 이용하여 일정 크기로 미분쇄 및 분급하여 천연물계 무기 항균제를 제조하였다.In order to remove foreign substances on the surface of the shell and improve grinding efficiency, the raw materials are washed - primary grinding and drying process is carried out, high-temperature firing at over 700 ℃ is performed to achieve high purity, and various equipment is used to grind the raw materials to a certain size. A natural inorganic antibacterial agent was prepared by fine grinding and classification.

① 1차 분쇄 및 전처리 공정 : 패각의 회수율 향상과 표면의 오염 물질을 제거하기 위하여 나이아가라 비터 (Niagara beater)를 이용해 세척한 후, 분쇄기를 이용하여 5 ㎜ 이하의 크기로 1차 분쇄공정을 거친 후 70℃ 이하의 열풍으로 건조를 실시하였다. ① First crushing and pre-treatment process: To improve the recovery rate of the shell and remove surface contaminants, the shell is cleaned using a Niagara beater, and then subjected to the first crushing process using a crusher to a size of 5 mm or less. Drying was performed with hot air below 70°C.

② 소성 및 미분화 : 패각의 미분화 효율 및 순도를 극대화하기 위해서 700℃ 이상의 고온에서 5시간 이상 소성을 실시하고, 볼밀 (Ball mill), 그라인더 (grinder)를 사용하여 미분화하였다. ② Firing and micronization: In order to maximize the micronization efficiency and purity of the shell, the shell was calcined at a high temperature of over 700°C for more than 5 hours and micronized using a ball mill and grinder.

나. 무기 항균제의 표면 개질 연구me. Research on surface modification of inorganic antibacterial agents

기 항균제 혼입 방법과 표면 개질 방법 (실란 표면 처리, CA 표면 코팅) 및 가공시 물성 저하의 요인이 되는 수분 제거를 통한 플라스틱 소재의 물리적 특성을 개선하기 위해서 다음과 같은 선행 연구를 진행하고 성형물의 물리적 성질을 비교 평가하여 최적의 가공 조건을 확립하고자 한다.In order to improve the physical properties of plastic materials through methods of incorporating antibacterial agents, surface modification methods (silane surface treatment, CA surface coating), and removal of moisture that causes deterioration of physical properties during processing, the following preliminary research was conducted and the physical properties of the molded product were conducted. We aim to establish optimal processing conditions by comparing and evaluating properties.

본원발명에서는 무기 항균제의 내수성과 적용 소재와의 상용성 개선을 목적으로 다음과 같이 2가지 방법으로 변성 개질을 진행하였다.In the present invention, for the purpose of improving the water resistance of the inorganic antibacterial agent and its compatibility with the applied material, modification was carried out in two ways as follows.

Silane을 이용하여 표면 개질한 무기 항균제(실시예 25)가 지방산염을 이용하여 표면 개질한 무기 항균제(실시예 26 및 실시예 27)보다 고분자 수지에 대한 상용성/분산성이 우수한 결과를 보였으며, 분말 자체의 내수성은 지방산염으로 표면을 코팅한 제품이 더 우수한 결과를 보였다.The inorganic antibacterial agent surface-modified using silane (Example 25) showed better compatibility/dispersibility with polymer resin than the inorganic antibacterial agent surface-modified using fatty acid salts (Examples 26 and 27). , the water resistance of the powder itself showed better results in products coated on the surface with fatty acid salts.

개질 이온화 칼슘Modified Ionized Calcium 개질 방법reforming method 실시예 25Example 25 Silane 코팅Silane coating 이온화칼슘 : TEOS = 100 : 1.5Ionized calcium: TEOS = 100: 1.5 실시예 26Example 26 지방산염 코팅fatty acid coating 이온화칼슘 : Ca-ST = 100 : 1.5Ionized calcium: Ca-ST = 100:1.5 실시예 27Example 27 지방산염 코팅fatty acid coating 이온화칼슘 : Ca-ST = 100 : 3Ionized calcium: Ca-ST = 100:3
< 개질한 이온화 칼슘 성상 >

< Properties of modified ionized calcium >

다. 개질 무기 항균제의 항균 성능 평가all. Evaluation of antibacterial performance of modified inorganic antibacterial agents

개질 무기 항균제 자체의 항균 성능을 비교 평가하고자 무기 항균제 (실시예 25, 실시예 26)를 각 각 적정 농도로 증류수에 용해한 후 상층액을 분취하여 아래와 같이 항균 실험을 진행하였다.In order to compare and evaluate the antibacterial performance of the modified inorganic antibacterial agents themselves, inorganic antibacterial agents (Examples 25 and 26) were dissolved in distilled water at appropriate concentrations, the supernatant was collected, and an antibacterial experiment was conducted as follows.

① 항균제(액체)의 항균 실험 방법① Antibacterial test method for antibacterial agent (liquid)

- 균 준비: 대장균을 LB-broth에서 24시간 배양하였다.- Bacteria preparation: E. coli was cultured in LB-broth for 24 hours.

- 50ml tube에 항균제 (개질 무기항균제를 증류수에 용해)를 LB-broth에 1.0~0.01% (w/v) 되도록 넣고 균을 접종한 후 24 시간 진탕 배양하였다.- Antibacterial agent (modified inorganic antibacterial agent dissolved in distilled water) was added to LB-broth at 1.0~0.01% (w/v) in a 50ml tube, inoculated with bacteria, and cultured with shaking for 24 hours.

- 배양을 멈춘 후 상층액과 침전액을 채취하여 평판배지에 도말하였다.- After stopping the culture, the supernatant and precipitate were collected and spread on a plate medium.

- 배양 : 접종된 배지는 다시 37℃에서 배양되고, 24시간 경과한 이후에 균 수를 측정하였다.- Culture: The inoculated medium was cultured again at 37°C, and the number of bacteria was measured after 24 hours.

② 항균제(액체)의 항균 실험 결과② Antibacterial test results of antibacterial agent (liquid)

- 사용 균주: E.Coli (KCTC 12006)- Strain used: E.Coli (KCTC 12006)

- 시료: CA-1(실시예 25) 상층액, CA-2(실시예 26) 상층액- Sample: CA-1 (Example 25) supernatant, CA-2 (Example 26) supernatant

- 실험 결과: 실란 개질 CA-1과 지방산염 코팅 개질 무기항균제 (CA-2) 용액의 저농도 (무기 항균제 사용량 0.2% 이하)에서는 소수의 균이 검출되었으나, 24시간 증식균 대비 그 균수는 극 미량에 불과하여 유효하지 않은 균수로 판단된다. - Experiment results: A small number of bacteria were detected at low concentrations of silane-modified CA-1 and fatty acid-coated modified inorganic antibacterial agent (CA-2) solutions (inorganic antibacterial agent usage of 0.2% or less), but the number of bacteria was extremely small compared to bacteria growing for 24 hours. Since it is only , it is judged to be an invalid bacterial count.

실란 개질 무기 항균제와 Ca-ST 개질 무기 항균제 모두 살균력이 있는 것으로 확인되었다.Both silane-modified inorganic antibacterial agents and Ca-ST modified inorganic antibacterial agents were confirmed to have sterilizing properties.

구분division 비교예Comparative example 실시예28Example 28 실시예Example
2929
실시예Example
3030
실시예Example
3131
실시예Example
3232
실시예 33Example 33 실시예Example
3434
실시예Example
3535
대조군control group 1.0%1.0%
코팅 coating
0.5%0.5%
코팅 coating
0.2%0.2%
코팅 coating
0.1%0.1%
코팅 coating
1.0%1.0%
코팅 coating
0.5%0.5%
코팅 coating
0.2%0.2%
코팅 coating
0.1%0.1%
코팅 coating
초기균수
[cfu/㎖]
Initial bacterial count
[cfu/ ml]
1*106
(Ma)
1*10 6
(Ma)
-- -- -- -- -- -- -- --
24시간 증식 후 균수
[cfu/㎖]
Bacterial count after 24 hours of growth
[cfu/ ml]
6.8*108 (Mb)6.8*10 8 (Mb) 00 00 2.1*103 2.1*10 3 2.1*102 2.1*10 2 00 00 1.4*104 1.4*10 4 1.3*104 1.3*10 4
증식값
[mb/ma]
multiplication value
[mb/ma]
603>30603>30 -- - - -- -- -- -- -- --
감소율 [%]Decrease rate [%] -- 100%100% 100%100% 100%100% 100%100% 100%100% 100%100% 100%100% 100%100% 항균액 24시간 증식Antibacterial solution proliferates for 24 hours 상층액supernatant 침전액sediment

라. 항균 플라스틱 소재 제조la. Antibacterial plastic material manufacturing

앞에서 제조된 개질 무기항균제와 기존에 시판되는 유기 항균제의 조합을 통해 항균 플라스틱 조성물을 제조하였다. 베이스 수지의 유동성과 특성을 검토하여 베이스 수지는 PP와 ABS 2종류를 사용하였다.An antibacterial plastic composition was manufactured through a combination of the modified inorganic antibacterial agent prepared previously and an existing commercially available organic antibacterial agent. By examining the fluidity and characteristics of the base resin, two types of base resins, PP and ABS, were used.

제조된 무기 항균제는 제조가 용이하며, 극성기의 도입으로 수지와의 상용성이 더 우수할 것으로 판단되는 CA-1번을 주로 사용하였으며, 다이온도가 200~250 ℃인 이축압출기를 통해 펠렛 형태의 항균 플라스틱 조성물을 제조하였다. 조성물은 사출 성형을 통해 각각의 시편으로 성형하여 외관 판별을 통해 베이스 수지와 항균제와의 상용성 확인하고, 기계적 강도의 측정을 통해 항균제에 의한 물성 변화 및 분산성에 대해 평가해 보았다.The manufactured inorganic antibacterial agent was mainly used as CA-1, which is easy to manufacture and is believed to have better compatibility with the resin due to the introduction of a polar group. It was produced in the form of pellets through a twin-screw extruder with a die temperature of 200 to 250 ℃. An antibacterial plastic composition was prepared. The composition was molded into individual specimens through injection molding, and compatibility between the base resin and the antibacterial agent was confirmed through external appearance. Changes in physical properties and dispersibility due to the antibacterial agent were evaluated by measuring mechanical strength.

① PP계 항균 플라스틱 소재① PP-based antibacterial plastic material

MaterialsMaterials 비교예2Comparative example 2 실시예Example
3636
실시예Example
3737
실시예Example
3838
실시예Example
3939
실시예Example
4040
실시예Example
4141
실시예 Example
4242
실시예Example
4343
실시예Example
4444
base polymerbase polymer PP H1500PP H1500 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 항균제antibacterial agent biofiller M/Bbiofiller M/B -- 1010 2020 -- -- -- -- -- -- CA-1CA-1 -- -- -- 55 -- 0.20.2 0.20.2 -- -- -- ZPTZPT -- -- -- -- 0.20.2 -- -- 0.20.2 -- -- AG300AG300 -- -- -- -- 0.30.3 0.30.3 0.50.5 -- -- -- AGZ300AGZ300 -- -- -- -- -- -- -- 0.30.3 0.30.3 0.50.5 Hardness Hardness D typeD type 7171 7171 6969 7171 6969 7070 6868 6868 6868 6969 DensityDensity g/ccg/cc 0.8980.898 0.9240.924 0.9550.955 0.9150.915 0.9150.915 0.9040.904 0.9060.906 0.9030.903 0.9050.905 0.9070.907 Tensile strengthtensile strength kg/mm2kg/mm2 3.7253.725 3.543.54 3.23.2 3.513.51 3.5053.505 3.553.55 3.63.6 3.493.49 3.533.53 3.663.66 Flexural strengthFlexural strength N/mm2N/mm2 62.462.4 56.2556.25 52.8552.85 57.457.4 57.557.5 63.7563.75 65.665.6 57.1557.15 63.6563.65 59.8559.85 Flexural modulusFlexural modulus N/mm2N/mm2 21112111 20642064 19431943 21022102 19901990 22672267 22802280 19011901 22022202 20382038 Impact strengthImpact strength J/mJ/m 17.517.5 1717 1111 20.520.5 1818 2222 2121 2121 19.519.5 16.516.5 사출 성형 조건 (다이온도/냉각시간)Injection molding conditions (die temperature/cooling time) 210℃/25sec210℃/25sec

표 9 및 도 7에 도시된 바와 같이, 항균제 사용시 제품의 경도는 다소 낮아져, 가공에 의한 물성 저하 영향도 있음을 확인할 수 있다. 바이오필라는 비교적 과량사용함으로 이에 따라 비중이 증가된다. 인장강도는 항균제 적용시 2~15% 정도 저하되나, 1phr 이하 소량 사용시에는 5% 내외의 변화만 나타난다. 굴곡 강도는 다소 개선되나 굴곡탄성율의 경우 일정한 경향을 나타내지 않는다. 바이오 필라 사용시를 제외하고 항균제 첨가 시스템에서 충격강도가 다소 개선되는 경향을 보인다. As shown in Table 9 and Figure 7, when using an antibacterial agent, the hardness of the product decreases somewhat, confirming that processing has an effect of lowering physical properties. As biopila is used in relatively excessive amounts, its proportion increases accordingly. Tensile strength decreases by about 2-15% when antibacterial agents are applied, but only changes of about 5% occur when small amounts of 1 phr or less are used. Flexural strength is somewhat improved, but flexural modulus does not show a consistent trend. Except when using biopillar, impact strength tends to improve somewhat in antibacterial agent-added systems.

특히 표면 개질된 실시예25의 항균제를 사용할 경우에 17~25%의 충격 강도 개선 효과를 나타낸다. 실시예 40 및 실시예 41의 배합이 기계적 강도가 전반적으로 우수한 것을 확인할 수 있다. In particular, when the surface-modified antibacterial agent of Example 25 is used, the impact strength is improved by 17 to 25%. It can be seen that the combinations of Examples 40 and 41 have excellent overall mechanical strength.

② ABS계 항균 플라스틱 소재② ABS-based antibacterial plastic material

MaterialsMaterials 비교예Comparative example
33
실시예Example
4545
실시예Example
4646
실시예Example
4747
실시예 48Example 48 실시예Example
4949
실시예Example
5050
실시예 Example
5151
실시예Example
5252
실시예Example
5353
base polymerbase polymer ABSXR440ABSXR440 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 항균제antibacterial agent biofiller M/Bbiofiller M/B -- 1010 2020 -- -- -- -- -- -- CA-1CA-1 -- -- -- 55 -- 0.20.2 0.20.2 -- -- -- ZPTZPT -- -- -- -- 0.20.2 -- -- 0.20.2 -- -- AG300AG300 -- -- -- -- 0.30.3 0.30.3 0.50.5 -- -- -- AGZ300AGZ300 -- -- -- -- -- -- -- 0.30.3 0.30.3 0.50.5 Hardness Hardness D typeD type 8080 8282 8282 8383 8181 8282 8181 8282 8080 8282 DensityDensity g/ccg/cc 1.0661.066 1.11.1 1.0841.084 1.0961.096 1.0761.076 1.0721.072 1.0711.071 1.0731.073 1.0761.076 1.0681.068 Tensile strengthtensile strength kg/mm2kg/mm2 6.1656.165 6.126.12 5.515.51 5.6955.695 5.9955.995 5.845.84 5.785.78 5.7455.745 6.126.12 6.456.45 Flexural strengthFlexural strength N/mm2N/mm2 104.6104.6 101.9101.9 93.4593.45 93.293.2 106.65106.65 106.7106.7 105.65105.65 107.9107.9 109109 109.4109.4 Flexural modulusFlexural modulus N/mm2N/mm2 31933193 36433643 3770.53770.5 3499.53499.5 3201.53201.5 32873287 3273.53273.5 32203220 3220.53220.5 3414.53414.5 Impact strengthImpact strength J/mJ/m 5858 19.519.5 16.516.5 21.521.5 4444 49.549.5 51.551.5 48.548.5 5151 5252 사출 성형 조건 (다이온도/냉각시간)Injection molding conditions (die temperature/cooling time) 230℃/25sec230℃/25sec

표 10 및 도 8에 나타난 바와 같이, 항균제 사용시 제품의 경도는 다소 높아지는 것을 확인할 수 있다. 인장강도는 항균제 적용시 전반적으로 저하된다. PP는 충격강도가 다소 개선되었으나. ABS의 경우 충격강도가 현저히 저하되는 경향을 보인다. ABS의 경우엔 공기중 산소, 오존, 자외선 등과 결합하면 변색이 되거나 물성저하가 일어나는 단점이 있는데 배합중에 산소와 결합하여 물성이 저하되었을 가능성이 있다. 특히 항균제 등이 들어가서 ABS의 유연성을 저하시킴으로써 충격 강도를 현저히 떨어뜨리는 요인이 된 것으로 판단되며, 대신 굴곡강도 및 굴곡 탄성율이 최대 18% 증대된다. 항균제가 소량 투입될 경우 유연성 저하를 억제하여 물성 저하율이 다소 적게 나타난다. As shown in Table 10 and Figure 8, it can be seen that the hardness of the product slightly increases when an antibacterial agent is used. Tensile strength generally decreases when antibacterial agents are applied. PP has somewhat improved impact strength. In the case of ABS, impact strength tends to decrease significantly. ABS has the disadvantage of discoloring or deteriorating physical properties when combined with oxygen, ozone, or ultraviolet rays in the air. It is possible that the physical properties deteriorated due to the combination with oxygen during mixing. In particular, it is believed that the inclusion of antibacterial agents reduces the flexibility of ABS, thereby significantly lowering the impact strength, and instead increases the flexural strength and flexural modulus by up to 18%. When a small amount of antibacterial agent is added, the decrease in flexibility is suppressed and the rate of decrease in physical properties appears to be somewhat low.

2. 항균 플라스틱 성능 평가 : 항균성 테스트2. Antibacterial plastic performance evaluation: antibacterial test

본원발명에서 제조된 조성물의 항균성 평가는 실험실에서 진행한 후에 성능이 우수한 배합을 선정하여 공인기관에서 성능을 평가하는 방법으로 진행하고자 하였다. 1차로 황색 포도상구균을 사용하여 배지 실험을 통해 개발된 항균 플라스틱의 항균성 테스트를 진행하였다.The antibacterial evaluation of the composition prepared in the present invention was conducted in a laboratory, then a combination with excellent performance was selected, and the performance was evaluated at an accredited institution. First, we conducted an antibacterial test of the antibacterial plastic developed through a culture medium experiment using Staphylococcus aureus.

가. 항균성 테스트 방법go. Antibacterial Test Method

① 미생물 (황색포도상 구균)을 배지에 문질러 옮겨준다.① Transfer microorganisms (Staphylococcus aureus) by rubbing them on the medium.

② 배양 배지 위에 아무것도 올리지 않은 대조군 (1종)과 동일한 사이즈의 시편 (플라스틱 제품)을 올린 실험군 (PP 10종, ABS 10종) 을 만들어 30 ℃의 인큐베이터에서 12 일 동안 배양한다.② Create a control group (1 type) with nothing placed on the culture medium and an experimental group (10 types of PP, 10 types of ABS) with specimens (plastic products) of the same size placed on them and culture them in an incubator at 30°C for 12 days.

③ 24 시간 단위로 배지의 형상을 사진 촬영한다. (이때 페트리 접시 뚜껑에 가로/세로를 각각 1 cm 간격으로 구획이 나누어진 바둑판 모양의 격자를 만들어 세균이 분포한 칸의 수를 측정)③ Photograph the shape of the badge every 24 hours. (At this time, a checkerboard-shaped grid was created on the lid of the Petri dish with sections divided at 1 cm intervals horizontally and vertically, and the number of compartments where bacteria were distributed was measured.)

④ 12 일후 배지를 확인하여 미생물이 번식된 부위의 넓이를 측정한다.④ Check the medium after 12 days and measure the area of the area where microorganisms have grown.

나. 항균 테스트 결과me. Antibacterial test results

대조군 (1종)과 실험군 PP 10종 & ABS 10종의 항균 성능을 비교하기 위하여 클리어 존의 크기와 세균수를 측정하였다. 결과적으로, PP와 ABS 모두 AG-300(항균제)을 사용한 0.3~0.5 phr을 사용한 경우 가장 우수한 결과 보인다. To compare the antibacterial performance of the control group (1 type) and the experimental group (10 types of PP & 10 types of ABS), the size of the clear zone and the number of bacteria were measured. As a result, For both PP and ABS, the best results are seen when 0.3 to 0.5 phr of AG-300 (antibacterial agent) is used.

1) ABS 조성물의 항균성 평가 결과 1) Antibacterial evaluation results of ABS composition

ABS 조성물별/배양일자별 클리어 존과 세균수 비교Comparison of clear zone and bacterial count by ABS composition/culture date 대조군control group 비교예
3
Comparative example
3
실시예
45
Example
45
실시예
47
Example
47
실시예
48
Example
48
실시예Example
4949
실시예Example
5050
실시예
51
Example
51
실시예
52
Example
52
실시예 53Example 53
1

One
Day
car
00 00 00 00 00 00 00 00 00 00 3

3
Day
car
00 00 00 00 00 00 00 00 00 00 5

5
Day
car
5252 41.541.5 6262 49.549.5 43.543.5 5252 4646 4747 4949 5454 7

7
Day
car
0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.4cm0.4cm 0.5cm0.5cm 0.0cm0.0cm 0.1cm0.1cm 0.3cm0.3cm 55.555.5 46.546.5 5454 42.542.5 51.551.5 37.537.5 33.533.5 4242 3939 5454 10

10
Day
car
0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.4cm0.4cm 0.5cm0.5cm 0.0cm0.0cm 0.1cm0.1cm 0.3cm0.3cm 5353 39.539.5 4747 56.556.5 56.556.5 52.552.5 3636 46.546.5 47.547.5 51.551.5 12

12
Day
car
0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.4cm0.4cm 0.5cm0.5cm 0.0cm0.0cm 0.1cm0.1cm 0.3cm0.3cm 5555 3737 4545 4444 4747 5959 40.540.5 3838 4141 5656

2) PP 조성물의 항균성 평가 결과 2) Antibacterial evaluation results of PP composition

PPS 조성물별/배양일자별 클리어존과 세균수 비교Comparison of clear zone and bacterial count by PPS composition/culture date 대조군control group 비교예
2
Comparative example
2
실시예
36
Example
36
실시예
38
Example
38
실시예
39
Example
39
실시예
40
Example
40
실시예
41
Example
41
실시예 42Example 42 실시예
43
Example
43
실시예
44
Example
44
1

One
Day
car
00 00 00 00 00 00 00 00 00 00 3

3
Day
car
00 00 00 00 00 00 00 00 00 00 5

5
Day
car
60.560.5 5050 60.560.5 5252 50.550.5 4040 4343 4747 43.543.5 40.540.5 7

7
Day
car
0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.5cm0.5cm 0.6cm0.6cm 0.0cm0.0cm 0.3cm0.3cm 0.4cm0.4cm 57.557.5 47.547.5 55.555.5 44.544.5 5050 3434 30.530.5 42.542.5 38.538.5 4343 10

10
Day
car
0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.5cm0.5cm 0.6cm0.6cm 0.0cm0.0cm 0.3cm0.3cm 0.4cm0.4cm 5959 57.557.5 6161 43.543.5 44.544.5 4242 3030 46.546.5 40.540.5 4040 12

12
Day
car
0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.0cm0.0cm 0.5cm0.5cm 0.6cm0.6cm 0.0cm0.0cm 0.3cm0.3cm 0.4cm0.4cm 5656 4747 6060 4545 5454 41.541.5 32.532.5 5252 47.547.5 4848

이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술 분야의 당업자가 본 발명의 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.As such, a person skilled in the art will understand that the technical configuration of the present invention described above can be implemented in other specific forms without changing the technical idea or essential features of the present invention.

그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive, and the scope of the present invention is indicated by the claims described later rather than the detailed description above, and the meaning and scope of the claims and All changes or modified forms derived from the equivalent concept should be construed as falling within the scope of the present invention.

10: 이오나이저전극부 20: 이오나이저모듈부
30: 이오나이저하우징부
10: Ionizer electrode part 20: Ionizer module part
30: Ionizer housing part

Claims (5)

인산은 1중량부 및 인산화티타늄 9중량부로 혼합되는 광촉매와,
실록산계 폴리올과, 에테르계 폴리올 및 과불소계 첨가제가 혼합되는 바인더조성물을 포함하는 것을 특징으로 하는 광촉매 코팅제 조성물.
A photocatalyst mixed with 1 part by weight of phosphoric acid and 9 parts by weight of titanium phosphoric acid,
A photocatalyst coating composition comprising a binder composition in which a siloxane-based polyol, an ether-based polyol, and a perfluorine-based additive are mixed.
제 1항에 있어서,
상기 과불소계 첨가제는,
부틸아크릴레이트, 계면활성제 및 개시제를 반응한 후,
부틸아크릴레이트, 글리시딜메타아크릴레이트, 퍼플로로알킬에틸아크릴레이트, 개시제 및 황산나트륨을 추가하여 반응하여 제조하는 것을 특징으로 하는 광촉매 코팅제 조성물.
According to clause 1,
The perfluorinated additives are,
After reacting butylacrylate, surfactant and initiator,
A photocatalyst coating composition prepared by adding and reacting butylacrylate, glycidyl methacrylate, perfluoroalkyl ethyl acrylate, an initiator, and sodium sulfate.
이오나이저전극부;
상기 이오나이저전극부를 제어하는 각종 부품이 실장되는 이오나이저모듈부;
상기 이오나이저전극부와 상기 이오나이저모듈부를 수용할 수 있도록 내부에 공간이 형성되는 이오나이저하우징부;를 포함하고,
제 1항의 광촉매 코팅제 조성물이 상기 이오나이저모듈부의 표면에 도포되는 것을 특징으로 하는 광촉매 코팅제 조성물을 이용한 이오나이저 장치.
Ionizer electrode unit;
an ionizer module portion in which various components that control the ionizer electrode portion are mounted;
It includes; an ionizer housing portion having a space therein to accommodate the ionizer electrode portion and the ionizer module portion;
An ionizer device using a photocatalyst coating composition, characterized in that the photocatalyst coating composition of claim 1 is applied to the surface of the ionizer module portion.
제 3항에 있어서,
상기 이오나이저하우징부는,
굴패막분말에 실란 또는 지방산염을 코팅한 소재가 포함되는 것을 특징으로 하는 광촉매 코팅제 조성물을 이용한 이오나이저 장치.
According to clause 3,
The ionizer housing part,
An ionizer device using a photocatalyst coating composition comprising a material coated with oyster shell membrane powder with silane or fatty acid salt.
제 3항에 있어서,
상기 이오나이저하우징부는,
폴리프로필렌고분자 또는 ABS고분자에
굴패각분말에 실란 또는 지방산염을 코팅한 소재가 포함되는 것을 특징으로 하는 광촉매 코팅제 조성물을 이용한 이오나이저 장치.


According to clause 3,
The ionizer housing part,
Polypropylene polymer or ABS polymer
An ionizer device using a photocatalyst coating composition, characterized in that it contains a material coated with silane or fatty acid salt on oyster shell powder.


KR1020220141258A 2022-10-28 2022-10-28 A Photocatalyst Coating Material and An Ionizer Apparatus Using That KR20240063233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220141258A KR20240063233A (en) 2022-10-28 2022-10-28 A Photocatalyst Coating Material and An Ionizer Apparatus Using That

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220141258A KR20240063233A (en) 2022-10-28 2022-10-28 A Photocatalyst Coating Material and An Ionizer Apparatus Using That

Publications (1)

Publication Number Publication Date
KR20240063233A true KR20240063233A (en) 2024-05-10

Family

ID=91072251

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220141258A KR20240063233A (en) 2022-10-28 2022-10-28 A Photocatalyst Coating Material and An Ionizer Apparatus Using That

Country Status (1)

Country Link
KR (1) KR20240063233A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102222573B1 (en) 2019-11-18 2021-03-04 주식회사 위드엠텍 Manufacturing Method of Silane Compound for Fixing TiO2 Nanofiber and Coating agent Using the Silane Compound for Fixing TiO2 Nanofiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102222573B1 (en) 2019-11-18 2021-03-04 주식회사 위드엠텍 Manufacturing Method of Silane Compound for Fixing TiO2 Nanofiber and Coating agent Using the Silane Compound for Fixing TiO2 Nanofiber

Similar Documents

Publication Publication Date Title
US8541337B2 (en) Quaternary oxides and catalysts containing quaternary oxides
US7579296B2 (en) Broad band light absorbing photocatalyst, process for producing thereof, broad band light absorbing photocatalyst composition, and molded article
Li et al. Treatment of coliphage MS2 with palladium-modified nitrogen-doped titanium oxide photocatalyst illuminated by visible light
CN105368223B (en) A kind of mercerising photocatalyst emulsion paint finish paint and its production technology
CN102241943B (en) Preparation of visible light response photosensitizer loaded nano TiO2 modified water-based polyurethane flat paint
WO2010088513A2 (en) Materials and methods for removing arsenic from water
EP2921456A2 (en) Material used in the removal of contaminants from liquid matrices
Chou et al. Biostability and biocompatibility of poly (ether) urethane containing gold or silver nanoparticles in a porcine model
US7303823B2 (en) Method of forming antibacterial layer containing metal-modified apatite
CN1668376A (en) Photocatalyst apatite-containing film, method for forming the same, coating fluid, and electronic apparatus having member covered with photocatalyst apatite-containing film
Chen et al. The preparation of MoS2/δ-FeOOH and degradation of RhB under visible light
WO2003102096A1 (en) Antibacterial and anti-staining paint for building materia l and building material coated therewith
KR20240063233A (en) A Photocatalyst Coating Material and An Ionizer Apparatus Using That
CN114410205A (en) Anion solution with super-strong antibacterial effect and preparation method thereof
CN1197920C (en) Negalive ion paint additive
KR20140037491A (en) Titanium dioxide doped nitrogen and method of preparing the same
JP2013192996A (en) Photocatalyst and method of manufacturing photocatalyst
EP1422195B1 (en) Active oxygen generating material
JP2012055786A (en) Nitrogen fixation material and nitrogen fixation method using the same
KR101046313B1 (en) Preparation method of nano-metal doped metal oxides catalysts and thereof catalysts
KR102208783B1 (en) Spray composition and method for preparing thereof
CN103501897A (en) Process for producing photocatalyst based on titanium dioxide
KR20180032910A (en) A surface treatment agent composition having antibacterial function
KR101235410B1 (en) Multifunctional Slipping Stuffs with Nanosilver and Method thereof
KR20240059229A (en) Visible light active photocatalyst compound and method for preparing the same