KR102212290B1 - 태양 전지의 감소된 접촉 저항 및 향상된 수명 - Google Patents

태양 전지의 감소된 접촉 저항 및 향상된 수명 Download PDF

Info

Publication number
KR102212290B1
KR102212290B1 KR1020157028193A KR20157028193A KR102212290B1 KR 102212290 B1 KR102212290 B1 KR 102212290B1 KR 1020157028193 A KR1020157028193 A KR 1020157028193A KR 20157028193 A KR20157028193 A KR 20157028193A KR 102212290 B1 KR102212290 B1 KR 102212290B1
Authority
KR
South Korea
Prior art keywords
solar cell
polysilicon layer
layer
conductive filler
metal
Prior art date
Application number
KR1020157028193A
Other languages
English (en)
Other versions
KR20150132269A (ko
Inventor
시 주
Original Assignee
선파워 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 선파워 코포레이션 filed Critical 선파워 코포레이션
Publication of KR20150132269A publication Critical patent/KR20150132269A/ko
Application granted granted Critical
Publication of KR102212290B1 publication Critical patent/KR102212290B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

정상 작동 동안에 태양에 대면하는 전면 및 전면의 반대편에 있는 배면을 갖는 태양 전지는 도핑된 영역들을 갖는 규소 기판 및 도핑된 영역들 위에 배치된 폴리실리콘 층을 포함할 수 있다. 태양 전지는 제1 금속 층과 도핑된 영역들 사이에 그리고 폴리실리콘 층을 통해 또는 적어도 부분적으로 통해 형성된 전도성 충전재를 포함할 수 있는데, 여기서 전도성 충전재는 제1 금속 층과 도핑된 영역을 전기적으로 결합시킨다. 일 실시예에서, 제2 금속 층이 제1 금속 층 상에 형성되는데, 여기서 제1 금속 층 및 전도성 충전재는 도핑된 영역들과 제2 금속 층을 전기적으로 결합시킨다. 일부 실시예들에서, 태양 전지는 전면 접점 태양 전지 또는 배면 접점 태양 전지일 수 있다.

Description

태양 전지의 감소된 접촉 저항 및 향상된 수명{REDUCED CONTACT RESISTANCE AND IMPROVED LIFETIME OF SOLAR CELLS}
관련 출원에 대한 상호 참조
본 출원은, 그 전체 내용이 본 명세서에 참고로 포함된, 발명의 명칭이 "태양 전지의 전기적 특성을 향상시키기 위한 구조물 및 방법(STRUCTURES AND METHODS FOR IMPROVING ELECTRICAL PROPERTIES OF SOLAR CELLS)"인, 2013년 3월 15일자로 출원된 미국 가출원 제61/799,112호의 이익을 청구한다.
태양 전지로서 흔히 알려진 광전지(photovoltaic(PV) cell)는 전기 에너지로의 태양 방사선의 변환을 위한 잘 알려진 장치이다. 일반적으로, 태양 전지의 기판의 표면 상에 충돌하고 기판 내로 진입하는 태양 방사선은 기판의 대부분에서 전자 및 정공(hole) 쌍을 생성한다. 전자 및 정공 쌍은 기판 내의 p-도핑된(doped) 영역 및 n-도핑된 영역으로 이동함으로써, 도핑된 영역들 사이에 전압차를 생성한다. 도핑된 영역들은 태양 전지 상의 전도성 영역들에 연결되어, 전지로부터의 전류를 외부 회로로 보낸다. PV 전지들이 PV 모듈과 같은 어레이 내에 조합될 때, 모든 PV 전지들로부터 수집된 전기 에너지는 소정의 전압 및 전류를 갖는 전력을 공급하도록 직렬 및 병렬 배열로 조합될 수 있다.
태양 전지에 대한 접점 형성 및 금속의 도금에 대한 향상된 기술이 제작 작업들을 감소시킬 수 있고 전체적인 결과 산출량을 향상시켜, 전반적인 태양 전지 제작 시간을 감소시키고 이용가능한 제품 산출량을 증가시킬 수 있다.
유사한 도면 부호가 도면 전체에 걸쳐 유사한 요소를 지칭하는 하기 도면과 관련하여 고려될 때, 상세한 설명 및 청구범위를 참조함으로써 발명 요지의 더욱 완전한 이해가 얻어질 수 있다.
도 1은 일부 실시예들에 따른 예시적인 태양 전지의 단면도.
도 2는 일부 실시예들에 따른 도 1의 예시적인 태양 전지를 위한 단일 접촉 영역의 단면도.
도 3 내지 도 5는 일부 실시예들에 따라 태양 전지 상의 접촉 영역을 형성함에 있어서의 다양한 작업들의 단면도.
도 6은 일부 실시예들에 따른 다른 예시적인 태양 전지의 단면도.
도 7은 일부 실시예들에 따른 또 다른 예시적인 태양 전지의 단면도.
도 8은 일부 실시예들에 따른 도 7의 예시적인 태양 전지를 위한 단일 접촉 영역의 단면도.
도 9는 일부 실시예들에 따른 다양한 예시적인 태양 전지들의 단면도.
도 10 및 도 11은 일부 실시예들에 따른, 태양 전지의 접촉 영역을 형성하기 위한 다양한 예시적인 방법들의 플로우차트.
하기 상세한 설명은 사실상 단지 예시적인 것이며, 출원의 요지의 실시예들 또는 그러한 실시예들의 사용을 제한하도록 의도되지 않는다. 본 명세서에 사용되는 바와 같이, 단어 "예시적인"은 "예, 사례 또는 실례로서 역할하는" 것을 의미한다. 본 명세서에 예시적인 것으로 기술된 임의의 구현예는 다른 구현예에 비해 바람직하거나 유리한 것으로 반드시 해석되는 것은 아니다. 또한, 전술한 기술분야, 배경기술, 간략한 요약 또는 하기 상세한 설명에서 제시되는 임의의 표현된 또는 암시된 이론에 의해 구애되도록 의도되지 않는다.
본 명세서는 "일 실시예" 또는 "실시예"에 대한 참조를 포함한다. "일 실시예에서" 또는 "실시예에서"와 같은 구의 출현이 반드시 동일한 실시예를 지칭하는 것은 아니다. 특정의 특징들, 구조들, 또는 특성들이 본 개시 내용과 일관성 있는 임의의 적절한 방식으로 조합될 수 있다.
용어. 하기 단락들은 (첨부된 청구범위를 포함한) 본 개시 내용에서 보여지는 용어들에 대한 정의 및/또는 맥락을 제공한다:
"포함하는". 이 용어는 개방형(open-ended)이다. 첨부된 청구범위에서 사용되는 바와 같이, 이 용어는 추가적인 구조물 또는 단계를 배제하지 않는다.
"~하도록 구성된" 다양한 유닛들 또는 구성요소들이 작업 또는 작업들을 수행"하도록 구성된" 것으로 기술되거나 청구될 수 있다. 그러한 맥락에서, "하도록 구성된"은 유닛들/구성요소들이 작동 동안에 이들 작업 또는 작업들을 수행하는 구조물을 포함한다는 것을 나타냄으로써 구조물을 함축하는 데 사용된다. 이와 같이, 유닛/구성요소는 명시된 유닛/구성요소가 현재 작동 중이지 않을 때에도(예를 들어, 온/활성 상태가 아닐 때에도) 작업을 수행하도록 구성된 것으로 말하여 질 수 있다. 유닛/회로/구성요소가 하나 이상의 작업을 수행 "하도록 구성된" 것임을 기술하는 것은 명확히, 그 유닛/구성요소에 대해 35 U.S.C §112의 6번째 단락에 의지하지 않도록 의도된다.
"제1", "제2" 등. 본 명세서에서 사용되는 바와 같이, 이러한 용어들은 이들의 뒤에 오는 명사에 대한 형용어구로서 사용되며, (예를 들어, 공간적, 시간적, 논리적 등의) 임의의 유형의 순서를 의미하지 않는다. 예를 들어, "제1" 유전체에 대한 언급이 이러한 유전체가 시퀀스 내의 첫 번째 유전체임을 반드시 의미하는 것은 아니며, 대신에 용어 "제1"은 이러한 유전체를 다른 유전체(예를 들어, "제2" 유전체)로부터 구별하는 데 사용된다.
"~에 기초하여" 본 명세서에 사용되는 바와 같이, 이 용어는 결정에 영향을 미치는 하나 이상의 인자들을 기술하는 데 사용된다. 이 용어는 결정에 영향을 미칠 수 있는 추가적인 인자들을 배제하지 않는다. 즉, 결정이 오직 이들 인자에만 기초할 수 있거나, 이들 인자에 적어도 부분적으로 기초할 수 있다. "B에 기초하여 A를 결정하다"라는 어구를 고찰하기로 한다. B가 A의 결정에 영향을 미치는 요인일 수 있지만, 그러한 어구는 A의 결정이 C에 또한 기초하는 것을 배제하지 않는다. 다른 예에서, A는 오직 B에만 기초하여 결정될 수 있다.
"결합된" - 하기의 설명은 함께 "결합되는" 요소들 또는 노드들 또는 특징부들을 언급한다. 본 명세서에 사용되는 바와 같이, 명확히 달리 명시되지 않는 한, "결합된"은 하나의 요소/노드/특징부가 반드시 기계적으로는 아니게 다른 요소/노드/특징부에 직접적으로 또는 간접적으로 결합됨(또는 그와 직접적으로 또는 간접적으로 연통됨)을 의미한다.
또한, 소정 용어가 또한 단지 참조의 목적으로 하기 설명에 사용될 수 있으며, 이에 따라 제한적인 것으로 의도되지 않는다. 예를 들어, "상부", "하부", "위" 및 "아래"와 같은 용어는 참조되는 도면에서의 방향을 지칭한다. "전방", "뒤", "후방", "측방", "외측" 및 "내측"과 같은 용어는 논의 중인 구성요소를 기술하는 본문 및 연관 도면을 참조함으로써 명확해지는 일관된, 하지만 임의적인 좌표계 내에서 구성요소의 부분들의 배향 및/또는 위치를 기술한다. 그러한 용어는 상기에 구체적으로 언급된 단어, 그의 파생어, 및 유사한 의미의 단어를 포함할 수 있다.
"층" 본 명세서에 사용되는 바와 같이, 층은 연속적인 영역일 수 있거나, 구멍 및/또는 간극을 갖는 영역 및/또는 태양 전지의 전체 길이 및/또는 폭을 커버하지 않는 영역일 수 있다.
하기 설명에서, 본 발명의 실시예의 완전한 이해를 제공하기 위해, 특정 작업과 같은 다수의 특정 상세 사항이 기재된다. 본 발명의 실시예가 이들 특정 상세 사항 없이도 실시될 수 있다는 것이 당업자에게 명백할 것이다. 다른 예에서, 잘 알려진 기술들은 본 발명의 실시예들을 불필요하게 모호하게 하지 않도록 상세히 기술되지 않는다.
본 명세서는 개시된 접촉 영역들을 포함할 수 있는 예시적인 태양 전지들을 먼저 기술하며, 개시된 접촉 영역들을 형성하기 위한 예시적인 방법에 대한 설명이 이어진다. 접촉 영역들의 다양한 실시예들에 대한 보다 상세한 설명이 명세서 전체에 걸쳐 제공된다.
이제 도 1로 가면, 정상 작동 동안에 태양에 대면하는 전면(front side)(102) 및 전면(102)의 반대편에 있는 배면(back side)(104)을 갖는 태양 전지(100)가 도시되어 있다. 태양 전지(100)는 제1 및 제2 도핑된 영역(112, 114)들을 갖는 규소 기판(110)을 포함할 수 있다. 규소 기판은 세척, 폴리싱, 평탄화, 및/또는 박화 또는 달리 처리될 수 있다. 일 실시예에서, 규소 기판(110)은 폴리실리콘 또는 다결정 규소이다.
일 실시예에서, 제1 및 제2 도핑된 영역(112, 114)들은 열처리에 의해 성장될 수 있다. 일 실시예에서, 제1 및 제2 도핑된 영역(112, 114)들은 종래의 도핑 공정에 의해 도펀트를 규소 기판 내에 침착시킴으로써 형성될 수 있다. 제1 및 제2 도핑된 영역(112, 114)들 각각은 붕소와 같은 p-형(positive-type) 도펀트 또는 인과 같은 n-형(negative-type) 도펀트인 도핑 재료를 포함할 수 있지만 이로 한정되지 않는다. 제1 및 제2 도핑된 영역들112, 114)들 둘 모두가 열처리를 통해 성장되는 것으로 기술되지만, 본 명세서에 기술되거나 인용되는 임의의 다른 형성, 침착, 또는 성장 공정 작업에서와 같이, 각각의 층 또는 물질이 임의의 적절한 공정을 사용하여 형성된다. 예를 들어, 형성이 기술되는 경우에, 화학 증착(CVD) 공정, 저압 CVD(LPCVD), 대기압 CVD(APCVD), 플라즈마-강화 CVD(PECVD), 열 성장, 스퍼터링뿐만 아니라 임의의 다른 원하는 기술이 사용된다. 제1 및 제2 도핑된 영역(112, 114)들은 침착 기술, 스퍼터, 또는 인쇄 공정, 예를 들어 잉크젯 인쇄 또는 스크린 인쇄에 의해 규소 기판(110) 상에 형성될 수 있다.
일 실시예에서, 산화물 층이 제1 및 제2 도핑된 영역(112, 114)들 위에 침착되어, 둘 모두의 영역에 대한 보호 장벽으로서 역할한다. 제1 유전체 층(122)이 제1 및 제2 도핑된 영역(112, 114)들 위에 형성될 수 있다. 일 실시예에서, 제1 및 제2 유전체 층(112, 114)은 질화규소를 포함할 수 있다.
태양 전지(100)는 추가의 광 흡수를 위한 텍스처 형성된(texturized) 표면(120) 및 텍스처 형성된 표면(120) 위에 형성된 제2 유전체 층(124)을 포함할 수 있다. 일부 실시예들에서, 제1 및 제2 유전체 층(122, 124) 둘 모두가 반사방지 코팅을 포함할 수 있다. 텍스처 형성된 표면(120)은 유입 광을 산란시키기 위한 규칙적이거나 불규칙적인 형상화된 표면을 구비하여 태양 전지(100)의 표면으로부터 다시 반사된 광량을 감소시키는 것일 수 있다. 일 실시예에서, 제1 및 제2 유전체 층(122, 124)들 둘 모두가 전면(102) 상의 반사방지 코팅(ARC), 및 배면(104) 상의 후방 반사방지 코팅(BARC)을 포함할 수 있다.
제1 금속 층이 제1 및 제2 도핑된 영역(112, 114)들 위의 접촉 영역들을 통해 형성될 수 있다. 일 실시예에서, 제1 금속 층은 금속 입자(130)들을 포함하는 제1 금속 페이스트를 침착시키고 후속하여 제1 금속 페이스트를 가열함으로써 형성될 수 있다. 일부 실시예들에서, 금속 입자(130)들은 알루미늄 입자들이다. 가열하는 동안에 금속 입자(130)들은 제1 및 제2 도핑된 영역(112, 114)들의 규소와 반응하여, 도핑된 영역들 상에 손상된 영역(140)들을 형성할 수 있다. 알루미늄과 규소 사이의 반응인 알루미늄-규소 반응은 피트(pit)(142)들이 형성되게 할 수 있다. 피트(142)들은 태양 전지(100)의 전하 캐리어의 수명에 해로워, 전체적인 태양 전지 성능을 저하시킬 수 있다.
일부 실시예들에서, 제2 금속 층(150)이 표준 도금 공정을 사용하여 제1 금속 층 상에 형성될 수 있다. 일부 실시예들에서, 태양 전지(100)는 배면 접점 태양 전지, 전면 접점 태양 전지, 단결정 규소 태양 전지, 다결정 규소 태양 전지 및/또는 비정질 규소 태양 전지와 같은 그러나 이로 한정되지 않는 태양 전지를 포함할 수 있다.
도 2를 참조하면, 도 1의 태양 전지의 단일 접촉 영역이 도시되어 있다. 제1 금속 층이 금속 입자(130)들 또는 알루미늄 입자들을 포함하는 경우에, 접촉 저항은 알루미늄 입자들의 다공도(porosity)로 인해 높을 수 있다. 제1 도핑된 영역(112)으로서 여기서 도시되어 있지만 이로 한정되지 않는 알루미늄 입자와 규소 기판(110) 사이의 접촉 위치(138)가 낮아서, 이에 따라 접촉 저항이 높다. 다른 관찰가능한 문제점은 제1 도핑된 영역(112)으로서 도시되어 있지만 이로 한정되지 않는 규소 기판(110) 상의 반응되거나 손상된 영역(140)들 내의 피트(142)들이다. 피트(142)들은 규소 내에서 파단 또는 결함을 야기하여, 벌크 규소 내의 전하들의 재조합에 대한 기회를 증가시켜서 태양 전지(100)의 수명을 저하시킬 수 있다. 접촉 저항을 감소시키기 위한 현재의 접근법은 전술된 제1 금속 페이스트를 더 높은 온도에서 가열하는 것을 포함할 수 있다. 고온 가열에 대한 단점은 알루미늄이 제1 및 제2 도핑된 영역(112, 114)들로부터 규소를 용해시켜 태양 전지(100)에 대해 수명 저하를 야기할 것이라는 점이다.
도 3 내지 도 6은 태양 전지 상에 접촉 영역을 형성하기 위한 방법의 단면도를 도시한다. 하나 이상의 방법들이 위에서 논의된 제한들의 극복에 관한 것이다. 상세 사항들 및 실시예들이 아래에서 논의된다.
이제 도 3으로 가면, 태양 전지를 위한 접촉 영역을 형성하기 위한 방법의 단계가 도시되어 있다. 이 방법은 정상 작동 동안에 태양에 대면하는 전면(202) 및 전면(202)의 반대편에 있는 배면(204)을 갖는 태양 전지(200)를 제공하는 단계를 포함할 수 있다. 태양 전지(200)는 규소 기판(210)을 포함할 수 있다. 태양 전지(200)는 또한 제1 및 제2 도핑된 영역(212, 214)들을 포함할 수 있다. 태양 전지(200)는 또한 제1 및 제2 도핑된 영역(212, 214)들 위에 형성된 폴리실리콘 층(206)을 포함할 수 있다. 일 실시예에서, 폴리실리콘 층(206)은 도핑되지 않은 폴리실리콘 층이다. 일 실시예에서, 폴리실리콘 층(206)은 도핑된 폴리실리콘 층이다. 제1 유전체 층(222)은 폴리실리콘 층(206) 위에 형성될 수 있다. 일 실시예에서, 제1 유전체 층(222)은 BARC 층일 수 있다. 전술된 것과 유사하게, 제1 및 제2 유전체 층(212, 214)은 질화규소를 포함할 수 있다. 접촉 개구(226)들이 또한 습식 에칭 및 융제(ablation) 기술을 포함한 다수의 리소그래피 공정들에 의해 제1 및 제2 도핑된 영역(212, 214)들 위에 형성될 수 있다. 태양 전지(200)는 또한 규소 기판(210) 상에 텍스처 형성된 표면(220)을 포함할 수 있는데, 여기서 제2 유전체 층(224)이 텍스처 형성된 표면(220) 위에 형성될 수 있다. 일 실시예에서, 제2 유전체 층(224)은 ARC 층일 수 있다.
도 4는 일부 실시예들에 따라 태양 전지를 위한 접촉 영역을 형성하기 위한 방법의 다른 단계를 도시한다. 이 방법은 금속 입자(230)들 및 응집성 매트릭스(cohesive matrix)(232)를 포함하는 제1 금속 페이스트 또는 금속 페이스트를 접촉 개구(226) 위에 형성하는 단계를 포함할 수 있다. 일 실시예에서, 제1 금속 페이스트는 알루미늄 페이스트 또는 일부 다른 전도성 페이스트일 수 있다.
도 5를 참조하면, 태양 전지를 위한 접촉 영역을 형성하기 위한 방법의 또 다른 단계가 도시되어 있다. 이 방법은 제1 금속 페이스트를 가열(220)하는 단계를 포함할 수 있는데, 여기서 가열은 응집성 매트릭스(232)를 제거한다. 도 5에서, 가열(260)하는 동안의 응집성 매트릭스가 도시되어 있다. 일 실시예에서, 제1 금속 페이스트 또는 알루미늄 페이스트를 가열(260)하는 단계는 550℃의 온도에서 어닐링하는 단계를 포함한다. 일 실시예에서, 가열(260)은 제1 금속 페이스트가 제1 금속 페이스트 아래에 배치된 폴리실리콘 층(206)을 소모하게 하여 전도성 충전재(240)를 형성한다. 도 5에서, 가열(260)하는 동안의 전도성 충전재(240)가 도시되어 있다. 일 실시예에서, 전도성 충전재(240)는 다른 예들 중에서도 알루미늄 입자들, 규소 입자들 및/또는 알루미늄-규소 합금 입자들을 포함한다. 일 실시예에서, 전도성 충전재는 제1 합금(예컨대, 알루미늄-규소 합금)일 수 있다. 일부 실시예들에서, 가열(260)은 제1 금속 페이스트 또는 알루미늄-규소 합금 입자들이 제1 금속 페이스트 아래에 배치된 폴리실리콘 층(206)을 조절가능하게 소모하게 한다. 일 실시예에서, 아래의 도 6에 도시된 바와 같은 전도성 충전재(240)는 0.2 내지 1 마이크로미터의 범위 내의 두께를 가질 수 있다. 일부 실시예들에서, 전도성 충전재(240)는 10-4 Ohm-㎠ 미만의 접촉 저항률을 가질 수 있지만, 이로 한정되지 않는다. 제2 금속 층(250)은 금속화 및/또는 도금 공정을 사용하여 제1 금속 층 상에 형성될 수 있다.
도 6은 태양 전지를 위한 접촉 영역을 형성하기 위한 또 다른 단계를 도시한다. 일 실시예에서, 태양 전지는 금속 입자(230)들을 포함하는 제1 금속 층, 및 제1 금속 층과 제1 및 제2 도핑된 영역(212, 214)들 사이에 형성된 전도성 충전재(240)를 포함할 수 있다. 일 실시예에서, 제1 금속 층(230)은 알루미늄일 수 있다. 일 실시예에서, 제2 금속 층(250)은 제1 금속 층 상에 형성될 수 있는데, 여기서 제1 금속 층 및 전도성 충전재(240)는 제1 및 제2 도핑된 영역(212, 214)들과 제2 금속 층(250) 사이에서 전기 접속을 제공한다. 일 실시예에서, 제2 금속 층(250)은 다른 예들 중에서도 구리, 주석, 알루미늄, 은, 금, 크롬, 철, 니켈, 아연, 루테늄, 팔라듐, 및/또는 백금일 수 있다. 제2 금속 층(250)은 금속화 및/또는 도금 공정을 사용하여 제2 금속 층(250) 상에 형성될 수 있다.
도 7을 참조하면, 다른 태양 전지의 단면도가 도시되어 있다. 일 실시예에서, 제3 금속 층(252)이 도 6의 태양 전지(200) 상에 형성될 수 있다. 일 실시예에서, 제3 금속 층(252)은 다른 예들 중에서도 구리, 주석, 알루미늄, 은, 금, 크롬, 철, 니켈, 아연, 루테늄, 팔라듐, 및/또는 백금일 수 있다.
도 8을 참조하면, 도 7의 태양 전지의 단일 접촉 영역이 도시되어 있다. 도 2의 태양 전지의 제1 접촉 위치(138)와 도 8에 도시된 제1 접촉 위치(244) 사이에서 제1 도핑된 영역(212)으로 여기서 도시되어 있지만 이로 한정되지 않는 규소 기판(210)과 전기 접속하는 총 면적에 비해, 도 8에 도시된 규소 기판(210)과 전기 접속하는 총 면적이 증가된다. 도 2와 달리, 도 8은 폴리실리콘 층(206)을 통해 또는 적어도 부분적으로 통해 그리고 금속 입자(230)들과 제1 도핑된 영역(212) 사이에 형성된 전도성 접점(240)을 도시하는데, 여기서 금속 입자(230)들은 제2 접촉 위치(238)에서 전도성 접점(240)과 접촉한다. 또한 도 2와는 대조적으로, 제1 금속 층의 금속 입자(130)들과 규소 기판(211) 사이의 접촉 저항이 전기 접속하는 총 면적의 증가로 인해 감소된다. 일 실시예에서, 규소 기판(210) 내의 피트들이 또한 감소될 수 있다. 따라서, 도 3 내지 도 8에 도시된 접촉 영역들이 증가된 총 접촉 면적, 감소된 접촉 저항 및 감소된 규소 기판(210) 피팅(pitting)을 제공할 수 있다.
도 9는 일부 실시예들에 따른, 정상 작동 동안에 태양에 대면하는 전면(402) 및 전면(402)의 반대편에 있는 배면(404)을 갖는 또 다른 태양 전지(400)를 도시한다. 태양 전지(400)는 제1 및 제2 도핑된 영역(412, 414)들을 갖는 규소 기판(410)을 포함할 수 있다. 일 실시예에서, 제1 및 제2 도핑된 영역(412, 414)들은 열처리에 의해 성장될 수 있다. 제1 및 제2 도핑된 영역(412, 414)들 각각은 붕소와 같은 p-형 도펀트 또는 인과 같은 n-형 도펀트인 도핑 재료를 포함할 수 있지만 이로 한정되지 않는다. 제1 유전체 층(422)이 제2 도핑된 영역(414) 위에 형성될 수 있다. 제2 유전체 층(424)이 제1 도핑된 영역(412) 위에 형성될 수 있다. 태양 전지(400)는 추가의 광 흡수를 위한 텍스처 형성된 표면(420) 및 텍스처 형성된 표면(420) 위에 형성된 제2 유전체 층(424)을 포함할 수 있다. 일 실시예에서, 태양 전지는 금속 입자(430)들을 포함하는 제1 금속 층, 및 제1 금속 층과 제1 및 제2 도핑된 영역(412, 414)들 사이에 형성된 전도성 충전재(440)를 포함할 수 있다. 일 실시예에서, 전도성 충전재(440)는 적어도 부분적으로 폴리실리콘 층(406)을 통해 형성될 수 있다. 일 실시예에서, 제2 금속 층(450)은 제1 금속 층 상에 형성될 수 있는데, 여기서 제1 금속 층 및 전도성 충전재(440)는 제1 및 제2 도핑된 영역(412, 414)들과 제2 금속 층(450) 사이에서 전기 접속을 제공한다.
일부 실시예들에서, 태양 전지(400)는 제2 금속 층(450) 상에 형성된 제3 금속 층(452)을 포함하는데, 여기서 전도성 충전재(440), 제1 금속 층 및 제2 금속 층(450)은 제1 및 제2 도핑된 영역(412, 414)들과 제3 금속 층(452) 사이에서 전기 접속을 제공한다. 일 실시예에서, 제2 및/또는 제3 금속 층(450, 452)은 다른 예들 중에서도 구리, 주석, 알루미늄, 은, 금, 크롬, 철, 니켈, 아연, 루테늄, 팔라듐, 및/또는 백금일 수 있다. 제2 및/또는 제3 금속 층(450, 452)은 도금 공정을 사용하여 형성될 수 있다.
도 10을 참조하면, 태양 전지 상에 접촉 영역을 형성하기 위한 방법을 도시하는 플로우차트가 도시되어 있다.
단계(501)에서, 이 방법은 정상 작동 동안에 태양에 대면하는 전면, 전면의 반대편에 있는 배면, 및 규소 기판을 갖는 태양 전지를 제공하는 단계를 포함할 수 있다.
단계(502)에서, 폴리실리콘 층이 태양 전지의 규소 기판 상에 형성될 수 있는데, 여기서 폴리실리콘 층은 규소 기판의 적어도 하나의 도핑된 영역 상에 형성된다.
단계(503)에서, 제1 유전체 층이 폴리실리콘 층 상에 형성될 수 있다.
단계(504)에서, 적어도 하나의 접촉 개구가 폴리실리콘 층 상의 제1 유전체 층을 통해 형성될 수 있다.
단계(505)에서, 제1 금속 층이 접촉 개구 상에 형성될 수 있다.
단계(506)에서, 제1 금속 페이스트가 제1 금속 층을 형성하도록 가열될 수 있으며, 이때 가열은 제1 합금을 포함하는 전도성 충전재가 접촉 개구 내에서 그리고 폴리실리콘 층을 통해 또는 적어도 부분적으로 통해 형성되게 하며, 전도성 충전재는 제1 금속 층과 도핑된 영역들을 전기적으로 결합시킨다.
도 11은 태양 전지 상에 접촉 영역을 형성하기 위한 다른 방법을 도시하는 플로우차트를 도시한다.
단계(511)에서, 이 방법은 정상 작동 동안에 태양에 대면하는 전면, 전면의 반대편에 있는 배면, 및 규소 기판을 갖는 태양 전지를 제공하는 단계를 포함할 수 있다.
단계(512)에서, 제1 두께를 갖는 도핑되지 않은 폴리실리콘 층이 태양 전지의 규소 기판 상에 침착될 수 있으며, 이때 도핑되지 않은 폴리실리콘 층이 태양 전지의 배면 상의 규소 기판의 적어도 하나의 도핑된 영역 상에 형성될 수 있다.
단계(513)에서, 제1 유전체 층이 폴리실리콘 층 상에 침착될 수 있다.
단계(514)에서, 적어도 하나의 접촉 개구가 도핑되지 않은 폴리실리콘 층 상의 제1 유전체 층을 통해 형성될 수 있다.
단계(515)에서, 알루미늄 페이스트가 접촉 개구 상에 침착될 수 있는데, 여기서 알루미늄 페이스트는 도핑된 영역과 전기적으로 결합된다.
단계(516)에서, 알루미늄 층을 형성하도록 알루미늄 페이스트가 경화될 수 있다.
단계(517)에서, 알루미늄 층 및 규소 기판이 550℃의 온도에서 어닐링되어 알루미늄 층이 알루미늄 층 아래에 배치된 폴리실리콘 층을 소모하게 하여, 전도성 충전재를 형성할 수 있다. 일 실시예에서, 전도성 충전재는 알루미늄-규소 합금을 포함할 수 있다. 일 실시예에서, 전도성 충전재는 제1 두께와 동일한 두께를 가질 수 있으며 알루미늄 층과 도핑된 영역을 전기적으로 결합시킬 수 있다.
단계(518)에서, 제2 금속 층이 제1 금속 층 상에 형성될 수 있는데, 여기서 전도성 충전재와 알루미늄 층은 도핑된 영역을 제2 금속 층에 전기적으로 결합시킨다.
특정 실시예들이 위에서 기술되었지만, 특정 특징부에 대해 단일 실시예만이 기술된 경우에도, 이들 실시예들이 본 발명의 범주를 제한하고자 하는 것은 아니다. 개시 내용에 제공된 특징부의 예들은 달리 언급되지 않는 한 제한적이기보다는 예시적인 것으로 의도된다. 전술된 설명이 그러한 대안예, 변경예 및 동등물을 포함하고자 한다는 것이 본 발명의 이익을 갖는 당업자에게 명백할 것이다.
본 발명의 범주는, 본 명세서에서 언급된 임의의 문제 또는 모든 문제들을 완화하든 안하든, (명백하게 또는 암시적으로) 본 명세서에 개시된 임의의 특징부 또는 특징부들의 조합을 포함하거나, 이들의 임의의 일반화를 포함한다. 따라서, 본 출원(또는 그에 대한 우선권 주장을 주장하는 출원)의 진행절차 동안에, 임의의 그러한 특징부들의 조합에 대한 새로운 청구항들이 만들어질 수 있다. 특히, 첨부된 청구범위들을 참조하면, 종속 청구항들로부터의 특징부가 독립 청구항들의 특징부와 조합될 수 있으며, 각자의 독립 청구항들로부터의 특징부들이 단지 첨부된 청구범위들 내에 열거된 특정 조합들이 아닌 임의의 적절한 방식으로 조합될 수 있다.

Claims (20)

  1. 정상 작동 동안에 태양에 대면하는 전면(front side) 및 전면의 반대편에 있는 배면(back side)을 갖는 태양 전지로서,
    도핑된 영역 상에 배치되는 폴리실리콘 층;
    폴리실리콘 층 상에 적어도 부분적으로 배치되고, 도핑된 영역과 정렬되는 제1 금속 층;
    폴리실리콘 층 위에 형성되는 제1 유전체 층 - 제1 유전체 층을 통해 적어도 하나의 접촉 개구가 형성됨 -; 및
    상기 적어도 하나의 접촉 개구 아래에 그리고 적어도 부분적으로 폴리실리콘 층을 통해 형성되는, 폴리실리콘 및 제1 합금을 포함하는 전도성 충전재(filling) - 전도성 충전재는 제1 금속 층과 도핑된 영역을 전기적으로 결합시킴 - 를 포함하는, 태양 전지.
  2. 제1항에 있어서, 폴리실리콘 층은 도핑되지 않은 폴리실리콘 층인, 태양 전지.
  3. 제1항에 있어서, 제1 유전체 층은 질화규소를 포함하는, 태양 전지.
  4. 제1항에 있어서, 전도성 충전재는 0.2 내지 1 마이크로미터 범위 내의 두께를 갖는, 태양 전지.
  5. 제1항에 있어서, 전도성 충전재는 10-4 Ohm-㎠ 미만의 접촉 저항을 갖는, 태양 전지.
  6. 정상 작동 동안에 태양에 대면하는 전면 및 전면의 반대편에 있는 배면을 갖는 태양 전지로서,
    태양 전지의 배면 상에 도핑된 영역을 갖는 규소 기판;
    도핑된 영역 상에 배치되고 제1 두께를 갖는 도핑되지 않은 폴리실리콘 층;
    도핑되지 않은 폴리실리콘 층 위에 적어도 부분적으로 배치되고, 도핑된 영역 위에 정렬되는 알루미늄 입자들;
    제1 유전체 층을 통해 형성된 적어도 하나의 접촉 개구;
    상기 적어도 하나의 접촉 개구 아래에 그리고 도핑되지 않은 폴리실리콘 층을 통해 형성되는, 알루미늄-규소 합금을 포함하는 전도성 충전재 - 전도성 충전재는 제1 두께와 동일한 두께, 10-4 Ohm-㎠ 미만의 접촉 저항을 가지며, 알루미늄 입자들과 도핑된 영역을 전기적으로 결합시킴 -; 및
    알루미늄 입자들 상에 배치된 제2 금속 층 - 알루미늄 입자들 및 전도성 충전재는 제2 금속 층과 도핑된 영역을 전기적으로 결함시킴 - 을 포함하는, 태양 전지.
  7. 제6항에 있어서, 제1 두께는 0.2 내지 1 마이크로미터 범위 내에 있는, 태양 전지.
  8. 제6항에 있어서, 제2 금속 층은 구리, 주석, 알루미늄, 은, 금, 크롬, 철, 니켈, 아연, 루테늄, 팔라듐 및 백금으로 이루어진 군으로부터 선택되는 금속을 포함하는, 태양 전지.
  9. 정상 작동 동안에 태양에 대면하는 전면 및 전면의 반대편에 있는 배면을 갖는 태양 전지의 접촉 영역을 형성하기 위한 방법으로서,
    태양 전지의 규소 기판 상에 폴리실리콘 층을 형성하는 단계 - 폴리실리콘 층은 규소 기판의 적어도 하나의 도핑된 영역 상에 형성됨 -;
    폴리실리콘 층 상에 제1 유전체 층을 형성하는 단계;
    폴리실리콘 층 상의 제1 유전체 층을 통해 적어도 하나의 접촉 개구를 형성하는 단계;
    접촉 개구 상에 제1 금속 페이스트를 형성하는 단계 - 제1 금속 페이스트는 도핑된 영역과 전기적으로 결합됨 -; 및
    제1 금속 층을 형성하도록 제1 금속 페이스트를 가열하는 단계를 포함하고,
    가열하는 단계는 제1 합금을 포함하는 전도성 충전재가 접촉 개구 내에 그리고 폴리실리콘 층을 통해 형성되게 하며, 전도성 충전재는 제1 금속 층과 도핑된 영역들을 전기적으로 결합시키는, 방법.
  10. 제9항에 있어서, 가열하는 단계는 제1 금속 페이스트가 제1 금속 페이스트 아래에 배치된 폴리실리콘 층으로부터 전도성 충전재를 형성하게 하는, 방법.
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
KR1020157028193A 2013-03-15 2014-03-14 태양 전지의 감소된 접촉 저항 및 향상된 수명 KR102212290B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361799112P 2013-03-15 2013-03-15
US61/799,112 2013-03-15
PCT/US2014/029594 WO2014144967A1 (en) 2013-03-15 2014-03-14 Reduced contact resistance and improved lifetime of solar cells
US14/211,161 2014-03-14
US14/211,161 US9847438B2 (en) 2013-03-15 2014-03-14 Reduced contact resistance and improved lifetime of solar cells

Publications (2)

Publication Number Publication Date
KR20150132269A KR20150132269A (ko) 2015-11-25
KR102212290B1 true KR102212290B1 (ko) 2021-02-03

Family

ID=51521941

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157028193A KR102212290B1 (ko) 2013-03-15 2014-03-14 태양 전지의 감소된 접촉 저항 및 향상된 수명

Country Status (8)

Country Link
US (1) US9847438B2 (ko)
JP (1) JP6334675B2 (ko)
KR (1) KR102212290B1 (ko)
CN (1) CN105190903B (ko)
AU (1) AU2014233535B2 (ko)
DE (1) DE112014001476T5 (ko)
TW (1) TWI617039B (ko)
WO (1) WO2014144967A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9520507B2 (en) * 2014-12-22 2016-12-13 Sunpower Corporation Solar cells with improved lifetime, passivation and/or efficiency
US11502213B2 (en) 2016-12-30 2022-11-15 Sunpower Corporation Solar cell having a plurality of sub-cells coupled by cell level interconnection
TWI688109B (zh) * 2018-10-26 2020-03-11 財團法人工業技術研究院 太陽能電池
US11806964B2 (en) 2021-08-31 2023-11-07 Honeywell Federal Manufacturing & Technologies, Llc Dopant for improving casting and electroplating performance
CN116314383A (zh) * 2022-11-04 2023-06-23 浙江晶科能源有限公司 太阳能电池及光伏组件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080072953A1 (en) 2006-09-27 2008-03-27 Thinsilicon Corp. Back contact device for photovoltaic cells and method of manufacturing a back contact device
US20090139568A1 (en) 2007-11-19 2009-06-04 Applied Materials, Inc. Crystalline Solar Cell Metallization Methods

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101752B2 (ja) * 1991-09-11 1995-11-01 株式会社日立製作所 太陽電池素子とその製造方法
JPH11214717A (ja) 1998-01-20 1999-08-06 Canon Inc 薄膜多結晶Si太陽電池
AUPP646298A0 (en) * 1998-10-12 1998-11-05 Pacific Solar Pty Limited Melt through contact formation method
US7468485B1 (en) * 2005-08-11 2008-12-23 Sunpower Corporation Back side contact solar cell with doped polysilicon regions
KR20100131524A (ko) * 2008-04-09 2010-12-15 어플라이드 머티어리얼스, 인코포레이티드 태양전지용의 니트라이드화된 배리어 층
US20100071765A1 (en) * 2008-09-19 2010-03-25 Peter Cousins Method for fabricating a solar cell using a direct-pattern pin-hole-free masking layer
WO2010064428A1 (ja) * 2008-12-02 2010-06-10 千住金属工業株式会社 リフロー炉
US8242354B2 (en) 2008-12-04 2012-08-14 Sunpower Corporation Backside contact solar cell with formed polysilicon doped regions
EP2200082A1 (en) * 2008-12-19 2010-06-23 STMicroelectronics Srl Modular interdigitated back contact photovoltaic cell structure on opaque substrate and fabrication process
TWI376813B (en) * 2009-04-22 2012-11-11 Gintech Energy Corp Solar cell with backside passivation
JP5643294B2 (ja) * 2009-04-22 2014-12-17 テトラサン インコーポレイテッド 太陽電池内の機能膜の局所的レーザ転化による局所的金属接触子
JP2011018683A (ja) * 2009-07-07 2011-01-27 Mitsubishi Electric Corp 薄膜太陽電池およびその製造方法
JP2011054831A (ja) * 2009-09-03 2011-03-17 Sharp Corp バックコンタクト型太陽電池セル、太陽電池ストリングおよび太陽電池モジュール
JP2011066044A (ja) * 2009-09-15 2011-03-31 Mitsubishi Electric Corp 太陽電池素子の製造方法
US8324015B2 (en) * 2009-12-01 2012-12-04 Sunpower Corporation Solar cell contact formation using laser ablation
US8211731B2 (en) * 2010-06-07 2012-07-03 Sunpower Corporation Ablation of film stacks in solar cell fabrication processes
US8802486B2 (en) * 2011-04-25 2014-08-12 Sunpower Corporation Method of forming emitters for a back-contact solar cell
US8658458B2 (en) * 2011-06-15 2014-02-25 Varian Semiconductor Equipment Associates, Inc. Patterned doping for polysilicon emitter solar cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080072953A1 (en) 2006-09-27 2008-03-27 Thinsilicon Corp. Back contact device for photovoltaic cells and method of manufacturing a back contact device
US20090139568A1 (en) 2007-11-19 2009-06-04 Applied Materials, Inc. Crystalline Solar Cell Metallization Methods

Also Published As

Publication number Publication date
JP2016512928A (ja) 2016-05-09
CN105190903A (zh) 2015-12-23
DE112014001476T5 (de) 2015-12-17
AU2014233535B2 (en) 2017-11-23
US20140261670A1 (en) 2014-09-18
TWI617039B (zh) 2018-03-01
TW201503383A (zh) 2015-01-16
AU2014233535A1 (en) 2015-08-13
CN105190903B (zh) 2017-07-14
JP6334675B2 (ja) 2018-05-30
KR20150132269A (ko) 2015-11-25
WO2014144967A1 (en) 2014-09-18
US9847438B2 (en) 2017-12-19

Similar Documents

Publication Publication Date Title
JP6219902B2 (ja) 高効率太陽電池構造体および製造方法
EP3916814A1 (en) Photovoltaic module, solar cell, and method for producing solar cell
EP3161874B1 (en) Passivation of light-receiving surfaces of solar cells with crystalline silicon
KR102212290B1 (ko) 태양 전지의 감소된 접촉 저항 및 향상된 수명
KR102242269B1 (ko) 태양 전지의 전도성 향상
US11251315B2 (en) Solar cells with improved lifetime, passivation and/or efficiency
KR101643132B1 (ko) 탄소 기판을 이용한 태양 전지 제조 방법
CN111063744A (zh) 太阳能电池和用于制造太阳能电池的方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant