CN102056324B - 基于令牌控制冲突解析的协同载波侦听多址接入方法 - Google Patents

基于令牌控制冲突解析的协同载波侦听多址接入方法 Download PDF

Info

Publication number
CN102056324B
CN102056324B CN 201010600037 CN201010600037A CN102056324B CN 102056324 B CN102056324 B CN 102056324B CN 201010600037 CN201010600037 CN 201010600037 CN 201010600037 A CN201010600037 A CN 201010600037A CN 102056324 B CN102056324 B CN 102056324B
Authority
CN
China
Prior art keywords
packet
node
signal
sub
slots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010600037
Other languages
English (en)
Other versions
CN102056324A (zh
Inventor
杨炜伟
胡映波
蔡跃明
魏士博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PLA University of Science and Technology
Original Assignee
PLA University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PLA University of Science and Technology filed Critical PLA University of Science and Technology
Priority to CN 201010600037 priority Critical patent/CN102056324B/zh
Publication of CN102056324A publication Critical patent/CN102056324A/zh
Application granted granted Critical
Publication of CN102056324B publication Critical patent/CN102056324B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种无线网络的基于令牌控制冲突解析的协同载波侦听多址接入控制方法,系统信道时隙化,采用时分多址方式传输数据帧。各节点采用载波侦听以概率竞争接入的方法来传输数据帧。节点发送数据帧后,接入点根据是否正确接收来决定是否需要协同重传,并在确认子时隙给出反馈;然后,在下一个时隙选择一个性能最优的节点来协同传输该数据帧直至被接入点正确接收。通过设置空时隙避免子时隙,来避免出现空时隙,提高信道的利益效率。当出现多个节点同时发送数据帧的情况,节点反馈冲突控制信号,并通过信息序列中叠加的表示各节点身份的正交导频序列,来估计各节点到接入点之间的信噪比,并选择信噪比最高的节点,以令牌传递的方式依次重传,实现冲突解析。本发明方法能获得较高的系统吞吐量,为无线网络提供较高的接入可靠性。

Description

基于令牌控制冲突解析的协同载波侦听多址接入方法
技术领域
本发明涉及一种无线网络中媒体接入控制方法,尤其涉及一种基于令牌控制冲突解析的协同载波侦听多址接入方法。
背景技术
信道利用率高而开销低的媒体接入控制(MAC)方法一直是无线网络设计的重要目标之一。传统的媒体接入控制技术是频分多址(FDMA)、时分多址(TDMA)和码分多址(CDMA),协议开销低,但不适合突发业务。为了支持突发业务,人们开发了多种随机接入(random access,RA)技术,包括时隙ALOHA、载波侦听/冲突避免(CSMA/CA)、树形方法(包括二分树方法、三分树方法和先到先服务(FCFS)方法等)以及四步握手协议(RTS-CTS-Data-ACK)等等。其中CSMA/CA协议作为一种较为完善的自组网接入控制协议,得到了广泛的应用。
随机接入是一种分布式竞争接入技术,一个完整的随机接入方案包括信道接入策略和冲突分解方法。信道接入策略指的是新到达业务何时可以发送,包括:1)自由接入,新业务一到达就发送;2)阻塞接入,禁止新业务接入,直到当前冲突分解完毕。RA方案一般都采用第2种策略。冲突分解方法需要尽力降低冲突概率并能实现冲突的最终分解,常用的思路是随机退避,包括n分树退避、p型坚持和指数退避。一个优良的冲突分解方法应该用最少的时隙分解冲突,从而获取高的吞吐量。吞吐量简单的定义是单位时间(时隙)内成功接收的数据包个数。如ALOHA最大吞吐量为0.184,时隙ALOHA为0.368,Capetanakis(1979)和Tsybakov及Mihailov(1978)独立的发明了树形方法(二分树)为0.347,Gallager的FCFS方法为0.487。而采用载波侦听或握手机制,可进一步提高吞吐量,如EDCF,但以增加协议开销为代价。但是基于载波侦听和冲突避免的机制会在冲突分解过程中带来空隙时隙或冲突时隙(即无效时隙),导致信道利用率降低。
CSMA/CA方案采用退避的思路来解决冲突问题,可能导致出现空时隙或是冲突时隙。且由于该模型不考虑物理信道状态,因此CSMA/CA方案的性能仅依靠媒体接入控制层的改进难以进一步提升。
利用物理层的信号处理技术,基于跨层设计的CSMA/CA方案得到了广泛关注,如PeiLiu,Zhifeng Tao等人提出了一种协同MAC协议CoopMAC(发表在2007年的IEEE通信选题专刊第25卷第2期的340-354页),该协议利用协同传输来实现多速率传输,提升了系统性能。但是该协议需要维护一个协同表,不但增大了系统开销,而且不能适应于动态变化的自组织网络;且该协议采用退避的方式来处理冲突,会带来无效时隙导致信道利用率较低。Jian Ni和Bo(Rambo)Tan等提出了一种基于序列长度的CSMA/CA方案(发表在2010年的IEEE INFOCOM会议上),获得了较高的吞吐量和较低的时延性能。该文考虑了一个时隙系统,而假设的无碰撞模型,过于理想。
此外,上述方案都是基于理想的信道估计假设,没有具体的信道估计方案。H.Wang和T.Li等人设计了混合ALOHA协议(发表在2007年IEEE信号处理汇刊第55卷第12期,5821页到5832页),在数据传输前设置若干导频子时隙用于信道估计,获得了0.587的吞吐量。然而导频子时隙个数的设置是个难题,因为不知道究竟有多少节点会发送数据。很多学者对叠加导频估计方法开展研究,但在CSMA/CA方案中的应用研究还未见报告。在此,叠加导频估计方法是将正交导频序列和信息序列直接并行叠加,因此不占用时隙资源,可引入到CSMA/CA方案设计中,进一步提高时隙效率。
发明内容
本发明提供了一种能够提高信道利用率、具有多包接收能力、且可靠性高的基于令牌控制冲突解析的协同载波侦听多址接入方法。
本发明采用如下技术方案:
步骤1:采用时分双工方式,信道时隙化,具体设置如下:信道在时间上分割成等长的时隙,系统周期性发送信标帧,两个相邻信标帧构造一个超帧,每个超帧包含
Figure BDA0000039909910000021
个时隙,NS取1~8之间的整数,信标帧用于广播系统消息、定时以及同步,每个时隙首部设置一个侦听子时隙,紧接着设置一个空时隙避免子时隙,尾部设置一个确认子时隙,中间为传输子时隙,在侦听子时隙、空时隙避免子时隙、确认子时隙和传输子时隙后分别紧随一个保护子时隙,
步骤2:节点发送接入请求,系统接受该节点的接入请求后,从正交导频序列库{z1,z2,…,zU}中选择一个正交导频序列分配给请求接入的节点,分配的正交导频序列用作节点的身份识别,其中,z1,z2,…,zU为正交导频序列,
Figure BDA0000039909910000022
NZ取4~8之间的整数,若正交导频序列库{z1,z2,…,zU}中的正交导频序列分配完毕,则拒绝该节点接入系统,
步骤3:需要发送数据包的节点采用基于令牌控制冲突解析的协同载波侦听多址接入方法发送数据包,所述的基于令牌控制冲突解析的协同载波侦听多址接入方法的具体步骤是:
步骤3.1:在接入系统的m个节点中,如果n个节点有数据包在时隙t要发送,其中,m≤U,1≤n≤m,则该n个节点首先在侦听子时隙侦听信道,如果信道空闲,则所有n个节点在空时隙避免子时隙开始时以概率pr发送数据包,0<pr<1,同时所有节点在该子时隙内保持信道监听,所述的各节点身份的正交导频序列并行叠加在n个节点所发送数据包中;
步骤3.2:如果侦听发现,仅有一个节点发送数据包,且接入点成功接收到该数据包,则接入点在确认子时隙开始时反馈正确接收ACK信号,同时,所有正确接收到该数据包的邻居节点丢弃该包,
步骤3.3:如果侦听发现,仅有一个节点发送数据包,而接入点没有正确接收该数据包,则接入点在确认子时隙反馈一个错误接收NACK信号,网络中所有其他节点停止发送自己的数据包,系统启动协同重传,
步骤3.3.1:所述的协同重传方法的具体步骤是:
步骤3.3.1.1:在下一个时隙的侦听子时隙开始时,网络中正确接收该数据包的候选协同节点发送一个愿意协同RRTS信号,所述愿意协同RRTS信号由公共导频序列和表示各自身份的正交导频序列串行连接组成,
步骤3.3.1.2:接入点接收到各候选协同节点发送来的正交导频序列估计相应节点到接入点之间信道的信噪比,选择一个信噪比最高的协同节点,如果该节点的信噪比大于源节点到接入点之间的信噪比,则在空时隙避免子时隙中反馈一个确认协同RCTS信号,选择信噪比最高的协同节点来进行重传,
步骤3.3.1.3:如果所有候选协同节点到接入点之间的信噪比均比源节点到接入点之间信道的信噪比低,则在空时隙避免子时隙中反馈一个确认协同RCTS信号,选择源节点重传该数据包;如果没有候选协同节点正确接收数据包,则直接选择源节点重传,
步骤3.3.1.4:被选中的协同节点或源节点在传输子时隙开始时重传数据包,
步骤3.3.1.5:如果接入点正确接收到重传的数据包,则在确认子时隙反馈正确接收ACK信号,通知各节点该包被正确接收,所有节点在收到该正确接收ACK信号后,丢弃该数据包,继续新的数据包的传输,
步骤3.3.1.6:如果接入点仍无法正确接收重传的数据包,则反馈错误接收NACK信号,并在下一个时隙继续请求协同重传,直至该数据包被正确接收,
步骤3.4:如果侦听发现,有两个或两个以上节点发送数据包,则系统发生冲突,接入点通过对叠加在信息序列中的正交导频进行处理,估计发生冲突的节点数目和各冲突节点到接入点之间信道的信噪比,并按照信噪比从大到小的原则确定各冲突节点在解冲突过程中重传的顺序,并在确认子时隙开始时反馈冲突Collision信号,该信号包括冲突发生的标志信息、冲突节点数,系统启动基于令牌控制的冲突解析过程,
步骤3.4.1:所述的基于令牌控制的冲突解析过程的具体步骤如下:
步骤3.4.1.1:各节点读取冲突collision信号帧中的控制信息序列后,根据是否在时隙t中发送数据包来确定自己的操作,没有发送数据包的节点停止发送自己的数据包直到冲突解析结束;而在时隙t中发送了数据包的节点则进入冲突解析过程,
步骤3.4.1.2:在接下来的一个时隙的侦听子时隙开始时,接入点首先发送冲突解析控制令牌,该令牌帧包括根据各冲突节点到接入点之间的信噪比大小顺序来确定各节点的重传顺序和还没有解析成功的数据包个数,
步骤3.4.1.3:各冲突节点通过读取该令牌帧,检查自己是否被确定为首先重传,而被确定首先重传的节点,在数据传输子时隙开始时,重传自己的数据包,
步骤3.4.1.4:如果重传数据包被接入点正确接收,则该重传数据包被解析成功,接入点在确认子时隙反馈一个确认控制信号CACK信号,所述的确认控制信号CACK信号中包括对该数据包被成功接收的确认指示以及还没有被解析的冲突数据包的个数和剩余待解析冲突节点的重传顺序,
步骤3.4.1.5:如果重传数据包没有被正确接收,则接入点反馈错误控制NCACK信号,该错误控制NCACK信号中包括对该数据包没有被正确接收而需要进行协同重传的确认指示以及还没有被解析的冲突数据包个数和剩余待解析冲突节点的重传秩序,同时,系统进入对该数据包的协同重传过程,具体操作与步骤3.3.1中所述过程相同,直至该数据包被成功接收而接入点反馈确认控制CACK信号,
步骤3.4.1.5:所有节点在接收到确认控制CACK信号后,通过读取未被成功解析的冲突数据包的个数来确定冲突解析是否结束,
步骤3.4.1.6:如果未被成功解析的冲突数据包个数不等于0,则继续进行冲突解析,返回步骤3.4.1.1,
步骤3.4.1.7:如果未被成功解析的冲突数据包个数等于0,则冲突解析过程结束,
步骤3.5:如果侦听发现,没有数据包被发送,则所有n个节点在数据传输子时隙开始时以概率1发送各自的数据包,
步骤3.5.1:如果节点数n=1,则操作过程与步骤3.2和步骤3.3中所述仅有1个节点发送时的情况相同,具体操作步骤一致,
步骤3.5.2:如果节点数n>1,则发生冲突,接入点在确认子时隙开始时反馈冲突collision信号,系统启动基于令牌控制的冲突解析,具体的操作过程与步骤3.4.1所述的基于令牌控制的冲突解析过程相同,直至所有数据包被成功接收。与现有技术相比,本发明具有如下优点:
1.能有效克服信道衰落影响。采用跨层设计,将载波侦听多址接入CSMA与自动重传请求ARQ机制相结合,针对因信道衰落导致的传输出错问题,选择到接入点之间的信噪比最大的节点来进行协同重传,从而提高无线传输的可靠性,使无线接入系统获得更高的吞吐量性能;
2.信道利用率高。在侦听子时隙后设计空时隙避免子时隙,通过在空时隙避免子时隙中保持监听,并在发现信道空闲时所有有包要传输的节点以概率1在数据传输子时隙中传输,然后通过冲突解析来确保所有数据包被正确接收,从而避免无效时隙的出现,提高系统的吞吐量性能;
3.包冲突解析周期短。将表示各节点身份的正交导频与信息序列相叠加的方式进行发送,接入点可以通过检测正交导频序列估计各冲突节点到接入点之间信道的信噪比,按照从大到小的顺序,依次选择各冲突节点重传,从而逐个解析各冲突数据包。这种以令牌控制来选择冲突节点重传的方式,能有效避免采用随机退避等机制时带来的无效时隙,从而在最短的时间内实现对冲突数据包的解析。
附图说明
图1本发明方法中超帧结构;
图2本发明方法的时隙结构;
图3本发明方法的控制帧结构图;
图4本发明方法的数据帧结构图;
图5本发明方法的节点接入网络流程图;
图6本发明方法的基于令牌控制的载波侦听接入方法流程图及时隙示意图;
图7本发明方法中的协同重传流程图及时隙示意图;
图8本发明方法中的冲突解析流程图及时隙示意图;
图9不同MAC方法的吞吐量性能比较。
具体实施方式
实施例1
一种基于令牌控制冲突解析的协同载波侦听多址接入方法,其特征在于:
步骤1:采用时分双工方式,信道时隙化,具体设置如下:信道在时间上分割成等长的时隙,系统周期性发送信标帧,两个相邻信标帧构造一个超帧,每个超帧包含
Figure BDA0000039909910000061
个时隙,NS取1~8之间的整数,信标帧用于广播系统消息、定时以及同步,每个时隙首部设置一个侦听子时隙,紧接着设置一个空时隙避免子时隙,尾部设置一个确认子时隙,中间为传输子时隙,在侦听子时隙、空时隙避免子时隙、确认子时隙和传输子时隙后分别紧随一个保护子时隙,
步骤2:节点发送接入请求,系统接受该节点的接入请求后,从正交导频序列库{z1,z2,…,zU}中选择一个正交导频序列分配给请求接入的节点,分配的正交导频序列用作节点的身份识别,其中,z1,z2,…,zU为正交导频序列,
Figure BDA0000039909910000062
NZ取4~8之间的整数,若正交导频序列库{z1,z2,…,zU}中的正交导频序列分配完毕,则拒绝该节点接入系统,
步骤3:需要发送数据包的节点采用基于令牌控制冲突解析的协同载波侦听多址接入方法发送数据包,所述的基于令牌控制冲突解析的协同载波侦听多址接入方法的具体步骤是:
步骤3.1:在接入系统的m个节点中,如果n个节点有数据包在时隙t要发送,其中,m≤U,1≤n≤m,则该n个节点首先在侦听子时隙侦听信道,如果信道空闲,则所有n个节点在空时隙避免子时隙开始时以概率pr发送数据包,0<pr<1,同时所有节点在该子时隙内保持信道监听,所述的各节点身份的正交导频序列并行叠加在n个节点所发送数据包中,如当信息符号为x,导频符号为d,两者并行叠加为x+d;;
步骤3.2:如果侦听发现,仅有一个节点发送数据包,且接入点成功接收到该数据包,则接入点在确认子时隙开始时反馈正确接收ACK信号,同时,所有正确接收到该数据包的邻居节点丢弃该包,
步骤3.3:如果侦听发现,仅有一个节点发送数据包,而接入点没有正确接收该数据包,则接入点在确认子时隙反馈一个错误接收NACK信号,网络中所有其他节点停止发送自己的数据包,系统启动协同重传,
步骤3.3.1:所述的协同重传方法的具体步骤是:
步骤3.3.1.1:在下一个时隙的侦听子时隙开始时,网络中正确接收该数据包的候选协同节点发送一个愿意协同RRTS信号,所述愿意协同RRTS信号由公共导频序列和表示各自身份的正交导频序列串行连接组成,
步骤3.3.1.2:接入点接收到各候选协同节点发送来的正交导频序列估计相应节点到接入点之间信道的信噪比,选择一个信噪比最高的协同节点,如果该节点的信噪比大于源节点到接入点之间的信噪比,则在空时隙避免子时隙中反馈一个确认协同RCTS信号,选择信噪比最高的协同节点来进行重传,
步骤3.3.1.3:如果所有候选协同节点到接入点之间的信噪比均比源节点到接入点之间信道的信噪比低,则在空时隙避免子时隙中反馈一个确认协同RCTS信号,选择源节点重传该数据包;如果没有候选协同节点正确接收数据包,则直接选择源节点重传,
步骤3.3.1.4:被选中的协同节点或源节点在传输子时隙开始时重传数据包,
步骤3.3.1.5:如果接入点正确接收到重传的数据包,则在确认子时隙反馈正确接收ACK信号,通知各节点该包被正确接收,所有节点在收到该正确接收ACK信号后,丢弃该数据包,继续新的数据包的传输,
步骤3.3.1.6:如果接入点仍无法正确接收重传的数据包,则反馈错误接收NACK信号,并在下一个时隙继续请求协同重传,直至该数据包被正确接收,
步骤3.4:如果侦听发现,有两个或两个以上节点发送数据包,则系统发生冲突,接入点通过对叠加在信息序列中的正交导频进行处理,估计发生冲突的节点数目和各冲突节点到接入点之间信道的信噪比,并按照信噪比从大到小的原则确定各冲突节点在解冲突过程中重传的顺序,并在确认子时隙开始时反馈冲突Collision信号,该信号包括冲突发生的标志信息、冲突节点数,系统启动基于令牌控制的冲突解析过程,
步骤3.4.1:所述的基于令牌控制的冲突解析过程的具体步骤如下:
步骤3.4.1.1:各节点读取冲突collision信号帧中的控制信息序列后,根据是否在时隙t中发送数据包来确定自己的操作,没有发送数据包的节点停止发送自己的数据包直到冲突解析结束;而在时隙t中发送了数据包的节点则进入冲突解析过程,
步骤3.4.1.2:在接下来的一个时隙的侦听子时隙开始时,接入点首先发送冲突解析控制令牌,该令牌帧包括根据各冲突节点到接入点之间的信噪比大小顺序来确定各节点的重传顺序和还没有解析成功的数据包个数,
步骤3.4.1.3:各冲突节点通过读取该令牌帧,检查自己是否被确定为首先重传,而被确定首先重传的节点,在数据传输子时隙开始时,重传自己的数据包,
步骤3.4.1.4:如果重传数据包被接入点正确接收,则该重传数据包被解析成功,接入点在确认子时隙反馈一个确认控制信号CACK信号,所述的确认控制信号CACK信号中包括对该数据包被成功接收的确认指示以及还没有被解析的冲突数据包的个数和剩余待解析冲突节点的重传顺序,
步骤3.4.1.5:如果重传数据包没有被正确接收,则接入点反馈错误控制NCACK信号,该错误控制NCACK信号中包括对该数据包没有被正确接收而需要进行协同重传的确认指示以及还没有被解析的冲突数据包个数和剩余待解析冲突节点的重传秩序,同时,系统进入对该数据包的协同重传过程,具体操作与步骤3.3.1中所述过程相同,直至该数据包被成功接收而接入点反馈确认控制CACK信号,
步骤3.4.1.5:所有节点在接收到确认控制CACK信号后,通过读取未被成功解析的冲突数据包的个数来确定冲突解析是否结束,
步骤3.4.1.6:如果未被成功解析的冲突数据包个数不等于0,则继续进行冲突解析,返回步骤3.4.1.1,
步骤3.4.1.7:如果未被成功解析的冲突数据包个数等于0,则冲突解析过程结束,
步骤3.5:如果侦听发现,没有数据包被发送,则所有n个节点在数据传输子时隙开始时以概率1发送各自的数据包,
步骤3.5.1:如果节点数n=1,则操作过程与步骤3.2和步骤3.3中所述仅有1个节点发送时的情况相同,具体操作步骤一致,
步骤3.5.2:如果节点数n>1,则发生冲突,接入点在确认子时隙开始时反馈冲突collision信号,系统启动基于令牌控制的冲突解析,具体的操作过程与步骤3.4.1所述的基于令牌控制的冲突解析过程相同,直至所有数据包被成功接收。
实施例2
这里考察本发明方法的吞吐量性能。考虑全网有m=60各节点和一个接入点,各节点的数据包到达服从泊松分布,总到达率为λ包每时隙,属于固定速率业务,所有节点采用相同的调制阶数,各节点和接入点具有足够的缓存空间。信道为块衰落,即在一个时隙内容信道状态准静态,且服从瑞利分布,相邻时隙的信道状态不相关。
定义系统吞吐量为单位时隙内成功接收的平均数据包个数。设定仿真条件如下:瑞利衰落信道,参考文献(发表在2008年6月的IEEE通信letter的第12卷第6期的第468-470页)中关于协同ALOHA的仿真参数设置取信噪比为25dB,并根据公式
Figure BDA0000039909910000091
来计算误比特率,其中
Figure BDA0000039909910000092
是信道的平均信噪比,进而通过公式
Figure BDA0000039909910000093
来计算数据包的误帧率。考虑有数据包要发送的节点数n从0个到60变化,仿真比较了传统时隙ALOHA、协同ALOHA、传统CSMA和本发明方法的吞吐量性能。具体仿真结果如图9所示。从图中可以看出,在所给条件下,本文所提发明方法获得了最高0.62的吞吐量,比其他接入方法都要更高,性能更好。

Claims (1)

1.一种基于令牌控制冲突解析的协同载波侦听多址接入方法,其特征在于:
步骤1:采用时分双工方式,信道时隙化,具体设置如下:信道在时间上分割成等长的时隙,系统周期性发送信标帧,两个相邻信标帧构造一个超帧,每个超帧包含
Figure FDA00002243438300011
个时隙,NS取1~8之间的整数,信标帧用于广播系统消息、定时以及同步,每个时隙首部设置一个侦听子时隙,紧接着设置一个空时隙避免子时隙,尾部设置一个确认子时隙,中间为传输子时隙,在侦听子时隙、空时隙避免子时隙、确认子时隙和传输子时隙后分别紧随一个保护子时隙,
步骤2:节点发送接入请求,系统接受该节点的接入请求后,从正交导频序列库{z1,z2,…,zU}中选择一个正交导频序列分配给请求接入的节点,分配的正交导频序列用作节点的身份识别,其中,z1,z2,…,zU为正交导频序列,NZ取4~8之间的整数,若正交导频序列库{z1,z2,…,zU}中的正交导频序列分配完毕,则拒绝该节点接入系统,
步骤3:需要发送数据包的节点采用基于令牌控制冲突解析的协同载波侦听多址接入方法发送数据包,所述的基于令牌控制冲突解析的协同载波侦听多址接入方法的具体步骤是:
步骤3.1:在接入系统的m个节点中,如果n个节点有数据包在时隙t要发送,其中,1≤m≤U,1≤n≤m,则该n个节点首先在侦听子时隙侦听信道,如果信道空闲,则所有n个节点在空时隙避免子时隙开始时以概率pr发送数据包,0<pr<1,同时所有节点在该子时隙内保持信道监听,所述的各节点身份的正交导频序列并行叠加在n个节点所发送数据包中;
步骤3.2:如果侦听发现,仅有一个节点发送数据包,且接入点成功接收到该数据包,则接入点在确认子时隙开始时反馈正确接收ACK信号,同时,所有正确接收到该数据包的邻居节点丢弃该包,
步骤3.3:如果侦听发现,仅有一个节点发送数据包,而接入点没有正确接收该数据包,则接入点在确认子时隙反馈一个错误接收NACK信号,网络中所有其他节点停止发送自己的数据包,系统启动协同重传,
步骤3.3.1:所述的协同重传方法的具体步骤是:
步骤3.3.1.1:在下一个时隙的侦听子时隙开始时,网络中正确接收该数据包的候选协同节点发送一个愿意协同RRTS信号,所述愿意协同RRTS信号由公共导频序列和表示各自身份的正交导频序列串行连接组成,
步骤3.3.1.2:接入点接收到各候选协同节点发送来的正交导频序列估计相应节点到接入点之间信道的信噪比,选择一个信噪比最高的协同节点,如果该节点的信噪比大于源节点到接入点之间的信噪比,则在空时隙避免子时隙中反馈一个确认协同RCTS信号,选择信噪比最高的协同节点来进行重传,
步骤3.3.1.3:如果所有候选协同节点到接入点之间的信噪比均比源节点到接入点之间信道的信噪比低,则在空时隙避免子时隙中反馈一个确认协同RCTS信号,选择源节点重传该数据包;如果没有候选协同节点正确接收数据包,则直接选择源节点重传,
步骤3.3.1.4:被选中的协同节点或源节点在传输子时隙开始时重传数据包,
步骤3.3.1.5:如果接入点正确接收到重传的数据包,则在确认子时隙反馈正确接收ACK信号,通知各节点该包被正确接收,所有节点在收到该正确接收ACK信号后,丢弃该数据包,继续新的数据包的传输,
步骤3.3.1.6:如果接入点仍无法正确接收重传的数据包,则反馈错误接收NACK信号,并在下一个时隙继续请求协同重传,直至该数据包被正确接收,
步骤3.4:如果侦听发现,有两个或两个以上节点发送数据包,则系统发生冲突,接入点通过对叠加在信息序列中的正交导频进行处理,估计发生冲突的节点数目和各冲突节点到接入点之间信道的信噪比,并按照信噪比从大到小的原则确定各冲突节点在冲突解析过程中重传的顺序,并在确认子时隙开始时反馈冲突Collision信号,该信号包括冲突发生的标志信息、冲突节点数,系统启动基于令牌控制的冲突解析过程,
步骤3.4.1:所述的基于令牌控制的冲突解析过程的具体步骤如下:
步骤3.4.1.1:各节点读取冲突collision信号帧中的控制信息序列后,根据是否在时隙t中发送数据包来确定自己的操作,没有发送数据包的节点停止发送自己的数据包直到冲突解析结束;而在时隙t中发送了数据包的节点则进入冲突解析过程,
步骤3.4.1.2:在接下来的一个时隙的侦听子时隙开始时,接入点首先发送冲突解析控制令牌,该令牌帧包括根据各冲突节点到接入点之间的信噪比大小顺序来确定各节点的重传顺序和还没有解析成功的数据包个数,
步骤3.4.1.3:各冲突节点通过读取该令牌帧,检查自己是否被确定为首先重传,而被确定首先重传的节点,在数据传输子时隙开始时,重传自己的数据包,
步骤3.4.1.4:如果重传数据包被接入点正确接收,则该重传数据包被解析成功,接入点在确认子时隙反馈一个确认控制信号CACK信号,所述的确认控制信号CACK信号中包括对该数据包被成功接收的确认指示以及还没有被解析的冲突数据包的个数和剩余待解析冲突节点的重传顺序,
步骤3.4.1.5:如果重传数据包没有被正确接收,则接入点反馈错误控制NCACK信号,该错误控制NCACK信号中包括对该数据包没有被正确接收而需要进行协同重传的确认指示以及还没有被解析的冲突数据包个数和剩余待解析冲突节点的重传秩序,同时,系统进入对该数据包的协同重传过程,具体操作与步骤3.3.1中所述过程相同,直至该数据包被成功接收而接入点反馈确认控制CACK信号,
步骤3.4.1.5:所有节点在接收到确认控制CACK信号后,通过读取未被成功解析的冲突数据包的个数来确定冲突解析是否结束,
步骤3.4.1.6:如果未被成功解析的冲突数据包个数不等于0,则继续进行冲突解析,返回步骤3.4.1.1,
步骤3.4.1.7:如果未被成功解析的冲突数据包个数等于0,则冲突解析过程结束,
步骤3.5:如果侦听发现,没有数据包被发送,则所有n个节点在数据传输子时隙开始时以概率1发送各自的数据包,
步骤3.5.1:如果节点数n=1,则操作过程与步骤3.2和步骤3.3中所述仅有1个节点发送时的情况相同,具体操作步骤一致,
步骤3.5.2:如果节点数n>1,则发生冲突,接入点在确认子时隙开始时反馈冲突collision信号,系统启动基于令牌控制的冲突解析,具体的操作过程与步骤3.4.1所述的基于令牌控制的冲突解析过程相同,直至所有数据包被成功接收。
CN 201010600037 2010-12-22 2010-12-22 基于令牌控制冲突解析的协同载波侦听多址接入方法 Expired - Fee Related CN102056324B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010600037 CN102056324B (zh) 2010-12-22 2010-12-22 基于令牌控制冲突解析的协同载波侦听多址接入方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010600037 CN102056324B (zh) 2010-12-22 2010-12-22 基于令牌控制冲突解析的协同载波侦听多址接入方法

Publications (2)

Publication Number Publication Date
CN102056324A CN102056324A (zh) 2011-05-11
CN102056324B true CN102056324B (zh) 2013-02-06

Family

ID=43960095

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010600037 Expired - Fee Related CN102056324B (zh) 2010-12-22 2010-12-22 基于令牌控制冲突解析的协同载波侦听多址接入方法

Country Status (1)

Country Link
CN (1) CN102056324B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102665287B (zh) * 2012-04-10 2014-06-18 中国人民解放军理工大学 一种结合协同网络辅助分集的指数退避多址接入方法
US9210690B2 (en) * 2013-08-08 2015-12-08 Blackberry Limited Method and system for initial synchronization and collision avoidance in device to device communications without network coverage
CN103580967A (zh) * 2013-11-08 2014-02-12 广东广联电子科技有限公司 应用于数字家庭网络的令牌传递方法
CN103596283A (zh) * 2013-11-28 2014-02-19 无锡清华信息科学与技术国家实验室物联网技术中心 基于相关序列的解决冲突的方法及系统
CN103874233B (zh) * 2014-02-14 2017-03-08 长江勘测规划设计研究有限责任公司 基于捕获效应的协同时隙aloha方法
CN104507119B (zh) * 2014-11-26 2018-09-14 无锡儒安科技有限公司 一种基于并发传输的无线传感器网络数据收集方法
CN104378834B (zh) * 2014-12-09 2017-12-19 中国人民解放军理工大学 一种基于相关序列识别的媒体接入控制方法
CN104753737B (zh) * 2015-03-25 2018-06-08 江苏物联网研究发展中心 基于EMANE的网络仿真工具中csma/cd模块的工作方法
CN107707385B (zh) * 2017-09-18 2019-03-12 贵州白山云科技股份有限公司 一种数据上报方法及系统
CN110545151B (zh) * 2018-05-28 2021-08-03 北京小米松果电子有限公司 音频端之间状态同步、发送音频数据包的方法及音频设备
CN109067674B (zh) * 2018-07-10 2021-02-12 电子科技大学 一种基于选择性叠加导频的信道估计方法
CN110958083B (zh) 2018-09-26 2022-06-14 华为技术有限公司 通信方法及装置
CN111065168B (zh) * 2019-12-19 2022-08-19 南京六九零二科技有限公司 一种基于同频同时全双工的无线接入方法
CN111800200B (zh) * 2020-06-15 2021-05-14 华南理工大学 一种水声网络并行通信的发送时间规划方法
CN112888081B (zh) * 2021-01-08 2022-08-30 西安电子科技大学 基于快速反馈机制的多址接入方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651969A (zh) * 2009-09-14 2010-02-17 西安交通大学 基于时分多址(tdma)的功率控制认知mac协议的实现方法
CN101754399A (zh) * 2009-12-16 2010-06-23 北京航空航天大学 多信道协作多址接入方法和系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651969A (zh) * 2009-09-14 2010-02-17 西安交通大学 基于时分多址(tdma)的功率控制认知mac协议的实现方法
CN101754399A (zh) * 2009-12-16 2010-06-23 北京航空航天大学 多信道协作多址接入方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Pei Liu 等.CoopMAC: A Cooperative MAC for Wireless LANs.《IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS》.2007,第25卷340-354. *

Also Published As

Publication number Publication date
CN102056324A (zh) 2011-05-11

Similar Documents

Publication Publication Date Title
CN102056324B (zh) 基于令牌控制冲突解析的协同载波侦听多址接入方法
CN101459973B (zh) 无线通信设备和无线通信方法
US9794098B2 (en) Multi-user communication in wireless networks
CN101399833B (zh) 基于协同冲突分解的混合型媒体接入控制方法
CN106788912B (zh) 基站、用户设备及上行数据传输方法
EP2520128B1 (en) Efficient uplink sdma operation
CN101521586B (zh) 在无线局域网中的多播方法
US9516677B2 (en) System and method for collision resolution
CN102647805B (zh) 一种基于媒介接入控制协议的无线传感器网络传输方法
CN102484607B (zh) 一种profinet通信系统中的通信方法
CN101982944B (zh) 一种应用于水声传感器网络Aloha协议方法
CN103368706A (zh) 混合自动重传请求传输方法、装置及系统
CN102045138A (zh) 无线网络中的重传技术
CN102098113B (zh) 基于aloha和tdma的水声传感器网络mac层协议的实现方法
WO2011079813A1 (zh) 信息反馈方法和装置
CN104685953A (zh) 传输上行数据的方法、用户设备和基站
CN101494879B (zh) 在无线局域网中支持协作通信的媒介控制方法
CN101662798B (zh) 无线传感器网络低功耗邀请重传方法及其装置
CN104780619B (zh) 基于协作通信的无线局域网介质访问控制层协议的方法
US9961702B2 (en) Method and system for contention queuing using a queue-based MAC protocol
CN102665287B (zh) 一种结合协同网络辅助分集的指数退避多址接入方法
CN102387538A (zh) 一种资源竞争方法和站点
CN106936546B (zh) 竞争上行传输的方法及装置
CN1964353A (zh) 面向无线工业控制网的协议栈
CN102195763B (zh) 水声传感器网络长延迟情况下的mac协议实现方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130206

Termination date: 20151222

EXPY Termination of patent right or utility model