KR102203462B1 - Super water-repellent coating method - Google Patents

Super water-repellent coating method Download PDF

Info

Publication number
KR102203462B1
KR102203462B1 KR1020180107013A KR20180107013A KR102203462B1 KR 102203462 B1 KR102203462 B1 KR 102203462B1 KR 1020180107013 A KR1020180107013 A KR 1020180107013A KR 20180107013 A KR20180107013 A KR 20180107013A KR 102203462 B1 KR102203462 B1 KR 102203462B1
Authority
KR
South Korea
Prior art keywords
super
water
repellent
repellent coating
solvent
Prior art date
Application number
KR1020180107013A
Other languages
Korean (ko)
Other versions
KR20200029084A (en
Inventor
이승협
김도은
윤기훈
정연학
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020180107013A priority Critical patent/KR102203462B1/en
Publication of KR20200029084A publication Critical patent/KR20200029084A/en
Application granted granted Critical
Publication of KR102203462B1 publication Critical patent/KR102203462B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/30Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using agents to prevent the granules sticking together; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/185Processes for applying liquids or other fluent materials performed by dipping applying monomolecular layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds

Abstract

본 발명은 초발수 코팅 방법에 관한 것으로서, 보다 구체적으로는 기존 코팅에 비해 공정을 단순화하면서도 초발수 성능을 더욱 향상시킬 수 있는 초발수 코팅 방법에 관한 것이다.The present invention relates to a super-water-repellent coating method, and more specifically, to a super-water-repellent coating method capable of further improving super-water-repellent performance while simplifying the process compared to conventional coating.

Description

초발수 코팅 방법{Super water-repellent coating method}Super water-repellent coating method

본 발명은 초발수 코팅 방법에 관한 것으로서, 보다 구체적으로는 기존 코팅에 비해 공정을 단순화하면서도 초발수 성능을 더욱 향상시킬 수 있는 초발수 코팅 방법에 관한 것이다.The present invention relates to a super-water-repellent coating method, and more specifically, to a super-water-repellent coating method capable of further improving super-water-repellent performance while simplifying the process compared to conventional coating.

기본적으로, 소재 표면의 젖음성은, 표면 에너지에 의해서 결정되지만, 표면의 미세 구조를 제어하면, 젖음성(wettability)이 극단적으로 감소하여 물에 대한 표면 접촉각이 증가되어 초발수성 표면(superhydrophobic surfaces)이 구현될 수 있다. 표면 나노 구조는 소재 표면의 젖음성을 증폭시키는 데 핵심적인 역할을 하며, 초발수 표면을 구현하는 기본 토대가 된다. 이렇게 인공적으로 만들어진 대부분의 초발수 표면들은 자연에 존재하는 초발수 표면 구조에 착안하여 개발되었다.Basically, the wettability of the material's surface is determined by the surface energy, but when the microstructure of the surface is controlled, the wettability is extremely reduced and the surface contact angle with water increases, resulting in superhydrophobic surfaces. Can be. The surface nanostructure plays a key role in amplifying the wettability of the material surface, and becomes the basic foundation for realizing a super-water-repellent surface. Most of the super-water-repellent surfaces artificially made in this way have been developed focusing on the super-water-repellent surface structure existing in nature.

이러한 초발수 표면을 갖는 소재들은, 군물 외벽, 자동차 내장재, 자동차, 외장재, 유리, 광학필름 등 다양한 분야에서 활용될 수 있다. 이에 따라, 그라인딩 공정, 샌드 블라스팅 공정, 및 양극 산화 공정 등 초발수 표면을 갖는 소재들의 제조 방법에 대한 연구 개발이 활발히 진행되고 있다.Materials having such a super water-repellent surface can be used in various fields such as military exterior walls, automobile interior materials, automobiles, exterior materials, glass, and optical films. Accordingly, research and development on a method of manufacturing materials having a super water-repellent surface such as a grinding process, a sand blasting process, and an anodic oxidation process is actively progressing.

예를 들어, 대한민국 등록특허공보 10-0776970(출원번호 10-2006-0085329, 출원인 한국기계연구원)에는, 진공 또는 대기압에서 피처리물의 표면에 플라즈마를 발생시키고 챔버 내부에 불소기, 메틸기, 및 염소기 등과 같은 소수성 부재를 유입시켜, 피처리물의 표면을 거칠게 가공함으로써, 피처리물의 재질에 무관하고, 간단한 공정으로, 물과의 접촉각이 140도 이상을 갖도록 하는 플라즈마 처리를 통한 초발수 표면 형성 방법이 개시되어 있다. 다만, 이러한 방법의 경우, 진공 챔버 내에서 수행되어야 하므로 공정이 복잡해지는 문제가 있다.For example, Korean Patent Publication No. 10-0776970 (application number 10-2006-0085329, Applicant Korea Institute of Machinery and Materials) generates plasma on the surface of an object to be treated under vacuum or atmospheric pressure, and fluorine groups, methyl groups, and chlorine are A method of forming a super water-repellent surface through plasma treatment in which a hydrophobic member such as a group is introduced to roughen the surface of the object to be treated, regardless of the material of the object to be treated, and in a simple process, the contact angle with water is 140 degrees or more Is disclosed. However, in the case of this method, since it must be performed in a vacuum chamber, there is a problem that the process becomes complicated.

따라서, 공정은 간소화하면서도 초발수 특성을 크게 개선할 수 있는 초발수 코팅 방법의 개발이 필요한 실정이다.Accordingly, there is a need to develop a super-water-repellent coating method capable of greatly improving super-water-repellent properties while simplifying the process.

1. 대한민국 등록특허공보 제10-0776970호1. Korean Patent Publication No. 10-0776970 2. 대한민국 등록특허공보 제10-1336819호2. Korean Patent Publication No. 10-1336819

본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 기존 코팅에 비해 공정을 단순화하면서도 초발수 성능을 더욱 향상시킬 수 있는 초발수 코팅 방법에 관한 것이다.The present invention is to solve the problems of the prior art as described above, and an object of the present invention relates to a super water-repellent coating method capable of further improving super-water-repellent performance while simplifying the process compared to the conventional coating.

본 발명의 해결하고자 하는 과제는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.The problem to be solved of the present invention is not limited to those mentioned above, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.

상기한 목적을 달성하기 위하여 본 발명에 따른 초발수 코팅 방법은 나노 입자를 자기조립단분자막 형성물질과 함께 제1용매에 혼합한 표면 처리 용액을 마련하여 상기 나노 입자 표면에 자기조립단분자막이 형성되도록 반응시키는 S1단계와; 상기 표면 처리 용액에서 제1용매를 제거하여 표면처리된 나노 입자가 서로 응집된 클러스터 형태의 초발수 입자를 회수하는 S2단계와; 상기 클러스터 형태의 초발수 입자를 제2용매에 분산시켜 초발수 코팅 용액을 마련하는 S3단계와; 코팅 대상물 표면에 유기 수지를 도포하여 유기 코팅막을 형성한 다음, 상기 유기 코팅막 표면에 상기 초발수 코팅 용액을 분사하여 초발수 코팅층을 형성하는 S4단계와; 상기 초발수 코팅층을 경화시키는 S5단계;를 포함하는 것을 특징으로 한다.In order to achieve the above object, the super water-repellent coating method according to the present invention prepares a surface treatment solution in which nanoparticles are mixed with a self-assembled monolayer-forming material in a first solvent, and reacts to form a self-assembled monolayer on the surface of the nanoparticles. Step S1 to let; Step S2 of removing the first solvent from the surface treatment solution to recover superhydrophobic particles in the form of clusters in which the surface-treated nanoparticles are aggregated with each other; Step S3 of dispersing the super-repellent particles in the form of clusters in a second solvent to prepare a super-water-repellent coating solution; Step S4 of forming an organic coating layer by applying an organic resin to the surface of the object to be coated, and then spraying the super-water-repellent coating solution onto the surface of the organic coating layer to form a super-water-repellent coating layer; It characterized in that it comprises a; step S5 of curing the super water-repellent coating layer.

또한, 본 발명에 따른 초발수 코팅 방법에 있어서, S1단계의 제1용매는 비극성 용매이고, 상기 S3단계의 제2용매는 극성 용매인 것을 특징으로 한다.In addition, in the super water-repellent coating method according to the present invention, the first solvent in step S1 is a non-polar solvent, and the second solvent in step S3 is a polar solvent.

또한, 본 발명에 따른 초발수 코팅 방법에 있어서, S1단계의 나노 입자는 ZnO, TiO2, SiO2, ZrO2, MgO, CdO, V2O5 및 Al2O3로 구성된 군에서 적어도 하나가 선택되며, 상기 자기조립단분자막 형성물질은 말단에 실란기, 카르복실산기 및 티올기 중 어느 하나의 작용기를 포함하는 실란계열 화합물 또는 지방산계열 화합물인 것을 특징으로 한다.In addition, in the super water-repellent coating method according to the present invention, the nanoparticles of step S1 are at least one from the group consisting of ZnO, TiO 2 , SiO 2 , ZrO 2 , MgO, CdO, V 2 O 5 and Al 2 O 3 It is selected, and the self-assembled monolayer-forming material is characterized in that it is a silane-based compound or a fatty acid-based compound including a functional group of any one of a silane group, a carboxylic acid group, and a thiol group at an end.

또한, 본 발명에 따른 초발수 코팅 방법에 있어서, S1단계의 나노 입자는 1~50nm의 평균 입경을 가지며, 상기 S2단계를 거친 클러스터 형태의 초발수 입자는 1~20㎛의 평균 입경을 가지는 것을 특징으로 한다.In addition, in the super water-repellent coating method according to the present invention, the nanoparticles in step S1 have an average particle diameter of 1 to 50 nm, and the super-water-repellent particles in the form of clusters that have undergone step S2 have an average particle diameter of 1 to 20 μm. It is characterized.

또한, 본 발명에 따른 초발수 코팅 방법에 있어서, S1단계는 상기 표면 처리 용액을 30~50℃의 온도에서 20~50분 동안 교반하면서 이루어지는 것을 특징으로 한다.In addition, in the super water-repellent coating method according to the present invention, step S1 is characterized in that the surface treatment solution is stirred at a temperature of 30 to 50° C. for 20 to 50 minutes.

또한, 본 발명에 따른 초발수 코팅 방법에 있어서, S2단계는 상기 S1단계를 거친 표면 처리 용액을 원심 분리 또는 침전 분리 방식을 통해 용매 일부와, 나노 입자와 결합하지 않은 미반응 자기조립단분자막 형성물질을 제거하는 S2-1단계와; 상기 S2-1단계를 거친 용액을 건조하는 S2-2단계;로 이루어지는 것을 특징으로 한다.In addition, in the super water-repellent coating method according to the present invention, step S2 is a non-reacted self-assembled monolayer-forming material that is not combined with a part of a solvent and nanoparticles through a centrifugal separation or precipitation separation method of the surface treatment solution passed through the step S1. Step S2-1 of removing the; It characterized by consisting of; step S2-2 of drying the solution passed through the step S2-1.

또한, 본 발명에 따른 초발수 코팅 방법에 있어서, S4단계의 유기 수지는 실리콘, 에폭시, 아크릴, 폴리우레탄, 또는 폴리이미드 중 적어도 어느 하나가 선택되며, 상기 S4단계의 유기 코팅막은 5~20㎛의 두께로 형성되는 것을 특징으로 한다.In addition, in the super water-repellent coating method according to the present invention, at least one of silicone, epoxy, acrylic, polyurethane, or polyimide is selected as the organic resin in step S4, and the organic coating film in step S4 is 5-20 μm It is characterized in that it is formed in a thickness of.

또한, 본 발명에 따른 초발수 코팅 방법에 있어서, S5단계는 유기 코팅막 및 초발수 코팅층을 50~70℃의 온도에서 20~50분 동안 경화하여 이루어지는 것을 특징으로 한다.In addition, in the super water-repellent coating method according to the present invention, step S5 is characterized in that the organic coating film and the super-water-repellent coating layer are cured at a temperature of 50 to 70° C. for 20 to 50 minutes.

본 발명에서 제안하고 있는 초발수 코팅 방법에 의하면, 기존에 비해 공정을 단순화하면서도 초발수 성능을 더욱 향상시킬 수 있는 효과가 있다.According to the super water-repellent coating method proposed in the present invention, there is an effect of further improving super-water-repellent performance while simplifying the process compared to the conventional one.

본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.The effects of the present invention are not limited to those mentioned above, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.

도 1은 본 발명에 따른 초발수 코팅 방법의 각 단계를 도시하는 블럭도이다.
도 2a는 본 발명의 S1단계 및 S2단계를 도시하는 개략도이며, 도 2b는 본 발명의 S4단계를 도시하는 개략도이다.
도 3은 실시예 1의 건조 전,후의 초발수 입자 크기 분포를 나타내는 실험 결과이다.
도 4는 본 발명의 실시예 1에 의해 형성된 초발수 코팅층을 촬영한 SEM사진이다.
도 5는 실시예 1의 초발수 코팅층의 접촉각을 측정한 사진이다.
1 is a block diagram showing each step of the super water-repellent coating method according to the present invention.
FIG. 2A is a schematic diagram showing steps S1 and S2 of the present invention, and FIG. 2B is a schematic diagram showing step S4 of the present invention.
3 is an experimental result showing the particle size distribution of super-water repellent before and after drying in Example 1.
4 is an SEM photograph of the super water-repellent coating layer formed according to Example 1 of the present invention.
5 is a photograph of measuring the contact angle of the super water-repellent coating layer of Example 1.

이하 본 발명의 바람직한 실시예에 대하여 구체적으로 설명한다.Hereinafter, a preferred embodiment of the present invention will be described in detail.

본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 판례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In describing the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted. In addition, terms to be described later are terms defined in consideration of functions in the present invention and may vary according to intentions or precedents of users or operators. Therefore, the definition should be made based on the contents throughout this specification.

도 1은 본 발명에 따른 초발수 코팅 방법의 각 단계를 도시하는 블럭도이고, 도 2a는 본 발명의 S1단계 및 S2단계를 도시하는 개략도이며, 도 2b는 본 발명의 S4단계를 도시하는 개략도이다.1 is a block diagram showing each step of the super water-repellent coating method according to the present invention, Figure 2a is a schematic diagram showing steps S1 and S2 of the present invention, Figure 2b is a schematic diagram showing step S4 of the present invention to be.

도 1 내지 도 2b를 참조하면, 본 발명에 따른 초발수 코팅 방법은 나노 입자를 자기조립단분자막 형성물질과 함께 제1용매에 혼합한 표면 처리 용액을 마련하여 상기 나노 입자 표면에 자기조립단분자막이 형성되도록 반응시키는 S1단계와, 상기 표면 처리 용액에서 제1용매를 제거하여 표면처리된 나노 입자가 서로 응집된 클러스터 형태의 초발수 입자를 회수하는 S2단계와, 상기 클러스터 형태의 초발수 입자를 제2용매에 분산시켜 초발수 코팅 용액을 마련하는 S3단계와, 코팅 대상물 표면에 유기 수지를 도포하여 유기 코팅막을 형성한 다음, 상기 유기 코팅막 표면에 상기 초발수 코팅 용액을 분사하여 초발수 코팅층을 형성하는 S4단계와, 상기 초발수 코팅층을 경화시키는 S5단계를 포함하여 이루어진다.1 to 2B, in the super water-repellent coating method according to the present invention, a surface treatment solution in which nanoparticles are mixed with a self-assembled monolayer-forming material in a first solvent is prepared to form a self-assembled monolayer on the surface of the nanoparticles. Step S1 of reacting so that the first solvent is removed from the surface treatment solution, and step S2 of recovering super-water-repellent particles in the form of clusters in which the surface-treated nanoparticles are aggregated, and the super-water-repellent particles in the form of clusters are second Step S3 of preparing a super-water-repellent coating solution by dispersing in a solvent, and forming an organic coating film by applying an organic resin to the surface of the object to be coated, and then spraying the super-water-repellent coating solution on the surface of the organic coating film to form a super-water-repellent coating layer. It comprises a step S4 and step S5 of curing the super water-repellent coating layer.

본 발명의 S1단계는 나노 입자 표면에 자기조립단분자막을 형성하는 단계로서, 상기 표면 처리 용액을 30~50℃의 온도에서 20~50분 동안 교반하면서 이루어지는 것을 예시할 수 있다.Step S1 of the present invention is a step of forming a self-assembled monolayer on the surface of the nanoparticles, and may be exemplified by stirring the surface treatment solution at a temperature of 30 to 50° C. for 20 to 50 minutes.

상기 표면 처리 용액은 나노 입자와, 자기조립단분자막 형성물질과, 제1용매로 구성되는데, 여기서 나노 입자, 예를 들어 SiO2는 -OH기를 가지고 있기 때문에 일반적으로 친수성이지만, 표면의 -OH기와, 자기조립단분자막 형성물질의 작용기가 반응하여 나노 입자 표면에 자기조립단분자막(Self Assembled Monolayer, SAM)을 형성하게 되면 그 표면이 소수성을 갖게 된다.The surface treatment solution is composed of nanoparticles, a self-assembled monolayer-forming material, and a first solvent, where nanoparticles, for example SiO 2, are generally hydrophilic because they have -OH groups, but the -OH groups on the surface, When the functional groups of the self-assembled monolayer-forming material react to form a self-assembled monolayer (SAM) on the surface of the nanoparticles, the surface becomes hydrophobic.

상기 나노 입자는 ZnO, TiO2, SiO2, ZrO2, MgO, CdO, V2O5 및 Al2O3로 구성된 군에서 적어도 하나가 선택되는 것을 예시할 수 있다.The nanoparticles may exemplify that at least one is selected from the group consisting of ZnO, TiO 2 , SiO 2 , ZrO 2 , MgO, CdO, V 2 O 5 and Al 2 O 3 .

상기 자기조립단분자막 형성물질은 말단에 실란기, 카르복실산기 및 티올기 중 어느 하나의 작용기를 포함하는 실란계열 화합물 또는 지방산계열 화합물 등인 것을 예시할 수 있다.The self-assembled monolayer-forming material may be a silane-based compound or a fatty acid-based compound including any one of a silane group, a carboxylic acid group, and a thiol group at the terminal.

보다 구체적으로, 자기조립단분자막 형성물질은 상기 옥타데실트리클로로실란(octadecyltrichlorosilane,OTS),퍼플루오로데실트리클로로실란(perfluorodecyltrichlorosilane), 퍼플루오로데실트리에톡시실란(perfluorodecyltriethoxysilane), 퍼플루오로옥틸트리에톡시실란(perfluorooctyltriethoxysilane) 등 F기가 13개 이상인 트리클로로실란(trichlorosilane)이나 트리에톡시실란(triethoxysilane), 탄소쇄가 12개 이상인 지방산 계열로서 도데카노산(dodecanoic acid), 테트라데칸산(tetradecanoic acid), 헥사데칸산(hexadecanoic acid), 스테아르산(stearic acid), 옥타데칸산(octadecanoic acid)으로 이루어진 군에서 적어도 하나가 선택되는 것을 예시할 수 있으나, 이에 한정되는 것은 아니다.More specifically, the self-assembled monolayer forming material is the octadecyltrichlorosilane (OTS), perfluorodecyltrichlorosilane, perfluorodecyltriethoxysilane, and perfluorooctylt. Trichlorosilane or triethoxysilane having 13 or more F groups, such as perfluorooctyltriethoxysilane, dodecanoic acid, tetradecanoic acid as a fatty acid series having 12 or more carbon chains. ), hexadecanoic acid, stearic acid, and octadecanoic acid may exemplify that at least one is selected from the group consisting of, but is not limited thereto.

상기 제1용매는 S1단계의 SAM 형성 반응이 원활하게 이루어지도록 비극성 용매인 것이 바람직하며, 톨루엔, 헥산, 펜탄 등을 예시할 수 있으나, 이에 한정되는 것은 아니다.The first solvent is preferably a non-polar solvent so that the SAM formation reaction in step S1 is smoothly performed, and toluene, hexane, pentane, etc. may be exemplified, but is not limited thereto.

그에 반해, 제1용매로서 극성 용매를 사용하게 되면 자기조립단분자막 형성물질, 예를 들어 퍼플루오로옥틸트리에톡시실란(perfluorooctyltriethoxysilane) 자끼리의 고분자 중합이 일어나기 때문에 자기조립단분자막(SAM) 형성이 원활하게 이루어지지 않는다.On the other hand, when a polar solvent is used as the first solvent, the self-assembled monomolecular film-forming material, for example, perfluorooctyltriethoxysilane, is polymerized between itself, so that the self-assembled monomolecular film (SAM) is smoothly formed. Is not done properly.

본 발명의 S2단계는 S1단계의 반응을 통해 자기조립단분자막(SAM)이 형성된 나노 입자를 클러스터 형태의 초발수 입자로 만드는 단계이다.Step S2 of the present invention is a step of making nanoparticles on which a self-assembled monolayer (SAM) is formed through the reaction of step S1 into super-water-repellent particles in a cluster form.

상기 S1단계의 나노 입자는 1~50nm의 평균 입경을 가지는 데 반해, 다수의 나노 입자가 응집된 초발수 입자는 1~20㎛의 평균 입경을 가지게 된다. 즉, 나노 입자를 응집시켜 마이크로 단위의 초발수 입자로 성장시키게 되면 개별 나노 입자에 비해 표면 거칠기가 현저히 증가하기 때문에 초발수 특성을 크게 개선할 수 있다. The nanoparticles of the S1 step have an average particle diameter of 1 to 50 nm, whereas the super-water repellent particles in which a plurality of nanoparticles are aggregated have an average particle diameter of 1 to 20 μm. That is, when the nanoparticles are aggregated and grown into micro-units of super-water-repellent particles, the surface roughness is significantly increased compared to individual nano-particles, and thus the super-water-repellent properties can be greatly improved.

상기 S2단계는 상기 S1단계를 거친 표면 처리 용액을 원심 분리 또는 침전 분리 방식을 통해 용매 일부와, 나노 입자와 결합하지 않은 미반응 자기조립단분자막 형성물질을 제거하는 S2-1단계와, 상기 S2-1단계를 거친 용액을 건조하는 S2-2단계로 이루어지는 것을 예시할 수 있다.The S2 step includes a step S2-1 of removing a part of the solvent and the unreacted self-assembled monolayer-forming material not bound to the nanoparticles through centrifugal separation or precipitation separation of the surface treatment solution passed through the step S1, and the S2- It can be exemplified that it consists of step S2-2 of drying the solution passed through step 1.

상기 S2-1단계에서는 과량으로 함유된 제1용매의 일부를 1차적으로 제거하고, S4단계의 초발수 코팅 용액에서 불순물로 작용하는 미반응 자기조립단분자막 형성물질을 제거하는 역할을 한다.In the step S2-1, a part of the first solvent contained in an excessive amount is firstly removed, and the unreacted self-assembled monolayer-forming material acting as an impurity in the superhydrophobic coating solution in step S4 is removed.

상기 S2-2단계는 잔량의 제1용매를 제거하고 나노 입자들 간의 응집을 유도하는 역할을 하는 것으로서, 상온(예를 들어, 15~25℃)에서 이루어지는 것이 바람직한데, S2-2단계가 고온에서 건조가 이루어지게 되면 초발수 입자 크기의 균일성을 확보하기 어렵고, 초발수 성능 저하의 원인이 되기 때문이다.The step S2-2 is to remove the remaining amount of the first solvent and induce aggregation between the nanoparticles, and is preferably performed at room temperature (for example, 15 to 25°C), but step S2-2 is at a high temperature. This is because it is difficult to ensure uniformity of the super-water-repellent particle size when drying is performed, and it is a cause of deterioration in super-water-repellent performance.

본 발명의 S3단계는 클러스터 형태의 초발수 입자를 제2용매에 분산시켜 초발수 코팅 용액을 마련하는 단계로서, 제2용매는 S4단계 및 S5단계에서 코팅시 쉽게 휘발하는 친환경성 극성 용매, 예를 들어 에탄올인 것을 예시할 수 있다.Step S3 of the present invention is a step of dispersing super-water-repellent particles in cluster form in a second solvent to prepare a super-water-repellent coating solution, and the second solvent is an eco-friendly polar solvent that easily volatilizes during coating in steps S4 and S5. For example, what is ethanol can be illustrated.

본 발명의 S4단계는 코팅 대상물 표면에 유기 수지를 도포하여 유기 코팅막을 형성한 다음, 상기 유기 코팅막 표면에 상기 초발수 코팅 용액을 분사하여 초발수 코팅층을 형성하는 단계이다.Step S4 of the present invention is a step of forming an organic coating layer by applying an organic resin to the surface of the object to be coated, and then spraying the super-water-repellent coating solution on the surface of the organic coating layer to form a super-water-repellent coating layer.

상기 유기 수지는 공기 중, 혹은 고온 환경에서 경화시켜 코팅층을 형성할 수 있는 실리콘, 에폭시, 아크릴, 폴리우레탄, 또는 폴리이미드 중 적어도 어느 하나가 선택되는 것을 예시할 수 있다.The organic resin may exemplify that at least one of silicone, epoxy, acrylic, polyurethane, or polyimide that can be cured in air or in a high temperature environment to form a coating layer is selected.

상기 S4단계의 유기 코팅막은 스프레이 코팅, 스핀 코팅, 잉크젯 프린팅 등의 다양한 방법으로 형성할 수 있으며, 5~20㎛의 두께인 것을 예시할 수 있다.The organic coating film of step S4 may be formed by various methods such as spray coating, spin coating, and inkjet printing, and may be exemplified with a thickness of 5 to 20 μm.

상기 초발수 코팅 용액은 상기 유기 코팅막이 경화하기 전에 분사하는 것이 바람직한데, 초발수 입자를 유기 코팅막에 접착, 고정시키기 위함이다. 유기 코팅막의 경화 정도에 따라 초발수 입자가 유기 코팅막 내로 일부 함침될 수도 있고, 표면에 부착될 수도 있게 된다.The super water-repellent coating solution is preferably sprayed before the organic coating film is cured, in order to adhere and fix the super-water-repellent particles to the organic coating film. Depending on the degree of curing of the organic coating layer, the super-water-repellent particles may be partially impregnated into the organic coating layer or adhered to the surface.

본 발명의 S5단계는 상기 유기 코팅막 및 초발수 코팅층을 50~70℃의 온도에서 20~50분 동안 경화하여 이루어지는 것을 예시할 수 있다.Step S5 of the present invention may be exemplified by curing the organic coating film and the super water-repellent coating layer at a temperature of 50 to 70° C. for 20 to 50 minutes.

먼저, 5~15nm 범위 크기의 SiO2 나노 입자 2g과, 퍼플루오로옥틸트리에톡시 실란(Perfluorooctyltriethoxysilane) 1mL를 톨루엔 40mL에 혼합하여 표면 처리 용액을 마련하고, 이를 40℃에서 40분 동안 교반하면서 반응시켰다.(S1단계)First, 2 g of SiO 2 nanoparticles having a size in the range of 5 to 15 nm and 1 mL of perfluorooctyltriethoxysilane were mixed with 40 mL of toluene to prepare a surface treatment solution, and reacted with stirring at 40° C. for 40 minutes. (S1 step)

다음으로, 상기 표면 처리 용액을 원심 분리한 다음, 상온에서 건조하여 초발수 입자를 회수하였다.(S2단계)Next, the surface treatment solution was centrifuged, and then dried at room temperature to recover superhydrophobic particles. (S2 step)

도 3은 실시예 1의 건조 전,후의 초발수 입자 크기 분포를 나타내는 실험 결과이다. 도 3을 참조하면 건조 전의 표면 처리 용액에 함유된 입자 평균 입경이 2.7㎛이던 것이, 건조 과정을 거치면서 10㎛의 초발수 입자로 응집한다는 것을 확인할 수 있었다. 그리고 원심 분리 등의 용매 제거 과정을 통해 SAM, 용매에 분산되고 응집되지 않은 나노 입자들이 제거되므로 균일한 입자 크기의 초발수 입자를 회수할 수 있게 된다.3 is an experimental result showing the size distribution of super-water repellent particles before and after drying in Example 1. Referring to FIG. 3, it was confirmed that the particle average particle diameter of 2.7 μm contained in the surface treatment solution before drying was aggregated into 10 μm super-water repellent particles during the drying process. In addition, nanoparticles that are dispersed in the SAM and the solvent and not aggregated are removed through a solvent removal process such as centrifugation, so that superwater-repellent particles having a uniform particle size can be recovered.

즉, S2단계를 거치지 않는 경우에는 나노 입자의 응집 내지 초발수 입자의 성장이 제한되어 초발수 입자 크기가 도 3에서 확인한 바와 같이 작아지게 된다. 한편 S1단계의 자기조립단분자막(SAM)을 형성한 표면 처리 용액을 S4단계의 초발수 코팅 용액으로 직접 사용하는 경우에는, 반응하지 않은 자기조립단분자막 형성물질이 불순물이 되어 초발수 특성에 악영향을 주는 것은 물론, 제2용매에 비해 휘발성이 낮은 제1용매를 사용하게 되므로, 경화 시간 증가 및 코팅막의 품질 저하의 원인이 될 수 있으므로, 제2단계를 통해 초발수 입자 회수 과정을 거친 후 이를 제2용매에 분산하여 초발수 코팅 용액으로 사용하는 것이 바람직하다.That is, if the step S2 is not performed, aggregation of nanoparticles or growth of super-water-repellent particles is limited, so that the super-water-repellent particle size decreases as shown in FIG. 3. On the other hand, when the surface treatment solution in which the self-assembled monolayer (SAM) in step S1 is formed is directly used as the superwater-repellent coating solution in step S4, the unreacted self-assembled monolayer-forming material becomes impurities, which adversely affects the superwater-repellent properties. Of course, since the first solvent, which is less volatile than the second solvent, is used, it may increase the curing time and cause the quality of the coating film to deteriorate. It is preferable to use it as a super water-repellent coating solution by dispersing in a solvent.

그 다음으로, 초발수 입자 2g을 에탄올 100mL에 분산하여 초발수 코팅 용액을 마련한다.(S3단계)Next, 2 g of super-repellent particles are dispersed in 100 mL of ethanol to prepare a super-water-repellent coating solution (S3 step).

그 다음으로, 폴리우레탄 수지를 알루미늄판 표면에 스핀 코팅하여 15㎛의 유기 코팅막을 형성하고, 유기 코팅막 상에 초발수 코팅 용액 5mL를 분사하여 초발수 코팅층을 형성한다.(S4단계) 그리고 60℃ 온도조건에서 30분 동안 경화시켜 초발수 코팅을 완료하고(S5단계), 거칠기 및 접촉각을 측정하였다. 도 4는 본 발명의 실시예 1에 의해 형성된 초발수 코팅층을 촬영한 주사전자현미경(SEM)사진이고, 도 5는 실시예 1의 초발수 코팅층의 접촉각을 측정한 사진이다.Next, a polyurethane resin is spin-coated on the surface of the aluminum plate to form an organic coating film of 15 μm, and a super water-repellent coating layer is formed by spraying 5 mL of a super-water-repellent coating solution on the organic coating film (step S4) and 60°C. Cured for 30 minutes under temperature conditions to complete the super water-repellent coating (S5 step), and the roughness and contact angle were measured. 4 is a scanning electron microscope (SEM) photograph of the super water-repellent coating layer formed according to Example 1 of the present invention, and FIG. 5 is a photograph of measuring the contact angle of the super water-repellent coating layer of Example 1.

도 4를 참조하면, 실시예 1의 초발수 코팅층을 구성하는 클러스터 형태의 초발수 입자는 다수의 나노 입자가 응집된 구조를 가지기 때문에, 초발수 입자 표면을 구성하는 개별 나노 입자에 의한 표면 거칠기와, 초입자 입자 자체 외형의 불규칙성, 초입자 입자들의 불규칙적인 배치에 의해 표면 거칠기가 복합적으로 작용하기 때문에 초발수 특성이 극대화된다. 본 실시예 1의 거칠기는 중심선평균거칠기(Ra) 기준으로 20~50㎛ 수준이다.Referring to FIG. 4, since the super-water-repellent particles in a cluster form constituting the super-water-repellent coating layer of Example 1 have a structure in which a plurality of nano-particles are aggregated, the surface roughness and The super-water repellency is maximized because the surface roughness is combined with the irregularity of the outer shape of the super-particles and the irregular arrangement of the super-particles. The roughness of Example 1 is about 20 to 50 μm based on the centerline average roughness (Ra).

도 5를 참조하면, 실시예 1의 초발수 코팅층에 의한 접촉각은 161°로 측정되어 우수한 초발수 성능을 발휘한다는 것을 확인할 수 있었다.Referring to FIG. 5, it was confirmed that the contact angle by the super-water-repellent coating layer of Example 1 was measured to be 161° to exhibit excellent super-water-repellent performance.

본 발명의 초발수 코팅 방법은 초발수 성능을 제공하기 때문에 다양한 분야에 적용할 수 있는데, 예를 들어 전자소자, 열교환기 등에 적용하는 것을 예시할 수 있다. 열교환기의 경우 초발수 성능으로 인해 제상시간을 단축하고, 컴푸레서 가동시간을 단축함으로써, 소비전력을 개선할 수 있으며, 핀 피치(fin pitch)를 최소화하여 컴팩트한 구조가 가능하며, 열전달율을 25% 향상시킬 수 있는 장점이 있다.Since the super water repellent coating method of the present invention provides super water repellency, it can be applied to various fields. For example, it may be applied to electronic devices, heat exchangers, and the like. In the case of heat exchangers, the defrost time is shortened due to the super water repellency performance, and the power consumption can be improved by shortening the compressor operation time, and a compact structure is possible by minimizing the fin pitch, and the heat transfer rate is 25 There is an advantage that can improve %.

이상에서 설명된 본 발명은 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그러므로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.The present invention described above is merely exemplary, and those of ordinary skill in the art to which the present invention belongs will appreciate that various modifications and other equivalent embodiments are possible. Therefore, it will be appreciated that the present invention is not limited to the form mentioned in the detailed description above. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims. In addition, the present invention is to be understood as including the spirit of the present invention as defined by the appended claims and all modifications, equivalents and substitutes within the scope thereof.

Claims (8)

나노 입자를 자기조립단분자막 형성물질과 함께 제1용매에 혼합한 표면 처리 용액을 마련하여 상기 나노 입자 표면에 자기조립단분자막이 형성되도록 반응시키는 S1단계와;
상기 표면 처리 용액에서 상기 제1용매를 제거하여 표면처리된 나노 입자가 서로 응집된 클러스터 형태의 초발수 입자를 회수하는 S2단계와;
상기 클러스터 형태의 초발수 입자를 제2용매에 분산시켜 초발수 코팅 용액을 마련하는 S3단계와;
코팅 대상물 표면에 유기 수지를 도포하여 유기 코팅막을 형성한 다음, 상기 유기 코팅막 표면에 상기 초발수 코팅 용액을 분사하여 초발수 코팅층을 형성하는 S4단계와;
상기 초발수 코팅층을 경화시키는 S5단계;를 포함하며,
상기 S1단계의 제1용매는 비극성 용매이고, 상기 S3단계의 제2용매는 극성 용매이고,
상기 S1단계는 상기 표면 처리 용액을 30~50℃의 온도에서 20~50분 동안 교반하면서 이루어지는 것을 특징으로 하는 초발수 코팅 방법.
Step S1 of preparing a surface treatment solution in which nanoparticles are mixed with a self-assembled monolayer-forming material in a first solvent and reacting to form a self-assembled monolayer on the surface of the nanoparticles;
Step S2 of removing the first solvent from the surface treatment solution to recover superhydrophobic particles in the form of clusters in which the surface-treated nanoparticles are aggregated with each other;
Step S3 of dispersing the super-repellent particles in the form of clusters in a second solvent to prepare a super-water-repellent coating solution;
Step S4 of forming an organic coating layer by applying an organic resin to the surface of the object to be coated, and then spraying the super-water-repellent coating solution onto the surface of the organic coating layer to form a super-water-repellent coating layer;
Including; S5 step of curing the super water-repellent coating layer,
The first solvent in step S1 is a non-polar solvent, and the second solvent in step S3 is a polar solvent,
The S1 step is a super water-repellent coating method, characterized in that the surface treatment solution is stirred at a temperature of 30 to 50 °C for 20 to 50 minutes.
삭제delete 제1항에 있어서,
상기 S1단계의 나노 입자는 ZnO, TiO2, SiO2, ZrO2, MgO, CdO, V2O5 및 Al2O3로 구성된 군에서 적어도 하나가 선택되며,
상기 자기조립단분자막 형성물질은 말단에 실란기, 카르복실산기 및 티올기 중 어느 하나의 작용기를 포함하는 실란계열 화합물 또는 지방산계열 화합물인 것을 특징으로 하는 초발수 코팅 방법.
The method of claim 1,
The nanoparticles of the S1 step are at least one selected from the group consisting of ZnO, TiO 2 , SiO 2 , ZrO 2 , MgO, CdO, V 2 O 5 and Al 2 O 3 ,
The self-assembled monomolecular film-forming material is a super water-repellent coating method, characterized in that it is a silane-based compound or a fatty acid-based compound including a functional group of any one of a silane group, a carboxylic acid group, and a thiol group at an end.
제1항에 있어서,
상기 S1단계의 나노 입자는 1~50nm의 평균 입경을 가지며,
상기 S2단계를 거친 클러스터 형태의 초발수 입자는 1~20㎛의 평균 입경을 가지는 것을 특징으로 하는 초발수 코팅 방법.
The method of claim 1,
The nanoparticles of step S1 have an average particle diameter of 1 to 50 nm,
Super-water-repellent coating method, characterized in that the super-water-repellent particles in the form of clusters passed through the step S2 have an average particle diameter of 1 to 20㎛.
삭제delete 제1항에 있어서,
상기 S2단계는, 상기 S1단계를 거친 표면 처리 용액을 원심 분리 또는 침전 분리 방식을 통해 용매 일부와, 나노 입자와 결합하지 않은 미반응 자기조립단분자막 형성물질을 제거하는 S2-1단계와; 상기 S2-1단계를 거친 용액을 건조하는 S2-2단계;로 이루어지는 것을 특징으로 하는 초발수 코팅 방법.
The method of claim 1,
The step S2 includes a step S2-1 of removing a part of the solvent and the unreacted self-assembled monolayer-forming material that has not been combined with the nanoparticles through a centrifugal separation or precipitation separation method of the surface treatment solution passed through the step S1; Super water-repellent coating method, characterized in that consisting of; step S2-2 of drying the solution passed through the step S2-1.
제1항에 있어서,
상기 S4단계의 유기 수지는 실리콘, 에폭시, 아크릴, 폴리우레탄, 또는 폴리이미드 중 적어도 어느 하나가 선택되며,
상기 S4단계의 유기 코팅막은 5~20㎛의 두께로 형성되는 것을 특징으로 하는 초발수 코팅 방법.
The method of claim 1,
The organic resin of step S4 is selected from at least one of silicone, epoxy, acrylic, polyurethane, or polyimide,
Super water-repellent coating method, characterized in that the organic coating film of step S4 is formed to a thickness of 5 ~ 20㎛.
제1항에 있어서,
상기 S5단계는 유기 코팅막 및 초발수 코팅층을 50~70℃의 온도에서 20~50분 동안 경화하여 이루어지는 것을 특징으로 하는 초발수 코팅 방법.
The method of claim 1,
The step S5 is a super water-repellent coating method, characterized in that the organic coating film and the super-water-repellent coating layer is cured at a temperature of 50 to 70 ℃ for 20 to 50 minutes.
KR1020180107013A 2018-09-07 2018-09-07 Super water-repellent coating method KR102203462B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180107013A KR102203462B1 (en) 2018-09-07 2018-09-07 Super water-repellent coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180107013A KR102203462B1 (en) 2018-09-07 2018-09-07 Super water-repellent coating method

Publications (2)

Publication Number Publication Date
KR20200029084A KR20200029084A (en) 2020-03-18
KR102203462B1 true KR102203462B1 (en) 2021-01-15

Family

ID=69999262

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180107013A KR102203462B1 (en) 2018-09-07 2018-09-07 Super water-repellent coating method

Country Status (1)

Country Link
KR (1) KR102203462B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220154336A (en) * 2021-05-13 2022-11-22 경상국립대학교산학협력단 Manufacturing method of Superhydrophobic coating

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102264242B1 (en) * 2019-05-30 2021-06-10 정연학 super water-repellent coating method
US11890640B2 (en) 2020-01-21 2024-02-06 Nanoclear Technologies, Inc. Monolayer deposition of nanoparticles
KR102635027B1 (en) * 2021-09-23 2024-02-07 이병철 Water repellent spin coating method and water repellent spin coating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406116B1 (en) * 2012-12-31 2014-06-16 한국기계연구원 Forming method of superhydrophobic coating layer using inorganic oxide supraparticles and the superhydrophobic coating layer formed thereby
US20150344652A1 (en) 2014-06-03 2015-12-03 Karlsruher Institut für Technologie Reactive Superhydrophobic Surfaces, Patterned Superhydrophobic Surfaces, Methods For Producing The Same And Use Of The Patterned Superhydrophobic Surfaces
JP2017177683A (en) 2016-03-31 2017-10-05 日揮触媒化成株式会社 Base material with water-repellent coating film and method for producing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060107089A (en) * 2005-04-07 2006-10-13 엘지전자 주식회사 Coating composition having antibiotic and ultra water-repellent property, preparation method thereof and coating method using the coating composition
KR100776970B1 (en) 2006-09-05 2007-11-21 한국기계연구원 A method of ultra water repellent surface formed by a plasma treatment
KR101042001B1 (en) * 2007-10-31 2011-06-16 한국전기연구원 Conductive and superhydrophobic coatings, and its fabrication method
US9254398B2 (en) * 2009-03-23 2016-02-09 Kobo Products Inc. Self-dispersible coated metal oxide powder, and process for production and use
KR20110033705A (en) * 2009-09-25 2011-03-31 한국화학연구원 Superhydrophobic and superoleophobic surface through fluorinated polymer silica composite nano particles
KR101306874B1 (en) * 2011-04-01 2013-09-10 인하대학교 산학협력단 Hydrophobic silica coating layer, and forming method of the same
KR101348244B1 (en) * 2011-09-23 2014-01-10 한국기계연구원 A Fabrication Method of Macroporous Particles and A Fabrication Method of Superhydrophobic Surfaces using the Same
KR101336819B1 (en) 2011-11-11 2013-12-04 부산대학교 산학협력단 method for designing super-hydrophobic surface structures
KR102296571B1 (en) * 2014-11-21 2021-08-31 한국전기연구원 Method for controlling aggregation of sol-gel nanoparticles by solvent relative permittivity, and fabrication of superhydrophobic surfaces using thereof
KR20170050320A (en) * 2015-10-30 2017-05-11 주식회사 소프스톤 hydrophobic and superhydrophobic coating layer and method of the same
KR20180051236A (en) * 2016-11-08 2018-05-16 주식회사 소프스톤 Method for preparing super-hydrophobic coating solution to impart waterproof and dustproof to electronic device and electronic parts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406116B1 (en) * 2012-12-31 2014-06-16 한국기계연구원 Forming method of superhydrophobic coating layer using inorganic oxide supraparticles and the superhydrophobic coating layer formed thereby
US20150344652A1 (en) 2014-06-03 2015-12-03 Karlsruher Institut für Technologie Reactive Superhydrophobic Surfaces, Patterned Superhydrophobic Surfaces, Methods For Producing The Same And Use Of The Patterned Superhydrophobic Surfaces
JP2017177683A (en) 2016-03-31 2017-10-05 日揮触媒化成株式会社 Base material with water-repellent coating film and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220154336A (en) * 2021-05-13 2022-11-22 경상국립대학교산학협력단 Manufacturing method of Superhydrophobic coating
KR102633015B1 (en) 2021-05-13 2024-02-01 경상국립대학교산학협력단 Manufacturing method of Superhydrophobic coating

Also Published As

Publication number Publication date
KR20200029084A (en) 2020-03-18

Similar Documents

Publication Publication Date Title
KR102203462B1 (en) Super water-repellent coating method
KR102013922B1 (en) Method of Binding Nanoparticles to Glass
US20170197865A1 (en) Mold, method for producing a mold, and method for forming a mold article
JP2809889B2 (en) Water- and oil-repellent coating and method for producing the same
JP5940809B2 (en) Nanostructured article and method for producing nanostructured article
JP6199864B2 (en) Nanostructured article and method for manufacturing the same
KR100823895B1 (en) Superhydrophobic coating film comprising inorganic particles having different diameters, coating composition, and the forming method of coating film
US9452934B2 (en) Synthesis of ultra-large graphene oxide sheets
US10787586B2 (en) Optically transparent superhydrophobic thin film
US20080280031A1 (en) Conductive coatings produced by monolayer deposition on surfaces
KR20180042255A (en) Low reflectivity coating, and method and system for coating substrate
CN111454000B (en) Wear-resistant super-amphiphobic self-cleaning film and preparation method thereof
US11498842B2 (en) Method of forming nanoparticles having superhydrophobicity
US10347780B2 (en) Vapor phase polar solvent treatment method for glass surfaces
KR101841263B1 (en) Method of Fabricating Liquid Crystal Layer and Nanoparticle Clusters
KR101997874B1 (en) Switchable superhydrophobic film and preparing method of same
KR102278825B1 (en) Super water-repellent structure with high strength and high durability and fabricating method of the same
KR101421064B1 (en) Hydrophobic nano-graphene laminate and method for preparing same
US6207621B1 (en) Method for producing a member having a high lubricative surface and a member having a high lubricative surface
Byun et al. Non-wetting superhydrophobic surface enabled by one-step spray coating using molecular self-assembled nanoparticles
KR102264242B1 (en) super water-repellent coating method
US8119230B2 (en) Transparent film with UV-shielding and water/oil repellent functions
Qu et al. Fabrication of superhydrophobic surfaces using inverted glancing angle deposition (I-GLAD)
KR20200094696A (en) Fluorinated amphiphilic polymer and organic thin-film transistor using same
He et al. Fabricating superamphiphobic surface with fluorosilane glued carbon nanospheres films

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant