KR20050079288A - The manufacture procedure of the photocatalysis coating composition - Google Patents

The manufacture procedure of the photocatalysis coating composition Download PDF

Info

Publication number
KR20050079288A
KR20050079288A KR1020040007455A KR20040007455A KR20050079288A KR 20050079288 A KR20050079288 A KR 20050079288A KR 1020040007455 A KR1020040007455 A KR 1020040007455A KR 20040007455 A KR20040007455 A KR 20040007455A KR 20050079288 A KR20050079288 A KR 20050079288A
Authority
KR
South Korea
Prior art keywords
solution
photocatalyst
sol
coating solution
mixed
Prior art date
Application number
KR1020040007455A
Other languages
Korean (ko)
Other versions
KR100585513B1 (en
Inventor
김제헌
안민정
전혜린
최우석
권철한
Original Assignee
주식회사 티오즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티오즈 filed Critical 주식회사 티오즈
Priority to KR1020040007455A priority Critical patent/KR100585513B1/en
Publication of KR20050079288A publication Critical patent/KR20050079288A/en
Application granted granted Critical
Publication of KR100585513B1 publication Critical patent/KR100585513B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plant Pathology (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 광촉매 코팅 용액의 제조방법에 관한 것으로, 졸겔공정으로 제조된 고형분 함량이 1∼10%인 광촉매 코팅 용액 10∼90%와 분산공정으로 제조된 고형분 함량이 5∼40%인 광촉매 코팅 용액 10∼90%을 교반하여 혼합용액을 제조하는 단계; 상기 혼합용액에 탄소수 1∼4의 알코올 또는 증류수 50∼500중량부를 첨가하여 혼합용액의 고형분을 조절하는 단계; 상기 고형분을 조절한 용액에 산 또는 염기를 첨가하여 pH를 조절하는 단계를 포함하는 것을 특징으로 한다.The present invention relates to a method for preparing a photocatalyst coating solution, wherein the photocatalyst coating solution having 10 to 90% of the photocatalyst coating solution having a solid content of 1 to 10% and the solid content prepared by the dispersing process is 5 to 40% Stirring 10 to 90% to prepare a mixed solution; Adjusting the solids content of the mixed solution by adding 50 to 500 parts by weight of alcohol having 1 to 4 carbon atoms or distilled water to the mixed solution; It characterized in that it comprises the step of adjusting the pH by adding an acid or a base to the solution in which the solid content is adjusted.

본 발명에 의한 광촉매 코팅 용액은 졸겔공정에 의해 제조된 용액과 분산 용액을 혼합하여 제조함으로써, 광촉매 반응 효율이 향상되고 기질상에 투명성, 부착성 및 내후성을 갖는다.The photocatalyst coating solution according to the present invention is prepared by mixing a solution prepared by a sol-gel process and a dispersion solution, thereby improving photocatalytic reaction efficiency and having transparency, adhesion and weather resistance on a substrate.

Description

광촉매 코팅 용액의 제조방법{The Manufacture Procedure of the Photocatalysis Coating Composition}The manufacturing procedure of the photocatalysis coating composition

본 발명은 광촉매 코팅 용액의 제조방법에 관한 것으로, 구체적으로는 촉매활성면에서 우수한 성능을 나타내는 분산 용액과 코팅 막의 면에서 우수한 성능을 나타내는 졸겔공정에 의해 제조된 용액을 혼합함으로써 광촉매 반응 효율이 향상되고, 기질상에 우수한 투명성, 부착성 및 내후성을 갖는 광촉매 코팅 조성물의 제조 방법에 관한 것이다.The present invention relates to a method for preparing a photocatalyst coating solution. Specifically, the photocatalytic reaction efficiency is improved by mixing a dispersion solution exhibiting excellent performance in terms of catalytic activity and a solution prepared by a sol-gel process exhibiting excellent performance in terms of a coating film. And a method for producing a photocatalyst coating composition having excellent transparency, adhesion and weatherability on a substrate.

광촉매는 첨단 산화기술의 일종으로 빛을 흡수하여 촉매 작용을 나타내는 물질로서 반응의 초기 유발을 도와 준다. 상기의 광촉매는 벤젠, 페놀, TCE 등과 같은 난분해성 유기독성물질을 산화하여 분해시킬 수 있으며, 방오, 항균, 탈취 등의 작용을 한다. Photocatalyst is a kind of advanced oxidation technology that absorbs light and displays its catalytic action, helping to induce the initial reaction. The photocatalyst can be decomposed by oxidizing hardly degradable organic toxic substances such as benzene, phenol, TCE, etc., and acts as antifouling, antibacterial, and deodorant.

광촉매 연구는 주로 분말형태의 광촉매를 반응물과 혼합한 슬러리 형태의 반응(대한민국 등록특허10-0185179)에 대하여 이루어졌으나 분말의 침전으로 인한 용액의 안정성 저하 등의 문제로 실용화에 제한이 있었다. 이후, 광촉매 용액의 응용 형태는 2가지가 있다. 첫째, 광촉매 분말을 이용한 분산액이다. 이 분산액으로 코팅된 막은 입자의 결정성 및 유기물 흡착, 분해성능, 친수성능 등 광촉매 성능이 우수한 장점이 있다. 그러나, 코팅막의 투명성 저하 및 그 부착력(고정화)이 약해 조그마한 충격에도 쉽게 탈리되어 실용화에 있어 많은 문제점이 나타났다. 그래서 실리콘 화합물 등을 이용한 바인더를 사용해서 고정화시키는 방법이 주로 연구되고 있으나, 광촉매 활성이 저하되는 문제점이 있다. 실례로, 부착제를 이용한 광촉매 고정화에 관한 미국 특허 제5,755,867호는 실리콘 화합물을 이용하여 바인더를 제조하고 여기에 산화 티탄을 분산시켜 기판에 코팅하는 방법을 사용하여 부착력이 향상되었으나, 광촉매 활성 저하의 문제점이 있었다. 둘째, 분산액 대신 금속 알콕사이드를 출발물질로 하는 졸겔(Sol-Gel)공정에 의해 코팅 용액을 제조한 후 이를 이용하여 코팅막을 형성하는 것이다. 졸겔(Sol-Gel)공정에 따른 용액은 작은 입자(<10㎚)를 가진 용액을 제조할 수 있어 코팅 막을 형성하면 우수한 투명성을 얻을 수 있으며, 제조시 화학 양론적 양보다 과량의 산을 포함시킴으로써 결합밀도를 더욱 크게 하여, 상온 또는 저온의 열처리를 통해서도 코팅막의 밀도나 경도를 높일 수 있다는 장점이 있다. 그러나, 졸겔(Sol-Gel)공정은 이미 결정화된 분말이 용액 속에 분산되어 있는 분산액과 달리 반응 중에 결정화가 이루어지기 때문에 모노머 등이 잔존하여 결정성이 약하다는 단점이 있다. 또한, 산화물 함유량이 약10%이상이 될 때 용액의 안정성이 저하되고 1차 입자의 응집현상으로 코팅막의 투명성 저하등의 문제점으로 인해 저농도(10% 이하)의 용액만 제조가 가능하여 고농도의 광촉매 코팅제를 필요로 하는 곳에서는 상용화가 지연되고 있다.The photocatalyst research was mainly performed on slurry type reactions in which powder photocatalysts were mixed with reactants (Republic of Korea Patent Registration 10-0185179), but there were limitations in practical use due to problems such as deterioration of solution stability due to precipitation of powders. Thereafter, there are two types of application of the photocatalyst solution. First is a dispersion using a photocatalyst powder. The membrane coated with this dispersion has an advantage of excellent photocatalyst performance, such as crystallinity of particles and adsorption of organic matter, decomposition, and hydrophilicity. However, since the transparency of the coating film and its adhesion (fixation) are weak, the coating film is easily detached even in a small impact, and thus many problems have appeared in practical use. Therefore, a method of immobilization using a binder using a silicon compound or the like has been mainly studied, but there is a problem in that the photocatalytic activity is lowered. For example, U.S. Patent No. 5,755,867 on photocatalytic immobilization using an adhesive improves adhesion by using a method of preparing a binder using a silicon compound and dispersing titanium oxide thereon to coat the substrate. There was a problem. Second, after preparing a coating solution by a sol-gel (Sol-Gel) process using a metal alkoxide as a starting material instead of a dispersion is to form a coating film using this. The solution according to the Sol-Gel process can prepare a solution having small particles (<10 nm), thereby obtaining excellent transparency by forming a coating film, and by including an excess of acid in stoichiometric amounts in the preparation By further increasing the bonding density, there is an advantage that the density or hardness of the coating film can be increased through heat treatment at room temperature or low temperature. However, the sol-gel (Sol-Gel) process has a disadvantage in that the crystallization is made in the reaction, unlike the dispersion in which the crystallized powder is dispersed in a solution, so that the monomers and the like remain weak in crystallinity. In addition, when the oxide content is about 10% or more, the stability of the solution decreases, and due to problems such as a decrease in the transparency of the coating film due to the aggregation of the primary particles, only a low concentration (10% or less) solution can be manufactured, so that a high concentration of photocatalyst can be obtained. Where coatings are needed, commercialization is delayed.

종래에도 두가지 용액을 혼합하여 상기의 문제점들을 극복하고자, 한 종류의 입자들 사이에 다른 종류의 입자를 균일하게 분산시키기 위하여 서로 다른 분산액을 혼합하여 코팅용액을 제조하였으나 용액의 안정성이 저하되는 문제점이 있었으며(미국 특허 제5,591,380호), 출발물질인 두 종류의 알콕사이드를 동시에 반응시켜 졸겔공정에 의한 용액을 제조하였으나(미국 특허 제4,176,089호) 출발물질인 알콕사이드를 동시에 반응시킬 경우에는 제조조건을 정밀하게 조절해야 하므로 공정이 매우 복잡해지는 등의 문제점이 있어 실용화되지 못하고 있다.Conventionally, in order to overcome the above problems by mixing the two solutions, in order to uniformly disperse the different types of particles between the different types of mixed solution to prepare a coating solution, but the stability of the solution is reduced (US Pat. No. 5,591,380), the solution of the sol-gel process was prepared by reacting two kinds of alkoxides at the same time (US Pat. No. 4,176,089). Since it is necessary to adjust the process is very complicated and has not been put to practical use.

상기의 예들은 제조방법이 같은 두가지 용액을 혼합한 경우로서, 제조방법이 다른 두가지 용액을 혼합해 사용하는 것은 더 많은 어려움이 있어 현재까지 실용화되지 않았다.The above examples are cases in which two solutions having the same manufacturing method are mixed, and it is more practical to use two solutions having different manufacturing methods.

본 발명은 상술한 바와 같은 문제점을 해결하기 위하여 광촉매 반응 효율을 향상시키고, 투명성, 부착성, 내후성 등을 갖는 광촉매 코팅 조성물의 제조방법을 제공한다.The present invention improves the photocatalytic reaction efficiency in order to solve the problems described above, and provides a method for producing a photocatalyst coating composition having transparency, adhesion, weather resistance, and the like.

또한, 본 발명은 제조방법이 다른 두가지 용액 즉, 상용적인 이산화티탄분말을 이용한 분산용액과 금속 알콕사이드를 사용하는 졸겔공정에 의해 제조된 나노크기 이산화티탄용액을 하나의 용액으로 제조하는 방법을 제공한다.In addition, the present invention provides a method for producing a nano-sized titanium dioxide solution prepared by two solutions having different manufacturing methods, that is, a dispersion solution using commercially available titanium dioxide powder and a sol-gel process using a metal alkoxide as one solution. .

본 발명이 제공하는 광촉매 코팅 용액의 제조방법은 졸겔공정으로 제조된 고형분 함량이 1∼10%인 광촉매 코팅 용액 10∼90%와 분산공정으로 제조된 고형분 함량이 5∼40%인 광촉매 코팅 용액 10∼90%을 교반하여 혼합용액을 제조하는 단계; 상기 혼합용액에 탄소수 1∼4의 알코올 또는 증류수 50∼500중량부를 첨가하여 혼합용액의 고형분을 조절하는 단계; 상기 고형분을 조절한 용액에 산 또는 염기를 첨가하여 pH를 조절하는 단계를 포함하는 것을 특징으로 한다.The method for preparing a photocatalyst coating solution provided by the present invention includes a photocatalyst coating solution having a solid content of 1 to 10% and a photocatalyst coating solution having a solid content of 5 to 40% and a dispersion of 5 to 40%. Stirring ˜90% to prepare a mixed solution; Adjusting the solids content of the mixed solution by adding 50 to 500 parts by weight of alcohol having 1 to 4 carbon atoms or distilled water to the mixed solution; It characterized in that it comprises the step of adjusting the pH by adding an acid or a base to the solution in which the solid content is adjusted.

상기 졸겔공정은 금속 알콕사이드를 이용하는 것으로, 용매에 티타늄 출발물질을 첨가하여 약80 ±10℃에서 4 내지 10시간 정도로 반응을 하며 일정 양의 산 또는 염기 촉매를 첨가하는 것을 특징으로 한다. 상기 금속 알콕사이드는 티타늄 알콕사이드로서, 티타늄 프록폭사이드(Titanium(Ⅳ) propoxide), 티타늄 이소프로폭사이드(Titanium(Ⅳ) isopropoxide), 티타늄 디이소프로폭사이드(Titanium(Ⅳ) diisopropoxide), 티타늄 부톡사이드(Titanium(Ⅳ) butoxide), 티타늄 에톡사이드(Titanium(Ⅳ) ethooxide), 티타늄 메톡사이드(Titanium(Ⅳ) methoopoxide) 등을 포함한다. 상기 용매는 물, 알코올류, 셀로솔브류 등이 사용될 수 있으며, 메탄올, 에탄올, 프로판올, 부탄올, 이소프로판올, 디아세틸알콜, 메틸셀로솔브, 에틸셀로솔브, 부틸셀로솔브, 셀로솔브아세테이트 등을 포함한다. 상기 졸겔공정의 바람직한 반응온도는 약80 ±10℃이다. 반응온도가 너무 높으면 이산화타탄의 입자크기가 증가하여 아나타제형(anatase type) 이산화티탄 졸용액의 안정성에 영향을 미친다. 반응온도가 너무 낮으면 결정화 정도가 급격히 감소하여 용액의 대부분이 비정질의 이산화티탄 졸용액으로 남는다. 상기 졸겔공정은 산 또는 염기 촉매로 pH 및 반응속도를 조절한다. 산 또는 염기 촉매 첨가는 아나타제형(anatase type) 이산화티탄 졸의 저장안정성 및 분산성을 위하여 필요하다. 산 또는 염기 촉매는 광촉매 졸의 저장안정성과 물성 등에 따라 단독으로 사용될 수 있으며, 또는 2종 이상의 촉매가 병용될 수 있다. 산촉매는 초산, 인산, 황산, 염산, 질산, 클로로설포닉산, 파라-톨루엔설포닉산, 트리클로아세틱액시드, 폴리포스포릭액시드, 아이오딕액시드, 요오드산 무수물 퍼클로릭액시드 등을 포함한다. 염기촉매는 가성소다, 포타슘 하이드록사이드, 노말부틸아민, 이미다졸, 암모늄 퍼클로레이트 등을 포함한다.The sol-gel process is to use a metal alkoxide, the titanium starting material is added to the solvent to react for about 4 to 10 hours at about 80 ± 10 ℃ characterized in that a certain amount of acid or base catalyst is added. The metal alkoxide is a titanium alkoxide, which is titanium propoxide (titanium (IV) propoxide), titanium isopropoxide (titanium (IV) isopropoxide), titanium diisopropoxide (titanium (IV) diisopropoxide), titanium butoxide (Titanium (IV) butoxide), titanium ethoxide (Titanium (IV) ethooxide), titanium methoxide (Titanium (IV) methoopoxide) and the like. The solvent may be water, alcohols, cellosolves and the like, methanol, ethanol, propanol, butanol, isopropanol, diacetyl alcohol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, cellosolve acetate, etc. It includes. The preferred reaction temperature of the sol-gel process is about 80 ± 10 ° C. If the reaction temperature is too high, the particle size of the titanium dioxide increases, which affects the stability of the anatase type titanium dioxide sol solution. If the reaction temperature is too low, the degree of crystallization rapidly decreases, leaving most of the solution as an amorphous titanium dioxide sol solution. The sol-gel process adjusts the pH and reaction rate with an acid or base catalyst. Acid or base catalyst additions are necessary for the storage stability and dispersibility of the anatase type titanium dioxide sol. The acid or base catalyst may be used alone depending on the storage stability and physical properties of the photocatalyst sol, or two or more catalysts may be used in combination. Acid catalysts include acetic acid, phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, chlorosulphonic acid, para-toluenesulphonic acid, trichloroacetic acid, polyphosphoric acid, iodic acid, iodic anhydride perchloric acid, and the like. Base catalysts include caustic soda, potassium hydroxide, normal butylamine, imidazole, ammonium perchlorate and the like.

상기 분산공정은 이산화티탄분말을 이용하는 것으로, 전체 중량의 5∼50%의 광촉매분말을 용매 및 분산제와 같이 혼합하여 0.1㎜∼3㎜의 직경을 갖는 비드 또는 볼을 사용하여 3내지 48시간 동안 회전수 100∼800 범위에서 밀링하는 것을 특징으로 한다. 상기 분산공정에 의해 제조된 분산액의 pH는 1∼14범위에 제조된다. 상기 광촉매분말은 P-25(데구사), ST Series(이시하라사), PC-10, PC-50, PC-100, PC-500(밀레니엄사), FINNTI(Kemira사)등 모든 이산화티탄분말을 포함한다. 상기 광촉매분말을 사용하지 않고 시판되는 STS5-300 Series(밀레니엄사) 등의 이산화티탄분산액을 사용할 수 있는데, 상기 광촉매분말과 분산액은 이산화티탄에 한정되지 않고, WO3, ZnO3, SiC, SnO3, ZrO2, V2O5 등 광촉매로 사용되는 모든 물질을 포함한다. 또한, 상기 분산공정은 선택적으로 흡착제를 혼합하여 밀링할 수 있다. 흡착제는 제올라이트, 아파타이트 등을 포함하며, 광촉매분말 100중량부에 5∼100중량부를 혼합한다.The dispersing process uses titanium dioxide powder, and 5 to 50% of the total weight of the photocatalyst powder is mixed with a solvent and a dispersing agent and rotated for 3 to 48 hours using beads or balls having a diameter of 0.1 mm to 3 mm. It is characterized by milling in the range of 100 to 800. The pH of the dispersion prepared by the dispersion process is prepared in the range of 1-14. The photocatalyst powder includes all titanium dioxide powders such as P-25 (Degus), ST Series (Ishihara), PC-10, PC-50, PC-100, PC-500 (Millenium), FINNTI (Kemira), etc. Include. Titanium dioxide dispersions such as STS5-300 Series (Millenium), which are commercially available without using the photocatalyst powder, can be used. The photocatalyst powder and the dispersion are not limited to titanium dioxide, and WO 3 , ZnO 3 , SiC, SnO 3 And all materials used as photocatalysts such as ZrO 2 and V 2 O 5 . In addition, the dispersion process may be optionally milled by mixing the adsorbent. The adsorbent includes zeolite, apatite and the like, and mixes 5-100 parts by weight with 100 parts by weight of the photocatalyst powder.

도1은 본 발명의 혼합용액을 제조하기 위해 사용된 졸겔공정에 의한 광촉매용액(a)와 분산공정에 의해 제조된 광촉매용액(b)의 X-선 회절분석결과로, 도1 (a)는 졸겔공정에 의한 광촉매 용액은 결정성은 약하나 10㎚이하의 작은 입자로 구성되어 있음을 나타내고, 도1(b)는 분산공정에 의해 제조된 분산액의 입자크기는 졸겔공정에 의한 광촉매용액의 입자크기보다 크지만, 결정성이 좋음을 보여준다.1 is an X-ray diffraction analysis of the photocatalyst solution (a) by the sol-gel process and the photocatalyst solution (b) prepared by the dispersing process used to prepare the mixed solution of the present invention. The photocatalyst solution by the sol-gel process is weak in crystallinity but is composed of small particles of 10 nm or less. FIG. 1 (b) shows that the particle size of the dispersion prepared by the dispersing process is smaller than the particle size of the photocatalyst solution by the sol-gel process. Although large, it shows good crystallinity.

상기 졸겔공정으로 제조된 고형분 함량이 3∼10%인 용액을 졸겔공정에 의한 광촉매 용액과 분산공정에 의한 분산액의 혼합용액(이하, 혼합용액) 전체중량의 10∼90%와 상기 분산공정으로 제조된 고형분 함량이 5∼40%인 분산액을 혼합용액 전체중량의 10∼90%를 혼합하고, 혼합용액에 산 또는 염기를 첨가하여 10내지 30분동안 상온에서 500∼1500rpm으로 교반한다. 상기의 산 또는 염기의 첨가는 신속하게 실행하여 급격하게 산성이나 염기성이 되도록 하여야 한다. 10 to 90% of the total weight of the mixed solution (hereinafter, mixed solution) of the photocatalyst solution by the sol-gel process and the dispersion solution by the dispersing process and the solution having a solid content of 3 to 10% prepared by the sol-gel process 10 to 90% of the total weight of the mixed solution is mixed, and the mixture is stirred at 500 to 1500 rpm at room temperature for 10 to 30 minutes by adding acid or base to the mixed solution. The addition of these acids or bases should be carried out quickly to rapidly become acidic or basic.

또한, 상기 혼합용액 제조 단계에서 선택적으로 바인더를 혼합할 수 있다. 산 또는 염기가 첨가된 혼합용액에 바인더로 유기실란(silane)화합물을 첨가하고 상온 내지 60℃에서 1시간 내지 6시간 교반한다. 상기 유기실란화합물 바인더는 메틸트리메톡시실란, 메틸트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 비닐메틸디메톡시실란, 비닐메틸디에톡시실란, 비닐메틸디에톡시실란, 페닐트리메톡시실란, 테트라에톡시실란, 에톡시메틸비닐실란, 부톡시트리메틸실란, 부틸트리메톡시실란, 디페닐에톡시비닐실란, 메틸트리이소프로폭시실란, 부톡시트리메틸실란, 부틸트리메톡시실란, 디페닐에톡시비닐실란, 메틸트리이소프로폭시실란, 메틸트리아세톡시실란, 테트라페톡시실란, 테트라프로폭시실란, 비닐트리이소프로폭시실란 등을 포함한다.In addition, the binder may be optionally mixed in the mixed solution preparation step. An organosilane compound is added to the mixed solution to which an acid or a base is added as a binder and stirred at room temperature to 60 ° C. for 1 hour to 6 hours. The organosilane compound binder is methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxy Silane, vinylmethyldiethoxysilane, phenyltrimethoxysilane, tetraethoxysilane, ethoxymethylvinylsilane, butoxytrimethylsilane, butyltrimethoxysilane, diphenylethoxyvinylsilane, methyltriisopropoxysilane, Butoxytrimethylsilane, butyltrimethoxysilane, diphenylethoxyvinylsilane, methyltriisopropoxysilane, methyltriacetoxysilane, tetraphenoxysilane, tetrapropoxysilane, vinyltriisopropoxysilane and the like. do.

상기 혼합용액 또는 바인더를 첨가한 혼합용액 100중량부에 탄소수가 1∼4인 알코올 또는 증류수를 50∼500중량부를 혼합하여 고형분을 조절하고, 상기 고형분이 조절된 용액에 산 또는 염기를 첨가하여 pH를 1∼14 까지 조절하여 최종적인 광촉매 코팅 용액을 제조한다. 또한, 상기 최종 용액에 항균 및 살균 기능을 향상시키기 위하여 선택적으로 금속이온 및 금속 산화물을 용액 상태로 혼합할 수 있다. 금속 첨가제는 은(Ag), 구리(Cu), 백금(Pt),팔라듐(Pd)등을 포함하며, 최종적인 광촉매코팅 용액의 100중량부에 0.05∼10중량부를 혼합하여 제조할 수 있다. Solid content is adjusted by mixing 50 to 500 parts by weight of alcohol having 1 to 4 carbon atoms or distilled water to 100 parts by weight of the mixed solution to which the mixed solution or binder is added, and adding acid or base to the solution to which the solid content is adjusted. To 1 to 14 to prepare a final photocatalyst coating solution. In addition, metal ions and metal oxides may be optionally mixed in a solution state in order to improve antimicrobial and sterilization functions in the final solution. The metal additive includes silver (Ag), copper (Cu), platinum (Pt), palladium (Pd), and the like, and may be prepared by mixing 0.05 to 10 parts by weight with 100 parts by weight of the final photocatalyst coating solution.

도3은 졸겔 용액(a), 분산용액(b), 졸겔 용액과 분산 용액의 혼합용액(c)의 전자현미경 사진으로, (a),(b)와 같이 단일공정용액보다 (c)의 혼합용액의 표면 거칠기가 높은 것을 보여준다. 높은 표면거칠기는 코팅시 비표면적을 최대화하며, 빛의 조사가 없더라도 장기간 유해물질의 흡착성능 및 친수성능을 유지할 수 있다.Figure 3 is an electron micrograph of the sol-gel solution (a), the dispersion solution (b), the mixed solution of the sol-gel solution and the dispersion solution (c), the mixture of (c) rather than a single process solution as shown in (a), (b) It shows that the surface roughness of the solution is high. The high surface roughness maximizes the specific surface area during coating and can maintain the adsorption and hydrophilic properties of harmful substances for a long time even without light irradiation.

[실시예1]Example 1

졸겔공정에 의한 용액 제조Solution Preparation by Sol-Gel Process

증류수 180g을 반응용기에 넣고 기계식 교반기로 교반하면서, 5g의 이소프로판올과 30g의 티타늄 이소프로폭사이드(Titanium(Ⅳ) isopropoxide)을 적하 깔때기를 이용하여 천천히 첨가하고, 2g의 질산을 첨가한 후, 80도의 반응온도로 8시간 동안 기계적 교반기로 교반하면서 반응시킨다. 반응이 끝나면 냉각시킨다.While adding 180 g of distilled water to the reaction vessel and stirring with a mechanical stirrer, 5 g of isopropanol and 30 g of titanium isopropoxide (Titanium (IV) isopropoxide) were slowly added using a dropping funnel, followed by addition of 2 g of nitric acid. The reaction is performed while stirring with a mechanical stirrer for 8 hours at the reaction temperature of FIG. After the reaction, cool it down.

[실시예2]Example 2

분산공정에 의한 용액 제조Solution Preparation by Dispersion Process

아나타제형(anatase type) 결정구조를 갖는 평균 입경 10∼30㎚의 광촉매 분말 20g과 증류수 74g 및 분산제 6g을 0.3㎜와 1㎜의 직경의 지르코니아 비드를 사용하여 24시간 밀링한다.20 g of a photocatalyst powder having an average particle diameter of 10 to 30 nm, 74 g of distilled water, and 6 g of a dispersant were milled for 24 hours using 0.3 mm and 1 mm diameter zirconia beads.

[실시예3]Example 3

상기 실시예 2에 의해 제조된 고형분 함량 20%의 분산용액 12.5g에 질산 0.2g을 넣고 급격히 반응시킨다. 질산이 첨가된 분산용액에 상기 실시예 1에 의해 제조된 5% 졸겔용액 50g을 넣고 상온에서 2시간동안 빠른 속도로 교반한다(졸겔용액과 분산용액의 고형분이 1:1이 되도록 혼합한다). 교반후에 에탄올과 물을 혼합용액 32.3g을 넣고 암모니아수(4%) 5%를 넣어 상온에서 1시간 교반하여 pH7의 중성 용액을 제조한다.0.2 g of nitric acid was added to 12.5 g of the dispersion solution having a solid content of 20% prepared according to Example 2, and reacted rapidly. 50 g of the 5% sol-gel solution prepared in Example 1 was added to the dispersion solution to which nitric acid was added, and stirred at a high speed for 2 hours at room temperature (mixed so that the solid content of the sol-gel solution and the dispersion solution was 1: 1). After stirring, 32.3 g of a mixed solution of ethanol and water was added, 5% of ammonia water (4%) was added, and stirred at room temperature for 1 hour to prepare a neutral solution having a pH of 7.

[실시예4]Example 4

상기 실시예 3에서 졸겔 용액과 분산 용액의 고형분이 1:2가 되도록 혼합하고, 상기 실시예 3에서 기술한 바와 같이 동일하게 실시한다.In Example 3, the sol-gel solution and the dispersion solution are mixed so that the solid content is 1: 2, and the same process as described in Example 3 above.

[실시예5]Example 5

상기 실시예 3에서 졸겔 용액과 분산 용액의 고형분이 2:1이 되도록 혼합하고, 상기 실시예 3에서 기술한 바와 같이 동일하게 실시한다.In Example 3, the solid content of the sol-gel solution and the dispersion solution is mixed to be 2: 1, and the same process as described in Example 3 above is performed.

[실시예6]Example 6

상기 실시예 3과 같이 졸겔 용액과 분산 용액의 고형분이 1:1이 되도록 혼합하고, 바인더로서 테트라에톡시실란을 1.7g 첨가하여 상온에서 2시간 반응시킨 후, 에탄올과 물 및 암모니아수(4%)를 넣어 상온에서 1시간 교반하여 pH7의 중성 용액을 제조한다.As in Example 3, the solid content of the sol-gel solution and the dispersion solution were mixed to be 1: 1, and 1.7 g of tetraethoxysilane was added as a binder and reacted at room temperature for 2 hours, followed by ethanol, water, and ammonia water (4%). To prepare a neutral solution of pH7 by stirring for 1 hour at room temperature.

[실시예7]Example 7

상기 실시예 2에서 광촉매 분말 15g과 흡착제로 제올라이트 5g을 넣어 분산 용액을 제조한다. 상기 실시예 3에서 기술한 바와 같이 동일하게 실시한다.In Example 2, 15g of the photocatalyst powder and 5g of zeolite were added as an adsorbent to prepare a dispersion solution. The same implementation as described in Example 3 above.

도2는 졸겔공정에 의한 용액 및 졸겔공정에 의한 용액과 분산 공정에 의한 용액을 1:1의 혼합비로 혼합한 용액의 X-선 회절 분석 결과로, 졸겔 용액과 분산용액을 혼합함으로써 졸겔용액의 단점인 약한 결정성이 증가된 것을 보여주고 있다.2 is an X-ray diffraction analysis of a solution obtained by mixing a solution by a sol-gel process, a solution by a sol-gel process and a solution by a dispersion process at a mixing ratio of 1: 1, and the sol-gel solution by mixing a sol-gel solution and a dispersion solution. It shows the weak crystallinity increased.

상기 실시예의 졸겔공정 및 분산공정에 의한 광촉매 단일 용액을 혼합하여 제조한 용액을 유리, 금속, 플라스틱에 딥코딩한 후 100℃에서 1시간 경화시켜 코팅막을 형성한 후에 경도, 부착성, 광투과율, 용액상태의 유기물 분해율, 기체상태의 유기물 분해율의 평가를 실시하였다. 도4, 도5 및 표1은 상기의 평가 결과를 보여주고 있다. The solution prepared by mixing the photocatalyst single solution by the sol-gel process and the dispersion process of the above embodiment was dip-coated into glass, metal, and plastic, and then cured at 100 ° C. for 1 hour to form a coating film, followed by hardness, adhesion, light transmittance, The decomposition rate of organic matter in solution state and the decomposition rate of organic matter in gaseous form were evaluated. 4, 5 and Table 1 show the above evaluation results.

실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 실시예6Example 6 실시예7Example 7 광투과율Light transmittance 85%85% 67%67% 84%84% 81%81% 85%85% 90%90% 83%83% 부착성Adhesion 100/100100/100 0/1000/100 100/100100/100 75/10075/100 100/100100/100 100/100100/100 100/100100/100 연필경도Pencil hardness 3H3H 2B2B 4H4H 3H3H 4H4H 8H8H 4H4H 접촉각 Contact angle 제조직후Right after manufacturing 28° 28 ° 14° 14 ° 15° 15 ° 12° 12 ° 16° 16 ° 12° 12 ° 13° 13 ° 암실방치 90일후90 days after darkroom 56° 56 ° 34° 34 ° 24° 24 ° 20° 20 ° 28° 28 ° 26° 26 ° 19° 19 ° BLB4시간 조사후After 4 hours of BLB investigation 22° 22 ° 13° 13 °  8 °  7 ° 10° 10 ° 14° 14 ° 12° 12 °

(1) 경도 : JIS K-5400에 의거 연필경도계를 사용하여 측정하였다.(1) Hardness: It measured using the pencil hardness meter based on JISK-5400.

(2) 부착성 : ASTM D3359에 의거 코팅막에 1㎜ 간격으로 칸을 그어 100칸을 만든 후, 셀로판테이프를 이용하여 5회 박리 테스트를 행하여 박리되지 않은 칸수를 세어서 판정하였다. (R/100, R:박리되지 않은 칸수)(2) Adhesiveness: According to ASTM D3359, 100 squares were formed by drawing cells at intervals of 1 mm on the coating film, and then subjected to five peel tests using a cellophane tape to determine the number of cells that did not peel off. (R / 100, R: unreleased squares)

(3) 광투과율 : UV-Spectrophotometer를 이용하여 550㎚에서측정하였다.(3) Light transmittance: It measured at 550 nm using UV-Spectrophotometer.

(4) 용액상태의 유기물 분해율 : UV-Spectrophotometer를 이용하여 661㎚에서 메틸렌블루(Methylene Blue)의 농도를 측정하였다.(4) Degradation rate of organic matter in solution: The concentration of methylene blue was measured at 661 nm using a UV-Spectrophotometer.

(5) 기체상태의 유기물 분해율 : 가스 검지관을 이용하여 트리메틸아민(Trimethylamine)의 농도를 측정하였다.(5) Degradation rate of gaseous organic matter: The concentration of trimethylamine was measured using a gas detector tube.

도 4 및 표1은 제조방법이 다른 두가지 용액의 혼합, 즉 졸겔용액과 분산용액을 혼합하였을 경우 부착성, 연필경도 및 투명성 등의 코팅막의 특성이 졸겔용액과 비슷하면서 광촉매 활성은 분산용액과 같거나 향상된 것을 보여주고 있다.4 and Table 1 show that when the mixing method of two different solutions, that is, the sol-gel solution and the dispersion solution, the coating film properties such as adhesion, pencil hardness and transparency are similar to the sol-gel solution, the photocatalytic activity is the same as the dispersion solution. Or improved.

본 발명에 의한 광촉매 코팅 용액 제조 방법은 광촉매 활성면에서 우수한 성능을 나타내는 분산용액과 코팅막의 특성면에서 우수한 성능을 나타내는 졸겔공정에 의해 제조된 용액을 혼합함으로써 광촉매 반응 효율이 향상되고 기질상에 우수한 투명성, 부착성 및 내후성 등을 가는 광촉매 코팅 용액을 제공할 수 있다.The photocatalyst coating solution manufacturing method according to the present invention is improved by the photocatalytic reaction efficiency and excellent on the substrate by mixing the dispersion solution showing excellent performance in terms of photocatalytic activity and the solution prepared by the sol-gel process showing excellent performance in terms of characteristics of the coating film. It is possible to provide a photocatalyst coating solution having high transparency, adhesion and weather resistance.

본 발명에 의한 광촉매 코팅 용액 제조 방법은 부착성 향상을 위해서 첨가되는 바인더를 첨가하지 않거나, 그 양을 획기적으로 줄임으로써 광촉매 효과가 증대된 광촉매 코팅 용액을 제공할 수 있다.The photocatalyst coating solution preparation method according to the present invention may provide a photocatalyst coating solution having an increased photocatalytic effect by not adding a binder added to improve adhesion or by dramatically reducing the amount thereof.

본 발명에 의한 광촉매 코팅 용액 제조 방법은 두가지 제조방법에 의한 용액을 혼합하여 사용함으로써 크기가 다른 입자들이 만들어내는 표면거칠기에 의해서 코팅시 비표면적을 최대화하고, 빛의 조사가 없더라도 장기간 친수성능 및 유해물질의 흡착 성능을 유지할 수 있는 광촉매 코팅 용액을 제공한다. The photocatalyst coating solution manufacturing method according to the present invention maximizes the specific surface area during coating by using the surface roughness produced by particles having different sizes by mixing the solutions according to the two manufacturing methods, and long-term hydrophilic performance and harmfulness even without light irradiation It provides a photocatalyst coating solution capable of maintaining the adsorption performance of materials.

본 발명에 의한 광촉매 코팅 용액 제조 방법은 혼합 용액 제조의 마지막 단계에서 산이나 염기를 첨가하여 조절함으로써, 용액의 pH를 사용환경에 따라서 조절할 수 있는 광촉매 코팅 용액을 제공한다.The photocatalyst coating solution preparation method according to the present invention provides a photocatalyst coating solution which can adjust the pH of the solution according to the use environment by adjusting the addition of an acid or a base at the end of the preparation of the mixed solution.

본 발명에 의한 광촉매 코팅 용액 제조 방법은 분산 용액 제조과정에서 흡착제를 첨가하는 단계를 포함함으로써 초기 분해 성능이 향상된 광촉매 코팅 용액을 제공한다. The photocatalyst coating solution preparation method according to the present invention includes the step of adding an adsorbent during the preparation of the dispersion solution to provide a photocatalyst coating solution with improved initial decomposition performance.

본 발명에 의한 광촉매 코팅 용액 제조 방법은 최종 혼합 용액 제조 후에, 금속이온 또는 금속 산화물을 용액상태로 첨가하여 조절함으로써, 간단한 공정으로 항균 및 살균 성능이 극대화된 광촉매 코팅 용액을 제공한다.The method for preparing a photocatalyst coating solution according to the present invention provides a photocatalyst coating solution in which antibacterial and sterilization performance is maximized by a simple process by controlling the addition of metal ions or metal oxides in a solution state after preparation of the final mixed solution.

본 발명에 의한 광촉매 코팅 용액 제조 방법은 상온 또는 저온 경화형이면서도 증가된 활성과 부착성 및 투명성이 우수한 광촉매 코팅제를 토대로 다양한 기질에 다양한 코팅방법으로 쉽게 적용이 가능한 광촉매 코팅 용액을 제공한다. The photocatalyst coating solution preparation method according to the present invention provides a photocatalyst coating solution which can be easily applied to various substrates by various coating methods based on a photocatalyst coating agent having excellent activity and adhesion and transparency, which is curable at room temperature or at low temperature.

도1은 졸겔 용액과 분산액의 X-선 회절분석결과1 is an X-ray diffraction analysis of the sol-gel solution and dispersion

도2는 졸겔 용액과 분산액의 혼합용액의 X-선 회절분석결과2 is an X-ray diffraction analysis of the mixed solution of the sol-gel solution and dispersion

도3은 졸겔 용액, 분산액, 졸겔 용액과 분산액의 혼합용액을 사용한 코팅막의 표면 전자현미경 사진3 is a surface electron micrograph of a coating film using a sol-gel solution, a dispersion solution, a mixed solution of the sol-gel solution and the dispersion solution

도4(a)는 실시예들에 의해 제조된 용액을 사용한 코팅막에 자외선을 조사했을 때 메틸렌블루 분해율을 나타내는 선도Figure 4 (a) is a diagram showing the methylene blue decomposition rate when irradiated with ultraviolet light to the coating film using the solution prepared by the embodiments

도4(b)는 실시예 3과 실시예 7에 따라 제조된 용액을 사용한 코팅 막을 대상으로 자외선 조사에 따른 메틸렌블루 분해율을 나타내는 선도Figure 4 (b) is a diagram showing the methylene blue decomposition rate according to the ultraviolet irradiation to the coating film using a solution prepared according to Example 3 and Example 7

도5는 실시예 1, 실시예 2 및 실시예 3에 따라 제조된 용액을 사용한 코팅막에 자외선을 조사했을 때 트리메틸아민 분해율을 나타내는 선도FIG. 5 is a diagram showing the trimethylamine decomposition rate when ultraviolet rays are irradiated to the coating film using the solutions prepared according to Examples 1, 2 and 3

Claims (7)

(a) 졸겔공정으로 제조된 고형분 함량이 1∼10%인 광촉매 코팅 용액 10∼90%와 분산공정으로 제조된 고형분 함량이 5∼40%인 광촉매 코팅 용액 10∼90%을 교반하여 혼합용액을 제조하는 단계; (a) 10 to 90% of the photocatalyst coating solution having a solid content of 1 to 10% prepared by the sol-gel process and 10 to 90% of the photocatalyst coating solution having a solid content of 5 to 40% prepared by the dispersing process are stirred Manufacturing step; (b) 상기 혼합용액에 탄소수 1∼4의 알코올 또는 증류수 50∼500중량부를 첨가하여 혼합용액의 고형분을 조절하는 단계; (b) adding solids of the mixed solution by adding 50 to 500 parts by weight of alcohols having 1 to 4 carbon atoms or distilled water to the mixed solution; (c) 상기 고형분을 조절한 용액에 산 또는 염기를 첨가하여 pH를 조절하는 단계를 포함하는 것을 특징으로 하는 광촉매 코팅 용액의 제조방법(c) a method of preparing a photocatalyst coating solution, comprising adjusting the pH by adding an acid or a base to the solution having the solid content adjusted; 제1항에 있어서, (a)단계의 혼합용액에 산 또는 염기를 첨가하여 pH를 조절하는 단계를 더 포함하는 것을 특징으로 하는 광촉매 코팅 용액의 제조 방법The method of claim 1, further comprising adjusting the pH by adding an acid or a base to the mixed solution of step (a). 제1항에 있어서, The method of claim 1, (a)단계와 (b)단계 사이에 유기 실란(silane) 화합물을 바인더로 첨가하는 단계를 더 포함하는 것을 특징으로 하는 광촉매 코팅 용액의 제조 방법A method of preparing a photocatalyst coating solution further comprising the step of adding an organosilane compound as a binder between steps (a) and (b). 제1항에 있어서, The method of claim 1, 상기 졸겔공정은 증류수를 교반하면서 알코올 용매와 티타늄 알콕사이드의 혼합용액을 첨가하고, 산 또는 염기 촉매를 가하여 80 ±10℃에서 교반하고, 반응이 끝난 후 냉각시켜 광촉매 용액을 제조하는 것을 특징으로 하는 광촉매 코팅 용액의 제조 방법In the sol-gel process, a mixed solution of an alcohol solvent and titanium alkoxide is added while stirring distilled water, an acid or a base catalyst is added, the mixture is stirred at 80 ± 10 ° C., and cooled after the reaction to prepare a photocatalyst solution. Method of Preparation of Coating Solution 제1항에 있어서, The method of claim 1, 상기 분산공정은 광촉매 분말과 용매 및 분산제를 혼합하고, 상기 혼합용액을 밀링하여 광촉매 용액을 제조하는 것을 특징으로 하는 광촉매 코팅 용액의 제조 방법In the dispersing process, the photocatalyst powder is mixed with a solvent and a dispersant, and the mixed solution is milled to prepare a photocatalyst solution. 제1항에 있어서, The method of claim 1, 최종 혼합용액의 0.05∼10중량부의 금속이온 또는 금속산화물을 용액 상태로더 첨가하여 광촉매 용액을 제조하는 것을 특징으로 하는 광촉매 코팅 용액의 제조방법 Method for producing a photocatalyst coating solution, characterized in that by adding 0.05 to 10 parts by weight of metal ions or metal oxides of the final mixed solution as a solution state to prepare a photocatalyst solution 제5항에 있어서, The method of claim 5, 상기 분산공정의 광촉매 분말과 용매 및 분산제의 혼합에 광촉매 분말의 5 ∼ 100 중량부의 흡착제를 더 첨가하여 광촉매 용액을 제조하는 것을 특징으로 하는 광촉매 코팅 용액의 제조방법Method for producing a photocatalyst coating solution, characterized in that to further add 5 to 100 parts by weight of the adsorbent of the photocatalyst powder to the mixture of the photocatalyst powder and the solvent and dispersant of the dispersion process to produce a photocatalyst solution
KR1020040007455A 2004-02-05 2004-02-05 The Manufacture Procedure of the Photocatalysis Coating Composition KR100585513B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040007455A KR100585513B1 (en) 2004-02-05 2004-02-05 The Manufacture Procedure of the Photocatalysis Coating Composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040007455A KR100585513B1 (en) 2004-02-05 2004-02-05 The Manufacture Procedure of the Photocatalysis Coating Composition

Publications (2)

Publication Number Publication Date
KR20050079288A true KR20050079288A (en) 2005-08-10
KR100585513B1 KR100585513B1 (en) 2006-06-07

Family

ID=37266248

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040007455A KR100585513B1 (en) 2004-02-05 2004-02-05 The Manufacture Procedure of the Photocatalysis Coating Composition

Country Status (1)

Country Link
KR (1) KR100585513B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100575845B1 (en) * 2006-02-08 2006-05-02 (주)켐웰텍 A process for preparing ultra-fine particles of titanium oxide and their colloidal solution
KR100913371B1 (en) * 2006-06-02 2009-09-15 굿스카이(주) Super-hydrophilic coating solution and method for synthesizing the same
KR102222573B1 (en) * 2019-11-18 2021-03-04 주식회사 위드엠텍 Manufacturing Method of Silane Compound for Fixing TiO2 Nanofiber and Coating agent Using the Silane Compound for Fixing TiO2 Nanofiber
KR102394150B1 (en) * 2021-06-14 2022-05-04 방승섭 High performance photocatalytic sterilizatio module
KR102394149B1 (en) * 2021-06-14 2022-05-06 방승섭 High performance photocatalytic sterilizatio device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2639971A1 (en) 2006-01-25 2007-08-02 Team Medical, Llc Coating suitable for surgical instruments
KR101272269B1 (en) 2011-05-17 2013-06-13 (주)아이리녹스 Photocatalytic coating composition prepared by the photooxidation of the manufacturing process, and this coating composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100575845B1 (en) * 2006-02-08 2006-05-02 (주)켐웰텍 A process for preparing ultra-fine particles of titanium oxide and their colloidal solution
KR100913371B1 (en) * 2006-06-02 2009-09-15 굿스카이(주) Super-hydrophilic coating solution and method for synthesizing the same
KR102222573B1 (en) * 2019-11-18 2021-03-04 주식회사 위드엠텍 Manufacturing Method of Silane Compound for Fixing TiO2 Nanofiber and Coating agent Using the Silane Compound for Fixing TiO2 Nanofiber
KR102394150B1 (en) * 2021-06-14 2022-05-04 방승섭 High performance photocatalytic sterilizatio module
KR102394149B1 (en) * 2021-06-14 2022-05-06 방승섭 High performance photocatalytic sterilizatio device

Also Published As

Publication number Publication date
KR100585513B1 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
KR102170489B1 (en) Dispersion liquid of titanium oxide-tungsten oxide composite photocatalytic fine particles, production method for same, and member having photocatalytic thin film on surface thereof
US8986580B2 (en) Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
JP5447178B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
US10968508B2 (en) Method of fabricating hydrophilic-hydrophobic transformable composite film
US9555399B2 (en) Visible-light-responsive titanium oxide microparticle dispersion, method for manufacturing same, and member having surficial photocatalyst thin film formed using same dispersion
JP2016041429A (en) Method for producing visible light-responsive photocatalyst fine particle dispersion liquid
KR20010015871A (en) Photocatalyst composition, substance containing photocatalyst, and material functioning as photocatalyst and process for producing the same
JP5212353B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
KR100585513B1 (en) The Manufacture Procedure of the Photocatalysis Coating Composition
EP3178649A1 (en) Photocatalyst functional film and method for manufacturing same
JP5282735B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JP5447177B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JP7070474B2 (en) Titanium oxide fine particles, their dispersion, and a method for producing the dispersion.
JP7088082B2 (en) A method for producing a titanium oxide fine particle mixture, a dispersion thereof, a photocatalyst thin film, a member having a photocatalyst thin film on the surface, and a titanium oxide fine particle dispersion.
KR100941738B1 (en) Photoactive composition comprising scoria and preparation method thereof
JP7205437B2 (en) Titanium oxide particles, titanium oxide particle dispersion, and method for producing titanium oxide particle dispersion
JP4995839B2 (en) Monoclinic CeTi2O6 thin film and manufacturing method thereof by sol-gel method
JP5633571B2 (en) Method for producing rutile type titanium oxide fine particle dispersion
KR100715428B1 (en) Photocatalyst coating solution ? the manufacturing method thereof
WO2022059520A1 (en) Titanium oxide particles and liquid dispersion thereof, photocatalyst thin film, member having photocatalyst thin film formed on surface thereof, and method for producing liquid dispersion of titanium oxide particles
WO2004014986A1 (en) Metal alkoxide hydrolytic polycondensation solution and transparent films manufactured therefrom
JP2021175697A (en) Titanium oxide particle, dispersion thereof, photocatalyst thin film, member having photocatalyst thin film on its surface, and method for producing titanium oxide particle dispersion

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee