KR102211454B1 - 절연형 dc-dc 컨버터 및 그 구동방법 - Google Patents

절연형 dc-dc 컨버터 및 그 구동방법 Download PDF

Info

Publication number
KR102211454B1
KR102211454B1 KR1020170111312A KR20170111312A KR102211454B1 KR 102211454 B1 KR102211454 B1 KR 102211454B1 KR 1020170111312 A KR1020170111312 A KR 1020170111312A KR 20170111312 A KR20170111312 A KR 20170111312A KR 102211454 B1 KR102211454 B1 KR 102211454B1
Authority
KR
South Korea
Prior art keywords
transformer
switch
voltage
parallel
output inductor
Prior art date
Application number
KR1020170111312A
Other languages
English (en)
Other versions
KR20190025196A (ko
Inventor
김진홍
박준성
최준혁
현병조
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Priority to KR1020170111312A priority Critical patent/KR102211454B1/ko
Priority to US16/117,528 priority patent/US10790750B2/en
Publication of KR20190025196A publication Critical patent/KR20190025196A/ko
Application granted granted Critical
Publication of KR102211454B1 publication Critical patent/KR102211454B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Abstract

본 발명은 절연형 DC-DC 컨버터 및 그 구동방법이 개시된다. 본 발명의 절연형 DC-DC 컨버터는 입력전원의 양단과 연결되고, 병렬로 연결된 3쌍의 스위치를 포함하며, 3쌍의 스위치를 스위칭하는 스위칭부, 1차권선 및 2차권선에 기 설정된 턴수비로 권선된 제1 변압기 내지 제3 변압기를 포함하고, 각 변압기의 1차권선이 스위칭부와 연결되어 턴수비에 따라 1차권선에 인가된 전압을 변압하는 변압기부, 각 변압기의 2차권선과 연결되고, 2차권선으로부터 인가된 전압을 정류 및 필터링하여 출력전류를 출력하는 후처리부 및 스위칭부와 연결되고, 스위칭부에 반송파 및 지령전압을 인가하여 스위칭을 제어하는 제어부를 포함한다.

Description

절연형 DC-DC 컨버터 및 그 구동방법{Isolated DC-DC converter and driving method thereof}
본 발명은 DC-DC 컨버터에 관한 것으로, 더욱 상세하게는 부피를 저감하고, 3상 듀티 제어로 스위칭하는 절연형 DC-DC 컨버터 및 그 구동방법에 관한 것이다.
종래의 배터리 충방전이 필요한 경우, 전기적인 안정성 및 전기적인 승압, 강압을 위하여 절연형 DC-DC 컨버터를 사용한다. 이 중 가장 많이 사용되는 컨버터는 절연형 풀브릿지 컨버터가 있다.
절연형 풀브릿지 컨버터는 전기적인 절연뿐만 아니라 턴수비에 따라 승압 및 강압이 가능하고, 영전압 스위칭을 통해 효율 개선이 가능하다는 장점이 있다.
하지만 절연형 풀브릿지 컨버터는 하나의 변압기 및 하나의 출력 인덕터를 사용하기 때문에 출력전류가 큰 경우, 충전 및 방전을 위해 변압기 및 출력 인덕터의 사이즈가 커지는 문제점이 있다. 또한 PWM(Pulse Width Modulation) 제어를 위상변이(phase shift) 방식을 사용하기 때문에 PWM 제어가 복잡하다는 단점이 있다.
한국등록특허공보 제10-1031278호(2011.04.19.)
본 발명이 이루고자 하는 기술적 과제는 부피를 개선하고, PWM 제어를 쉽게 수행하는 절연형 DC-DC 컨버터 및 그 구동방법을 제공하는데 목적이 있다.
상기 목적을 달성하기 위해, 본 발명에 따른 절연형 DC-DC 컨버터는 입력전원의 양단과 연결되고, 병렬로 연결된 3쌍의 스위치를 포함하며, 상기 3쌍의 스위치를 스위칭하는 스위칭부, 1차권선 및 2차권선에 기 설정된 턴수비로 권선된 제1 변압기 내지 제3 변압기를 포함하고, 각 변압기의 1차권선이 상기 스위칭부와 연결되어 상기 턴수비에 따라 1차권선에 인가된 전압을 변압하는 변압기부, 각 변압기의 2차권선과 연결되고, 상기 2차권선으로부터 인가된 전압을 정류 및 필터링하여 출력전류를 출력하는 후처리부 및 상기 스위칭부와 연결되고, 상기 스위칭부에 반송파 및 지령전압을 인가하여 스위칭을 제어하는 제어부를 포함한다.
또한 상기 스위칭부는, 일단이 상기 입력전원의 일단과 병렬 연결되는 제1 스위치, 일단이 상기 제1 스위치의 타단과 직렬 연결되고, 타단이 상기 입력전원의 타단과 병렬 연결되는 제2 스위치, 일단이 상기 제1 스위치의 일단과 병렬 연결되는 제3 스위치, 일단이 상기 제3 스위치의 타단과 직렬 연결되고, 타단이 상기 제2 스위치의 타단과 병렬 연결되는 제4 스위치, 일단이 상기 제3 스위치의 일단과 병렬 연결되는 제5 스위치 및 일단이 상기 제5 스위치의 타단과 직렬 연결되고, 타단이 상기 제4 스위치의 타단과 병렬 연결되는 제6 스위치를 포함하는 것을 특징으로 한다.
또한 상기 스위칭부는, 상기 제1 스위치 및 상기 제2 스위치의 중간 접점이 제1 변압기의 1차권선 일단 및 제2 변압기의 1차권선 타단과 연결되고, 상기 제3 스위치 및 상기 제4 스위치의 중간 접점이 제2 변압기의 1차권선 일단 및 제3 변압기의 1차권선 타단과 연결되며, 상기 제5 스위치 및 상기 제6 스위치의 중간 접점이 제3 변압기의 1차권선 일단 및 제1 변압기의 1차권선 타단과 연결되는 것을 특징으로 한다.
또한 상기 변압기부는, 상기 제1 변압기 내지 제3 변압기가 서로 동일한 스펙(spec)이고, 상기 1차권선이 상기 2차권선보다 더 권선되도록 상기 턴수비를 설정하는 것을 특징으로 한다.
또한 상기 후처리부는, 일단이 부하의 일단과 병렬 연결되는 제1 출력 인덕터, 캐소드(cathode)가 상기 제1 출력 인덕터의 타단과 직렬 연결되고, 애노드(anode)가 상기 부하의 타단과 병렬 연결되는 제1 정류 다이오드, 일단이 상기 제1 출력 인덕터의 일단과 병렬 연결되는 제2 출력 인덕터, 캐소드가 상기 제2 출력 인덕터의 타단과 직렬 연결되고, 애노드가 상기 제1 정류 다이오드의 애노드와 병렬 연결되는 제2 정류 다이오드, 일단이 상기 제2 출력 인덕터의 일단과 병렬 연결되는 제3 출력 인덕터 및 캐소드가 상기 제3 출력 인덕터의 타단과 직렬 연결되고, 애노드가 상기 제2 정류 다이오드의 애노드와 병렬 연결되는 제3 정류 다이오드를 포함하는 것을 특징으로 한다.
또한 상기 후처리부는, 상기 제1 출력 인덕터 및 상기 제1 정류 다이오드의 중간 접점이 제1 변압기의 2차권선 일단 및 제2 변압기의 2차권선 타단과 연결되고, 상기 제2 출력 인덕터 및 상기 제2 정류 다이오드의 중간 접점이 제2 변압기의 2차권선 일단 및 제3 변압기의 2차권선 타단과 연결되며, 상기 제3 출력 인덕터 및 상기 제3 정류 다이오드의 중간 접점이 제3 변압기의 2차권선 일단 및 제1 변압기의 2차권선 타단과 연결되는 것을 특징으로 한다.
또한 상기 제어부는, 상기 스위칭부에 상기 반송파를 120도씩 위상천이된 3개 신호로 인가하고, 상기 지령전압을 0V 내지 2/3V의 직렬(DC)전압으로 인가하도록 제어하는 것을 특징으로 한다.
또한 상기 제어부는, 상기 지령전압을 0V 내지 1/3V로 인가하는 동안 듀티비가 늘어나도록 제어하여 상기 후처리부에 1/3Vdc×n 전압이 인가되는 시간을 늘려 상기 출력전압을 증가시키는 것을 특징으로 한다(n은 변압기부의 1차권선(n1)/2차권선(n2)을 의미함).
또한 상기 제어부는, 상기 지령전압을 1/3V 내지 2/3V로 인가하는 동안 듀티비가 늘어나도록 제어하여 상기 후처리부에 1/3Vdc×n 전압이 인가되는 시간을 줄이고, 2/3Vdc×n 전압이 인가되는 시간을 늘려 상기 출력전압을 증가시키는 것을 특징으로 한다.
본 발명에 따른 절연형 DC-DC 컨버터의 구동방법은 병렬로 연결된 3쌍의 스위치를 포함하는 스위칭부에 반송파 및 지령전압이 인가되는 단계, 상기 인가된 반송파 및 지령전압을 이용하여 상기 스위칭부가 스위칭되는 단계, 상기 스위칭으로 출력된 전압이 제1 변압기 내지 제3 변압기를 포함하는 변압기부로 변압되는 단계 및 상기 변압기부로부터 변압된 전압을 정류 및 필터링하여 출력전류가 출력되는 단계를 포함한다.
본 발명에 따른 절연형 DC-DC 컨버터 및 그 구동방법은 부피가 작은 3개의 변압기 및 출력 인덕터를 나누어 설계하여 출력전류가 큰 경우에도 부피가 커지지 않을 수 있다.
또한 3상 듀티 제어를 이용하여 스위칭함으로써, 간단하게 PWM 제어를 할 수 있다.
이를 통해, 본 발명은 높은 출력밀도 및 저가격화를 이룰 수 있다.
도 1은 본 발명의 실시예에 따른 절연형 DC-DC 컨버터를 설명하기 위한 도면이다.
도 2는 도 1의 절연형 DC-DC 컨버터가 구동되는 제1 실시예를 설명하기 위한 도면이다.
도 3은 도 1의 절연형 DC-DC 컨버터가 구동되는 제2 실시예를 설명하기 위한 도면이다.
도 4는 도 1의 절연형 DC-DC 컨버터가 구동되는 제3 실시예를 설명하기 위한 도면이다.
도 5는 도 1의 절연형 DC-DC 컨버터가 구동되는 제4 실시예를 설명하기 위한 도면이다.
도 6은 도 1의 절연형 DC-DC 컨버터가 PWM 제어를 하는 제1 실시예를 설명하기 위한 도면이다.
도 7은 도 1의 절연형 DC-DC 컨버터가 PWM 제어를 하는 제2 실시예를 설명하기 위한 도면이다.
도 8은 도 1의 절연형 DC-DC 컨버터가 PWM 제어를 하는 제3 실시예를 설명하기 위한 도면이다.
도 9는 도 6의 PWM 제어에 대한 각 구성의 파형을 설명하기 위한 도면이다.
도 10은 도 9에 대한 시뮬레이션 파형을 설명하기 위한 도면이다.
도 11은 도 7의 PWM 제어에 대한 각 구성의 파형을 설명하기 위한 도면이다.
도 12는 도 11에 대한 시뮬레이션 파형을 설명하기 위한 도면이다.
도 13은 본 발명의 실시예에 따른 절연형 DC-DC 컨버터의 구동방법을 설명하기 위한 순서도이다.
이하 본 발명의 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의한다. 또한 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 당업자에게 자명하거나 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 1은 본 발명의 실시예에 따른 절연형 DC-DC 컨버터를 설명하기 위한 도면이다.
도 1을 참조하면, 절연형 DC-DC 컨버터(100)는 부피를 개선하고, PWM 제어를 쉽게 수행한다. 절연형 DC-DC 컨버터(100)는 스위칭부(20), 변압기부(30), 후처리부(40) 및 제어부(60)를 포함하고, 입력전원(10) 및 부하(50)를 더 포함한다.
스위칭부(20)는 입력전원(10)의 양단에 연결된다. 여기서, 입력전원(10)은 직류 전원을 일정하게 공급하고, 바람직하게는 일단이 양극(+)이고, 타단이 음극(-)일 수 있다. 스위칭부(20)는 3상 인버터와 동일한 구조를 가지는 3상 회로로 구성되어 병렬로 3쌍의 스위치를 연결된다. 스위칭부(20)는 제1 스위치(21), 제2 스위치(22), 제3 스위치(23), 제4 스위치(24), 제5 스위치(25) 및 제6 스위치(26)가 포함된다. 이 때, 스위칭부(20)는 제1 스위치(21)와 제2 스위치(22)가 한 쌍을 이루고, 제3 스위치(23)와 제4 스위치(24)가 다른 한 쌍을 이루며, 제5 스위치(25)와 제6 스위치(26)가 나머지 한 쌍을 이룬다.
상세하게는, 제1 스위치(21)는 일단이 입력전원(10)의 일단과 병렬 연결된다. 제2 스위치(22)는 일단이 제1 스위치(21)의 타단과 직렬 연결되고, 타단이 입력전원(10)의 타단과 병렬 연결된다. 제3 스위치(23)는 일단이 제1 스위치(21)의 일단과 병렬 연결된다.
제3 스위치(23)의 일단은 입력전원(10)의 일단과도 병렬 연결된다. 제4 스위치(24)는 일단이 제3 스위치(23)의 타단과 직력 연결되고, 타단이 제2 스위치(22)의 타단과 병렬 연결된다. 제4 스위치(24)의 타단은 입력전원(10)의 타단과도 병렬 연결된다.
제5 스위치(25)는 제3 스위치(23)의 일단과 병렬 연결된다. 제5 스위치(25)의 일단은 입력전원(10)의 일단 및 제1 스위치(21)의 일단과도 병렬 연결된다. 제6 스위치(26)는 일단이 제5 스위치(25)의 타단과 직렬 연결되고, 타단이 제4 스위치(24)의 타단과 병렬 연결된다. 제6 스위치(26)의 타단은 입력전원(10)의 타단 및 제2 스위치(22)의 타단과도 병렬 연결된다.
변압기부(30)는 Y결선 및 델타 결선으로 1차측 및 2차측으로 구성한다. 변압기부(30)는 1차측 및 2차측이 기 설정된 턴수비로 각각 권선된 1차권선 및 2차권선을 가지는 제1 변압기(31) 내지 제3 변압기(33)를 포함한다. 변압기부(30)는 제1 변압기(31) 내지 제3 변압기(33)가 서로 동일한 스펙(spec)이고, 바람직하게는 1차권선이 2차권선보다 더 권선되도록 턴수비를 설정할 수 있다. 변압기부(30)는 권선된 턴수비에 따라 1차권선에 인가된 전압을 변압하여 2차권선으로 출력한다. 변압기부(30)는 각 변압기(31, 32, 33)의 1차권선이 스위칭부(20)와 연결된다.
상세하게는, 제1 스위치(21) 및 제2 스위치(22)의 중간 접점은 제1 변압기(31)의 1차권선 일단 및 제2 변압기의 1차권선 타단과 연결된다. 제3 스위치(23) 및 제4 스위치(24)의 중간 접접은 제2 변압기(32)의 1차권선 일단 및 제3 변압기(33)의 1차권선 타단과 연결된다. 제5 스위치(25) 및 제6 스위치(26)의 중간 접점은 제3 변압기(33)의 1차권선 일단 및 제1 변압기(31)의 1차권선 타단과 연결된다.
후처리부(40)는 각 변압기(31, 32, 33)의 2차권선과 연결된다. 후처리부(40)는 2차권선으로부터 인가된 전압을 정류 및 필터링하여 출력전류를 출력한다. 후처리부(40)는 3상 회로로 구성되고, 제1 출력 인덕터(41), 제1 정류 다이오드(42), 제2 출력 인덕터(43), 제2 정류 다이오드(44), 제3 출력 인덕터(45) 및 제3 정류 다이오드(46)를 포함한다. 이 때, 후처리부(40)는 제1 출력 인덕터(41)와 제1 정류 다이오드(42)가 한 쌍을 이루고, 제2 출력 인덕터(43)와 제2 정류 다이오드(44)가 다른 한 쌍을 이루며, 제3 출력 인덕터(45)와 제3 정류 다이오드(46)가 나머지 한 쌍을 이룬다.
상세하게는, 제1 출력 인덕터(41)는 일단이 부하(50)의 일단과 병렬 연결된다. 제1 정류 다이오드(42)는 캐소드(cathode)가 제1 출력 인덕터(41)의 타단과 직렬 연결되고, 애노드(anode)가 부하(50)의 타단과 병렬 연결된다.
제2 출력 인덕터(43)는 일단이 제1 출력 인덕터(41)의 일단과 병렬 연결된다. 제2 출력 인덕터(43)의 일단은 부하(50)의 일단과도 병렬 연결된다. 제2 정류 다이오드(44)는 캐소드가 제2 출력 인덕터(43)의 타단과 직렬 연결되고, 애노드가 제1 정류 다이오드의 애노드와 병렬 연결된다. 제2 정류 다이오드(44)의 애노드는 부하(50)의 타단과도 병렬 연결된다.
제3 출력 인덕터(45)는 일단이 제2 출력 인덕터(43)의 일단과 병렬 연결된다. 제3 출력 인덕터(45)의 일단은 제1 출력 인덕터(41)의 일단 및 부하(50)의 일단과도 병렬 연결된다. 제3 정류 다이오드(46)는 캐소드가 제3 출력 인덕터(45)의 타단과 직렬 연결되고, 애노드가 제2 정류 다이오드(43)의 애노드와 병렬 연결된다. 제3 정류 다이오드(46)의 애노드는 제1 정류 다이오드(42)의 애노드 및 부하(50)의 타단과도 병렬 연결된다.
한편, 제1 출력 인덕터(41) 및 제1 정류 다이오드(42)의 중간 접점은 제1 변압기(31)의 2차권선 일단 및 제2 변압기(32)의 2차권선 타단과 연결된다. 제2 출력 인덕터(43) 및 제2 정류 다이오드(44)의 중간 접점은 제2 변압기(32)의 2차권선 일단 및 제3 변압기(33)의 2차권선 타단과 연결된다. 제3 출력 인덕터(45) 및 제3 정류 다이오드(46)의 중간 접점은 제3 변압기(33)의 2차권선 일단 및 제1 변압기(31)의 타단과 연결된다.
제어부(60)는 스위칭부(20)와 연결되고, 스위칭부(20)에 반송파(carrier) 및 지령전압을 인가하여 스위칭을 제어한다. 이 때, 제어부(60)는 3상 듀티 제어를 통한 스위칭 제어를 하며, 이에 대한 상세한 설명은 도 2 내지 도 8에서 후술된다.
따라서, 절연형 DC-DC 컨버터(100)는 부피가 작은 3개의 변압기 및 출력 인덕터를 이용하여 출력전류가 큰 경우에도 컨버터 전체의 부피가 커지지 않도록 부피 개선을 할 수 있고, 3상 듀티 제어를 통해 간단하게 PWM 제어를 할 수 있다. 이를 통해, 절연형 DC-DC 컨버터(100)는 높은 출력밀도 및 저가격화를 이룰 수 있다.
도 2는 도 1의 절연형 DC-DC 컨버터가 구동되는 제1 실시예를 설명하기 위한 도면이고, 도 3은 도 1의 절연형 DC-DC 컨버터가 구동되는 제2 실시예를 설명하기 위한 도면이며, 도 4는 도 1의 절연형 DC-DC 컨버터가 구동되는 제3 실시예를 설명하기 위한 도면이고, 도 5는 도 1의 절연형 DC-DC 컨버터가 구동되는 제4 실시예를 설명하기 위한 도면이다.
도 1 내지 도 5를 참조하면, 절연형 DC-DC 컨버터(100)는 스위칭부(20)에 포함된 각 스위치의 온/오프(on/off)에 따라 구동되는 방식이 달라진다.
제1 실시예와 같이, 변압기부(30)의 1차측 3상 스위치(21, 22, 23, 24, 25, 26)의 1상이 P인 경우, 2차측 회로는 3상 출력 인덕터(41, 43, 45)의 중심점과 3상 정류 다이오드(42, 44, 46)의 중심점에 부하(50)가 연결되는 회로 구성을 가진다. 즉, 제1 실시예는 제1 스위치(21), 제4 스위치(24) 및 제6 스위치(26)가 닫히고, 나머지 스위치(22, 23, 25)가 열린 경우(PNN), 제2 스위치(22), 제3 스위치(23) 및 제6 스위치(26)가 닫히고, 나머지 스위치(21, 24, 25)가 열린 경우(NPN), 제2 스위치(22), 제4 스위치(24) 및 제5 스위치(25)가 닫히고, 나머지 스위치(21, 23, 26)가 열린 경우(NNP)에 해당된다.
PNN인 경우, 임피던스 차이에 의해 제1 출력 인덕터(41)는 2/3Vdc의 전압이 턴수비만큼 변압되어 인가되고, 제2 출력 인덕터(43) 및 제3 출력 인덕터(45)는 1/3Vdc의 전압이 턴수비만큼 변압되어 인가된다. 이 때, 제1 출력 인덕터(41)는 제1 정류 다이오드(42)에 의해 역방향 바이어스가 인가되면서 부하(50)에 영향을 주지 않지만 제2 출력 인덕터(43) 및 제3 출력 인덕터(45)는 각각 제2 정류 다이오드(44) 및 제3 정류 다이오드(46)에 의해 순방향 바이어스가 인가되어 부하(50)에 영향을 준다. 따라서, 부하(50)는 1/3Vdc의 전압이 턴수비만큼 변압되어 인가된다.
여기서, NPN인 경우 및 NNP인 경우에도 전술된 PNN인 경우와 동일한 구조로 절연형 DC-DC 컨버터(100)가 구동됨으로 구동과정에 대한 설명은 생략하기로 한다.
제2 실시예와 같이, 변압기부(30)의 1차측 3상 스위치(21, 22, 23, 24, 25, 26)의 2상이 P인 경우, 2차측 회로는 3상 출력 인덕터(41, 43, 45)의 중심점과 3상 정류 다이오드(42, 44, 46)의 중심점에 부하(50)가 연결되는 회로 구성을 가진다. 즉, 제2 실시예는 제1 스위치(21), 제3 스위치(23) 및 제6 스위치(26)가 닫히고, 나머지 스위치(22, 24, 25)가 열린 경우(PPN), 제1 스위치(21), 제4 스위치(24) 및 제5 스위치(25)가 닫히고, 나머지 스위치(22, 23, 26)가 열린 경우(PNP), 제2 스위치(22), 제3 스위치(23) 및 제5 스위치(25)가 닫히고, 나머지 스위치(21, 24, 26)가 열린 경우(NPP)에 해당된다.
PPN인 경우, 임피던스 차이에 의해 제1 출력 인덕터(41) 및 제2 출력 인덕터(43)는 1/3Vdc의 전압이 턴수비만큼 변압되어 인가되고, 제3 출력 인덕터(45)는 2/3Vdc의 전압이 턴수비만큼 변압되어 인가된다. 이 때, 제1 출력 인덕터(41) 및 제2 출력 인덕터(43)는 각각 제1 정류 다이오드(42) 및 제2 정류 다이오드(44)에 의해 역방향 바이어스가 인가되면서 부하(50)에 영향을 주지 않지만 제3 출력 인덕터(45)는 제3 정류 다이오드(46)에 의해 순방향 바이어스가 인가되어 부하(50)에 영향을 준다. 따라서, 부하(50)는 2/3Vdc의 전압이 턴수비만큼 변압되어 인가된다.
여기서, PNP인 경우 및 NPP인 경우에도 전술된 PPN인 경우와 동일한 구조로 절연형 DC-DC 컨버터(100)가 동작됨으로 구동과정에 대한 설명은 생략하기로 한다.
제3 실시예 및 제4 실시예와 같이, 변압기부(30)의 1차측 3상 스위치(21, 22, 23, 24, 25, 26)의 모든 상이 P 또는 N인 경우(PPP, NNN), 부하(50)에 0V가 인가된다. 즉, 제3 실시예는 제1 스위치(21), 제3 스위치(23) 및 제5 스위치(25)가 닫히고, 나머지 스위치(22, 24, 26)가 열린 경우이고, 제4 실시예는 제2 스위치(22), 제4 스위치(24) 및 제6 스위치(26)가 닫히고, 나머지 스위치(21, 23, 25)가 열린 경우이다.
도 6은 도 1의 절연형 DC-DC 컨버터가 PWM 제어를 하는 제1 실시예를 설명하기 위한 도면이고, 도 7은 도 1의 절연형 DC-DC 컨버터가 PWM 제어를 하는 제2 실시예를 설명하기 위한 도면이며, 도 8은 도 1의 절연형 DC-DC 컨버터가 PWM 제어를 하는 제3 실시예를 설명하기 위한 도면이다.
도 1 내지 도 8을 참조하면, 절연형 DC-DC 컨버터(100)는 120도씩 위상천이된 3개의 반송파 및 직류로 구성된 지령전압으로 PWM 제어를 할 수 있다.
제1 실시예는 지령전압이 0V 내지 1/3V인 경우에 대한 PWM 제어이다. 도 6에서 도시된 바와 같이, 제1 실시예는 지령전압(회색으로 음영됨)이 0V 내지 1/3V로 인가되고, 3개의 반송파가 120도씩 위상천이되어 인가되는 것을 확인할 수 있다. 제1 실시예는 PNN, NPN, NNP와 같이 2차측에 1/3Vdc×n 전압이 인가되는 스위칭 상태와 NNN과 같이 0V 전압이 인가되는 스위칭 상태를 번갈아 가면서 동작한다. 여기서, n은 변압기부의 1차권선(n1)/2차권선(n2)을 의미한다. 제1 실시예는 듀티비를 늘릴수록 1/3Vdc×n 전압으로 인가되는 시간이 늘어나 출력전압이 증가하게 된다. 따라서, 제어부(50)는 지령전압을 0V 내지 1/3V로 인가하는 동안 듀티비가 늘어나도록 제어하여 후처리부(40)에 1/3Vdc×n 전압이 인가되는 시간을 늘려 출력전압을 증가시킬 수 있다.
제2 실시예는 지령전압이 1/3V 내지 2/3V인 경우에 대한 PWM 제어이다. 도 7에서 도시된 바와 같이, 제2 실시예는 지령전압이 1/3V 내지 2/3V로 인가되고, 3개의 반송파가 120도씩 위상천이되어 인가되는 것을 확인할 수 있다. 제 2 실시예는 PPN, PNP, NPP와 같이 2차측에 2/3Vdc×n 전압이 인가되는 스위칭 상태와 PNN, NPN, NNP와 같이 2차측에 1/3Vdc×n 전압이 인가되는 스위칭 상태를 번갈아 가면서 동작한다. 제2 실시예는 듀티비를 늘릴수록 1/3Vdc×n 전압이 인가되는 시간이 줄어들고, 2/3Vdc×n 전압이 인가되는 시간이 늘어나 출력전압이 증가하게 된다. 즉, 제2 실시예는 1/3Vdc×n 전압이 인가되는 출력전압보다 2/3Vdc×n 전압이 인가되는 출력전압이 더 큼으로 전체적인 측면에서 출력전압이 증가하게 된다. 따라서, 제어부(50)는 지령전압을 1/3V 내지 2/3V로 인가하는 동안 듀티비가 늘어나도록 제어하여 후처리부(40)에 1/3Vdc×n 전압이 인가되는 시간을 줄이고, 2/3Vdc×n 전압이 인가되는 시간을 늘려 출력전압을 증가시킬 수 있다.
제3 실시예는 지령전압이 2/3V 내지 1V인 경우에 대한 PWM 제어이다. 도 8에 도시된 바와 같이, 제3 실시예는 지령전압이 2/3V 내지 1V로 인가되고, 3개의 반송파가 120도씩 위상천이되어 인가되는 것을 확인할 수 있다. 제3 실시예는 PPN, PNP, NPP와 같이 2차측에 2/3Vdc×n 전압이 인가되는 스위칭 상태와 PPP와 같이 2차측에 0V 전압이 인가되는 스위칭 상태가 번갈아 가면서 동작한다. 제3 실시예는 듀티비를 늘릴수록 2/3Vdc×n 전압으로 인가되는 시간이 줄어들고, 0V 전압이 인가되는 시간이 늘어나 출력전압이 줄어들게 된다. 한편, 제3 실시예는 후처리부(40)의 출력 인덕터(41, 43, 45)에 인가되는 전압이 크게 변화하기 때문에 출력 인덕터(41, 43, 45)의 전류 리플(ripple)이 커지는 문제점이 있다.
그러므로, 제어부(50)는 출력전류의 리플을 줄이는 동시에 출력전압을 증가시킬 수 있는 제1 실시예 및 제2 실시예에 대해서만 PWM 제어를 수행할 수 있다.
도 9는 도 6의 PWM 제어에 대한 각 구성의 파형을 설명하기 위한 도면이고, 도 10은 도 9에 대한 시뮬레이션 파형을 설명하기 위한 도면이다.
도 1, 도 6, 도 9 및 도 10을 참조하면, 제1 실시예에 따라 구동되는 절연형 DC-DC 컨버터(100)의 각 구성의 파형을 확인할 수 있다.
제1 실시예에 따른 절연형 DC-DC 컨버터(100)는 도 9(a) 내지 도 9(e)에 도시된 파형과 같이 각 구성이 동작한다. 여기서, 도 9(a)는 반송파 및 지령전압에 대한 파형을 나타내고, 도 9(b)는 스위칭부(20)의 스위칭 상태에 대한 파형을 나타내며, 도 9(c)는 변압기부(30)의 2차측 전압에 대한 파형을 나타내고, 도 9(d)는 3상 출력 인덕터(41, 43, 45)의 전류, 제1 변압기(31)의 전류 및 출력전류에 대한 파형을 나타내며, 도 9(e)는 3상 정류 다이오드(42, 44, 46)의 전류에 대한 파형을 나타낸다.
즉, 변압기부(30)의 전압 파형은 선간전압으로 구형파 형태로 나타나고, 인터리브드 동작을 통해 3상 출력 인덕터(41, 43, 45)의 전류 파형은 120도 위상차를 나타낸다. 또한 출력전류는 3상 출력 인덕터(41, 43, 45)의 전류 합으로 나타남으로써 스위칭 주파수의 3배수에 해당되는 전류 리플 주파수를 보여준다.
여기서, 제1 실시예에 따른 절연형 DC-DC 컨버터(100)는 각 동작 영역에서 두 상의 출력 인덕터가 두 상의 순방향 바이어스된 두 상의 정류 다이오드를 통해 동작하기 때문에 모든 영역에서 두 상의 정류 다이오드에 전류가 흐르는 것을 확인할 수 있다.
한편, 도 10은 도 9에 1/6의 듀티비를 적용한 시뮬레이션의 파형이다. 도 10(a)은 반송파 및 지령전압에 대한 파형을 나타내고, 도 10(b)은 변압기부(30)의 2차측 전압에 대한 파형을 나타내며, 도 10(c)은 3상 출력 인덕터(41, 43, 45)의 전류, 제1 변압기(31)의 전류 및 출력전류에 대한 파형을 나타내며, 도 10(d)은 3상 정류 다이오드(42, 44, 46)의 전류에 대한 파형을 나타낸다. 이를 통해, 제1 실시예에 대한 시뮬레이션에서도 절연형 DC-DC 컨버터(100)가 3상 듀티 제어를 이용한 스위칭이 실제로 이루어진다는 것을 확인할 수 있다.
도 11은 도 7의 PWM 제어에 대한 각 구성의 파형을 설명하기 위한 도면이고, 도 12는 도 11에 대한 시뮬레이션 파형을 설명하기 위한 도면이다.
도 1, 도 7, 도 11 및 도 12를 참조하면, 제2 실시예에 따라 구동되는 절연형 DC-DC 컨버터(100)의 각 구성의 파형을 확인할 수 있다.
제2 실시예에 따른 절연형 DC-DC 컨버터(100)는 도 11(a) 내지 도 11(e)에 도시된 파형과 같이 각 구성이 동작한다. 여기서, 도 11(a)은 반송파 및 지령전압에 대한 파형을 나타내고, 도 11(b)은 스위칭부(20)의 스위칭 상태에 대한 파형을 나타내며, 도 11(c)은 변압기부(30)의 2차측 전압에 대한 파형을 나타내고, 도 11(d)은 3상 출력 인덕터(41, 43, 45)의 전류, 제1 변압기(31)의 전류 및 출력전류에 대한 파형을 나타내며, 도 11(e)은 3상 정류 다이오드(42, 44, 46)의 전류에 대한 파형을 나타낸다.
즉, 변압기부(30)의 전압 파형은 선간전압으로 구형파 형태로 나타나고, 인터리브드 동작을 통해 3상 출력 인덕터(41, 43, 45)의 전류 파형은 120도 위상차를 나타낸다. 이 때, 출력전압이 달라지는 구간이 생기기 때문에 3상 출력 인덕터(41, 43, 45)의 전류에서 변곡점이 나타난다. 또한 출력전류는 3상 출력 인덕터(41, 43, 45)의 전류 합으로 나타나다.
여기서, 제2 실시예에 따른 절연형 DC-DC 컨버터(100)는 각 동작 영역에서 한 상의 출력 인덕터가 순방향 바이어스된 한 상의 정류 다이오드를 통해 동작하는 모드를 포함하기 때문에 한 상의 정류 다이오드에서만 전류가 흐르는 영역과 두 상의 정류 다이오드에서 전류가 흐르는 영역이 같이 나타나는 것을 확인할 수 있다.
한편, 도 12는 도 11에 1/2의 듀티비를 적용한 시뮬레이션의 파형이다. 도 11(a)은 반송파 및 지령전압에 대한 파형을 나타내고, 도 11(b)은 변압기부(30)의 2차측 전압에 대한 파형을 나타내며, 도 11(c)은 3상 출력 인덕터(41, 43, 45)의 전류, 제1 변압기(31)의 전류 및 출력전류에 대한 파형을 나타내며, 도 11(d)은 3상 정류 다이오드(42, 44, 46)의 전류에 대한 파형을 나타낸다. 이를 통해, 제2 실시예에 대한 시뮬레이션에서도 절연형 DC-DC 컨버터(100)가 3상 듀티 제어를 이용한 스위칭이 실제로 이루어진다는 것을 확인할 수 있다.
도 13은 본 발명의 실시예에 따른 절연형 DC-DC 컨버터의 구동방법을 설명하기 위한 순서도이다.
도 1 및 도 13을 참조하면, 절연형 DC-DC 컨버터(100)의 구동방법은 3상 듀티 제어를 이용하여 스위칭함으로써, 간단하게 PWM 제어를 한다. 이를 통해, 절연형 DC-DC 컨버터(100)는 높은 출력밀도 및 저가격화를 이룰 수 있다.
S110단계에서, 제어부(60)는 반송파 및 지령전압을 스위칭부(20)에 인가한다. 제어부(60)는 120도씩 위상천이된 3개의 반송파 및 직류로 구성된 지령전압을 스위칭부(20)에 인가한다. 이 때, 지령전압은 0V 내지 2/3V일 수 있다. 또한 스위칭부(20)는 병렬로 연결된 3쌍의 스위치를 포함한다.
S130단계에서, 스위칭부(20)는 반송파 및 지령전압에 따라 3쌍의 스위치를 스위칭한다. 지령전압이 0V 내지 1/3V인 경우, 스위칭부(20)는 제1 스위치(21), 제4 스위치(24) 및 제6 스위치(26)가 닫히고, 나머지 스위치(22, 23, 25)가 열리거나(PNN), 제2 스위치(22), 제3 스위치(23) 및 제6 스위치(26)가 닫히고, 나머지 스위치(21, 24, 25)가 열리거나(NPN), 제2 스위치(22), 제4 스위치(24) 및 제5 스위치(25)가 닫히고, 나머지 스위치(21, 23, 26)가 열린다(NNP). 지령전압이 1/3V 내지 2/3V인 경우, 스위칭부(20)는 제1 스위치(21), 제3 스위치(23) 및 제6 스위치(26)가 닫히고, 나머지 스위치(22, 24, 25)가 열리거나(PPN), 제1 스위치(21), 제4 스위치(24) 및 제5 스위치(25)가 닫히고, 나머지 스위치(22, 23, 26)가 열리거나(PNP), 제2 스위치(22), 제3 스위치(23) 및 제5 스위치(25)가 닫히고, 나머지 스위치(21, 24, 26)가 열린다(NPP).
S150단계에서, 변압기부(30)는 스위칭으로 출력된 전압을 변압한다. 여기서, 변압기부(30)는 제1 변압기(31) 내지 제3 변압기(33)를 포함한다. 이 때, 제1 변압기(31) 내지 제3 변압기(33)는 서로 동일한 스펙이고, 1차권선이 2차권선보다 더 권선되도록 턴수비를 설정할 수 있다. 변압기부(30)는 스위칭부(20)로부터 출력된 전압을 턴수비만큼 변압한다.
S170단계에서, 후처리부(40)는 출력전류를 출력한다. 후처리부(40)는 변압기부(30)로부터 변압된 전압에 대한 출력전류를 출력한다. 이 때, 후처리부(40)는 변압된 전압을 정류 및 필터링한 후, 출력전류를 출력할 수 있다.
이상에서 본 발명의 바람직한 실시예에 대해 도시하고 설명하였으나, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.
10: 입력전원 20: 스위칭부
21: 제1 스위치 22: 제2 스위치
23: 제3 스위치 24: 제4 스위치
25: 제5 스위치 26: 제6 스위치
30: 변압기부 31: 제1 변압기
32: 제2 변압기 33: 제3 변압기
40: 후처리부 41: 제1 출력 인덕터
42: 제1 정류 다이오드 43: 제2 출력 인덕터
44: 제2 정류 다이오드 45: 제3 출력 인덕터
46: 제3 정류 다이오드 50: 부하
60: 제어부 100: 절연형 DC-DC 컨버터

Claims (10)

  1. 입력전원의 양단과 연결되고, 병렬로 연결된 3쌍의 스위치를 포함하며, 상기 3쌍의 스위치를 스위칭하는 스위칭부;
    1차권선 및 2차권선에 기 설정된 턴수비로 권선된 제1 변압기 내지 제3 변압기를 포함하고, 각 변압기의 1차권선이 상기 스위칭부와 연결되어 상기 턴수비에 따라 1차권선에 인가된 전압을 변압하는 변압기부;
    각 변압기의 2차권선과 연결되고, 상기 2차권선으로부터 인가된 전압을 정류 및 필터링하여 출력전류를 출력하는 후처리부; 및
    상기 스위칭부와 연결되고, 상기 스위칭부에 반송파 및 지령전압을 인가하여 스위칭을 제어하는 제어부;를 포함하고,
    상기 후처리부는,
    일단이 부하의 일단과 병렬 연결되는 제1 출력 인덕터;
    캐소드(cathode)가 상기 제1 출력 인덕터의 타단과 직렬 연결되고, 애노드(anode)가 상기 부하의 타단과 병렬 연결되는 제1 정류 다이오드;
    일단이 상기 제1 출력 인덕터의 일단과 병렬 연결되는 제2 출력 인덕터;
    캐소드가 상기 제2 출력 인덕터의 타단과 직렬 연결되고, 애노드가 상기 제1 정류 다이오드의 애노드와 병렬 연결되는 제2 정류 다이오드;
    일단이 상기 제2 출력 인덕터의 일단과 병렬 연결되는 제3 출력 인덕터; 및
    캐소드가 상기 제3 출력 인덕터의 타단과 직렬 연결되고, 애노드가 상기 제2 정류 다이오드의 애노드와 병렬 연결되는 제3 정류 다이오드;를 포함하는 것을 특징으로 하는 절연형 DC-DC 컨버터.
  2. 제 1항에 있어서,
    상기 스위칭부는,
    일단이 상기 입력전원의 일단과 병렬 연결되는 제1 스위치;
    일단이 상기 제1 스위치의 타단과 직렬 연결되고, 타단이 상기 입력전원의 타단과 병렬 연결되는 제2 스위치;
    일단이 상기 제1 스위치의 일단과 병렬 연결되는 제3 스위치;
    일단이 상기 제3 스위치의 타단과 직렬 연결되고, 타단이 상기 제2 스위치의 타단과 병렬 연결되는 제4 스위치;
    일단이 상기 제3 스위치의 일단과 병렬 연결되는 제5 스위치; 및
    일단이 상기 제5 스위치의 타단과 직렬 연결되고, 타단이 상기 제4 스위치의 타단과 병렬 연결되는 제6 스위치;
    를 포함하는 것을 특징으로 하는 절연형 DC-DC 컨버터.
  3. 제 2항에 있어서,
    상기 스위칭부는,
    상기 제1 스위치 및 상기 제2 스위치의 중간 접점이 제1 변압기의 1차권선 일단 및 제2 변압기의 1차권선 타단과 연결되고,
    상기 제3 스위치 및 상기 제4 스위치의 중간 접점이 제2 변압기의 1차권선 일단 및 제3 변압기의 1차권선 타단과 연결되며,
    상기 제5 스위치 및 상기 제6 스위치의 중간 접점이 제3 변압기의 1차권선 일단 및 제1 변압기의 1차권선 타단과 연결되는 것을 특징으로 하는 절연형 DC-DC 컨버터.
  4. 제 1항에 있어서,
    상기 변압기부는,
    상기 제1 변압기 내지 제3 변압기가 서로 동일한 스펙(spec)이고, 상기 1차권선이 상기 2차권선보다 더 권선되도록 상기 턴수비를 설정하는 것을 특징으로 하는 절연형 DC-DC 컨버터.
  5. 삭제
  6. 제 1항에 있어서,
    상기 후처리부는,
    상기 제1 출력 인덕터 및 상기 제1 정류 다이오드의 중간 접점이 제1 변압기의 2차권선 일단 및 제2 변압기의 2차권선 타단과 연결되고,
    상기 제2 출력 인덕터 및 상기 제2 정류 다이오드의 중간 접점이 제2 변압기의 2차권선 일단 및 제3 변압기의 2차권선 타단과 연결되며,
    상기 제3 출력 인덕터 및 상기 제3 정류 다이오드의 중간 접점이 제3 변압기의 2차권선 일단 및 제1 변압기의 2차권선 타단과 연결되는 것을 특징으로 하는 절연형 DC-DC 컨버터.
  7. 제 1항에 있어서,
    상기 제어부는,
    상기 스위칭부에 상기 반송파를 120도씩 위상천이된 3개 신호로 인가하고, 상기 지령전압을 0V 내지 2/3V의 직류(DC)전압으로 인가하도록 제어하는 것을 특징으로 하는 절연형 DC-DC 컨버터.
  8. 제 7항에 있어서,
    상기 제어부는,
    상기 지령전압을 0V 내지 1/3V로 인가하는 동안 듀티비가 늘어나도록 제어하여 상기 후처리부에 1/3Vdc×n 전압이 인가되는 시간을 늘려 출력전압을 증가시키는 것을 특징으로 하는 절연형 DC-DC 컨버터.
    (Vdc는 입력전원의 직류(DC)전압, n은 변압기부의 1차권선수(n1)/2차권선수(n2)를 의미함)
  9. 제 7항에 있어서,
    상기 제어부는,
    상기 지령전압을 1/3V 내지 2/3V로 인가하는 동안 듀티비가 늘어나도록 제어하여 상기 후처리부에 1/3Vdc×n 전압이 인가되는 시간을 줄이고, 2/3Vdc×n 전압이 인가되는 시간을 늘려 출력전압을 증가시키는 것을 특징으로 하는 절연형 DC-DC 컨버터.
    (Vdc는 입력전원의 직류(DC)전압, n은 변압기부의 1차권선수(n1)/2차권선수(n2)를 의미함)
  10. 입력전원의 양단과 연결되고, 병렬로 연결된 3쌍의 스위치를 포함하며, 상기 3쌍의 스위치를 스위칭하는 스위칭부; 1차권선 및 2차권선에 기 설정된 턴수비로 권선된 제1 변압기 내지 제3 변압기를 포함하고, 각 변압기의 1차권선이 상기 스위칭부와 연결되어 상기 턴수비에 따라 1차권선에 인가된 전압을 변압하는 변압기부; 각 변압기의 2차권선과 연결되고, 상기 2차권선으로부터 인가된 전압을 정류 및 필터링하여 출력전류를 출력하는 후처리부; 및 상기 스위칭부와 연결되고, 상기 스위칭부에 반송파 및 지령전압을 인가하여 스위칭을 제어하는 제어부;를 포함하는 절연형 DC-DC 컨버터의 구동방법에 있어서,
    병렬로 연결된 3쌍의 스위치를 포함하는 스위칭부에 반송파 및 지령전압이 인가되는 단계;
    상기 인가된 반송파 및 지령전압을 이용하여 상기 스위칭부가 스위칭되는 단계;
    상기 스위칭으로 출력된 전압이 제1 변압기 내지 제3 변압기를 포함하는 변압기부로 변압되는 단계; 및
    상기 변압기부로부터 변압된 전압을 정류 및 필터링하여 출력전류가 출력되는 단계;를 포함하고,
    상기 후처리부는,
    일단이 부하의 일단과 병렬 연결되는 제1 출력 인덕터;
    캐소드(cathode)가 상기 제1 출력 인덕터의 타단과 직렬 연결되고, 애노드(anode)가 상기 부하의 타단과 병렬 연결되는 제1 정류 다이오드;
    일단이 상기 제1 출력 인덕터의 일단과 병렬 연결되는 제2 출력 인덕터;
    캐소드가 상기 제2 출력 인덕터의 타단과 직렬 연결되고, 애노드가 상기 제1 정류 다이오드의 애노드와 병렬 연결되는 제2 정류 다이오드;
    일단이 상기 제2 출력 인덕터의 일단과 병렬 연결되는 제3 출력 인덕터; 및
    캐소드가 상기 제3 출력 인덕터의 타단과 직렬 연결되고, 애노드가 상기 제2 정류 다이오드의 애노드와 병렬 연결되는 제3 정류 다이오드;를 포함하는 것을 특징으로 하는 절연형 DC-DC 컨버터의 구동방법.
KR1020170111312A 2017-08-31 2017-08-31 절연형 dc-dc 컨버터 및 그 구동방법 KR102211454B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170111312A KR102211454B1 (ko) 2017-08-31 2017-08-31 절연형 dc-dc 컨버터 및 그 구동방법
US16/117,528 US10790750B2 (en) 2017-08-31 2018-08-30 Isolated DC-DC converter circuit for power conversion and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170111312A KR102211454B1 (ko) 2017-08-31 2017-08-31 절연형 dc-dc 컨버터 및 그 구동방법

Publications (2)

Publication Number Publication Date
KR20190025196A KR20190025196A (ko) 2019-03-11
KR102211454B1 true KR102211454B1 (ko) 2021-02-04

Family

ID=65435630

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170111312A KR102211454B1 (ko) 2017-08-31 2017-08-31 절연형 dc-dc 컨버터 및 그 구동방법

Country Status (2)

Country Link
US (1) US10790750B2 (ko)
KR (1) KR102211454B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018006961A1 (en) * 2016-07-07 2018-01-11 Huawei Technologies Co., Ltd. Four-switch three phase dc-dc resonant converter
CN114762234A (zh) * 2019-12-05 2022-07-15 三菱电机株式会社 绝缘变压器以及具备其的电力变换装置
KR102522372B1 (ko) * 2022-10-31 2023-04-17 에스케이시그넷 주식회사 래깅 레그 제거 위상 천이 풀 브릿지 컨버터 회로

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084754A (ja) * 2000-09-05 2002-03-22 Mitsubishi Electric Corp Dc/dcコンバータ装置
US20100001655A1 (en) 2007-04-18 2010-01-07 Jae Hyun Han Inverter Circuit and Lamp Control Apparatus Having the Same
US20160254756A1 (en) 2013-11-07 2016-09-01 Huawei Technologies Co., Ltd. Magnetic integrated device and power conversion circuit

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2738673A (en) * 1953-06-22 1956-03-20 Liquidometer Corp Liquid volume and weight measuring system
US3343405A (en) * 1965-01-27 1967-09-26 Jr Philip J Gilinson Viscometer
US3600597A (en) * 1970-03-24 1971-08-17 Gen Electric Spare transformer connecting means
US4184197A (en) * 1977-09-28 1980-01-15 California Institute Of Technology DC-to-DC switching converter
US4689524A (en) * 1985-10-04 1987-08-25 Alexander Ureche Fluorescent lamp ballast
US5287888A (en) * 1993-01-15 1994-02-22 Geiger James E Irrigation controller
US5442534A (en) * 1993-02-23 1995-08-15 California Institute Of Technology Isolated multiple output Cuk converter with primary input voltage regulation feedback loop decoupled from secondary load regulation loops
US5852553A (en) * 1997-08-14 1998-12-22 Westinghouse Electric Corporation Harmonic neutralized voltage sourced inverter employing phase shifting interphase transformers
US20020031160A1 (en) * 2000-08-04 2002-03-14 Lambda Physik Ag Delay compensation for magnetic compressors
US6888709B2 (en) * 2002-05-03 2005-05-03 Applied Energy Llc Electromagnetic transient voltage surge suppression system
DE20211741U1 (de) * 2002-07-30 2002-10-17 Digi Power Mfg Inc Aktives Ersatznetzgerät zum Ausgleich des Leistungsfaktors und zur Einstellung der Leistungsausgabe
JP2005129004A (ja) * 2003-10-03 2005-05-19 Sharp Corp 駆動システムおよび交流変換装置
US7932693B2 (en) * 2005-07-07 2011-04-26 Eaton Corporation System and method of controlling power to a non-motor load
KR20070074999A (ko) * 2006-01-11 2007-07-18 삼성전자주식회사 램프 구동 장치 및 이를 갖는 액정 표시 장치
US7923867B2 (en) * 2006-06-05 2011-04-12 Daniel Princinsky Electromagnetic noise suppression system for Wye power distribution
US8040704B2 (en) * 2007-06-30 2011-10-18 Cuks, Llc Integrated magnetics switching converter with zero inductor and output ripple currents and lossless switching
US7830681B2 (en) * 2008-09-24 2010-11-09 Teco-Westinghouse Motor Company Modular multi-pulse transformer rectifier for use in asymmetric multi-level power converter
KR101031278B1 (ko) 2009-09-16 2011-04-29 전남대학교산학협력단 풀-브릿지 방식의 절연형 dc/dc컨버터
US8755204B2 (en) * 2009-10-21 2014-06-17 Lam Research Corporation RF isolation for power circuitry
KR101168702B1 (ko) * 2010-12-13 2012-07-30 경상대학교산학협력단 승압 전압 컨버터
CN110168893B (zh) * 2016-07-07 2022-02-08 华为技术有限公司 双变压器三相dc-dc谐振转换器
JP6271099B1 (ja) * 2016-08-04 2018-01-31 三菱電機株式会社 直流電圧変換回路
JP7003636B2 (ja) * 2017-12-25 2022-01-20 Tdk株式会社 電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084754A (ja) * 2000-09-05 2002-03-22 Mitsubishi Electric Corp Dc/dcコンバータ装置
US20100001655A1 (en) 2007-04-18 2010-01-07 Jae Hyun Han Inverter Circuit and Lamp Control Apparatus Having the Same
US20160254756A1 (en) 2013-11-07 2016-09-01 Huawei Technologies Co., Ltd. Magnetic integrated device and power conversion circuit

Also Published As

Publication number Publication date
US10790750B2 (en) 2020-09-29
KR20190025196A (ko) 2019-03-11
US20190068060A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
US8441812B2 (en) Series resonant converter having a circuit configuration that prevents leading current
US8542501B2 (en) Switching power-supply apparatus
JP5995139B2 (ja) 双方向dc/dcコンバータ
US8009444B2 (en) Boost device for voltage boosting
JP4715429B2 (ja) 交直変換回路
US9866146B2 (en) Enhanced flyback converter
US20140268891A1 (en) Multiphase dc/dc converters
CN105993123B (zh) 具有宽输入和输出动态范围的交错正向转换器
JP5855133B2 (ja) 充電装置
US7535733B2 (en) Method of controlling DC-to-DC converter whereby switching control sequence applied to switching elements suppresses voltage surges at timings of switch-off of switching elements
US20090128101A1 (en) Power conversion circuit
Jafari et al. Analysis of operation modes and limitations of dual active bridge phase shift converter
US11296607B2 (en) DC-DC converter
KR102211454B1 (ko) 절연형 dc-dc 컨버터 및 그 구동방법
WO2014054787A1 (ja) コンバータ及び双方向コンバータ
US20160049858A1 (en) Lc resonant converter using phase shift switching method
US6744647B2 (en) Parallel connected converters apparatus and methods using switching cycle with energy holding state
US20150326140A1 (en) Ac-dc converter for wide range output voltage and high switching frequency
TWI580166B (zh) 交錯式升壓轉換器
CN114391218A (zh) 宽电压范围dc-dc转换器
da Costa et al. High-gain Boost-Boost-Flyback converter for renewable energy sources applications
JP6482009B2 (ja) 多入力コンバータ及び双方向コンバータ
KR20190115364A (ko) 단상 및 3상 겸용 충전기
Han et al. A new full-bridge converter with phase-shifted coupled inductor rectifier
US20080278971A1 (en) Forward-forward converter

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant