KR102222348B1 - 네트워크 커버리지가 없는 디바이스 대 디바이스 통신에서의 초기 동기화 및 충돌 방지를 위한 방법 및 시스템 - Google Patents
네트워크 커버리지가 없는 디바이스 대 디바이스 통신에서의 초기 동기화 및 충돌 방지를 위한 방법 및 시스템 Download PDFInfo
- Publication number
- KR102222348B1 KR102222348B1 KR1020167005885A KR20167005885A KR102222348B1 KR 102222348 B1 KR102222348 B1 KR 102222348B1 KR 1020167005885 A KR1020167005885 A KR 1020167005885A KR 20167005885 A KR20167005885 A KR 20167005885A KR 102222348 B1 KR102222348 B1 KR 102222348B1
- Authority
- KR
- South Korea
- Prior art keywords
- presence signal
- time slot
- signal
- block
- time
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 158
- 238000004891 communication Methods 0.000 title description 67
- 230000000977 initiatory effect Effects 0.000 claims abstract description 7
- 230000005540 biological transmission Effects 0.000 claims description 75
- 238000001514 detection method Methods 0.000 claims description 5
- 230000008054 signal transmission Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 description 107
- 238000010586 diagram Methods 0.000 description 17
- 230000006870 function Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 102100036409 Activated CDC42 kinase 1 Human genes 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 2
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/14—Direct-mode setup
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2643—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
- H04B7/2656—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/0007—Code type
- H04J13/0055—ZCZ [zero correlation zone]
- H04J13/0059—CAZAC [constant-amplitude and zero auto-correlation]
- H04J13/0062—Zadoff-Chu
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/70—Services for machine-to-machine communication [M2M] or machine type communication [MTC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
- H04W56/002—Mutual synchronization
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/02—Selection of wireless resources by user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/40—Resource management for direct mode communication, e.g. D2D or sidelink
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
- H04W74/0841—Random access procedures, e.g. with 4-step access with collision treatment
- H04W74/085—Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/005—Discovery of network devices, e.g. terminals
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
- Small-Scale Networks (AREA)
Abstract
디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법으로서, 본 방법은: 제2 디바이스의 존재 신호 - 제2 디바이스의 존재 신호는 시간 슬롯 경계를 가짐 - 가 제1 시구간에 걸쳐 수신되는지의 여부를 검출하는 것; 및 제2 디바이스의 존재 신호가 검출되지 않으면, 제1 디바이스에 의해 시간 슬롯 경계를 개시하는 것을 포함하고, 상기 시간 슬롯 경계를 개시하는 것은 선택된 시간 슬롯에서 제1 디바이스의 제1 존재 신호를 송신하는 것과, 제1 존재 신호에 대한 확인 응답을 체크하는 것을 포함한다.
Description
본 개시는 무선 디바이스 대 디바이스(device-to-device; D2D) 통신에 관한 것으로, 특히 제어용 네트워크 인프라구조 노드(network infrastructure node)가 없는 디바이스 대 디바이스 통신에 관한 것이다.
현재의 무선 네트워크 시나리오에서, 디바이스는, 디바이스를 서빙하고 있는 기지국 또는 액세스 포인트와 같은 네트워크 인프라구조 노드와 통상적으로 통신할 것인데, 이러한 기지국 또는 액세스 포인트는, 그 후에, 동일한 네트워크 인프라구조 노드에 의해 서빙받고 있는 디바이스들을 비롯하여 다른 디바이스들에 대한 통신, 또는 다른 네트워크 인프라구조 노드에 의해 서빙받는 디바이스들에 대한 통신을 가능하게 할 것이다. 그러나, 이러한 통신은, 인프라구조 노드로부터의 무선 네트워크 커버리지가 존재하지 않는 어떤 영역, 예를 들면, 무선 네트워크 배치가 없는 원격지 영역 또는 무선 네트워크 인프라구조의 파괴를 겪고 있는 영역에서는 가능하지 않을 수도 있다. 또한, 무선 네트워크 커버리지가 존재하는 경우에도, 네트워크 인프라구조 노드를 사용하는 통신이 바람직하지 않을 수도 있다. 예를 들면, 일반적인 통신 시스템에서, 데이터의 직접적인 D2D 송신은 현재의 네트워크보다 무선 리소스의 더 효율적인 활용을 제공할 수도 있다.
디바이스 대 디바이스 통신은 두 개의 무선 디바이스 또는 유저 기기(user equipment; UE) 사이의 통신인데, 이 경우 통신은 UE 사이에서 직접적으로 진행하고 네트워크 인프라구조 노드를 통해 진행하지 않는다. D2D 통신에 대한 사용은 긴급상황 또는 비긴급 상황 둘 다에 대한 것일 수도 있다. 예를 들면, 제1 응답자(responder) 및 공공 안전 요원(public safety member)이 D2D 통신을 사용하여 디바이스 사이에서 통신할 수도 있다. 이것은, 네트워크 커버리지가 존재하지 않는 상황, 예컨대 원격지 영역이나 또는 건물의 내부에서 유용할 수도 있다. 그러나, 네트워크 커버리지 영역에서도, 몇몇 경우에서는, 공공 안전 상황에서, D2D 통신이 소망될 수 있다.
비긴급 상황에서, 서로 가까이 있는 친구들이 서로 직접적으로 통신하기를 원할 수도 있다. 다른 경우는, 모바일 무선 디바이스의 유저가 비어 있는 주차 공간을 찾는 것을 돕기 위해 주차 미터기가 범위 내의 모바일 무선 디바이스에게 말을 하는 것과 같은 사람 대 기계 상호작용을 포함한다. 기계 대 기계 통신도 또한 가능한데, 예를 들면, 온도/습도/압력 센서는 기록된 데이터를 컨트롤러 디바이스로 전달한다. 다른 예도 가능하다. 수반되는 디바이스는 고정식이거나 이동식일 수도 있다.
그러나, 네트워크 인프라구조 엘리먼트 없이 다른 디바이스와 통신하기 위한 디바이스의 동작은, 이러한 통신에 대한 중앙 제어가 없기 때문에, 도전 과제를 갖는다.
본 개시는 도면을 참조로 더 잘 이해될 것인데, 도면에서,
도 1은, 시간 슬롯 내에서 존재(presence) 신호의 제공을 예시하는 블록도이다;
도 2는, 존재 신호를 송신하기 위해 제1 무선 프레임이 사용되고 확인응답(acknowledgement)을 송신하기 위해 제2 무선 프레임이 사용되는 시간 슬롯을 도시하는 블록도이다;
도 3은, 탐색 기간(discovery period) 동안 존재 신호 및 확인응답을 송신하기 위해 단일의 캐리어가 사용되는 것을 도시하는 블록도이다;
도 4는, 존재 신호를 송신하기 위해 사용되는 제1 캐리어 및 확인응답을 송신하기 위해 사용되는 제2 캐리어의 두 개의 캐리어를 도시하는 블록도이다;
도 5는, 1차(primary) 동기화 신호, 제2 동기화 신호, 및 확인응답의 송신을 위한 무선 프레임을 도시하는 블록도이다;
도 6은 상이한 디바이스에 대한 복수의 무선 프레임을 도시하는 블록도이다;
도 7은, 주 동기화 신호, 2차 동기화 신호, 및 확인응답을 송신하기 위한 SC-FDMA 무선 프레임을 도시하는 블록도이다;
도 8은, 본 개시의 일 실시형태를 구현하기 위한 디바이스 프로세스를 도시하는 프로세스 도면이다;
도 9는, 시간 슬롯 경계의 설정을 도시하는 블록도이다;
도 10은 미사용 시간 슬롯의 선택을 도시하는 블록도이다;
도 11은, 상이한 수의 디바이스 및 상이한 수의 최대 디바이스를 구비하는 복수의 네트워크의 수렴(convergence)의 플롯이다;
도 12는, 시간 슬롯 경계 오정렬을 도시하는 블록도이다;
도 13은 확률론적 은닉 노드 문제(stochastic hidden node problem)를 도시하는 블록도이다;
도 14는, 링크 실패가 가능하게 되는 한 실시형태에 대한 프로세스를 도시하는 프로세스 도면이다;
도 15는, 예시적인 경계 확립 블록에 대한 기능성(functionality)을 도시하는 프로세스 도면이다;
도 16은, 예시적인 PS 송신 블록에 대한 기능성을 도시하는 프로세스 도면이다;
도 17은, 예시적인 확인응답 송신 블록에 대한 기능성을 도시하는 프로세스 도면이다;
도 18은, 상이한 수의 디바이스 및 상이한 수의 최대 디바이스를 구비하는 복수의 네트워크의 수렴의 플롯이다;
도 19는, 본 개시의 실시형태와 함께 사용될 수도 있는 예시적인 유저 기기의 블록도이다.
도 1은, 시간 슬롯 내에서 존재(presence) 신호의 제공을 예시하는 블록도이다;
도 2는, 존재 신호를 송신하기 위해 제1 무선 프레임이 사용되고 확인응답(acknowledgement)을 송신하기 위해 제2 무선 프레임이 사용되는 시간 슬롯을 도시하는 블록도이다;
도 3은, 탐색 기간(discovery period) 동안 존재 신호 및 확인응답을 송신하기 위해 단일의 캐리어가 사용되는 것을 도시하는 블록도이다;
도 4는, 존재 신호를 송신하기 위해 사용되는 제1 캐리어 및 확인응답을 송신하기 위해 사용되는 제2 캐리어의 두 개의 캐리어를 도시하는 블록도이다;
도 5는, 1차(primary) 동기화 신호, 제2 동기화 신호, 및 확인응답의 송신을 위한 무선 프레임을 도시하는 블록도이다;
도 6은 상이한 디바이스에 대한 복수의 무선 프레임을 도시하는 블록도이다;
도 7은, 주 동기화 신호, 2차 동기화 신호, 및 확인응답을 송신하기 위한 SC-FDMA 무선 프레임을 도시하는 블록도이다;
도 8은, 본 개시의 일 실시형태를 구현하기 위한 디바이스 프로세스를 도시하는 프로세스 도면이다;
도 9는, 시간 슬롯 경계의 설정을 도시하는 블록도이다;
도 10은 미사용 시간 슬롯의 선택을 도시하는 블록도이다;
도 11은, 상이한 수의 디바이스 및 상이한 수의 최대 디바이스를 구비하는 복수의 네트워크의 수렴(convergence)의 플롯이다;
도 12는, 시간 슬롯 경계 오정렬을 도시하는 블록도이다;
도 13은 확률론적 은닉 노드 문제(stochastic hidden node problem)를 도시하는 블록도이다;
도 14는, 링크 실패가 가능하게 되는 한 실시형태에 대한 프로세스를 도시하는 프로세스 도면이다;
도 15는, 예시적인 경계 확립 블록에 대한 기능성(functionality)을 도시하는 프로세스 도면이다;
도 16은, 예시적인 PS 송신 블록에 대한 기능성을 도시하는 프로세스 도면이다;
도 17은, 예시적인 확인응답 송신 블록에 대한 기능성을 도시하는 프로세스 도면이다;
도 18은, 상이한 수의 디바이스 및 상이한 수의 최대 디바이스를 구비하는 복수의 네트워크의 수렴의 플롯이다;
도 19는, 본 개시의 실시형태와 함께 사용될 수도 있는 예시적인 유저 기기의 블록도이다.
본 개시는 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법을 제공하는데, 그 방법은: 제2 디바이스의 존재 신호 - 제2 디바이스의 존재 신호는 시간 슬롯 경계를 가짐 - 가 제1 시구간에 걸쳐 수신되는지의 여부를 검출하는 것; 및 제2 디바이스의 존재 신호가 검출되지 않으면, 선택된 시간 슬롯에서 제1 디바이스의 제1 존재 신호를 송신하는 것을 포함하는, 제1 디바이스에 의해 시간 슬롯 경계를 개시하는 것을 포함한다.
그 방법은, 제1 존재 신호의 확인응답을 체크하는 것을 더 포함한다.
본 개시는 또한 디바이스 대 디바이스 링크를 가능하게 하기 위한 디바이스를 제공하는데, 그 디바이스는 프로세서를 포함하고, 그 프로세서는, 제1 시구간에 걸쳐 제2 디바이스의 존재 신호 - 제2 디바이스의 존재 신호는 시간 슬롯 경계를 가짐 - 가 수신되는지의 여부를 검출하고; 제2 디바이스의 존재 신호가 검출되지 않으면, 선택된 시간 슬롯에서 제1 디바이스의 제1 존재 신호를 송신하는 것; 및 제1 존재 신호에 대한 확인응답을 체크하는 것을 포함하는, 제1 디바이스에 의해 시간 슬롯 경계를 개시하도록 구성된다.
본 개시는 또한, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법을 제공하는데, 그 방법은, 채널 상에서 존재 신호 - 존재 신호는 적어도 하나의 시퀀스를 포함함 - 를 경청하는(listening) 것; 및 존재 신호의 검출시, 존재 신호에 대한 확인응답을 송신하는 것; 및 존재 신호의 적어도 하나의 시퀀스를 활용하는 것에 의해, 존재 신호와 관련되는 시간 슬롯 경계에 정렬하는 것을 포함한다.
본 개시는 또한, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 디바이스를 제공하는데, 그 디바이스는 프로세서를 포함하고, 그 프로세서는, 채널 상에서 존재 신호 - 존재 신호는 적어도 하나의 시퀀스를 포함함 - 를 경청하고; 고 존재 신호의 검출시, 존재 신호에 대한 확인응답을 송신하고; 존재 신호의 적어도 하나의 시퀀스를 활용하는 것에 의해, 존재 신호와 관련되는 시간 슬롯 경계에 정렬하도록 구성된다.
본 개시는 또한, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 디바이스에서의 방법을 제공하는데, 그 방법은, 채널 상에서 다른 디바이스로부터의 존재 신호를 경청하는 것; 및 시간 슬롯 경계를 확립하기 위해 채널 상에서 존재 신호를 송신하는 것을 포함하고, 존재 신호의 송신은 다른 디바이스가 이러한 존재 신호를 검출하고 확립된 시간 슬롯 경계에 정렬하는 것을 가능하게 한다.
본 개시는 또한, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 한 디바이스를 제공하는데, 그 디바이스는 프로세서를 포함하고, 그 프로세서는, 채널 상에서 다른 디바이스로부터의 존재 신호를 경청하고; 시간 슬롯 경계를 확립하기 위해 채널 상에서 존재 신호를 송신하도록 구성되고, 존재 신호의 송신은 다른 디바이스가 이러한 존재 신호를 검출하고 확립된 시간 슬롯 경계에 정렬하는 것을 가능하게 한다.
본원에서 근접 기반 애플리케이션 및 서비스로서 또한 칭해지는 디바이스 대 디바이스 애플리케이션 및 서비스는, 부상하고 있는(emerging) 소셜 및 기술 트렌드를 나타낸다. 이와 관련하여, 3세대 파트너십 프로젝트(3rd Generation Partnership Project; 3GPP) 롱 텀 에볼루션(Long Term Evolution; LTE) 아키텍쳐가 이러한 서비스를 포함하도록 진화하고 있는데, 이것은 3GPP 산업계가, 발전하고 있는 시장을 서빙하는 것, 및 동시에, 다양한 공공 안전 커뮤니티의 긴급한 필요성을 서빙하는 것을 허용할 것이다.
그러나, 중앙 컨트롤러가 없는 디바이스 사이의 네트워크의 구현예는 다양한 이슈를 갖는다. 디바이스 대 디바이스 통신과 관련한 하나 이슈는, 네트워크 커버리지 밖에서의 디바이스의 탐색 및 디바이스가 서로 통신하는 능력이다. 특히, 현재로선, 제어용 네트워크 엘리먼트를 갖지 않는 애드 혹 네트워크에서 디바이스를 신뢰성 있게 탐색하기 위한 방식은 존재하지 않는다. 이러한 탐색은 네트워크의 디바이스가 그들과 직접적으로 통신할 수 있는 다른 디바이스의 존재를 연속적으로 인식하는 것을 허용한다. 또한, 신호의 송신에 대해, 현재로서는, 아무런 네트워크 인프라구조도 없을 때 롱 텀 에볼루션 직교 주파수 분할 다중화(orthogonal frequency division multiplexing; OFDM) 또는 싱글 캐리어 주파수 분할 다중화 액세스(single carrier frequency division multiple access; SC-FDMA) 심볼 송신 또는 수신에 대해 공통 시간 프레임 동기화를 확립하기 위한 명확한 방식은 존재하지 않는다.
D2D 통신에 대한 다른 이슈는 고정 길이 송신에 관한 것인데, 여기서는 시간 슬롯이 사용된다. 디바이스에 의해 송신되는 주기적 탐색 신호는 하나보다 적은 시간 슬롯(time-slot; TS)을 차지할 수도 있는데, 현재로서는, 애드 혹 네트워크에서 다수의 디바이스의 송신을 정렬하기 위한 무선 프레임 타이밍 및 시간 슬롯 경계를 확립하는 방법이 명확하지 않다.
본원에서 사용되는 바와 같이, 시간 슬롯은, 다른 디바이스와 통신하기 위해 디바이스에 의해 사용될 수도 있는 고정된 길이의 시간 윈도우의 일반화된 용어이며, LTE 명세(specification)에 의해 사용되는 바와 같은 "슬롯"과는 상이하다.
다른 이슈는, 현재로서는, 두 개 이상의 디바이스 둘 다가 송신을 위해 동일한 초기 시간 슬롯을 선택할 때 디바이스 대 디바이스 통신에 대한 잠재적인 업링크 송신 충돌을 검출하지 않거나 해결하지 않다는 것이다. 따라서, 충돌 해결 방법론이 본원에서 제공된다.
따라서, 본 개시는 네트워크 커버리지 밖에서 디바이스 대 디바이스 통신을 위한 무선 네트워크의 초기화를 제공한다. 구체적으로는, 본 개시는, 다른 피쳐 중에서도, 어떻게 디바이스의 그룹이 서로를 탐색할 수 있고, 시간 슬롯 경계를 정의할 수 있고, 송신 시간 슬롯을 각각의 디바이스에 할당할 수 있고, 충돌을 방지 및 해결할 수 있고, 서로 동기화할 수 있는지를 제시한다. 이들 초기화 단계는, 디바이스가 서로 간의 데이터 통신을 가질 수 있기 이전에 발생한다. 또한, 본원에서 개시되는 실시형태는, 완전히 연결된 네트워크 또는 부분적으로 연결된 네트워크, 예컨대 모든 디바이스가 네트워크의 모든 다른 디바이스로부터의 송신을 수신할 수 있는 것은 아닌 경우에 적용된다.
본 개시가 LTE 아키텍쳐를 활용하는 예를 제공하지만, 본원에서 개시되는 실시형태는 이러한 아키텍쳐에 제한되지 않으며, 다른 네트워크 아키텍쳐가 동등하게 사용될 수 있을 것이다. 따라서, 본원에서 제공되는 기술 및 예는, 3GPP 롱 텀 에볼루션(LTE) 이외의 다른 기술로 확대될 수 있을 것이다.
시스템이 탐색 단계(discovery stage)에 있을 때, 디바이스는 네트워크에 연결되지 않으며, 따라서 어떠한 동기화도 확립되지 않았을 수도 있다. 본 개시의 일 실시형태에 따르면, 이것을 해결하기 위해, 디바이스는, 시간 슬롯 내에 송신될 수 있는 고정 길이를 갖는 존재 신호(presence signal: PS)를 주기적으로 송신할 수도 있다. 이러한 존재 신호의 구성은 하기에서 제공된다.
식별가능한 PS의 수신시, PS를 송신하는 디바이스로 확인응답 신호(ACK)가 되전송될 수도 있다. ACK는, 하기에서 설명되는 바와 같이, 동일한 ACK를 송신하는 것에 의해 다수의 수신기가 PS에 응답할 수 있도록, 디자인된다. 또한, 본 개시에 따르면, 디바이스를 동일한 시간 슬롯 경계에 정렬하기 위한 알고리즘이 제공된다. 본원의 설명이 예로서 확인응답(ACK)에 초점을 맞추고 있지만, 동일한 송신은, 종종, 부정 확인응답(negative acknowledgement; NACK)을 송신하도록 또한 디자인될 수 있다는 것을 유의한다. 예를 들면, 송신은 두 개의 가능한 시퀀스(예를 들면, ACK에 대해 모두 제로인 시퀀스 대 NACK에 대해 모두 1인 시퀀스)를 사용할 수 있다. NACK가 PS 송신을 지원하도록 또한 활용될 수 있지만, 논의의 간략화를 위해, ACK에 주로 초점을 맞춘다. 네트워크 확립에서의 NACK의 사용이 본원에서 설명되는 프로시져 및 프로토콜에 의해 포괄된다는 것이 의도된다.
다른 실시형태에 따르면, LTE OFDM/SC-FDM 심볼 송신/수신에 대한 시간 주파수 동기화를 획득하기 위해, 본 개시는, 시간 슬롯 내에서 심볼 경계를 검출하기 위해 LTE에서 사용되는 바와 같은 현존하는(existing) 1차 동기화 신호(primary synchronization signal; PSS)의 사용을 제공한다.
다른 실시형태에 따르면, TS 레벨 동기화는, 제1 송신 디바이스가 네트워크의 다른 디바이스에 대한 TS 경계 기준을 확립하는 것을 허용하는 프로시져를 통해 달성될 수도 있다. 이렇게 함으로써, 슬롯화된 시분할 듀플렉스(TDD) 시스템이 확립된다.
다른 실시형태에 따르면, 동일한 시간 슬롯 상에서의 다수의 PS 신호의 송신을 검출하기 위해, 랜덤 호핑 2차 동기화 신호(secondary synchronization signal; SSS) 방식이 사용되어 매싸이클에서 존재 신호에 새로운 SSS를 할당한다. 여기서, 싸이클은, 신호를 송신하고 수신하기 위한 시간 기준으로서 관련 디바이스에 의해 사용되는 시간 프레임을 가리킨다. 예를 들면, 소정의 신호(예를 들면, 브로드캐스트 신호)는 매 싸이클마다, 또는 매 정수 개의 싸이클마다 규칙적으로 반복할 수도 있다. 본 출원에서, 싸이클은 프레임으로서 또한 언급된다. 수신 디바이스는 가능한 SSS에 하나씩 상관될 수 있고 PS 신호의 다수의 송신을 검출할 수 있다.
다른 실시형태에 따르면, UE가 존재 신호를 주기적으로 송신하고 이웃으로부터 확인응답을 획득하기 위한 프로토콜이 제공된다. 예를 들면, 송신 디바이스가 적어도 하나의 ACK를 수신하면 송신 디바이스는 현재 사용하고 있는 시간 슬롯을 계속 활용할 것이고, 송신 디바이스가 소정의 지속기간(duration) 동안 ACK를 수신하지 않으면 송신 디바이스는 새로운 비어 있는 시간 슬롯으로 점프할 것이다. 시스템이 안정한 상태로 수렴하면, 모든 UE는 그들의 PS를 충돌 없이 주기적으로 브로드캐스트할 수 있다. 따라서, 상기 알고리즘은 완전히 배포될 수도 있다.
본원에서 사용되는 바와 같이, 모바일 디바이스, 디바이스, 유저 기기, 또는 다른 이러한 용어는 상호교환적이며 디바이스 대 디바이스 통신을 확립할 수 있는 디바이스를 가리킨다.
이제 도 1을 참조한다. 네트워크의 디바이스가 그들과 통신할 수 있는 다른 디바이스의 존재를 연속적으로 인식하는 것을 허용하기 위해, 본 개시의 일 실시형태에 따르면, 각각의 디바이스는 실질적으로 주기적 존재 신호를 송신한다. 디바이스가 먼저 송신을 시작한 경우 존재 신호가 다른 디바이스의 존재 신호와 충돌할 수도 있지만, 하기에서 설명되는 바와 같은 경합 해결 프로시져(contention resolution procedure) 이후에, 각각의 디바이스에 의해 송신되는 PS는 시간 슬롯에서 고유하다. 이렇게 하여, 각각의 디바이스는, 그 디바이스가 액티브인 동안 그것의 피어 디바이스에 의해 개별적으로 식별될 수 있고, 각각의 디바이스는 연속적인 충돌 해결 없이 전용 시간-주파수 리소스를 획득할 수 있다.
본 개시에 따르면, 탐색 신호는 두 개의 신호 중 하나를 수반한다. 탐색 신호를 형성하는 제1 신호는 존재 신호인데, 존재 신호는 디바이스에 의해 전송된다. 디바이스는, 자신의 존재를 통지하기 위해 그리고 또한 시간 슬롯을 확보하기 위해, 자신의 PS를 브로드캐스트한다. 2차 탐색 신호는 디바이스에 의해 수신되는 확인응답 신호(ACK)이다. PS를 디코딩하는 디바이스의 전체 또는 서브셋은 시간 슬롯의 승인을 나타내기 위해 ACK를 브로드캐스트한다.
따라서, 도 1에서 예시되는 바와 같이, 특정 시간 슬롯(110)은 참조부호 120에 의해 도시되는 바와 같이 시간 슬롯당 하나의 단위 또는 참조부호 130에 의해 도시되는 바와 같이 시간 슬롯당 두 개의 단위 중 어느 하나를 가질 수도 있다. 도 1의 실시형태 중 어느 하나에서, 각각의 단위는 동기화 신호(140), 존재 신호 또는 확인응답 중 어느 하나를 포함할 수도 있는 탐색 신호(142), 및 데이터 페이로드(144)를 포함한다.
복수의 시간 슬롯은 결합되어 탐색 기간(150)을 형성하고 탐색 신호의 주기성에 대한 탐색 시구간은, 탐색 기간당 시간 슬롯의 수(NMax) × 시간 슬롯당 시간(TS)인 것으로 정의된다. 탐색 기간은 프레임과 동일한 길이를 가질 수 있다. 프레임은 초기 탐색 및 후속 데이터 통신 둘 다에 대한 시간 기준으로서 사용된다.
따라서, 본 개시에 따르면, 탐색 신호는 각각의 탐색 기간에 반복된다. 각각의 탐색 기간은 NMax개의 시간 슬롯으로 구성되는데, 디바이스는 NMax개의 시간 슬롯 내의 임의의 주어진 시간 슬롯 상에서 무선 프레임을 송신하거나 또는 수신할 수 있다. NMax는, 지정된 아키텍쳐에 따라 탐색될 수 있는 UE의 최대 개수를 나타낼 수도 있다.
디바이스가 서로를 탐색하기 이전에, 데이터 페이로드 시간 단위(144)는 빈 상태로 유지된다.
본 개시에 따르면, 두 개의 시스템 디자인이 설명된다. 그러나, 이러한 시스템은 예에 불과하며 다른 시스템이 또한 사용될 수 있을 것이다. 제1 시스템에서, 하나의 캐리어 주파수 시분할 듀플렉스 시스템이 제공되는데, 여기서는 시간 슬롯당 두 개의 단위가 사용된다. 제2 시스템에서, 두 개의 캐리어 주파수 시분할 듀플렉스 시스템이 제공되는데, 여기서는 시간 슬롯당 단지 하나의 단위가 사용된다.
하나의
캐리어
주파수
TDD
시스템
일 실시형태에 따르면, UE는 송신 및 수신 둘 다에 대해 단지 하나의 캐리어 주파수(예를 들면, LTE에서 정의되는 바와 같이, 예를 들면, 업링크 채널 또는 다운링크 채널 중 어느 하나)를 사용하여 D2D 모드에서 동작한다. 본원에서 사용되는 바와 같이, 업링크는, 업링크가 디바이스로부터의 송신을 나타내는 셀룰러 시스템과 마찬가지로 정의된다. 마찬가지로, 다운링크는 디바이스에서 수신되는 신호를 수반한다.
이제, 주어진 디바이스의 시점에서 각각의 시간 슬롯이 송신 부분 및 수신 부분으로 나누어지는 본 개시의 일 실시형태에 따른 채널의 한 실시형태를 도시하는 도 2를 참조한다. 통상적으로, 시간 슬롯의 다른 부분은, 데이터 또는 동기화 신호와 같은 다른 목적을 위해 사용될 수 있을 것이고, 따라서 도 2의 실시형태는 단순화에 불과하다.
도 2에서 알 수 있는 바와 같이, 세 개의 시간 슬롯이 제공되는데, 이 경우 상기에서의 NMAX는 3으로 정의된다. 따라서, 도 2의 시스템은 시간 슬롯이 자신을 반복하는 세 개의 디바이스를 갖는 솔루션으로 수렴된다.
도 2를 참조하면, 각각의 시간 슬롯은 두 개의 송신 인스턴스를 갖는데, 두 개의 송신 인스턴스에서 제1 송신 인스턴스는 PS 신호에 대한 것이고 제2 송신 인스턴스는 ACK 신호에 대한 것이다. 일 실시형태에 따르면, 각각의 시간 슬롯은 2 ms 길이일 수도 있다. LTE 명세에 기초하여, UE가 자신의 PS를 송신할 수도 있고 소정의 수 밀리초 이후에 ACK를 수신해야 하는 시스템이 제공된다. 예를 들면, 도 2의 실시형태에 따르면, ACK는 신호 송신의 3 ms 이후에 수신된다.
특히, 제1 시간 슬롯(210)에서, PS 신호는 참조부호 212에 의해 나타내어지는 모바일 디바이스 A에 의해 전송된다. 3 ms 후에, 참조부호 214에 의해 나타내어지는 바와 같이, 디바이스 B 및/또는 디바이스 C는 이들이 PS 신호를 정확히 수신하면 확인응답을 전송한다.
시간 슬롯(220)에서, 디바이스 B는 자신의 PS 신호를, 참조부호 222에 의해 나타내어지는 바와 같은 제1 인스턴스에서 송신하고, 3 ms 이후에, 송신 인스턴스(224)에 의해 나타내어지는 바와 같이, 디바이스 C 및/또는 디바이스 A는 PS 신호가 정확히 수신되면 ACK를 전송한다.
마찬가지로, 시간 슬롯(230)에서, 송신 인스턴스(232)에서, 디바이스 C는 자신의 PS 신호를 송신하고 송신 인스턴스(234)에서, 디바이스 A 및/또는 디바이스 B는 그들의 ACK를 전송한다.
이 경우에서의 탐색 기간은 6 ms이며, 세 개의 시간 슬롯은 각각 2 ms를 갖는 시간 슬롯을 제공받는다.
상기의 변형예도 가능하다. 또한, 타이밍은 변경될 수 있으며 상기 예는 단지 예시적 목적만을 위해 제공된다.
도 2의 실시형태의 여러 변형예는 주어진 디바이스에 대한 PS 및 ACK를 포함하는 탐색 신호의 주기성의 가변성을 포함할 수도 있다. 일 실시형태에서, 탐색 신호의 주기성은, 디바이스가 초기 연결을 시도하고 있을 때 짧을(NMax) 수도 있다. 그러나, 일단 확립되면, 탐색 신호의 송신 또는 수신의 횟수를 감소시키기 위해, 탐색 신호 주기성은 더 긴 기간(예를 들면, 4×NMax)으로 전환될 수도 있다. 그러나, 송신 또는 수신의 횟수에서의 감소는, 디바이스가 선택하는 송신 인스턴스가 다른 디바이스에 의해 점유되지 않는 것을 보장하기 위해, 네트워크에 대한 연결을 시도하고 있는 디바이스가 더 긴 기간 동안 그 채널을 모니터링할 필요가 있을 것이라는 것을 의미한다.
다른 변형예에서, 모든 피어 디바이스가 디바이스의 PS 송신에 응답할 필요가 있는 것은 아니다. 예를 들면, 몇몇 실시형태에서, 송신 디바이스에 어떤 방식으로 관련되는 피어 디바이스만이 송신 디바이스의 PS에 응답하여 ACK를 전송할 필요가 있을 수도 있다. 이것은, 특히, 예를 들면, 디바이스 대 디바이스 연결이 안정적으로 확립되면 유용할 수도 있다. 예를 들면, 소정의 식별자를 갖는 디바이스가 소정의 서브프레임에서 응답하는 것을 필요로 하는 애드 혹 네트워크에서 디바이스가 식별자를 할당받았다면, 응답은 디바이스 식별자에 기초할 수도 있다. 다른 실시형태에서는, PS 송신 기회가 다가오고 있는 디바이스가 ACK를 전송할 필요가 있을 수도 있도록 하는 타이밍 기반 관계가 활용될 수도 있다. 다른 예도 가능하다.
마찬가지로, 도 3을 참조하면, NMax=6이고 확인응답이 PS 송신의 5 ms 이후에 발생하는 시스템이 도시된다. 특히, 도 3에서 알 수 있는 바와 같이, 송신 인스턴스(310)에서, 제1 디바이스가 PS를 송신하고 이것은 무선 프레임(312)에서 확인응답된다. 마찬가지로, 송신 인스턴스(314)에서, 제2 디바이스가 PS를 송신하고 이것은 송신 인스턴스(316)에서 확인응답된다. 다른 송신 인스턴스도 송신 및 확인응답에 대해 마찬가지로 사용된다.
12 ms의 탐색 기간 이후에, 도 3의 예에서, 프로세스 자체가 반복한다.
도 2 및 도 3의 상기 실시형태는, 각각의 시간 슬롯이 풀(full)인 것을 가정한다. 다른 실시형태에서, 몇몇 시간 슬롯은, 예를 들면, 새로운 디바이스가 추가되는 것을 허용하기 위해, 점유되지 않을 수도 있다.
두 개의
캐리어
주파수
TDD
시스템
상기에서 도 2 및 도 3을 참조로 설명된 것에 대한 대안적인 실시형태에서, UE는 업링크 및 다운링크 채널 둘 다를 가질 수도 있는데, 이 경우, 채널의 각각은 송신 및 수신 둘 다를 할 수 있다. 이 경우, D2D 통신을 위해, 하나의 캐리어는 PS 신호에 대해 할당될 수도 있고 다른 채널/캐리어는 ACK 신호에 대해 할당될 수도 있다. 이제 도 4를 참조한다.
도 4의 예에서, 시간 슬롯은 1 ms로서 정의되고, PS 및 ACK 채널의 각각에 대해 12개의 시간 슬롯이 도시된다. 시간 슬롯(410)에서, 제1 디바이스가 자신의 PS를 송신하고 이것은 참조부호 412에 의해 도시되는 바와 같이 3 ms 이후에 확인응답된다.
마찬가지로, 제2 시간 슬롯에서, 제2 디바이스가, 도면 부호 420에 의해 나타내어지는 바와 같이 자신의 PS 신호를 송신하는데, 이것은, 그 다음, 시간 슬롯(422)에서 확인응답된다.
시간 슬롯은 점유되거나 또는 점유되지 않을 수 있고 확인응답은 확인응답 채널 상의 대응하는 시간 슬롯에서 3 ms 이후에 발생할 수도 있다.
PS와 ACK 사이의 타이밍 관계는 구현예에 따라 변할 수도 있다. 따라서, PS는 가장 가까운 시간의 ACK에서 반드시 응답을 받지 않는다. 전파 시간 및 송신/수신 프로세싱 시간을 허용하기 위해, PS는 통상적으로 몇몇 시간 슬롯 떨어진 ACK 신호에 의해 확인응답된다. 일 실시형태에서, PS와 ACK 사이의 정확한 타이밍 관계는, LTE 주파수 분할 듀플렉스(frequency division duplex; FDD) 시스템에서 사용되는 4 ms 분리와 같이, 다양한 값을 채택할 수도 있다. 다른 값도 또한 가능하다.
임의의 주어진 시간 슬롯에서, UE는 송신 모드 또는 수신 모드 중 어느 하나에 있을 수 있다. 송신 모드에서, UE는 PS 신호 또는 ACK 신호 중 어느 하나를 송신한다. 마찬가지로, 수신 모드에서, UE는 PS 신호, ACK 신호 및 PS 신호의 충돌을 검출하거나 또는 빈 시간 슬롯을 검출한다. 충돌은 두 개 이상의 UE가 하나의 시간 슬롯에서 PS를 송신할 때 발생할 수도 있다. 또한, UE는 동시에 송신 및 수신할 수 없다는 사실에 기인하여(풀 듀플렉스 UE는 여기서는 가정되지 않는다), 송신 모드에서의 UE는 다른 UE와의 충돌을 검출할 수 없다. 그러나, 수신 모드에 있는 UE는 이러한 충돌을 검출할 수 있다. 일 실시형태에서, 수신 모드에 있는 UE는 아무런 통지도 보내지 않을 것이지만, 송신하고 있는 UE는 충돌을 검출하기 위해 하기에서 설명되는 바와 같은 신뢰도 측정치를 사용할 수도 있다. 다른 실시형태에서, 수신 모드에 있는 UE는 지체없이 송신기 UE에게 통지할 수도 있다.
도 4를 참조로 설명되는 바와 같이 무선 리소스를 PS 시간 슬롯 및 ACK 시간 슬롯으로 구획하는 것에 의해, 본 개시에 따른 피드백 메커니즘이 수용된다. 특히, 일 실시형태에서, 수신 모드에 있는 UE가 충돌하면, 그 UE는 ACK 신호를 되전송하지 않는다. 그러나, 충돌이 없다면, 수신기 UE는 시간의 TACK 지속기간 이후에 ACK 시간 슬롯 상에서 확인응답 신호를 브로드캐스팅할 수도 있다. 송신기 UE는 ACK 신호의 시간 슬롯을 확보하기(securing) 이전에 ACK 신호 수신을 대기해야 한다. 송신기 UE가 ACK를 수신하지 않으면, 이상적인 상황에서는, 충돌이 발생했고 따라서 PS를 재송신할 새로운 시간 슬롯을 찾는다는 것이 가정될 수도 있다. 비이상적인 상황에서는, ACK가 수신되지 않으면, 시간 슬롯에서의 송신 UE에 의한 신뢰도가, 그것이 임계치 아래로 떨어질 때까지 감소될 수도 있는데, 송신 UE는, 그 임계치 지점에서, PS를 재송신할 새로운 시간 슬롯을 찾을 것이다.
프레임 구조 및 신호 디자인
본 개시의 일 실시형태에 따르면, 1차 동기화 신호(PSS)는, 시간/주파수 동기화를 위한 프리앰블 둘 다를 위한 이중 목적을 위해 그리고 또한 1차 존재 신호로서 사용될 수도 있다. 2차 동기화 신호(SSS)는 2차 존재 신호로서 그리고 일시적 디바이스 식별자로서 사용될 수도 있다.
현재의 LTE 표준안에 따르면, 세 개의 가능성이 PSS에 대해 존재한다. 디바이스 대 디바이스 통신의 경우, PSS 값은 디바이스 대 디바이스 클러스터를 식별하기 위해 활용될 수 있다. 특히, 클러스터는, 그들 사이에 직접 링크를 확립할 수 있는 디바이스의 그룹이다. 일 예에서, 그룹의 각각의 디바이스는, 본 개시에 따르면, 그룹의 모든 다른 디바이스의 단일홉 이웃(one-hop neighbor)이다.
LTE에서는 SSS의 168개의 가능한 값이 존재하기 때문에, SSS는, 하기에서 설명되는 바와 같이, 향상된 충돌 검출 기술을 가능하게 하기 위한 일시적 디바이스 식별자의 한 타입으로서 활용될 수도 있다.
각각의 탐색 싸이클에서, 디바이스는 랜덤하게 고른(picked) SSS 코드 워드를 송신할 수도 있다. 탐색 단계 동안, 두 디바이스의 존재 신호 사이에 충돌이 발생하면, 다른 디바이스는 충돌이 발생했다는 것을 결정할 수 있다. 또한, 다른 디바이스는 얼마나 많은 SSS 신호가 충돌했는지를 말할 수 있다.
상기에서 PSS 및 SSS에 대해, 각각, 3개 및 168개의 시퀀스를 설명하지만, 구현예에 따라, 다른 수의 시퀀스가 가능할 수도 있다. 클러스터에 대해 동시에 활성인 주어진 수의 디바이스가, 예를 들면, 40개를 넘을 것으로 예상되지 않을 수도 있을 때, 식별을 위해 168개의 시퀀스를 갖는 대신, 단지 40개가 필요로 될 수도 있다. 더 적은 시퀀스 공간을 사용하는 것은, 수신 디바이스에 대한 프로세싱 부담을 감소시킨다.
단일 디바이스의 시점에서, 프레임 구조는 하기의 도 5와 관련하여 도시되는데, 도 5에서는, 제1 디바이스가 예로서 사용된다. 도 5의 예에서, 제1 디바이스는 제1 서브프레임 상에서 송신한다. 여기서, LTE에서 정의되는 바와 같은 서브프레임이 예로서 사용되는데, 이것은 일반적으로 시간 슬롯과 유사하다. 서브프레임은 참조 번호 510에서 확대되어 도시된다.
제1 서브프레임에서, 처음 3개의 심볼은 제어 영역(512)에 대해 사용된다. 또한, 디바이스가 그 서브프레임에서 송신하고 있기 때문에, PSS(514)뿐만 아니라 랜덤하게 선택된 SSS(516)도 서브프레임에서 송신될 수도 있다.
다음 서브프레임에서, ACK가 요구되면, ACK는 참조 번호 520에 의해 나타내어진 바와 같이 전송될 수도 있다. 도면에서, PS 송신을 갖는 서브프레임 직후의 서브프레임에서 ACK가 송신되는 것으로 도시되지만, ACK 송신에 대한 다른 시간 지연이 가능한데, 예를 들면, PS 송신을 갖는 서브프레임의 4개의 서브프레임 이후에 전송된다는 것이 이해되어야 한다는 것을 유의한다.
따라서, 도 5에 따르면, 주어진 디바이스의 존재 신호는 항상 짝수 번째 서브프레임에서 송신되고, 한편 ACK 응답은 홀수 번째 서브프레임에서 송신된다. 그러나, 상기에서 정의되는 바와 같이, 다른 타이밍 관계도 가능하다.
전체 클러스터의 시점에서, 프레임 구조는 도 6과 관련하여 도시되는데, 도 6에서는, 세 개의 디바이스의 존재 신호 및 대응하는 ACK가 예시된다. 특히, 도 6에서 알 수 있는 바와 같이, 서브프레임(610)은 제1 디바이스가 송신하는 것에 대해 사용되고, 서브프레임(612)은 제2 디바이스가 송신하는 것에 대해 사용되고, 서브프레임(614)은 제3 디바이스가 송신하는 것에 대해 사용된다.
도 5 및 도 6의 1차 존재 신호는 1차 동기화 신호에 대해 정의되는 현존하는 LTE 시퀀스(d(n))의 구성을 재사용할 수 있다. 기지국에 의해 전송되는 PSS와의 혼돈을 방지하기 위해, 디바이스 대 디바이스 통신에 대해 사용될 때 자도프 추(Zadoff-Chu) 루트 시퀀스 인덱스(u)에 대해 상이한 값이 선택될 수도 있다. 일 예는, 디바이스 대 디바이스 통신에 대한 상이한 u 값의 세트로서 대안적인 인덱스 값을 선택하는 것이다. 예를 들면, 40, 41, 23의 인덱스 값이 일 실시형태에서 사용될 수도 있다.
D2D 통신의 목적을 위한 현존하는 PSS 구조의 재사용은 또한, 디바이스가 이러한 현존하는 PSS 신호를 디코딩하도록 적응되고 따라서 디바이스 상의 수신 회로(circuitry)가 동일하게 유지될 수도 있기 때문에, 디바이스 구현예를 최소화하는 이점을 갖는다.
2차 존재 신호의 경우, 이들 신호는 2차 동기화 신호에 대해 정의되는 현존하는 LTE 시퀀스(d(n))의 구성을 재사용할 수도 있다. 기지국의 SSS와의 혼돈을 방지하기 위해, 인덱스(m0, m1)의 값은 디바이스 대 디바이스 통신에 대해 상이하게 선택될 수 있다.
ACK/NACK는 현존하는 LTE 물리적 하이브리드 확인응답 반복 요청(hybrid acknowledgment repeat request; HARQ) 지시자 채널(physical HARQ indicator channel; PHICH) 구성을 재사용하여 송신될 수 있다. 반복 코딩 이후에, 이진 위상 시프트 키잉(binary phase shift keying; BPSK) 변조 심볼(z(0), ..., z(Ms-1))의 블록은 직교 시퀀스로 심볼 단위 승산되고 스크램블되어, 다음 식에 따라 변조 심볼(d(0), ..., d(Msymb-1))의 시퀀스로 나타날 수도 있게 된다:
파라미터(Ms, Msymb, )는 LTE 정의로부터 재사용된다. 셀 고유의 스크램블링 시퀀스(c(i))는 PS에 대한 응답의 목적을 위해 고정된다. 직교 시퀀스(w(i))도 또한 고정된다, 예를 들면, [+1 +1 +1 +1]이다. 또한, PHICH의 디자인 특징으로 인해, 다수의 ACK/NACK가 함께 다중화될 수 있다. 이것은, 다수의 ACK/NACK(또는 다수의 ACK)가 전송되어야 할 때마다 유용할 수 있다. 예를 들면, 이것은: 두 디바이스의 PS(시간 또는 주파수 중 어느 하나에서 분리됨)는 ACK를 전송하기 위한 리소스를 절약하기 위해 동일한 TS에서 응답되면; 또는 초기 네트워크 확립이 행해진 이후 PS 및 데이터 패킷이 함께 존재할 때, PS 및 데이터 패킷 둘 다로 ACK/NACK를 전송할 필요성이 존재하는 경우, 발생할 수도 있다. 이 경우, ACK/NACK(또는 ACK 단독)의 두 개 이상의 세트는, 각각의 세트가 상이한 직교 시퀀스(w(i)), 예를 들면, [+1 +1 +1 +1] 및 [+1 -1 +1 -1]을 사용하여, 송신을 위해 결합될 수 있다. 송신(PS 또는 데이터 패킷)과 PHICH 송신 사이의 매핑을 정의하기 위해 규칙이 특정될 수 있다.
다른 실시형태에서, 디바이스는 신호를 변조하기 위해 OFDM 대신 SC-FDM을 사용할 수도 있다. 이 경우, 프레임 구조는 도 7의 제1 디바이스의 시점에서 나타내어진다. 도 7에서 알 수 있는 바와 같이, PSS(712) 및 SSS(714)는 서브프레임(710) 동안 송신되고, 확인응답(720)은 제어 영역(730)에서 제공될 수도 있다.
따라서, OFDM에 대해 상기에서 나타내어진 동일한 PSS, SSS 디자인이 변경 없이 SC-FDM 송신에서 또한 사용될 수 있다. ACK/NACK, 송신의 물리적 업링크 제어 채널(physical uplink control channel; PUCCH) 타입이 대신 사용될 수도 있다.
디바이스
프로세스
상기는 도 8의 실시형태에 따라 구현될 수도 있다. 특히, 도 8의 프로세스는 블록 810에서 시작하고, 블록 812로 진행하는데, 여기서는 디바이스에 대해 TS가 아직 확립되지 않았는지의 여부를 확인하기 위한 체크가 이루어진다. 확립되지 않았다면, 프로세스는 블록 814로 진행하는데, 여기서는 랜덤 경합 시간(τ)이 선택되고, 그 다음 프로세스는, D+τ로서 지정되는 시구간 동안 디바이스가 경청하는 블록 816으로 진행하는데, 여기서 D는 탐색 기간(프레임 기간) 길이이다. 여기서 "경청하다"는, 이러한 신호가 송신되었는지를 살펴보기 위해, 잠재적인 신호의 검출을 디바이스가 수행하는 기능을 가리킨다. 마찬가지로, 이것은 잠재적인 신호에 대한 디바이스 "체크"로 칭해질 수도 있다.
특히, 어떠한 TS도 아직 확립되지 않은 초기 단계에서, 모든 디바이스는 클러스터 형성을 개시한다. 이 단계에서의 주요 목표는, 디바이스가 PS를 송신할 TS를 찾을 수 있도록, TS 경계를 확립하는 것이다. 도 8의 실시형태에 따르면, 제1의 충돌 없는 PS가 TS 경계를 확립하는데, 이것은, 그 다음, 모든 디바이스가 그들의 TS를 정렬시키기 위한 기준 경계가 된다.
이것은 도 9를 참조로 나타내어진다. 특히, 도 9에서 알 수 있는 바와 같이, 디바이스는 T0으로 라벨링된 디바이스 선택 시간에서 시작하여 탐색 시간(D) 동안 경청하는데, 탐색 시간(D)은 탐색 기간(프레임 기간) + 램덤하게 고른 경합 시간(τ)에 대응한다. 이 경우, τ는 0과 D 사이에서 균등하게 분포되도록 선택된다.
도 9에서 알 수 있는 바와 같이, T0'으로 라벨링되는 시간 T0+D+τ에서, 디바이스는 아직 다른 디바이스로부터의 신호를 검출하지 않았고, 따라서, 디바이스는, 참조부호 910으로 도시되는 바와 같이, TS 경계를 개시하기 위해 PS를 송신한다.
그 다음, 디바이스는 확인응답을 경청한다. PS 송신(910)에 대한 확인응답이 수신되면, 디바이스는 TS 슬롯 경계를 확립하고, 타임라인(920)을 따라 자신의 신호를 시간 T0'+XD에서 주기적으로 계속 송신하는데, 여기서 X는, 참조 번호 922 및 924에 의해 나타내어지는 바와 같이, 양의 정수이다.
역으로, 참조부호 910에서 송신되는 PS에 대한 어떠한 확인응답도 수신되지 않으면, 디바이스는 타임라인(930)을 따른다.
도 9의 실시형태에서, 타임라인(930)은, 길이 D+τ의 새로운 프로빙 기간을 디바이스가 시작하는 실시형태를 나타내는데, 여기서 경합 시간(τ)은 0과 D 사이의 새롭게 고른 랜덤 값이다. 이 경우, 디바이스는 다른 디바이스에 의해 송신되는 PS 신호(932)를 검출하고, 다른 디바이스에 의해 확립되는 TS 슬롯 경계에 자신의 TS를 정렬시킨다. 디바이스는 자신의 프로빙 기간의 나머지 동안 자신의 경청을 포기하고, 자신의 PS를 송신할 비어있는 TS 중 하나를 선택하는 모드로 전환한다. TAck 지속기간 이후에, 디바이스는 PS 신호(932)에 대한 확인응답을 전송한다.
도 8을 다시 참조하면, 상기는 블록 814 및 816과 관련하여 나타내어지는데, 이 경우에서는 디바이스는 시간 D+τ 동안 경청한다.
그 다음, 디바이스는 블록 818에서, 경청 시구간 동안 존재 신호가 수신되었는지 또는 수신되지 않았는지의 여부를 체크한다. 블록 818에서의 체크는 전체 경청 시간 동안 연속적으로 수행되어야 할 수도 있다.
블록 818로부터, PS가 수신되면, 프로세스는 블록 820으로 진행하고 TS 경계가 확립된다.
역으로, 블록 818로부터, 어떠한 PS도 수신되지 않으면, 프로세스는 블록 822로 진행하는데, 여기서는 TS 경계를 확립하기 위해 디바이스 그 자체가 자신의 PS를 송신한다. 그 다음, 프로세스는 블록 830으로 진행하는데, 여기서는 확인응답 시간이 이미 발생했는지의 여부를 결정하기 위한 체크가 이루어진다. 이미 발생하지 않았다면, 프로세스는 블록 832로 진행하는데, 여기서는, 블록 830에서, 확인응답 시간이 도달했다는 것이 발견될 때까지, 디바이스는 유휴(idle)로 유지된다. 이 지점에서, 프로세스는 블록 834로 진행하는데, 여기서는 확인응답이 수신되었는지의 여부를 결정하기 위한 체크가 이루어진다. 확인응답이 수신되었다면, 프로세스는 블록 836으로 진행하는데, 여기서는 TS 경계가 확립된다.
블록 822에서의 PS의 또는 도 9의 메시지(910)와 관련한 브로드캐스트는, PSS 및/또는 SSS 외에, 또는 PSS 및/또는 SSS와 동시에, 시스템 프레임 번호(system frame number; SFN)를 포함할 수도 있다. SFN은, 경과한 탐색 기간(프레임)의 개수를 추적하기 위해 브로드캐스트될 수도 있는데, 이 경우 SFN은 제1 송신에 대해 0으로 설정될 수 있다.
TS 경계를 확립한 이후, TS 경계를 확립한 디바이스는 모든 탐색 기간의 제1 TS 상에서 PS 및 SFN을 주기적으로 브로드캐스트할 수도 있다. SFN은 각각의 프레임에 대해 1만큼 증분될 수도 있다.
그러나, 디바이스가 응답으로 ACK를 수신하지 않으면, 다른 디바이스와의 PS 송신의 부분적인 또는 완전한 충돌이 존재했거나, 또는 근처에 다른 디바이스가 없었다고 가정한다. 따라서, TS 경계는 확립되지 않으며, 디바이스는, 어떤 다른 디바이스가 성공적으로 TS 경계를 확립했는지를 살펴 보기 위해 채널의 프로빙을 다시 시작해야 한다.
랜덤 경합 시간(τ)은 다른 디바이스와의 충돌을 방지하기 위해 각각의 TS 경계 생성 시도에 대해 상이할 수도 있다.
몇몇 실시형태에서, 디바이스가 K번의 시도 이후 TS 경계를 확립할 수 없거나 또는 찾을 수 없으면, 디바이스는 D2D 네트워크를 확립할 다른 디바이스가 커버리지 영역 내에 존재하지 않는다고 결론내리면서 송신을 중지한다.
일단 TS 경계가 확립되면, 디바이스는 송신할 TS를 찾을 수 있다. 따라서, 다시 도 8을 참조하면, 블록 820에 의해 나타내어지는 바와 같이 PS가 수신되고 TS 경계가 존재하면, 디바이스는 블록 840으로 진행하고 자신의 PS를 송신할 새로운 TS를 결정하기 위해 하나의 탐색 싸이클 동안 경청한다. 따라서, 디바이스는 경청할 수 있고 자신이 임의의 빈 TS(즉, 비어 있는 TS)를 보고 있는지의 여부를 결정한다. 블록 842에서, 임의의 비어 있는 TS가 존재하는지를 결정하기 위한 체크가 이루어지고, 존재하지 않는다면, 프로세스는 클러스터가 가득 차 있기 때문에 블록 844에서 종료한다.
역으로, 블록 842에서, 비어있는 TS가 검출되면, 디바이스는, 블록 846으로 나타내어지는 바와 같이, 비어있는 TS를 랜덤하게 고를 수 있다. 블록 834에서 어떠한 ACK도 수신되지 않거나, 또는 블록 836 또는 블록 846으로부터, 프로세스는 블록 850으로 진행하는데, 여기서는 디바이스가 액션을 위한 다음 TS로 이동한다.
블록 850으로부터, 프로세스는 블록 852로 진행한다. 마찬가지로, 블록 812의 체크에서 나타내어지는 바와 같이 TS가 이전에 확립되었다면, 프로세스는 바로 블록 852로 진행할 수도 있다. 블록 852에서, 현재의 TS가 디바이스에 대한 탐색 TS인지의 여부를 결정하기 위한 체크가 이루어진다. 특히, 블록 852에서의 체크는, 디바이스가 PS를 송신하는 데 또는 ACK를 수신하는 데 TS가 사용되는지의 여부를 결정한다. 만약 TS가 사용된다면, 프로세스는 블록 854로 진행하는데, 여기서는 TS가, PS를 송신하기 위해 사용되는 시간 슬롯인지의 여부를 결정하기 위한 체크가 이루어진다.
블록 854로부터, TS가 PS를 송신하기 위한 것이라면, 프로세스는 블록 856으로 진행하는데, 여기서는 PS가 송신되고, 그 다음, 프로세스는 블록 850으로 진행하는데, 여기서는 디바이스가 다음 TS로 이동한다.
역으로, 블록 854로부터, TS가 PS를 송신하기 위해 사용되는 시간 슬롯이 아니라면, ACK가 블록 860에서 수신되었는지의 여부를 결정하기 위한 체크가 이루어진다. ACK가 수신되면, 프로세스는 블록 850으로 진행하는데, 여기서는 프로세스는 다음 TS로 이동한다. 그렇지 않고, 어떠한 ACK도 수신되지 않으면, 디바이스는 충돌을 가졌을 수도 있고 프로세스는 블록 862로 진행하는데, 여기서는 디바이스가 새로운 TS를 고르기 위해 하나의 싸이클 동안 경청한다. 그 다음, 프로세스는 블록 842로 진행할 수도 있는데, 여기서는, 임의의 비어있는 TS가 존재하는지를 결정하기 위한 체크가 이루어지고, 비어있는 TS가 존재하지 않는다면, 프로세스는 블록 844에서 종료한다. 비어있는 TS가 존재한다면, 블록 846에서 디바이스는 비어있는 TS를 랜덤하게 고르고 그 다음 다시 블록 850으로 돌아가는데, 여기서는 프로세스가 다음 TS로 진행한다.
블록 852로부터, TS가, 디바이스가 PS를 송신하는 데 또는 ACK를 수신하는 데 지정되는 TS가 아니면, 프로세스는 블록 870으로 진행하는데, 여기서는 PS가 그 TS에서 수신되었는지의 여부를 결정하기 위한 체크가 이루어진다. PS가 그 TS에서 수신되었다면, 블록 872에서 나타내어지는 바와 같이, 충돌이 존재하는지의 여부를 결정하기 위한 체크가 이루어진다. 충돌이 존재하면, 블록 850에서 프로세스는 다음 TS로 진행한다.
블록 872에서 어떠한 충돌도 발견되지 않으면, 프로세스는 블록 874로 진행하는데, 여기서는 AKC가 송신된다. 알 수 있는 바와 같이, 블록 874에서의 ACK 송신은, 상기에서 제공되는 바와 같이 제공될 때 ACK 타이밍을 보장하기 위해, 미래의 여러 서브프레임에서 행해질 수도 있다.
따라서, 상기에 따르면, 디바이스가 프로빙 기간에 존재 신호를 검출하면, 디바이스는 TS 경계가 확립되었다는 것을 인지하고, 그 다음, 디바이스는, 기존의(pre-existing) 존재 신호를 검출하기 위해 채널을 경청할 필요가 있다. 프로빙 기간은 탐색 싸이클 기간의 1 이상의 정수 배일 수 있으며, 각각의 디바이스가 각각의 탐색 싸이클에서 송신하면, 단지 하나의 싸이클이 경청될 필요가 있다. 그러나, 상기에서 나타내어진 바와 같이, 다수의 싸이클마다 1회 송신하면, 비어있는 TS를 보장하기 위해 그 배수를 경청할 필요가 있다.
TS 경계에 대한 그리고 TS에 대한 경청은, 디바이스가 각각의 탐색 기간에서의 시간 슬롯 구획화와 정렬하는 것 및 모든 점유된 그리고 이용가능한 시간 슬롯을 유도하는 것을 허용한다. 점유되는 시간 슬롯의 수는, 그 수의 UE가 이러한 탐색 기간에서 이미 확립되어 있다는 것을 의미한다.
PS 송신을 시도할 시간 슬롯의 선택은, 네트워크에 참여하려고 하고 있는 두 개의 디바이스가 특정 시간 슬롯을 선택하는 것에 의해 충돌하는 것을 방지하기 위해, 이용가능한 TS 내에서 랜덤할 수도 있다. 다시 말하면, 이용가능한 나머지 시간 슬롯 중에서, 디바이스는, 충돌 방지의 가능성을 향상시키기 위해 이용가능한 시간 슬롯 중 하나를 임의적으로 고른다.
도 8의 프로세스, 특히 블록 874에서의 액션은, 디바이스가 ACK를 송신하는 것 또는 아무 것도 송신하지 않는 것 중 어느 하나를 허용한다. 따라서, ACK 및 불연속 송신(discontinuous transmission; DTX)의 두 상태가 존재한다.
대안적인 실시형태에서, 세 개의 가능한 응답이 이용가능하다. 이 경우, ACK, NACK 또는 DTX가 사용될 수도 있다. 그러나, 이러한 경우, 다른 디바이스가 특정 시간 슬롯에서 송신할 것인지 아닌지의 여부를 한 디바이스가 모르기 때문에, 어떤 PS 신호도 검출되지 않으면, 예를 들면, 채널 상태로 인해 아무도 PS를 송신하지 않았는지 또는 송신된 PS가 적절히 수신되지 않았는지, 또는 두 개의 디바이스가 동시에 PS를 송신하여 충돌했는지의 여부를 수신 디바이스가 말할 수 있는 방법이 없을 수도 있고, 따라서 간섭을 생성하게 된다. 이 경우, NACK를 전송하지 않는 것이 시스템 성능을 향상시킬 수도 있다.
이제, 도 8의 프로세스에 따른 TS의 선택을 나타내는 도 10을 참조한다.
특히, 디바이스는 길이 D의 프로빙 기간(1010)을 갖는데, 그 기간에서 디바이스는 PS 신호(1012 및 1014)를 검출한다.
프로빙 기간(1010)의 끝에서, 디바이스는 비어있는 TS를 랜덤하게 고르고 참조부호 1020에 의해 나타내어지는 바와 같은 선택된 TS에서 송신한다. 그 다음, 디바이스는 미리 결정된 지속기간(TAck) 이후에 ACK를 경청하고 ACK가 수신되면 디바이스는 타임라인(1030)을 따라 진행하는데, 타임라인(1030)에서 동일한 TS가 디바이스 대해 선택되고 디바이스는 각각의 탐색 기간 동안 그 TS에서 계속 송신한다.
참조부호 1020에서 송신되는 대응하는 PS에 대해 TAck 지속기간 이후에 아무런 ACK도 수신되지 않으면, 디바이스는 타임라인(1040)을 따라 진행한다. 이 타임라인 상에서는, 길이 D의 새로운 프로빙 기간(1042)이 시작되고 프로빙 기간의 끝에서 비어있는 TS가 랜덤하게 선택된다. 이 경우, 송신(1044)이 이루어질 수도 있고 ACK가 경청될 수도 있다. TAck 지속기간 이후에 ACK가 수신되면, 디바이스는 TS를 확보하고, 각각의 후속하는 탐색 기간 동안 TS에서 자신의 PS를 계속 송신한다.
도 11을 참조하면, UE가 탐색에 대한 자기 고유의 시간 슬롯을 확보하는 안정 상태까지 시스템이 수렴하는 데 얼마나 오래 걸리는지를 결정하기 위해, 디바이스의 수 및 싸이클의 평균 수와 관련하여 상기의 시뮬레이션이 도시된다. 시뮬레이션에서는, 모든 UE가 네트워크의 다른 UE에 대해 직접 링크를 가지며, 따라서, 완전히 연결된 클러스터를 생성한다는 것이 가정된다. 시뮬레이션은, 경로 손실 및 디코딩 에러를 링크 실패율로 추상화하고, 실패는 0인 것으로 가정된다. 링크 실패가 0이 아닌 다른 시뮬레이션은 하기에서 설명된다.
네 개의 시나리오가 시뮬레이팅되었으며, 즉, Nmax가 10, 20, 50 및 100이다. NMax의 각각의 값에 대해, 네트워크는 2 내지 NMax의 다양한 수의 디바이스와 함께 시뮬레이팅되었다. 각각의 값에 대해 다수 회 이루어졌고 수렴을 위해 평균이 취해졌다. 시뮬레이션에서, 모든 UE는 최초 비동기화되어 있었다. 네트워크 수렴은, 모든 디바이스가 동일한 TS 경계에 대해 정렬된 것 및 각각의 디바이스가 자신의 PS를 송신할 경합이 없는 시간 슬롯을 확보한 것을 의미한다.
도 11에서 알 수 있는 바와 같이, 디바이스의 수의 증가는 수렴에 도달하는 데 필요한 싸이클의 수의 증가로 이어진다. 그러나, 시간 슬롯의 전체 개수에 대한 디바이스의 수의 비율이 낮을 때에는 증가는 선형적이다. 시간 슬롯의 전체 개수에 대한 디바이스의 총 수의 비율이 1에 가까워짐에 따라, 증가는 보다 지수적인데, 그 이유는 디바이스 간의 PS 충돌의 가능성이 또한 지수적으로 증가하기 때문이다. 또한, 시간 슬롯의 총 수에 대한 디바이스의 총 수의 고정된 비율의 경우, 네트워크 수렴 시간은, 더 많은 디바이스를 갖는 네트워크에 대해서 더 길다는 것을 알 수 있다. 이것은, 수렴에 대해 더 큰 네트워크가 더 긴 시간을 요구한다는 것을 의미한다.
링크 실패가 있는 네트워크
상기 실시형태는, 네트워크가 완전히 연결되어 있었다는 가정과 함께 네트워크가 이상적인 상황 하에서 동작하고 있다는 것을 가정하였다. 다시 말하면, 상기에서는, 한 디바이스에서 네트워크의 임의의 다른 디바이스로의 에러가 없는 직접 링크를 가정하였다.
본 개시의 일 실시형태에 따르면, 상기 가정은, 링크가 소정의 실패율을 갖는 것을 허용하는 것에 의해 완화된다. 이것은, PS 신호가 송신될 때, PS 신호가 네트워크의 어떤 디바이스에 의해 디코딩되지 못할 수도 있다는 가능성이 존재한다는 것을 의미한다.
에러가 없는 직접 링크의 가정의 제거는, 두 개의 주요 이슈로 이어진다. 첫 번째는, 네트워크에서의 다수의 TS 경계(다수의 리더 디바이스)이고, 두 번째는, 확률론적 은닉 노드 문제이다. 본 실시형태에 따르면 도 8의 프로세스는 이들 이슈를 수용하도록 수정된다.
또한, 다시 디자인된 프로세스가 AC 링크 상에서의 링크 실패에 강건하면, 다시 디자인된 프로세스는 또한, 신호 중첩에 기인한 ACK 전체 무효화(total cancelation)의 발생에 대해 충분히 강건할 수도 있다.
상기에 따른 첫 번째 이슈는 링크 실패로 인한 다수의 TS 경계이다. 이 이슈는, TS 경계가 확립되고 있을 때 발생한다. 송신하고 있는 디바이스가, 그 존재 신호가 TS 경계를 확립하기 위한 기준으로서 사용되는 첫 번째 디바이스이면, 이러한 신호를 송신하는 디바이스는 리딩 디바이스 또는 리더로 칭해진다. 그 첫 번째 송신 동안 링크 실패가 발생할 수도 있기 때문에, 몇몇 디바이스는 PS 신호를 수신하지 않을 수도 있다. 결과적으로, 이들 디바이스 중 하나는 디바이스의 서브셋 사이에서 별개의 TS 경계를 확립하기 위해 그 자신의 PS 신호를 송신할 수도 있고, 따라서 제2 리더가 된다.
이제 도 12를 참조한다. 도 12에서 알 수 있는 바와 같이, 제1 리더(1210)는 여러 디바이스, 예컨대 디바이스(1212, 1214, 1216, 1218, 1220 및 1222) 사이에서 제1 TS 경계를 확립한다.
제2 디바이스(1230)는 리더(1210)로부터의 TS 경계 확립을 놓치고 따라서 TS 경계를 확립하기 위한 PS 신호를 송신한다. 디바이스(1232 및 1234)도 또한 디바이스(1210)로부터의 진짜(original) TS 경계를 놓쳤고 따라서 디바이스(1230)에 의해 제공되는 바와 같은 TS 경계를 사용한다.
클러스터 또는 네트워크 내에서 두 개의 TS 경계를 갖는 것을 극복하기 위해, 한 옵션은, TS 경계의 오정렬이 탐색되면 네트워크를 리셋하는 것이다. 이것은, 디바이스가 TS 경계 오정렬을 경험하고 있을 때를 다른 디바이스에게 통지할 수도 있도록 PS 채널 상에서 RESET 신호를 지정하는 것에 의해 행해질 수 있다. 일 실시형태에서, RESET 신호는, 예를 들면, 특수 SSS 시퀀스를 갖는 PS 신호일 수 있을 것이다.
도 12의 예에서, 디바이스(1222)는 리더(1210) 및 리더(1230) 둘 다로부터의 신호를 검출하고, 둘 사이에 TS 경계 오정렬이 존재한다는 것을 인식한다. 그 후, 디바이스(1222)는 리셋 신호를 송신하고 계속해서 자기 자신을 리셋한다.
마찬가지로, 디바이스(1234)는, 디바이스(1234)가 리더(1210) 하에서의 디바이스에 대한 PS 신호를 수신할 때 TS 경계 오정렬을 검출할 수 있고, 디바이스(1234)는 또한, 하나의 싸이클의 지속기간 동안 자신의 PS 채널 상으로 리셋 신호를 송신할 수도 있다.
몇몇 경우에서, 리셋은 특정 네트워크 상에서 수행될 수도 있다. 예를 들면, 더 큰 네트워크와의 수렴 이슈를 방지하기 위해, 더 큰 네트워크보다는 더 작은 네트워크가 리셋될 수도 있다. 다른 경우에서, 더 높은 우선 순위 데이터 페이로드를 갖는 그룹 또는 네트워크는, TS 오정렬을 갖는 다른 네트워크에게 그 자신을 대신 리셋할 것을 요청할 수도 있다. 다른 경우에서, 양 네트워크는 전체 프로세스를 다시 시작하기 위해 그 자신을 리셋할 수도 있다. 일단 리셋이 수신되면, 도 14의 프로세스는 재시작될 수도 있고 도 15의 프로세스는 새로운 TS 경계를 재확립하기 위해 사용될 수도 있다.
상기에서 설명되는 랜덤한 링크 실패에 의해 야기되는 두 번째 이슈는, 확률론적 은닉 노드 문제에 관한 것이다. 이러한 은닉 노드 문제에 대해 두 개의 시나리오가 존재한다. 첫 번째는, 두 개의 디바이스가 그들의 PS를 전송하기 위한 바로 첫 번째 시도에서 동일한 TS를 고를 때 발생한다. 두 번째는, 하나의 디바이스가 시간 슬롯 상에서 자신의 PS를 이미 송신하고 있지만, 링크 실패로 인해, 새로운 디바이스가 현존하는 PS를 검출하지 않을 수도 있고 자기 자신의 PS를 송신하기 위해 동일한 TS를 고를 수도 있을 때, 발생한다.
양 시나리오의 결과는, 제1 디바이스 및 제2 디바이스가 충돌하지만, 충돌은 네트워크에서의 랜덤한 링크 실패로 인해 절대 해결되지 않을 수도 있다. 구체적으로는, 제1 디바이스(1310) 및 제2 디바이스(1312) 둘 다가 송신하는 도 13과 관련하여 도시되는 바와 같이, 송신기 중 하나로부터의 신호만을 수신하는 몇몇 디바이스 예컨대 디바이스(1316) 및 디바이스(1318)가 존재한다. 다시 말하면, 도 13의 예에서, 디바이스(1316)는 디바이스(1310)로부터의 신호만을 수신할 수도 있고 디바이스(1318)는 디바이스(1312)로부터의 신호만을 수신할 수도 있다.
네트워크의 다른 디바이스가 디바이스(1310) 및 디바이스(1312)의 신호 간의 충돌을 경험하고 ACK를 전송하지 않지만, 디바이스(1316)는 디바이스(1310)로 ACK를 전송할 것인데, 디바이스(1316)가 디바이스(1310)로부터의 신호만을 수신했기 때문이다. 마찬가지로, 디바이스(1318)가 디바이스(1312)로부터의 신호만을 수신했기 때문에, 디바이스(1318)는 ACK를 디바이스(1312)로 전송할 것이다.
디바이스(1310 및 1312)는 ACK 신호를 수신할 것이고 그들이 TS를 확보했다고 여길 것이다. 디바이스(1310 및 1312)는 충돌에 관해서는 전혀 알지 못할 것이고 따라서 충돌을 방지하기 위해 새로운 TS로 절대 점프하지 않을 것이다.
상기의 사실을 극복하기 위해, 하나의 솔루션은, 무선 링크가 독립적인 준정적 페이딩(quasi-static fading)을 겪는다는 관측에 기초하는데, 이로 인해 임의의 수신 디바이스는 다수의 싸이클에 걸쳐 정확한 PS 신호, 손상된 PS 신호 및 누락 신호의 혼합을 겪게 될 것이다. PS 신호 충돌 검출의 향상된 성능은 2차 존재 신호로서의 SSS 신호의 사용에 의해 가능하게 된다. 두 개 이상의 SSS 신호가 결합되면, 이러한 신호는 검출될 수 있고 동일한 시간 슬롯 상에서의 다수의 디바이스의 존재의 고려가 이루어질 수 있다. 이것에 기초하여, 본 개시의 일 실시형태는, UE가 자신의 TS에 머물러야 하는지 또는 다른 TS로 이동해야 하는지의 여부를 결정하기 위해, "TS 신뢰도 레벨"을 제공한다.
일 실시형태에서, TS 신뢰도 레벨은 송신기 및 수신기 양 측의 시간 슬롯에 대해 지정될 수도 있다. 일 실시형태에 따르면, 수신기 측에서, TS의 수신 TS 신뢰도 레벨은, TS에서 단일의 PS 신호가 수신될 때, 한 단위만큼 증가된다. TS의 수신 TS 신뢰도 레벨은, 그 TS에서 하나보다 많은 신호가 수신되거나 또는 하나보다 많은 SSS 신호가 검출될 때, 한 단위만큼 감소된다. TS의 수신 TS 신뢰도 레벨이 미리 정의된 수신 TS 신뢰도 임계치보다 더 높으면, 그 TS에서의 정확한 PS 신호의 수신시 ACK 신호는 전송될 것이다.
마찬가지로, 송신기 측에서, TS의 송신 TS 신뢰도 레벨은, 그 TS에서 송신되는 PS에 대해 ACK가 수신되면 하나의 단위만큼 증가된다. 마찬가지로, TS의 송신 TS 신뢰도 레벨은, 그 TS 상에서 송신되는 PS에 대해 ACK가 수신되지 않으면, 하나의 단위만큼 감소된다. 송신 신뢰도 레벨이 미리 정의된 임계치 미만이면, 송신기 UE는, 새로운 TS를 검색하러 이동하기 이전에, 자신의 확보된 TS를 포기한다.
여러 탐색 기간의 윈도우에 걸쳐, 주어진 TS에서 수신되는 PS 신호의 횟수가, PS 신호가 누락하고 있는 횟수보다 상당히 적으면, 수신 디바이스는 그 TS 상에서 충돌이 발생했음이 틀림없다는 것을 암시적으로 추론할 수 있다. 예를 들면, 링크 실패율이 10%이고 두 개의 디바이스가 충돌하면, 수신 디바이스는, 시간의 81%에 대해서는 두 충돌하는 디바이스의 결합된 PS 신호를, 18%에 대해서는 충돌하는 디바이스 중 어느 하나로부터 PS 신호를, 그리고 1%에 대해서는 PS 신호 없음을 검출할 것이다. 이와 같이, 이 확률론적 은닉 노드 시나리오에서는, 모든 수신기 노드는, 그들의 수신 신뢰도 레벨이 시간과 함께 감소하면서, 궁극적으로 높은 확률로 충돌을 검출할 것이다. 따라서, 이러한 디바이스는 충돌하는 송신기로의 ACK 신호 되전송을 중지할 것이다. 여러 고려 기간 이후에, 충돌하는 송신기는 충분한 ACK 신호를 수신하지 않을 것이고, 그들의 확보된 시간 슬롯에 대한 낮은 송신 TS 신뢰로 나타나게 될 것이다. 궁극적으로, 이러한 디바이스는 송신을 위한 새로운 랜덤 TS를 선택하도록 이동할 것이다.
디바이스가 무선 링크 실패만을 경험하고 충돌을 경험하지 않으면, 수신되는 PS 신호의 수는 누락된 PS 신호의 수보다 훨씬 더 많다. 예를 들면, 링크 실패가 10%이면, 수신 디바이스는 시간의 90% 동안 PS 신호를 그리고 시간의 10% 동안 PS 신호 없음을 검출할 것이다. 따라서, 수신 TS 신뢰도 레벨은, 몇몇 누락하는 PS 신호가 존재하는 경우에도, 임의의 수신기 디바이스가 송신기로 ACK 신호를 되전송할만큼 충분히 크게 유지된다. 이와 같이, 본 실시형태는 링크 실패에 대해 강건하다.
상기의 것은, 예를 들면, 도 14의 프로세스를 참조로 구현될 수도 있다. 도 14에서 알 수 있는 바와 같이, 블록 1410에서 프로세스가 시작하거나 리셋하고, 블록 1412로 진행하는데, 여기서는 리셋이 수신되었는지의 여부를 결정하는 체크가 이루어진다. 수신되었다면, 프로세스는 블록 1410으로 진행하는데, 여기서는 리셋이 발생하고 그 다음 블록 1412로 되돌아간다.
리셋이 수신되지 않았다면, 프로세스는 블록 1420으로 진행하여, TS 경계가 확립되었는지 또는 확립되지 않았는지의 여부를 결정한다. 확립되지 않았다면, 프로세스는 경계 확립 블록 1430으로 진행한다. 경계 확립 블록의 일 예는 도 15와 관련하여 발견된다.
특히, 도 15를 참조하면, 프로세스는 블록 1510에 진입하고 블록 1512로 진행하는데, 여기서는 랜덤 경합 시간(τ)을 고르게 된다. 그 다음, 프로세스는 블록 1514으로 진행하는데, 여기서는 시간 D+τ까지 디바이스가 경청한다.
블록 1514로부터, 프로세스는 블록 1516으로 진행하는데, 여기서는 프로빙 시간(D+τ) 동안 PS가 수신되었는지의 여부를 결정하기 위한 체크가 이루어진다. 기술분야에 있는 자가 알 수 있는 바와 같이, 블록 1516에서의 체크는 지속적인 체크(ongoing check)이며 D+τ의 시간 간격 동안 임의의 시간에 발생할 수 있을 것이며 D+τ 시간 간격의 끝까지 대기할 필요가 없다.
블록 1516으로부터, PS가 수신되면, 프로세스는 블록 1520으로 진행하는데, 여기서는 TS 경계가 확립된다. 그 다음, 프로세스는 블록 1522로 진행하는데, 여기서는 비어있는 TS를 고르기 위해 하나의 탐색 싸이클 동안 경청하고, 그 다음, 프로세스는 블록 1524로 진행하는데, 여기서는 임의의 비어있는 TS가 발견되었는지의 여부를 결정하기 위한 체크가 이루어진다. 블록 1524에서 비어있는 TS가 발견되지 않았다면, 프로세스는 블록 1530으로 진행하여 종료하는데, 디바이스가 통신하는 데 이용할 수 있는 비어있는 TS가 없기 때문이다.
역으로, 비어있는 TS가 발견되면, 디바이스는 블록 1532로 진행하는데, 여기서는, 비어있는 TS가 랜덤하게 선택되고, 다음에, 프로세스는 블록 1560으로 진행하는데, 여기서는 프로세스는 경계 확립 블록을 벗어난다.
블록 1516으로부터, 프로빙 시간 간격 동안 PS가 수신되지 않으면, 프로세스는 블록 1540으로 진행하는데, 여기서는 TS 경계를 개시하기 위해 디바이스 자체가 PS를 송신한다.
그 다음, 프로세스는 블록 1542로 진행하는데, 여기서는 확인응답 시간이 이미 도달되었는지의 여부를 결정하기 위한 체크가 이루어진다. 확인응답 시간이 도달되지 않았다면, 프로세스는 유휴 블록 1544로 진행하고 그 다음 블록 1542로 다시 진행한다.
일단 확인응답 시간이 도달했다면, 프로세스는 블록 1550으로 진행하고 ACK가 수신되는지 또는 아닌지의 여부를 체크한다. ACK가 수신된다면, 프로세스는 블록 1552로 진행하는데, 여기서는 TS 경계가 확립된다.
이제, 블록 1550으로부터, ACK가 수신되지 않는다면, 또는 블록 1552 이후, 프로세스는 블록 1560으로 진행하는데, 여기서는 TS 경계 확립 블록을 벗어난다.
기술분야에 있는 자가 알 수 있는 바와 같이, 블록 1550에서 ACK가 수신되지 않으면 그 시간에 TS 경계 확립은 존재하지 않으며, 프로세스는 도 14의 블록 1430으로 다시 진행할 것이다.
도 14를 다시 참조하면, 블록 1430에서 경계 확립을 벗어 났다면, 프로세스는 블록 1460으로 진행하는데, 여기서는 디바이스가 다음 TS로 진행한다. 블록 1460으로부터, 리셋이 수신되었는지 또는 아닌지를 체크하기 위해, 프로세스는 다시 블록 1412로 돌아간다.
블록 1420에서의 체크 동안, TS 경계가 확립되었다면, 프로세스는 블록 1440으로 진행하는데, 여기서는, 현재의 TS가 송신 PS 시간 슬롯 또는 수신 ACK 시간 슬롯(즉, 디바이스에 대한 탐색 시간 슬롯) 중 어느 하나인지의 여부를 결정하기 위한 체크가 이루어진다. 어느 하나에 대한 것이라면, 프로세스는, PS 송신 블록인 블록 1442로 진행한다. PS 송신 블록의 일 예는 도 16과 관련하여 도시된다.
특히, 도 16을 참조하면, 프로세스는 블록 1610에서 시작하여 블록 1612로 진행하는데, 여기서는 TS가 PS 송신을 위해 사용되고 있는지의 여부를 결정하기 위한 체크가 이루어진다. PS 송신을 위해 사용되고 있다면, 프로세스는 블록 1620으로 진행하는데, 여기서는 PS가 송신되고, 그 다음, 프로세스는 블록 1630으로 진행하는데, 여기서는 PS 송신 블록을 벗어난다.
TS가 블록 1612에서 결정되는 바와 같이 PS를 송신하기 위한 것이 아니면, 프로세스는 블록 1640으로 진행하는데, 여기서는 ACK가 디바이스에서 수신되었는지의 여부를 결정하기 위한 체크가 이루어진다. 수신되었다면, 프로세스는 블록 1642로 진행하고 송신 TS 신뢰도는 하나의 단위만큼 증가된다. 역으로, ACK가 수신되지 않았다면, 프로세스는 블록 1644로 진행하는데, 여기서는 송신 TS 신뢰도가 하나의 단위만큼 감소된다.
그 다음, 프로세스는 블록 1642 또는 1644로부터 블록 1650으로 진행하는데, 여기서는 송신 TS 신뢰도가 미리 정의된 임계치 미만인지의 여부를 결정하기 위한 체크가 이루어진다. 송신 TS 신뢰도가 임계치 미만이 아니면, 디바이스는 TS 선택에 관하여 확신하고 프로세스는 블록 1630으로 다시 진행하고 PS 송신 블록을 벗어난다.
역으로, 송신 TS 신뢰도가 임계치 아래에 있으면, 프로세스는 블록 1650으로부터 블록 1652로 진행하는데, 여기서는 디바이스가 새로운 비어있는 TS를 고르기 위해 하나의 탐색 싸이클 동안 경청한다.
그 다음, 프로세스는 블록 1660으로 진행하는데, 여기서는 임의의 비어있는 TS가 존재하는지의 여부를 결정하기 위한 체크가 이루어진다. 존재하지 않는다면, 디바이스는 블록 1662로 진행하고, 통신에 이용가능한 비어있는 TS가 존재하지 않기 때문에 프로세스를 종료한다.
역으로, 비어있는 TS가 존재한다면, 프로세스는 블록 1660으로부터 블록 1664로 진행하는데, 여기서는 이용가능한 비어있는 TS로부터 새로운 TS를 랜덤하게 고른다. 블록 1664로부터, 프로세스는 블록 1630으로 진행하여 PS 송신 블록을 벗어난다.
도 14를 다시 참조하면, 일단 프로세스가 PS 송신 블록을 벗어나면, 프로세스는 블록 1460으로 진행하는데, 여기서는 디바이스는 다음 TS로 이동하고, 그 다음, 다시 블록 1412로 돌아가서 리셋이 수신되었는지의 여부를 체크한다.
블록 1440으로부터, TS가 PS를 송신하기 위해 또는 ACK를 수신하기 위해 사용된 TS가 아니라면, 프로세스는 블록 1450으로 진행하는데, 블록 1450은 ACK 송신 블록이다. 이제, ACK 송신 블록의 일 예를 도시하는 도 17을 참조한다.
ACK 송신 블록은 블록 1710에서 진입하고 프로세스는 블록 1712로 진행하는데, 여기서는 TS에서 PS가 수신되었는지의 여부를 결정하기 위한 체크가 이루어진다. PS가 수신되었다면, 프로세스는 블록 1720으로 진행하는데, 여기서는 TS가 오정렬되어 있는지의 여부를 결정하기 위한 체크가 이루어진다. TS의 오정렬은, 예를 들면, 다수의 PS 또는 디바이스에 대해 확립되는 TS와는 상이한 TS 경계를 갖는 PS를 수신하는 것에 의해 검출될 수도 있다.
오정렬이 있다면, 프로세스는 블록 1720으로부터 블록 1722로 진행한다. 블록 1722에서, 디바이스에 의해 RESET이 송신되고, 그 다음, 프로세스는 블록 1724로 진행하는데, 여기서는 디바이스 자체가 자신의 TS 경계를 리셋한다.
블록 1724로부터, 프로세스는 블록 1730으로 진행하여 ACK 송신 블록을 벗어난다.
블록 1720의 체크에서 결정되는 바와 같이, TS가 오정렬되지 않은 경우, 프로세스는 블록 1740으로 진행하는데, 여기서는 TS에서 충돌이 검출되었는지의 여부를 결정하기 위한 체크가 이루어진다. 충돌이 검출되면, 프로세스는 블록 1742로 진행하는데, 여기서는 수신 TS 신뢰도가 하나의 단위만큼 감소되고, 그 다음, 프로세스는 블록 1730으로 진행하여 ACK 송신 블록을 벗어난다.
충돌이 검출되지 않으면, 프로세스는 블록 1744로 진행하는데, 여기서는 수신 TS 신뢰도가 하나의 단위만큼 증가되고, 그 다음, 프로세스는 블록 1750으로 진행하는데, 여기서는 수신 TS 신뢰도가 미리 정의된 임계치보다 더 높은지의 여부를 결정하기 위한 체크가 이루어진다. 수신 TS 신뢰도가 임계치보다 높지 않다면, 프로세스는 블록 1730으로 진행하여 ACK 송신 블록을 벗어난다.
블록 1750에서 결정되는 바와 같이, 수신 TS 신뢰도가 임계치보다 높으면, 프로세스는 블록 1752로 진행하는데, 여기서는 디바이스가 AKC를 송신하고 자신의 TS 스테이터스(status)를 1로 설정한다.
블록 1752로부터, 프로세스는 블록 1730으로 진행하여 ACK 송신 블록을 벗어난다.
PS가 시간 슬롯에서 수신되지 않으면, 프로세스는 블록 1712로부터 블록 1760으로 진행하는데, 여기서는 TS 스테이터스가 1인지의 여부를 결정하기 위한 체크가 이루어진다. 1이 아니라면, 프로세스는 블록 1730으로 진행하여 ACK 송신 블록을 벗어난다.
TS 스테이터스가 1이면, 프로세스는 블록 1760으로부터 1762로 진행하는데, 여기서는 수신 TS 신뢰도가 하나의 단위만큼 감소된다.
그 다음 프로세스는 블록 1764로 진행하는데, 여기서는 수신 TS 신뢰도가 제2의 미리 정의된 임계치 미만인지의 여부를 결정하기 위한 체크가 이루어진다. 미리 정의된 임계치 미만이 아니면, 프로세스는 블록 1730으로 진행하여 ACK 송신 블록을 벗어난다.
그러나, 수신 TS 신뢰도가 제2 임계치 미만이면, 프로세스는 1766으로 진행하고 TS 스테이터스를 0으로 설정한다. 블록 1766으로부터, 프로세스는 블록 1730으로 진행하여 ACK 송신 블록을 벗어난다.
상기로부터, 도 17의 시간 슬롯 스테이터스의 1로의 설정은 TS에서의 신뢰도를 나타낸다.
도 14를 다시 참조하면, 블록 1450에서 ACK 송신 블록을 벗어나면, 프로세스는 블록 1460으로 진행하는데, 여기서는 디바이스가 다음 TS로 진행한다.
이제, NMAX가 32로 설정되고 수렴에 도달하기 위해 실제 시도하는 디바이스의 수가 2에서 32까지 변하는 수렴에 도달하기 위한 시간의 플롯을 도시하는 도 18을 참조한다. 도 18에서 알 수 있는 바와 같이, 다양한 링크 실패율이 제공되며, 네트워크 수렴에 필요한 싸이클의 수가 도시된다. 알 수 있는 바와 같이, 10%의 링크 실패율까지, 수렴을 위한 싸이클의 수는 네트워크에서의 디바이스의 수와 함께 선형적으로 증가한다. 20%의 링크 실패율의 경우, 디바이스의 수가 20개보다 많으면 선형성이 파괴된다. 이것은, 높은 링크 에러율이 많은 수의 확률론적 은닉 노드 및 디바이스가 선택할 충분하지 않은 시간 슬롯을 생성하기 때문이다.
ID 선택
다른 실시형태에서, 수렴이 달성되면, 시간 슬롯의 모든 NMax 수 또는 이들 중 몇몇은 점유될 수도 있다. 각각의 디바이스는 하나의 시간 슬롯을 예약한다. 따라서, 로컬 이웃에 충분한 디바이스가 존재하면, 수렴된 디바이스 상태 M=NMax인 개수의 디바이스가 네트워크에 참여할 수 있다. 충분한 디바이스가 존재하지 않아, M < NMax이면, 몇몇 시간 슬롯은 빈 상태로 유지된다. 각각의 디바이스가 탐색 기간마다 M-1개의 존재 신호를 디코딩할 수 있기 때문에, 각각의 디바이스는, M개의 확립된 디바이스가 존재한다는 것을 고려할 수 있다. 확립된 디바이스의 수가 탐색 기간의 두 개의 연속적인 싸이클 동안 변하지 않으면, 모든 확립된 디바이스는, 수렴된 상태에 도달했다는 것을 가정하고 일 실시형태에 따라 식별자 선택 프로세스가 개시될 수 있다.
이를 위해, 모든 확립된 디바이스는 이진 코드의 비트의 풀(pool)로부터 고유의 ID를 선택한다. 풀은, 예를 들면, [log2(M)]일 수도 있다. 제1 시간 슬롯 상에서 송신하는 디바이스는 자신의 식별자를 임의의 [log2(M)] 비트의 이진 코드를 고르는 것에 의해 선택하고, 그 식별자를, 자신의 존재 신호를 또한 반송하는 동일한 OFDM 심볼 상에서 브로드캐스트할 수 있다. 모든 다른 M-1개의 디바이스는 제1 디바이스에 의해 선택되는 ID를 수신한다. 제2 시간 슬롯 상에서 송신하는 디바이스는 제1 디바이스에 의해 사용되는 ID를 배제하고, 나머지 풀로부터 다른 [log2(M)] 비트의 이진 코드를 랜덤하게 고른다. 제3 디바이스는 자신의 풀에서 처음 두 개의 디바이스에 선택된 ID를 배제하고프로세스는 마지막 디바이스가 자신의 ID를 선택하여 브로드캐스트할 때까지 계속된다.
이렇게 하여, 각각의 디바이스는, 디바이스 사이의 지향된(directed) 통신을 허용하는 고유의 식별자를 수신한다.
디바이스
도달 및 이탈
다른 실시형태에서, 디바이스는 클러스터를 떠날 수도 있다. 이것은, 디바이스의 전원이 꺼지거나 또는 디바이스가 피어 디바이스로부터 멀리 이동하거나 또는 디바이스의 유저가 D2D 모드를 비활성화하기 때문에 발생할 수 있으며 따라서 어떠한 D2D 타입 신호도 송신하지 않을 것이다.
디바이스가 떠날 때, 피어 디바이스는 디바이스 탐색 신호가 감쇠하고 있다는 것을 검출할 것이다. 디바이스 탐색 신호가 상기에서 정의되는 바와 같이 임계치 아래로 떨어지면, 피어 디바이스는 그 디바이스가 클러스터를 떠났다는 것을 결정한다. 임의의 시간 슬롯 상의 PS 신호가, 예를 들면, 세 개의 연속적인 싸이클 동안 누락되면, 대응하는 디바이스는 떠난 것으로 가정된다. 그러나, 숫자 3은 일 예에 불과하며 다른 미리 정의된 수가 확립될 수도 있다.
TS 경계를 확립할 수 있는 제1 디바이스가 떠날 필요가 있으면, 네트워크의 다른 확립된 디바이스가 SFN을 송신하도록 랜덤하게 할당받을 수 있다. 대응하여, 떠나는 디바이스는 그룹 내의 다른 디바이스의 약해지는 시그널링 세기를 감지할 수도 있다. 클러스터의 PS의 참조 신호 수신 전력(reference signal received power; RSRP)가 미리 정의된 임계치 아래이면, 떠나는 디바이스는 PS 송신을 중지하고 클러스터로부터 이탈해야 한다.
임의의 새로운 디바이스는, 비어있는 시간 슬롯이 탐색 기간 내에 이용가능한 한 네트워크에 참여할 수 있다. 각각의 새롭게 도달하는 디바이스는 먼저 TS 경계 및 이용가능한 시간 슬롯을 학습하기 위해 모든 탐색 싸이클에 대해 채널을 프로브하고, 그 다음, 이용가능한 시간 슬롯 상에서 PS를 송신하고 다른 디바이스로부터의 ACK를 대기해야만 한다.
탐색
싸이클의
주기성 조정
다른 실시형태에서, 탐색 싸이클의 주기성은 조정될 수도 있다. 예를 들면, 네트워크가 수렴의 상태에 있고 확립되는 디바이스의 수가 탐색 기간당 TS의 총 수보다 훨씬 작거나, 또는 디바이스의 수가 탐색 싸이클의 최대 수의 시간 슬롯에서 디바이스의 최대 수에 도달하면, 주기성은 조정될 수도 있다. 마찬가지로, 새로운 디바이스가 도달하거나 확립된 디바이스가 클러스터를 떠나면, 주기성은 조정될 필요가 있을 수도 있다.
주기성의 조정은 조정치를 브로드캐스팅하는 것에 의해 달성될 수도 있고, 그 결과 확립된 디바이스는, 더 크거나 더 작을 수 있는 새로운 탐색 싸이클로 총체적으로 재조정된다.
모든 디바이스가 새로운 주기성을 인식하게 되는 가능성을 증가시키기 위해, 다양한 옵션이 가능하다. 한 옵션에서, 디바이스는 새로운 주기성을 결정하는 리더 또는 마스터를 가질 수도 있고 그 마스터는 새로운 주기성을 할당하는 메시지를 미리 정의된 TS에서 브로드캐스트할 수도 있다. 메시지는 변경의 시작 시간을 포함할 수도 있다.
클러스터 멤버의 서브셋은 클러스터 마스터의 메시지를, 그것을 반복하는 것에 의해 에코할 수도 있다. 멤버의 서브셋은, 예를 들면, 가장 낮은 ID를 갖는 것일 수도 있다. 그러나, 몇몇 실시형태에서, 모든 멤버가 반복할 수도 있고 다른 실시형태에서, 반복하는 클러스터 멤버의 선택은 다른 기준에 기초하여 선택될 수도 있다.
공표된 시작 시간에서, 클러스터의 모든 디바이스는 새로운 PS 기간으로 조정된다.
상기는, 예를 들면, 2013년 6월자의 3GPP TS 36.211 "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation", v.11.3.0을 변경하는 것에 의해 구현될 수도 있는데, 이것은 그 전체 내용이 참조에 의해 본원에 통합된다. 특히, 표 1의 볼드체 부분이 추가될 수도 있다.
상기의 것은 임의의 UE에 의해 구현될 수도 있다. 하나의 예시적인 디바이스는 도 19와 관련하여 하기에서 설명된다.
UE(1900)는 통상적으로, 음성 및 데이터 통신 성능을 갖는 양방향 무선 통신 디바이스이다. UE(1900)는 다른 UE 그리고 몇몇 경우에서는 네트워크와 통신하는 성능을 가질 수도 있다. 제공되는 정확한 기능성에 따라, UE는, 예를 들면, 데이터 메시징 디바이스, 양방향 페이저, 무선 이메일 디바이스, 데이터 메시징 성능을 갖는 셀룰러 전화, 무선 인터넷 어플라이언스(wireless Internet appliance), 무선 디바이스, 모바일 디바이스, 또는 데이터 통신 디바이스로 칭해질 수도 있다.
UE(1900)가 양방향 통신에 대응하는 경우, UE(1900)는, 수신기(1912) 및 송신기(1914)를 포함하는 통신 서브시스템(1911)뿐만 아니라 관련 컴포넌트 예컨대 하나 이상의 안테나 엘리먼트(1916 및 1918), 로컬 발진기(local oscillator; LO)(1913), 및 디지털 신호 프로세서(digital signal processor; DSP)(1920)와 같은 프로세싱 모듈을 통합할 수도 있다. 통신 분야에서 숙련된 자에게 명백한 바와 같이, 통신 서브시스템(1911)의 특정 디자인은, 디바이스가 동작하도록 의도되는 통신 시스템에 의존할 것이다. 통신 서브시스템(1911)의 무선 주파수 프론트 엔드는 상기에서 설명되는 실시형태 중 임의의 것에 대해 사용될 수 있다.
네트워크 연결뿐만 아니라 D2D 연결에 대해 대응되면, UE(1900)는, 네트워크의 타입에 따라 변할 네트워크 액세스 요건을 구비할 수도 있다. 몇몇 네트워크에서, 네트워크 액세스는 UE(1900)의 유저 또는 가입자와 관련된다. UE는, CDMA 네트워크 상에서 동작하기 위해, 착탈식 유저 식별 모듈(removable user identity module; RUIM) 또는 가입자 식별 모듈(subscriber identity module; SIM) 카드를 요구할 수도 있다. SIM/RUIM 인터페이스(1944)는, 일반적으로, SIM/RUIM 카드가 삽입되고 배출될 수 있게 하는 카드 슬롯과 유사하다. SIM/RUIM 카드는 메모리를 구비할 수 있고 많은 키 구성(1951), 및 다른 정보(1953) 예컨대 식별 및 가입자 관련 정보를 유지할 수 있다.
네트워크 등록 또는 활성화 프로시져가 요구될 때, 임의의 것이 완료되면, UE(1900)는 네트워크를 통해 통신 신호를 송신 및 수신할 수도 있다. 그렇지 않으면, 네트워크 등록은 D2D 네트워크에 대한 상기 실시형태에 따라 발생할 수 있다.
안테나(1916)에 의해 수신되는 신호는 수신기(1912)에 입력되는데, 수신기(1912)는 신호 증폭, 주파수 하향 변환, 필터링, 채널 선택 등등과 같은 일반적인 수신기 기능을 수행할 수도 있다. 수신된 신호의 A/D 변환은, 복조 및 디코딩과 같은 더 복잡한 통신 기능이 DSP(1920)에서 수행되는 것을 허용한다. 유사한 방식으로, 송신될 신호는 DSP(1920)에 의해, 예를 들면 변조 및 인코딩을 포함하여, 프로세싱되고, 디지털 아날로그 변환, 주파수 상향 변환(up conversion), 필터링, 증폭 및 안테나(1918)를 통한 송신을 위해 송신기(1914)로 입력된다. DSP(1920)는 통신 신호를 프로세싱할 뿐만 아니라, 수신기 및 송신기 제어를 또한 제공한다. 예를 들면, 수신기(1912) 및 송신기(1914)의 통신 신호에 적용되는 이득은 DSP(1920)에서 구현되는 자동 이득 제어 알고리즘을 통해 적응적으로 제어될 수도 있다.
UE(1900)는 일반적으로, 디바이스의 전체 동작을 제어하는 프로세서(1938)를 포함한다. 데이터 및 음성 통신을 포함하는 통신 기능은 통신 서브시스템(1911)을 통해 수행된다. 프로세서(1938)는 또한 다른 디바이스 서브 시스템, 예컨대 디스플레이(1922), 플래시 메모리(1924), 랜덤 액세스 메모리(RAM)(1926), 보조 입/출력(input/output; I/O) 서브시스템(1928), 직렬 포트(1930), 하나 이상의 키보드 또는 키패드(1932), 스피커(1934), 마이크(1936), 단거리 통신 서브시스템과 같은 다른 통신 서브시스템(1940) 및 1942로 일반적으로 지정되는 임의의 다른 디바이스 서브시스템과 상호작용한다. 직렬 포트(1930)는 USB 포트 또는 기술분야의 사람에게 공지된 다른 포트를 포함할 수 있을 것이다.
도 19에서 도시되는 서브시스템 중 몇몇은 통신 관련 기능을 수행하는 반면, 다른 서브시스템은 "상주하는(resident)" 또는 온디바이스(on-device) 기능을 제공할 수도 있다. 현저하게, 키보드(1932) 및 디스플레이(1922)와 같은 몇몇 서브시스템은, 예를 들면, 통신 네트워크를 통한 송신용 텍스트 메시지를 입력하는 것과 같은 통신 관련 기능, 및 계산기 또는 작업 리스트와 같은 디바이스 상주 기능 둘 다에 대해 사용될 수도 있다.
프로세서(1938)에 의해 사용되는 오퍼레이팅 시스템 소프트웨어는 플래시 메모리(1924)와 같은 영구적 저장소에 저장될 수도 있는데, 플래시 메모리(1924)는, 대신, 리드 온리 메모리(read-only memory; ROM) 또는 유사한 스토리지 엘리먼트(도시되지 않음)일 수도 있다. 기술분야에서 숙련된 자는, 오퍼레이팅 시스템, 특정 디바이스 애플리케이션, 또는 이들의 일부는 RAM(1926)과 같은 불휘발성 메모리에 일시적으로 로딩될 수도 있다는 것을 알 수 있을 것이다. 수신된 통신 신호는 RAM(1926)에 또한 저장될 수도 있다.
도시되는 바와 같이, 플래시 메모리(1924)는 컴퓨터 프로그램(1958) 및 프로그램 데이터 스토리지(1950, 1952, 1954 및 1956) 양자에 대해 상이한 영역으로 분리될 수 있다. 이들 상이한 스토리지 타입은, 각각의 프로그램이 그들 고유의 데이터 저장 요건을 위해 플래시 메모리(1924)의 일부를 할당할 수 있다는 것을 나타낸다. 프로세서(1938)는, 자신의 오퍼레이팅 시스템 기능 외에, UE 상에서의 소프트웨어 애플리케이션의 실행을 가능하게 할 수도 있다. 예를 들면, 적어도 데이터 및 음성 통신 애플리케이션을 포함하는, 기본 동작을 제어하는 애플리케이션의 미리 결정된 세트는, 일반적으로, 제조 동안 UE(1900) 상에 설치될 것이다. 다른 애플리케이션은 후속하여 또는 동적으로 설치될 수 있을 것이다.
애플리케이션 및 소프트웨어는 임의의 컴퓨터 판독가능 저장 매체 상에 저장될 수도 있다. 컴퓨터 판독가능 저장 매체는, 유형의(tangible) 또는 일시적/비일시적 매체 예컨대 광학적(예를 들면 CD, DVD 등등), 자기적(예를 들면, 테이프) 또는 기술분야에서 공지된 다른 메모리일 수도 있다.
하나의 소프트웨어 애플리케이션은, 이메일, 캘린더 이벤트, 음성 메일, 약속, 및 작업 아이템과 같은 그러나 이들로 제한되지 않는 UE의 유저에 관한 데이터 아이템을 편제하고 관리하는 능력을 구비하는 개인 정보 관리(personal information manager; PIM)일 수도 있다. 자연적으로, 하나 이상의 메모리 저장소는 PIM 데이터 아이템의 저장을 용이하게 하기 위해, UE 상에서 이용가능할 것이다. 이러한 PIM 애플리케이션은 데이터 아이템을 송신하고 수신하는 능력을 가질 수도 있다. 다른 애플리케이션도 또한, 예를 들면, 보조 I/O 서브시스템(1928), 직렬 포트(1930), 단거리 통신 서브시스템(1940) 또는 임의의 다른 적절한 서브시스템(1942)을 통해, UE(1900) 상으로 로딩될 수도 있고, 프로세서(1938)에 의한 실행을 위해 유저에 의해 RAM(1926) 또는 불휘발성 저장소(도시되지 않음)에 설치될 수도 있다. 애플리케이션 설치에서의 이러한 유연성은 디바이스의 기능성을 증가시키고 향상된 온디바이스 기능, 통신 관련 기능, 또는 둘 다를 제공할 수도 있다.
데이터 통신 모드에서, 텍스트 메시지 또는 웹 페이지 다운로드와 같은 수신된 신호는 통신 서브시스템(1911)에 의해 프로세싱되어 프로세서(1938)로 입력될 것인데, 프로세서(1938)는, 디스플레이(1922)로의 또는 대안적으로 보조 I/O 디바이스(1928)로의 출력을 위해, 수신된 신호를 추가로 프로세싱할 수도 있다.
UE(1900)의 유저는, 예를 들면, 키보드(1932)를 사용하여 이메일 메시지와 같은 데이터 아이템을 작성할 수도 있는데, 키보드(1932)는, 다른 것들 중에서도, 디스플레이(1922) 및 어쩌면 보조 I/O 디바이스(1928)와 연계한 완전한 영숫자 키보드이거나 또는 전화 타입의 키패드일 수도 있다. 그 다음, 이렇게 작성된 아이템은 통신 서브시스템(1911)을 통해 통신 네트워크를 거쳐 송신될 수도 있다.
음성 통신의 경우, UE(1900)의 전체 동작은, 수신된 신호가 통상적으로 스피커(1934)로 출력될 것이고 송신을 위한 신호가 마이크(1936)에 의해 생성될 것이라는 것을 제외하면, 유사하다. 음성 메시지 레코딩 서브시스템과 같은 대안적인 음성 또는 오디오 I/O 서브시스템이 UE(1900) 상에서 또한 구현될 수도 있다. 음성 또는 오디오 신호 출력이 일반적으로 주로 스피커(1934)를 통해 달성되지만, 예를 들면, 통화 상대의 아이덴티티, 음성 통화의 지속기간, 또는 다른 음성 통화 관련 정보를 제공하기 위해 디스플레이(1922)가 사용될 수도 있다.
도 19의 직렬 포트(1930)는 일반적으로, 유저의 데스크탑 컴퓨터(도시되지 않음)와의 동기화가 바람직할 수도 있는 개인 휴대형 정보 단말(personal digital assistant; PDA) 타입의 UE에서 구현될 수도 있지만, 그러나 옵션사항의 디바이스 컴포넌트이다. 이러한 포트(1930)는 외부 디바이스 또는 소프트웨어 애플리케이션을 통해 유저가 선호도를 설정하는 것을 가능하게 할 것이고, 무선 통신 네트워크를 통하는 것 외에, UE(1900)로의 정보 또는 소프트웨어 다운로드를 제공하는 것에 의해, UE(1900)의 성능을 확장시킬 것이다. 대안적인 다운로드 경로는, 예를 들면, 직접적이고 따라서 확실하고 신뢰되는 연결을 통해 디바이스 상으로 암호화 키를 로딩하여 보안 디바이스 통신을 가능하게 하도록 사용될 수도 있다. 기술분야의 숙련된 자가 알 수 있는 바와 같이, 직렬 포트(1930)는 또한, 모뎀으로서 작용하여 UE를 컴퓨터에 연결하도록 사용될 수 있다.
다른 통신 서브시스템(1940), 예컨대 단거리 통신 서브시스템은, UE(1900)와 반드시 유사한 디바이스일 필요가 없는 상이한 시스템 또는 디바이스 사이의 통신을 제공할 수도 있는 추가적인 옵션적 컴포넌트이다. 예를 들면, 서브시스템(1940)은, 마찬가지의 대응 시스템 및 디바이스와의 통신을 제공하기 위해, 적외선 디바이스와 관련 회로 및 컴포넌트 또는 Bluetooth™ 통신 모듈을 포함할 수도 있다. 서브시스템(1940)은 와이파이(WiFi) 또는 와이맥스(WiMAX)와 같은 비셀룰러(non-cellular) 통신을 더 포함할 수도 있다.
본원에서 설명되는 실시형태는, 본 출원의 기술의 엘리먼트에 대응하는 엘리먼트를 구비하는 구조, 시스템 또는 방법의 예이다. 이 서술된 설명은, 기술분야에서 숙련된 자가, 본 출원의 기술의 엘리먼트에 마찬가지로 대응하는 대안적 엘리먼트를 구비하는 실시형태를 만들고 사용하는 것을 가능하게 할 수도 있다. 따라서, 본 출원의 기술의 의도된 범위는, 본원에서 설명되는 바와 같은 본 출원의 기술과는 상이하지 않은 다른 구조, 시스템 또는 방법을 포함하며, 본원에서 설명되는 바와 같은 본 출원의 기술과는 실질적이지 않은 차이를 갖는 다른 구조, 시스템 또는 방법을 더 포함한다.
Claims (27)
- 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법에 있어서,
제1 시구간에 걸쳐 제2 디바이스의 존재(presence) 신호 - 상기 제2 디바이스의 존재 신호는 시간 슬롯 경계(time-slot boundary)를 가짐 - 가 수신되는지의 여부를 검출하는 단계;
상기 제2 디바이스의 존재 신호가 검출되지 않으면, 상기 제1 디바이스에 의해 시간 슬롯 경계를 개시하는 단계
를 포함하고, 상기 시간 슬롯 경계를 개시하는 단계는:
선택된 시간 슬롯에서 상기 제1 디바이스의 제1 존재 신호를 송신하는 단계;
상기 제1 존재 신호에 대한 확인응답을 체크하는 단계; 및
상기 제1 존재 신호에 대한 확인응답이 수신되면, 상기 제1 존재 신호에 기초하여 상기 제1 디바이스 상에서 시간 슬롯 경계를 확립하는 단계를 포함하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제1항에 있어서,
상기 존재 신호는 자도프 추(Zadoff-Chu) 시퀀스를 포함하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제1항에 있어서,
상기 제1 디바이스는 후속하는 프레임 동안 상기 선택된 시간 슬롯에서 상기 제1 존재 신호를 송신하고, 프레임은 정수 개수의 시간 슬롯들을 포함하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제1항에 있어서,
시간 슬롯 지속기간(duration)은 미리 결정된 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제1항에 있어서,
상기 제1 시구간은 미리 결정된 프레임 기간 및 비결정적 경합 기간(contention period)을 포함하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제5항에 있어서,
상기 프레임 기간은 정수 개의 시간 슬롯 지속기간들을 포함하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제1항에 있어서,
상기 제2 디바이스의 존재 신호가 검출되면, 상기 제1 디바이스 상의 시간 슬롯 경계를 상기 제2 디바이스에 의해 확립된 시간 슬롯 경계에 정렬시키는 단계; 및
상기 제2 디바이스에 의해 확립된 시간 슬롯 경계에 정렬시키는 단계 이후에, 상기 제1 디바이스에 의한 송신을 위해 사용할 시간 슬롯을 결정하는 단계
를 더 포함하는, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제7항에 있어서,
상기 시간 슬롯을 결정하는 단계는,
하나 이상의 비어있는 시간 슬롯들을 검출하는 단계;
비어있는 시간 슬롯을 선택하는 단계;
상기 선택된 비어있는 시간 슬롯 상에서 상기 제1 존재 신호를 송신하는 단계
를 포함하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제8항에 있어서,
상기 제1 존재 신호에 대한 확인응답을 체크하는 단계
를 더 포함하는, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제1항에 있어서,
상기 제1 디바이스 이외의 다른 임의의 디바이스의 수신된 존재 신호에 대한 확인응답을 전송하는 단계
를 더 포함하는, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제1항에 있어서,
상기 제1 존재 신호는 하나 이상의 시퀀스들을 포함하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제11항에 있어서,
상기 제1 존재 신호는 1차 동기화 신호 및 2차 동기화 신호를 포함하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제12항에 있어서,
상기 1차 동기화 신호는 시간 슬롯 경계를 확립하기 위해 사용되는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제11항에 있어서,
상기 시퀀스들 중 하나 이상은 두 개의 연속하는 존재 신호 송신들 사이에서 변하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제11항에 있어서,
상기 시퀀스들 중 하나 이상은 복수의 연속하는 존재 신호 송신들 동안 동일하게 머물러 있는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제1항에 있어서,
상기 제1 존재 신호의 선택은 상기 제1 디바이스의 아이덴티티(identity)에 관련되는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법에 있어서,
채널 상에서 존재 신호 - 상기 존재 신호는 적어도 하나의 시퀀스를 포함함 - 를 경청하는(listening) 단계; 및
상기 존재 신호의 검출시,
상기 존재 신호에 대한 확인응답을 송신하는 단계; 및
상기 존재 신호의 상기 적어도 하나의 시퀀스를 활용하는 것에 의해 상기 존재 신호와 관련되는 시간 슬롯 경계에 정렬하는 단계
를 포함하고,
상기 존재 신호는 복수의 디바이스들의 아이덴티티에 관련된 1차 동기화 신호 및 상기 존재 신호를 송신하는 디바이스의 아이덴티티에 관련된 2차 동기화 신호를 포함하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제17항에 있어서,
상기 존재 신호는 자도프 추(Zadoff-Chu) 시퀀스를 포함하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제17항에 있어서,
상기 제1 디바이스는 신호 충돌을 식별하기 위해 상기 2차 동기화 신호를 사용하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 디바이스에서의 방법에 있어서,
채널 상에서 다른 디바이스로부터의 존재 신호를 경청하는 단계; 및
시간 슬롯 경계를 확립하기 위해 상기 채널 상에서 존재 신호를 송신하는 단계
를 포함하고,
상기 존재 신호의 송신은, 다른 디바이스가 상기 확립된 시간 슬롯 경계에 정렬하는 것을 가능하게 하고,
상기 존재 신호는 복수의 디바이스들의 아이덴티티에 관련된 1차 동기화 신호 및 상기 디바이스의 아이덴티티에 관련된 2차 동기화 신호를 포함하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 디바이스에서의 방법. - 제20항에 있어서,
상기 경청하는 단계는, 미리 결정된 프레임 기간 및 랜덤하게 생성된 경합 기간을 포함하는 제1 시구간 동안 행해지는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 디바이스에서의 방법. - 제21항에 있어서,
상기 프레임 기간은 정수 개의 시간 슬롯 지속기간들을 포함하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 디바이스에서의 방법. - 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법에 있어서,
제1 시구간에 걸쳐 제2 디바이스의 존재(presence) 신호 - 상기 제2 디바이스의 존재 신호는 시간 슬롯 경계(time-slot boundary)를 가짐 - 가 수신되는지의 여부를 검출하는 단계;
상기 제2 디바이스의 존재 신호가 검출되지 않으면, 상기 제1 디바이스에 의해 시간 슬롯 경계를 개시하는 단계
를 포함하고, 상기 시간 슬롯 경계를 개시하는 단계는:
기지국에 의해 사용되는 것과 상이한 루트 시퀀스 인덱스에 기초하여 제1 존재 신호를 랜덤하게 선택하는 단계; 및
무선 프레임 번호의 선택된 시간 슬롯에서 상기 제1 디바이스의 상기 제1 존재 신호를 송신하는 단계를 포함하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제23항에 있어서,
상기 루트 시퀀스 인덱스는 자도프 추(Zadoff-Chu) 루트 시퀀스 인덱스를 포함하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 제24항에 있어서,
상기 무선 프레임 번호는 0부터 시작하는 것인, 디바이스 대 디바이스 무선 링크를 가능하게 하기 위한 제1 디바이스에서의 방법. - 삭제
- 삭제
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217004448A KR102369748B1 (ko) | 2013-08-08 | 2014-08-08 | 네트워크 커버리지가 없는 디바이스 대 디바이스 통신에서의 초기 동기화 및 충돌 방지를 위한 방법 및 시스템 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/962,708 | 2013-08-08 | ||
US13/962,708 US9210690B2 (en) | 2013-08-08 | 2013-08-08 | Method and system for initial synchronization and collision avoidance in device to device communications without network coverage |
PCT/US2014/050391 WO2015021410A1 (en) | 2013-08-08 | 2014-08-08 | Method and system for initial synchronization and collison avoidance in device to device communications without network coverage |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020217004448A Division KR102369748B1 (ko) | 2013-08-08 | 2014-08-08 | 네트워크 커버리지가 없는 디바이스 대 디바이스 통신에서의 초기 동기화 및 충돌 방지를 위한 방법 및 시스템 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160042936A KR20160042936A (ko) | 2016-04-20 |
KR102222348B1 true KR102222348B1 (ko) | 2021-03-03 |
Family
ID=51392431
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020217004448A KR102369748B1 (ko) | 2013-08-08 | 2014-08-08 | 네트워크 커버리지가 없는 디바이스 대 디바이스 통신에서의 초기 동기화 및 충돌 방지를 위한 방법 및 시스템 |
KR1020167005885A KR102222348B1 (ko) | 2013-08-08 | 2014-08-08 | 네트워크 커버리지가 없는 디바이스 대 디바이스 통신에서의 초기 동기화 및 충돌 방지를 위한 방법 및 시스템 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020217004448A KR102369748B1 (ko) | 2013-08-08 | 2014-08-08 | 네트워크 커버리지가 없는 디바이스 대 디바이스 통신에서의 초기 동기화 및 충돌 방지를 위한 방법 및 시스템 |
Country Status (11)
Country | Link |
---|---|
US (7) | US9210690B2 (ko) |
EP (4) | EP3958623B1 (ko) |
JP (3) | JP2016529827A (ko) |
KR (2) | KR102369748B1 (ko) |
CN (4) | CN110248406B (ko) |
CA (1) | CA2920657C (ko) |
ES (3) | ES2771374T3 (ko) |
FI (1) | FI3958623T3 (ko) |
HK (1) | HK1222085A1 (ko) |
HU (1) | HUE056069T2 (ko) |
WO (1) | WO2015021410A1 (ko) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015020736A1 (en) * | 2013-08-08 | 2015-02-12 | Intel IP Corporation | Method, apparatus and system for electrical downtilt adjustment in a multiple input multiple output system |
US9210690B2 (en) | 2013-08-08 | 2015-12-08 | Blackberry Limited | Method and system for initial synchronization and collision avoidance in device to device communications without network coverage |
US9326122B2 (en) | 2013-08-08 | 2016-04-26 | Intel IP Corporation | User equipment and method for packet based device-to-device (D2D) discovery in an LTE network |
US9392629B2 (en) * | 2013-09-10 | 2016-07-12 | Electronics And Telecommunications Research Institute | Method for setting synchronization between device-to-device communication terminals based on cellular communication system |
CN104581922B (zh) * | 2013-10-23 | 2019-06-18 | 中兴通讯股份有限公司 | 一种lte系统中主同步信号在时域实现的方法和装置 |
JP6511048B2 (ja) * | 2013-10-28 | 2019-05-08 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおいて装置対装置端末の信号送受信方法及び装置 |
WO2015066866A1 (en) * | 2013-11-06 | 2015-05-14 | Telefonaktiebolaget L M Ericsson (Publ) | Method and device for detecting secondary synchronous signal, computer program and storage medium |
US10122543B2 (en) * | 2013-11-20 | 2018-11-06 | Entropic Communications, Llc | Methods and systems for power management in communication devices based on cable connectivity |
JP5892151B2 (ja) * | 2013-12-18 | 2016-03-23 | カシオ計算機株式会社 | 無線通信装置、無線通信システム、無線通信方法、プログラム、及びペリフェラル |
KR20150088431A (ko) * | 2014-01-24 | 2015-08-03 | 한국전자통신연구원 | 단말간 직접 통신에서의 디스커버리 방법 및 장치 |
CN106465088A (zh) * | 2014-05-08 | 2017-02-22 | 株式会社Ntt都科摩 | 用户装置、冲突报告方法、基站以及资源分配方法 |
US9136925B1 (en) * | 2014-05-19 | 2015-09-15 | King Fahd University Of Petroleum And Minerals | Two-path amplify-and-forward relaying method for bandwidth efficient cognitive radios |
EP3213587B1 (en) * | 2014-10-31 | 2020-11-25 | Sony Corporation | User equipment, communication system, and method of controlling a user equipment |
US20160191365A1 (en) * | 2014-12-31 | 2016-06-30 | Singlehop, Llc | Data center migration tracking tool |
US10045178B2 (en) | 2015-03-04 | 2018-08-07 | Samsung Electronics Co., Ltd | Apparatus and method for communicating |
US9819477B2 (en) | 2015-04-30 | 2017-11-14 | Qualcomm Incorporated | Align transmissions for SBS |
CN106169948B (zh) | 2015-05-22 | 2019-11-01 | 华硕电脑股份有限公司 | 在无线通信系统中执行参考信号传输的方法和装置 |
CN106488501B (zh) * | 2015-08-31 | 2018-09-04 | 电信科学技术研究院 | 一种资源碰撞信息传输方法及装置 |
US10477580B2 (en) * | 2016-04-20 | 2019-11-12 | Qualcomm Incorporated | Collision deadlock resolution |
WO2017192089A2 (en) * | 2016-05-05 | 2017-11-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Detection sequence for d2d communication |
US11228964B2 (en) | 2017-02-02 | 2022-01-18 | Sharp Kabushiki Kaisha | Synchronization signal transmission and reception for radio system |
WO2018177548A1 (en) * | 2017-03-31 | 2018-10-04 | Huawei Technologies Co., Ltd. | Radio system with uplink beacon transmission |
CN108449722B (zh) * | 2018-03-16 | 2021-05-25 | 京东方科技集团股份有限公司 | 通信方法以及通信装置 |
CN108989996B (zh) * | 2018-07-03 | 2021-05-25 | 京东方科技集团股份有限公司 | 通信方法及通信装置、电子设备、存储介质 |
FI129428B (en) * | 2019-09-18 | 2022-02-15 | Wirepas Oy | Decentralized synchronization solution for wireless communication networks |
EP4068869A4 (en) * | 2019-12-24 | 2022-12-07 | Huawei Technologies Co., Ltd. | SIGNAL SYNCHRONIZATION APPARATUS, SYSTEM AND METHOD |
CN111404802A (zh) * | 2020-02-19 | 2020-07-10 | 华为技术有限公司 | 通知处理系统、方法以及电子设备 |
CN114205861B (zh) * | 2020-09-02 | 2023-08-18 | 中国移动通信集团安徽有限公司 | 降低小区参考信号干扰的方法、基站及计算设备 |
CN117793699B (zh) * | 2024-02-23 | 2024-05-07 | 山东浪潮数据库技术有限公司 | 一种基于lte同步信号的自组网节点id的分配方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110255527A1 (en) * | 2010-04-15 | 2011-10-20 | Motorola, Inc. | Method for synchronizing direct mode time division multiple access (tdma) transmissions |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5760705A (en) * | 1995-09-01 | 1998-06-02 | Glenayre Electronics, Inc. | System for maintaining receiver/transmitter synchronization with two-way pagers |
JP3584561B2 (ja) * | 1995-09-12 | 2004-11-04 | 松下電器産業株式会社 | 間欠通信システム |
US7826493B2 (en) * | 2001-08-27 | 2010-11-02 | Broadcom Corp. | Frequency offset correction circuit for WCDMA |
US20050201340A1 (en) | 2002-05-13 | 2005-09-15 | Xudong Wang | Distributed TDMA for wireless mesh network |
US7522049B2 (en) * | 2002-10-18 | 2009-04-21 | Aeroscout, Ltd. | Wireless local area network (WLAN) method and system for presence detection and location finding |
JP4080366B2 (ja) * | 2003-04-01 | 2008-04-23 | シャープ株式会社 | ネットワーク端末、ネットワークシステム、ネットワーク端末の制御方法 |
JP4622503B2 (ja) | 2003-12-24 | 2011-02-02 | ソニー株式会社 | 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム |
CN101006661A (zh) * | 2004-08-23 | 2007-07-25 | 摩托罗拉公司 | 用于快速小区搜索的方法和设备 |
JP2006196985A (ja) * | 2005-01-11 | 2006-07-27 | Kddi Corp | 無線システムにおけるメディアアクセス制御方法及び中継局のメディアアクセス制御プログラム |
KR100801003B1 (ko) * | 2006-06-05 | 2008-02-11 | 삼성전자주식회사 | 비압축 av 데이터 전송을 위한 데이터 구조, 데이터 슬롯 할당 방법, 비압축 av 데이터 전송 방법, 및 상기 방법을 이용하는 장치 |
FR2903846B1 (fr) | 2006-07-12 | 2008-12-26 | Sagem Comm | Detection de collision asynchrone dans un systeme de telephonie mobile directe. |
EP2053757B1 (en) * | 2006-08-17 | 2016-11-30 | Panasonic Intellectual Property Corporation of America | Radio transmitting apparatus and radio transmitting method |
US8649401B2 (en) * | 2007-05-01 | 2014-02-11 | Qualcomm Incorporated | Generation and detection of synchronization signal in a wireless communication system |
JP4465370B2 (ja) * | 2007-06-19 | 2010-05-19 | 株式会社エヌ・ティ・ティ・ドコモ | 基地局装置、送信方法、及び無線通信システム |
KR100905385B1 (ko) * | 2008-03-16 | 2009-06-30 | 엘지전자 주식회사 | 무선통신 시스템에서 제어신호의 효율적인 전송방법 |
US8121068B2 (en) * | 2008-07-30 | 2012-02-21 | Intel Corporation | Techniques to improve co-existence among multiple radios |
US9420564B2 (en) * | 2008-10-29 | 2016-08-16 | Nokia Technologies Oy | Apparatus and method for dynamic communication resource allocation for device to-device communications in a wireless communication system |
EP2418781B1 (en) * | 2009-04-10 | 2019-06-26 | LG Electronics Inc. | Transmission method of downlink reference signal and apparatus thereof |
KR101608782B1 (ko) * | 2009-06-05 | 2016-04-04 | 엘지전자 주식회사 | 단말의 CoMP 방식에서의 신호 전송 방법 |
JP5482068B2 (ja) * | 2009-10-01 | 2014-04-23 | ソニー株式会社 | 中継局、中継方法、無線通信システム及び無線通信装置 |
US20110103319A1 (en) * | 2009-10-29 | 2011-05-05 | Qualcomm Incorporated | Access point scheduled peer-to-peer communication |
US8989069B2 (en) * | 2010-03-03 | 2015-03-24 | Qualcomm Incorporated | Method and apparatus for channel quality indicator (CQI) enhancements |
US9485069B2 (en) | 2010-04-15 | 2016-11-01 | Qualcomm Incorporated | Transmission and reception of proximity detection signal for peer discovery |
CN102387600B (zh) * | 2010-09-06 | 2014-03-26 | 普天信息技术研究院有限公司 | 一种宽带集群通信系统中随机接入的方法 |
US8571482B2 (en) * | 2010-09-11 | 2013-10-29 | Nokia Corporation | Dynamic autonomous resource allocation and channel access in cellular System Uplink |
EP2617258B1 (en) * | 2010-09-14 | 2019-03-27 | Nokia Technologies Oy | D2d communication procedures: beaconing; broadcast; conflict resolution |
US9353406B2 (en) * | 2010-10-22 | 2016-05-31 | Fluidigm Corporation | Universal probe assay methods |
CN102056324B (zh) * | 2010-12-22 | 2013-02-06 | 中国人民解放军理工大学 | 基于令牌控制冲突解析的协同载波侦听多址接入方法 |
US20120294163A1 (en) * | 2011-05-19 | 2012-11-22 | Renesas Mobile Corporation | Apparatus and Method for Direct Device-to-Device Communication in a Mobile Communication System |
EP2750311B1 (en) * | 2011-08-23 | 2018-08-08 | LG Electronics Inc. | Method for transmitting and receiving synchronization signals in wireless access system and corresponding apparatus |
CN103037392B (zh) * | 2011-09-30 | 2015-12-02 | 京信通信系统(中国)有限公司 | Lte前导信号的检测方法、装置及基站 |
KR20130035903A (ko) * | 2011-09-30 | 2013-04-09 | 한국전자통신연구원 | 단말간 직접 통신 방법 |
US9042287B2 (en) | 2011-11-14 | 2015-05-26 | Qualcomm Incorporated | Methods and apparatus for improving network loading |
US10149334B2 (en) * | 2011-11-14 | 2018-12-04 | Kyocera Corporation | Device-to-device communication management using macrocell communication resources |
US9497719B2 (en) * | 2012-01-29 | 2016-11-15 | Lg Electronics Inc. | User equipment and method for receiving synchronization signals, and base station and method for transmitting synchronization signals |
US9143189B2 (en) * | 2012-03-30 | 2015-09-22 | Broadcom Corporation | Mobile device searching using multiple antennas |
EP2839688B1 (en) * | 2012-04-17 | 2017-10-25 | Nokia Solutions and Networks Oy | Device-to-device transmission in communications |
US9426832B2 (en) * | 2012-04-24 | 2016-08-23 | Intel Corporation | Methods and arrangements to coordinate communications in a wireless network |
KR101953244B1 (ko) * | 2012-04-26 | 2019-02-28 | 삼성전자주식회사 | 다중 사용자 mimo 통신 시스템에서의 사용자 스케쥴링 방법 및 장치 |
US9510212B2 (en) * | 2012-04-27 | 2016-11-29 | Qualcomm Incorporated | Signal designs for densely deployed network |
US20130301491A1 (en) * | 2012-05-11 | 2013-11-14 | Shafi Bashar | Scheduling synchronization signals in a new carrier type |
CN102780993B (zh) * | 2012-08-20 | 2015-04-15 | 哈尔滨工业大学 | Td_lte_a系统中终端d2d协作中继通信实现方法 |
US9451570B2 (en) * | 2012-08-29 | 2016-09-20 | Alcatel Lucent | Device discovery for device-to-device communication |
EP3499985B1 (en) | 2013-02-01 | 2020-03-04 | Samsung Electronics Co., Ltd. | Method and apparatus for providing common time reference in wireless communication system |
US9532400B2 (en) * | 2013-02-28 | 2016-12-27 | Intel Deutschland Gmbh | Radio communication devices and cellular wide area radio base station |
US9226329B2 (en) | 2013-05-07 | 2015-12-29 | Blackberry Limited | Method and apparatus for contention free device signaling without a controlling network node |
KR101720000B1 (ko) | 2013-06-13 | 2017-03-27 | 엘지전자 주식회사 | 무선 통신 시스템에서 단말 간 직접 통신을 위한 동기 신호 송수신 방법 및 이를 위한 장치 |
BR112016001494A8 (pt) | 2013-07-31 | 2020-01-21 | Sony Corp | dispositivo terminal, e, método de comunicação sem fio |
US9210690B2 (en) | 2013-08-08 | 2015-12-08 | Blackberry Limited | Method and system for initial synchronization and collision avoidance in device to device communications without network coverage |
-
2013
- 2013-08-08 US US13/962,708 patent/US9210690B2/en active Active
-
2014
- 2014-08-08 CA CA2920657A patent/CA2920657C/en active Active
- 2014-08-08 ES ES14755284T patent/ES2771374T3/es active Active
- 2014-08-08 WO PCT/US2014/050391 patent/WO2015021410A1/en active Application Filing
- 2014-08-08 KR KR1020217004448A patent/KR102369748B1/ko active IP Right Grant
- 2014-08-08 CN CN201910544518.4A patent/CN110248406B/zh active Active
- 2014-08-08 EP EP21199992.5A patent/EP3958623B1/en active Active
- 2014-08-08 FI FIEP21199992.5T patent/FI3958623T3/fi active
- 2014-08-08 EP EP19209507.3A patent/EP3651509B1/en active Active
- 2014-08-08 CN CN201480044812.4A patent/CN105981453B/zh active Active
- 2014-08-08 EP EP14755284.8A patent/EP3020236B1/en active Active
- 2014-08-08 EP EP23167843.4A patent/EP4224953A1/en active Pending
- 2014-08-08 ES ES21199992T patent/ES2952287T3/es active Active
- 2014-08-08 JP JP2016533476A patent/JP2016529827A/ja not_active Withdrawn
- 2014-08-08 CN CN201910548810.3A patent/CN110248407B/zh active Active
- 2014-08-08 KR KR1020167005885A patent/KR102222348B1/ko active IP Right Grant
- 2014-08-08 HU HUE19209507A patent/HUE056069T2/hu unknown
- 2014-08-08 CN CN201910548656.XA patent/CN110267238B/zh active Active
- 2014-08-08 ES ES19209507T patent/ES2901926T3/es active Active
-
2015
- 2015-08-24 US US14/833,992 patent/US9445397B2/en active Active
-
2016
- 2016-07-07 US US15/204,588 patent/US9775187B2/en active Active
- 2016-08-26 HK HK16110214.1A patent/HK1222085A1/zh unknown
-
2017
- 2017-08-09 US US15/672,600 patent/US10172176B2/en active Active
-
2018
- 2018-12-13 US US16/219,734 patent/US10932309B2/en active Active
-
2019
- 2019-03-06 JP JP2019040516A patent/JP6738923B2/ja active Active
- 2019-03-06 JP JP2019040515A patent/JP6738922B2/ja active Active
-
2021
- 2021-01-11 US US17/146,175 patent/US11558913B2/en active Active
-
2023
- 2023-01-04 US US18/093,104 patent/US12058749B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110255527A1 (en) * | 2010-04-15 | 2011-10-20 | Motorola, Inc. | Method for synchronizing direct mode time division multiple access (tdma) transmissions |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12058749B2 (en) | Method and system for initial synchronization and collision avoidance in device to device communications without network coverage | |
JP5199354B2 (ja) | ワイヤレスネットワークのための互いに独立した接続識別情報(cid)を生成し、維持する装置および方法 | |
US9226329B2 (en) | Method and apparatus for contention free device signaling without a controlling network node | |
KR102221959B1 (ko) | 단말 대 단말 통신에서 분산 자원 할당을 위한 기준 신호 송 수신 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
A107 | Divisional application of patent | ||
GRNT | Written decision to grant |