JP2017177683A - Base material with water-repellent coating film and method for producing the same - Google Patents

Base material with water-repellent coating film and method for producing the same Download PDF

Info

Publication number
JP2017177683A
JP2017177683A JP2016071261A JP2016071261A JP2017177683A JP 2017177683 A JP2017177683 A JP 2017177683A JP 2016071261 A JP2016071261 A JP 2016071261A JP 2016071261 A JP2016071261 A JP 2016071261A JP 2017177683 A JP2017177683 A JP 2017177683A
Authority
JP
Japan
Prior art keywords
particles
water
inorganic oxide
resin
repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016071261A
Other languages
Japanese (ja)
Other versions
JP6713319B2 (en
Inventor
光章 熊澤
Mitsuaki Kumazawa
光章 熊澤
吉田 聡
Satoshi Yoshida
聡 吉田
小松 通郎
Michio Komatsu
通郎 小松
翔大 川上
Shota Kawakami
翔大 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2016071261A priority Critical patent/JP6713319B2/en
Publication of JP2017177683A publication Critical patent/JP2017177683A/en
Application granted granted Critical
Publication of JP6713319B2 publication Critical patent/JP6713319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a base material with a water-repellent coating film which keeps excellent water repellency for a long period of time and has abrasion resistance, and is excellent in adhesion strength between mutual particles in a coating film and the coating film and the base material, and to provide a method for producing the same.SOLUTION: A base material with a water-repellent coating film has a water-repellent coating film on a surface of a base material, where the coating film contains inorganic oxide particles and has a particle layer where an adhesive is interposed between mutual gaps of the inorganic oxide particles and gaps between the inorganic oxide particles and the base material, and a water-repellent overcoat layer covering the particle layer, and an upper part of the inorganic oxide particles forms an uneven shape exposed from the adhesive material and has an uneven structure covered with the overcoat layer so as to keep the uneven shape on the surface of the coating film. The base material with the water-repellent coating film is produced by applying a coating liquid for particle layer formation in which inorganic oxide particles and resin emulsion particles are mixed and dispersed onto a base material, making the resin emulsion particles interposed gaps between the mutual inorganic oxide particles, collapsing the resin emulsion particles to form the particle layer, and applying an overcoat layer onto the surface of the particle layer.SELECTED DRAWING: Figure 4

Description

本発明は撥水性に優れた被膜付基材およびその製造方法に関し、より詳しくは、優れた撥水性、密着性、耐久性を有し、防水性能、耐薬品性能等を必要とする繊維、建材、ガラス、プラスチック基材、自動車や各種電子デバイス等、および水処理用、その他の用途に好適に使用することができる撥水性被膜付基材と、その製造方法に関する。   TECHNICAL FIELD The present invention relates to a coated substrate having excellent water repellency and a method for producing the same, and more specifically, a fiber or building material having excellent water repellency, adhesion, durability, waterproof performance, chemical resistance, and the like. The present invention relates to a substrate with a water-repellent coating that can be suitably used for glass, plastic substrates, automobiles and various electronic devices, water treatment, and other uses.

水の付着や浸透を防ぐために各種基材や製品の表面に撥水性被膜を表面に設けることが従来から広く行われており、また撥水性被膜は電気回路や半導体素子などの防水膜としても利用されている。このような撥水性被膜について従来から種々のものが知られている。   In order to prevent the adhesion and penetration of water, it has been widely practiced to provide a water-repellent coating on the surface of various substrates and products. The water-repellent coating is also used as a waterproof coating for electrical circuits and semiconductor devices. Has been. Various types of such water-repellent coatings are conventionally known.

特許文献1(特開2005−343016号公報)には、基材表面に撥水性被膜を被覆した撥水性被膜被覆物品において、撥水性被膜が微粒子集合体からなる突起体及び撥水性膜を備えた、被膜の被覆領域において、突起体が存在する部分と存在しない部分とが混在し、かつ、突起体が存在する部分の被膜表面に突起体による凹凸が形成されている撥水性被膜被覆物品が開示されている。   In Patent Document 1 (Japanese Patent Laid-Open No. 2005-343016), in a water-repellent film-coated article in which a surface of a base material is coated with a water-repellent film, the water-repellent film is provided with a protrusion and a water-repellent film composed of fine particle aggregates. A water-repellent film-coated article is disclosed in which a portion where a protrusion is present and a portion where a protrusion is not present are mixed in the coating region of the film, and unevenness due to the protrusion is formed on the surface of the film where the protrusion is present. Has been.

特許文献2(WO2003/039856号公報)には、基体と、基体の表面に形成された微小凹凸を有する下地膜と、下地膜の微小凹凸上に形成された撥水性皮膜とを含む撥水性基体であって、撥水性被膜の表面形状が、粒子状突起物と、粒子状突起物よりも基板の表面から測定した高さが高い柱状突起物とにより構成された撥水性基体が開示されている。   Patent Document 2 (WO2003 / 039856) discloses a water-repellent substrate including a substrate, a base film having minute irregularities formed on the surface of the substrate, and a water-repellent film formed on the minute irregularities of the substrate film. A water-repellent substrate is disclosed in which the surface shape of the water-repellent coating is composed of particulate protrusions and columnar protrusions whose height measured from the surface of the substrate is higher than that of the particulate protrusions. .

特許文献3(特開2004−137137号公報)には、表面に微小凹凸を有した珪素酸化物を主成分とする被覆を有する物品であって、微小凹凸は、微小突起および柱状突起により構成されていることを特徴とする被覆物品が開示されている。その製造方法として、クロルシリル基含有化合物を、シリコン油を主成分とする溶媒に溶解した塗布溶液を塗布することによって微小凹凸構造を有する被膜を形成できることが開示されている。   Patent Document 3 (Japanese Patent Application Laid-Open No. 2004-137137) discloses an article having a coating mainly composed of silicon oxide having minute irregularities on the surface, and the minute irregularities are constituted by minute protrusions and columnar protrusions. A coated article is disclosed that is characterized by: As its manufacturing method, it is disclosed that a coating film having a micro uneven structure can be formed by applying a coating solution in which a chlorosilyl group-containing compound is dissolved in a solvent mainly composed of silicon oil.

特許文献4(特開平8−40748号公報)には、ガラス基板と、基板の表面に、表面処理することなく成膜した状態でマイクロピット状表層、凹凸状表層、凸状表層のうち少なくとも1種以上の表層形状を呈している酸化物薄膜あるいは混合酸化物薄膜からなる下地層と、該下地層の上に、少なくともフルオロアルキルシランと、酸化アンチモンをドーパントとする酸化錫の粒子と、シリコーン化合物と、水と、有機溶媒からなる混合溶液に、酸をフルオロアルキルシラン1モルに対して5×10モル 〜2×10モルになるよう添加した撥水撥油液を塗布成膜した撥水層を有する撥水性ガラスが開示されている。 In Patent Document 4 (Japanese Patent Laid-Open No. 8-40748), at least one of a micropit-like surface layer, a concavo-convex surface layer, and a convex surface layer in a state where a film is formed on the surface of the glass substrate and the substrate without surface treatment. An underlayer composed of an oxide thin film or a mixed oxide thin film having a surface layer shape of more than one species, tin oxide particles containing at least fluoroalkylsilane and antimony oxide as a dopant on the underlayer, and a silicone compound And a water / oil repellent solution in which an acid is added in an amount of 5 × 10 4 mol to 2 × 10 2 mol with respect to 1 mol of fluoroalkylsilane, to a mixed solution of water and an organic solvent. A water repellent glass having a water layer is disclosed.

特許文献5(特開2007−144916号公報)には、基体と、前記基体の表面に形成された微小凹凸を有する下地膜と、前記下地膜の表面に形成された撥水性被膜とからなる超撥水性基体であって、蒸留水の超撥水性基体表面に対する接触角が140°以上であり、純エタノールの超撥水性基体表面に対する接触角が30°以下であることを特徴とする撥水性基体が開示されている。   In Patent Document 5 (Japanese Patent Application Laid-Open No. 2007-144916), a superstructure comprising a base, a base film having minute irregularities formed on the surface of the base, and a water-repellent coating formed on the surface of the base film. A water-repellent substrate, wherein the contact angle of distilled water with respect to the surface of the super-water-repellent substrate is 140 ° or more, and the contact angle of pure ethanol with respect to the surface of the super-water-repellent substrate is 30 ° or less. Is disclosed.

特許文献6(特開2015−116731号公報)には、基材、および該基材表面の撥水性被膜からなり、該撥水性被膜が、基体用金属酸化物粒子(A)の表面を被覆用金属酸化物微粒子(B)で被覆された金属酸化物粒子からなる粒子層と該金属酸化物粒子層上のオーバーコート層とからなり、該撥水性被膜表面が凹凸構造を有し、該凸部の平均高さ(T)が50〜500nmの範囲にあり、平均凸部間距離(ピッチ幅:W)が20〜1000nmの範囲にあり、前記基材が繊維または布であり、水との接触角が100〜180°の範囲にあることを特徴とする撥水性被膜付基材が開示されている。 Patent Document 6 (Japanese Patent Laid-Open No. 2015-116731) includes a substrate and a water-repellent coating on the surface of the substrate, and the water-repellent coating covers the surface of the base metal oxide particles (A). A particle layer composed of metal oxide particles coated with metal oxide fine particles (B) and an overcoat layer on the metal oxide particle layer, the water-repellent coating surface has a concavo-convex structure, The average height (T F ) is in the range of 50 to 500 nm, the distance between the average protrusions (pitch width: W F ) is in the range of 20 to 1000 nm, the substrate is a fiber or cloth, A substrate with a water-repellent coating is disclosed in which the contact angle is in the range of 100 to 180 °.

特許文献7(特開2015−110285号公報)には、基材、および該基材表面の撥水性透明被膜からなり、該撥水性透明被膜が平均粒子径(D)10〜150nmの範囲の異形金属酸化物粒子を含む金属酸化物粒子層と、該金属酸化物粒子層上のオーバーコート層とからなり、該撥水性透明被膜表面が凹凸構造を有し、該凸部の平均高さ(T)が30〜500nmの範囲にあり、平均凸部間距離(ピッチ幅)(W)が20〜1000nmの範囲にあり、前記基材が繊維または布であり、水との接触角が100〜180°の範囲にあることを特徴とする撥水性被膜付基材が開示されている。 Patent Document 7 (Japanese Patent Laid-Open No. 2015-110285) includes a substrate and a water-repellent transparent coating on the surface of the substrate, and the water-repellent transparent coating has an average particle diameter (D A ) in the range of 10 to 150 nm. It consists of a metal oxide particle layer containing deformed metal oxide particles and an overcoat layer on the metal oxide particle layer, and the surface of the water-repellent transparent coating film has an uneven structure, and the average height of the protrusions ( T F ) is in the range of 30 to 500 nm, the average inter-convex distance (pitch width) (W F ) is in the range of 20 to 1000 nm, the substrate is a fiber or cloth, and the contact angle with water is A substrate with a water-repellent coating characterized by being in the range of 100 to 180 ° is disclosed.

特開2005−343016号公報JP 2005-343016 A WO2003/039856号公報WO2003 / 039856 特開2004−137137号公報JP 2004-137137 A 特開平8−40748号公報JP-A-8-40748 特開2007−144916号公報JP 2007-144916 A 特開2015−116731号公報JP, 2015-116731, A 特開2015−110285号公報JP2015-110285A

(イ) 特許文献1の撥水性物品は、珪素酸化物微粒子が不均一に積層した被膜が形成され、表面に形成される凹凸が比較的大きく、被膜の基材への密着性、強度が不充分となり、撥水性の再現性が十分得られない場合があった。(ロ) 特許文献2の撥水性基体は、下地膜形成成分、撥水処理剤の加水分解、重縮合が不十分となるためか、被膜の強度、硬度が充分得られない場合があり、撥水性も初期値は高いものの、摩耗等により大きく低下する場合があった。   (A) The water-repellent article of Patent Document 1 is formed with a film in which silicon oxide fine particles are laminated non-uniformly, the surface has relatively large irregularities, and the adhesion and strength of the film to the substrate are poor. In some cases, sufficient reproducibility of water repellency could not be obtained. (B) The water-repellent substrate of Patent Document 2 may be insufficient in hydrolysis and polycondensation of the base film-forming component and the water-repellent treatment agent, or may not have sufficient film strength and hardness. Although the initial value of the aqueous solution is high, it may be greatly reduced due to wear or the like.

(ハ) 特許文献3の撥水性物品は、初期の接触角は超撥水性を示すものの、乾布を用いた耐摩耗試験後の接触角は大きく低下する問題があった。(ニ) 特許文献4の撥水性ガラスは、自動車用ワイパーを用いた耐摩耗性試後の水に対する接触角の低下は小さいものの、初期接触角も耐摩耗性試後の接触角、耐候性試験後の接触角も約110〜100程度と接触角が150℃以上の超撥水性は得られていない。(ホ) 特許文献5の撥水性基体は、基体と被膜の接着性が弱く、耐久性に劣る問題がある。   (C) The water-repellent article of Patent Document 3 has a problem that the initial contact angle is super-water-repellent, but the contact angle after a wear resistance test using a dry cloth is greatly reduced. (D) The water-repellent glass of Patent Document 4 has a small decrease in contact angle with water after a wear resistance test using an automobile wiper, but the initial contact angle is also a contact angle after a wear resistance test and a weather resistance test. Subsequent contact angles are about 110 to 100, and super water repellency with a contact angle of 150 ° C. or higher is not obtained. (E) The water-repellent substrate of Patent Document 5 has a problem that the adhesion between the substrate and the film is weak and the durability is poor.

(ヘ) 特許文献6および特許文献7の撥水性被膜は、従来のフラクタル構造とは規則性が低く、凸部がさらに微細な凹凸を有する点で相違し、基材との密着性、透明性、硬度、耐擦傷性、耐摩耗性、ヘーズ等に優れた利点を有している。一方、これらの撥水性被膜付基材では、金属酸化物粒子層の表面に接着材を兼ねたオーバーコート層が設けられており、接着効果を高めるためにオーバーコート層を厚くすると粒子層の凹凸構造の高低差が該オーバーコート層によって小さくなるため凹凸構造の効果が低減される傾向があった。また、基材に対する粒子層の接着性を高めるために、基材と粒子層の間に接着材を設けると製造工程が多くなり手間がかかるようになる。   (F) The water-repellent coatings of Patent Document 6 and Patent Document 7 are different from the conventional fractal structure in that the regularity is low, and the convex portions have finer irregularities, and adhesion to the base material and transparency. It has excellent advantages in hardness, scratch resistance, abrasion resistance, haze and the like. On the other hand, in these substrates with a water-repellent coating, an overcoat layer also serving as an adhesive is provided on the surface of the metal oxide particle layer. Since the height difference of the structure is reduced by the overcoat layer, the effect of the uneven structure tends to be reduced. Moreover, in order to improve the adhesiveness of the particle layer with respect to a base material, when an adhesive material is provided between a base material and a particle layer, a manufacturing process will increase and it will take an effort.

本発明の撥水性被膜付基材は、従来の撥水性被膜に見られた前記(イ)〜(ホ)の問題を解消し、一方、特許文献6および特許文献7の撥水性被膜について、粒子層の凹凸構造の高低差を大きく維持して該凹凸構造による効果を十分に発揮できるようにし、さらに基材表面に予め接着材を設けて該接着材の上に粒子層を設ける必要が無く、製造工程を簡略化しながら基材に対する被膜の接合強度を高めたものであり、本発明によれば、優れた撥水性を長期間保ち、基材に対して十分な接合強度と良好な耐摩耗性を有する撥水性被膜付基材とその製造方法が提供される。   The substrate with a water-repellent coating of the present invention solves the problems (a) to (e) seen in conventional water-repellent coatings, while the water-repellent coatings of Patent Document 6 and Patent Document 7 It is possible to sufficiently maintain the difference in level of the concavo-convex structure of the layer so that the effect of the concavo-convex structure can be sufficiently exerted, and it is not necessary to previously provide an adhesive on the surface of the substrate and to provide a particle layer on the adhesive, The coating strength of the coating to the substrate is increased while simplifying the manufacturing process. According to the present invention, excellent water repellency is maintained for a long period of time, sufficient bonding strength to the substrate and good wear resistance. A substrate with a water-repellent coating and a method for producing the same are provided.

本発明の撥水性被膜付基材は以下の構成を有する。
〔1〕基材表面に撥水性の被膜を有する撥水性基材であって、前記被膜が無機酸化物粒子を含み、該無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材の間隙に接着材が介在する粒子層と、該粒子層を覆う撥水性のオーバーコート層とを有し、前記無機酸化物粒子の上部が前記接着材から露出した凹凸形状をなし、該凹凸形状を保つように前記オーバーコート層によって覆われた凹凸構造を前記被膜表面に有することを特徴とする撥水性被膜付基材。
〔2〕無機酸化物粒子の平均粒子径(D)が20〜600nmであって、接着材の膜厚(U)が6〜400nmであり、該無機酸化物粒子の平均粒子径(D)に対する接着材の膜厚(U)の比(U/D)が1/3〜2/3であって、該無機酸化物粒子の平均粒子径(D )の1/3〜2/3が接着材から露出していることを特徴とする前記[1]に記載する撥水性被膜付基材。
〔3〕撥水性被膜の膜厚が30nm〜700nmであることを特徴とする前記[1]または前記[2]の何れかに記載する撥水性被膜付基材。
〔4〕撥水性被膜表面の凹凸構造の凸部平均高さ(T)が10〜300nmの範囲であり、凸部間の平均距離(ビッチ幅)(W)が1〜1000nmの範囲であることを特徴とする前記[1]〜前記[3]の何れかに記載する撥水性被膜付基材。
〔5〕 無機酸化物粒子は、形状が球状、板状、金平糖状、塊状またはヒマワリ状の何れかであるか、または形状が球状、板状、金平糖状、塊状またはヒマワリ状の何れかであって多孔質であることを特徴とする前記[1]〜前記[4]の何れかに記載する撥水性被膜付基材。
〔6〕前記ヒマワリ状の粒子は、無機酸化物からなる基体粒子と、該基体粒子表面を被覆する無機酸化物の微細粒子からなり、該ヒマワリ状の粒子表面が該微細粒子による微細凹凸を有することを特徴とする前記[5]に記載する撥水性被膜付基材。
〔7〕前記ヒマワリ状の粒子は、撥水性被膜の凹凸構造の表面に微細な凹凸を有し、該微細凹凸の凸部平均高さ(TFF)が0.5〜10nmの範囲であり、該微細凹凸の凸部間の平均距離(ビッチ幅)(WFF)が1〜30nmの範囲であることを特徴とする前記[6]に記載する撥水性被膜付基材。
〔8〕水との接触角が130°以上であることを特徴とする前記[1]〜前記[7]の何れかに記載する撥水性被膜付基材。
〔9〕無機酸化物粒子がSiO、Al、Sb、ZrO、TiO、Fe、CeO、AgO、CuO、CuO、ZnOおよびこれらの複合酸化物または混合物から選ばれる少なくとも1種であることを特徴とする前記[1]〜前記[8]の何れかに記載する撥水性被膜付基材。
〔10〕接着材が、エマルジョン樹脂であって、エステル系樹脂、ポリカーボネート系樹脂、アミド系樹脂、イミド系樹脂、ポリフェニレンオキサイド系樹脂、アクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、シリコーン系樹脂、ウレタン系樹脂、またはスチレン系樹脂、あるいはこれらの共重合樹脂から選ばれる少なくとも1種であることを特徴とする前記[1]〜前記[9]の何れかに記載する撥水性被膜付基材。
The substrate with a water-repellent coating of the present invention has the following configuration.
[1] A water-repellent substrate having a water-repellent coating on the surface of the substrate, wherein the coating includes inorganic oxide particles, the gap between the inorganic oxide particles, and the inorganic oxide particles and the substrate. It has a particle layer in which an adhesive is interposed in the gap, and a water-repellent overcoat layer that covers the particle layer, and has an uneven shape in which the upper part of the inorganic oxide particles is exposed from the adhesive, and the uneven shape A substrate with a water-repellent coating, characterized by having a concavo-convex structure covered with the overcoat layer on the surface of the coating so as to keep it.
[2] The average particle diameter (D P ) of the inorganic oxide particles is 20 to 600 nm, the film thickness (U F ) of the adhesive is 6 to 400 nm, and the average particle diameter (D a ratio (U F / D P) is 1 / 3-2 / 3 of the thickness of the adhesive (U F) for P), 1/3 of the average particle diameter of the inorganic oxide particles (D P) The substrate with a water-repellent coating according to [1], wherein ~ 2/3 is exposed from the adhesive.
[3] The substrate with a water-repellent coating according to [1] or [2] above, wherein the water-repellent coating has a thickness of 30 nm to 700 nm.
[4] the average height of the projections of the uneven structure of the water-repellent film surface (T F) is in the range of 10 to 300 nm, the average distance between convex portions (Bitch width) (W F) is in the range of 1~1000nm The substrate with a water-repellent coating according to any one of [1] to [3], wherein the substrate has a water-repellent coating.
[5] The inorganic oxide particles have a spherical shape, a plate shape, a confetti shape, a lump shape, or a sunflower shape, or a shape that is a sphere shape, a plate shape, a confetti shape, a lump shape, or a sunflower shape. The substrate with a water-repellent coating according to any one of [1] to [4] above, which is porous.
[6] The sunflower-like particles are composed of base particles made of an inorganic oxide and fine particles of an inorganic oxide covering the surface of the base particle, and the sunflower-like particle surface has fine irregularities due to the fine particles. The substrate with a water-repellent coating as described in [5] above.
[7] The sunflower-like particles have fine irregularities on the surface of the irregular structure of the water-repellent coating, and the average height (T FF ) of the fine irregularities is in the range of 0.5 to 10 nm. The substrate with a water-repellent coating according to [6] above, wherein an average distance (bitch width) (W FF ) between the convex portions of the fine irregularities is in the range of 1 to 30 nm.
[8] The water repellent coated substrate according to any one of [1] to [7] above, wherein a contact angle with water is 130 ° or more.
[9] The inorganic oxide particles are SiO 2 , Al 2 O 3 , Sb 2 O 5 , ZrO 2 , TiO 2 , Fe 2 O 3 , CeO 2 , AgO, CuO, Cu 2 O, ZnO, and composite oxides thereof. Or it is at least 1 sort (s) chosen from a mixture, The base material with a water-repellent film as described in any one of said [1]-[8] characterized by the above-mentioned.
[10] The adhesive is an emulsion resin, and is an ester resin, polycarbonate resin, amide resin, imide resin, polyphenylene oxide resin, acrylic resin, vinyl chloride resin, vinyl acetate resin, silicone resin The water repellent film-coated base according to any one of [1] to [9] above, which is at least one selected from a resin, a urethane-based resin, a styrene-based resin, or a copolymer resin thereof Wood.

本発明は以下の構成からなる撥水性被膜形成用塗布液を含む。
〔11〕無機酸化物粒子と樹脂エマルジョン粒子が極性溶媒中に混在して単分散している粒子層形成用塗布液と、撥水性のオーバーコート層形成用塗布液とからなることを特徴とする撥水性被膜形成用塗布液。
〔12〕樹脂エマルジョン粒子の平均粒子径(D)が、無機酸化物粒子の平均粒子径(D )と同等か小さい(D≦D)ことを特徴とする前記[11]に記載する撥水性被膜形成用塗布液。
〔13〕無機酸化物粒子の体積量(G)と、樹脂エマルジョン粒子の体積量(M)との体積量比(G/[G+M])が0.25〜0.9の範囲であることを特徴とする前記[11]または前記[12]に記載する撥水性被膜形成用塗布液。
〔14〕粒子層形成用塗布液が、無機酸化物粒子が極性溶媒に分散した分散液と、樹脂エマルジョン粒子が極性溶媒に懸濁した懸濁液とからなり、前記分散液と前記懸濁液の混合によって無機酸化物粒子と樹脂エマルジョン粒子が極性溶媒中に混在して単分散した粒子層形成用塗布液になる前記[11]〜前記[13]の何れかに記載する撥水性被膜形成用塗布液。
〔15〕オーバーコート層形成用塗布液が、フッ素含有化合物、アルキル基含有化合物またはシリコーン系化合物の少なくとも1種を含むことを特徴とする前記[11]〜前記[14]の何れかに記載する撥水性被膜形成用塗布液。
The present invention includes a coating liquid for forming a water-repellent film having the following constitution.
[11] A coating solution for forming a particle layer in which inorganic oxide particles and resin emulsion particles are mixed and monodispersed in a polar solvent, and a coating solution for forming a water repellent overcoat layer. Coating liquid for forming a water repellent film.
[12] The average particle size (D e ) of the resin emulsion particles is equal to or smaller than the average particle size (D P ) of the inorganic oxide particles (D e ≦ D P ), A coating solution for forming a water-repellent film.
[13] The volume ratio (G / [G + M]) of the volume (G) of the inorganic oxide particles and the volume (M) of the resin emulsion particles is in the range of 0.25 to 0.9. The coating liquid for forming a water-repellent film as described in [11] or [12] above.
[14] A coating solution for forming a particle layer comprises a dispersion in which inorganic oxide particles are dispersed in a polar solvent, and a suspension in which resin emulsion particles are suspended in a polar solvent. For forming a water-repellent coating film according to any one of [11] to [13], wherein the inorganic oxide particles and the resin emulsion particles are mixed in a polar solvent and become a monodispersed coating solution for forming a particle layer. Coating liquid.
[15] The coating liquid for forming an overcoat layer contains at least one of a fluorine-containing compound, an alkyl group-containing compound, or a silicone-based compound, as described in any one of [11] to [14] above Coating liquid for forming a water repellent film.

本発明は以下の構成からなる撥水性被膜付基材の製造方法を含む。
〔16〕無機酸化物粒子と樹脂エマルジョン粒子とが極性溶媒中に単分散し懸濁している粒子層形成用塗布液を基材に塗布して前記無機酸化物粒子相互の間隙に前記樹脂エマルジョン粒子を介在させ、塗布後、該樹脂エマルジョン粒子を崩壊させて前記無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材との間隙に樹脂を入り込ませて接着材を介在させると共に該無機酸化物粒子の上部が該接着材から露出した凹凸形状を有する粒子層を形成し、次いで、該粒子層の無機酸化物粒子が露出した凹凸形状表面に、該凹凸形状を保つようにオーバーコート層形成用塗布液を塗布して、該オーバーコート層によって覆われた凹凸構造を有する撥水性被膜を基材表面に形成することを特徴とする撥水性被膜付基材の製造方法。
〔17〕無機酸化物粒子の分散液と樹脂エマルジョン粒子の懸濁液を混合して、無機酸化物粒子と樹脂エマルジョン粒子とが極性溶媒中に混在して単分散した粒子層形成用塗布液を調製し、該塗布液を基材に塗布する前記[16]に記載する撥水性被膜付基材の製造方法。
〔18〕粒子層形成用塗布液に含まれる樹脂エマルジョン粒子の平均粒子径(D)が無機酸化物粒子の平均粒子径(D)と同等か小さい(D≦D)ことを特徴とする前記[16]または前記[17]に記載する撥水性被膜付基材の製造方法。
〔19〕粒子層形成用塗布液に含まれる無機酸化物粒子の体積量(G)と、樹脂エマルジョン粒子の体積量(M)との体積量比(G/[G+M])が0.25〜0.9の範囲であることを特徴とする前記[16]〜前記[18]の何れかに記載する撥水性被膜付基材の製造方法。
〔20〕エマルジョン樹脂として、エステル系樹脂、ポリカーボネート系樹脂、アミド系樹脂、イミド系樹脂、ポリフェニレンオキサイド系樹脂、アクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、シリコーン系樹脂、ウレタン系樹脂、またはスチレン系樹脂、あるいはこれらの共重合樹脂からなる樹脂エマルジョン粒子を極性溶媒に懸濁させた樹脂エマルジョン粒子懸濁液と、無機酸化物粒子を極性溶媒に分散させた無機酸化物粒子分散液を混合して粒子層形成用塗布液を調製することを特徴とする前記[16]〜前記[19]の何れかに記載する撥水性被膜付基材の製造方法。
〔21〕前記樹脂エマルジョン粒子の崩壊を、加熱乾燥、電子線の照射または紫外線(UV)の照射の何れかにより行うことを特徴とする前記[16]〜前記[20]の何れかに記載する撥水性被膜付基材の製造方法。
This invention includes the manufacturing method of the base material with a water-repellent film which consists of the following structures.
[16] A coating solution for forming a particle layer in which inorganic oxide particles and resin emulsion particles are monodispersed and suspended in a polar solvent is applied to a base material, and the resin emulsion particles are placed in the gap between the inorganic oxide particles. After the application, the resin emulsion particles are disintegrated so that the resin enters the gap between the inorganic oxide particles and the gap between the inorganic oxide particles and the base material, and the adhesive is interposed between the inorganic oxide particles and the inorganic oxide particles. An overcoat layer is formed so as to form a particle layer having a concavo-convex shape in which the upper part of the oxide particles is exposed from the adhesive, and to maintain the concavo-convex shape on the concavo-convex shape surface of the particle layer where the inorganic oxide particles are exposed A method for producing a substrate with a water-repellent coating, which comprises applying a forming coating solution to form a water-repellent coating having a concavo-convex structure covered with the overcoat layer on the surface of the substrate.
[17] A coating solution for forming a particle layer in which a dispersion of inorganic oxide particles and a suspension of resin emulsion particles are mixed and the inorganic oxide particles and resin emulsion particles are mixed together in a polar solvent and monodispersed. The method for producing a substrate with a water-repellent coating according to [16], wherein the substrate is prepared and the coating solution is applied to the substrate.
[18] The average particle diameter (D e ) of the resin emulsion particles contained in the coating liquid for forming the particle layer is equal to or smaller than the average particle diameter (D P ) of the inorganic oxide particles (D e ≦ D P ). The method for producing a substrate with a water-repellent coating according to [16] or [17].
[19] The volume ratio (G / [G + M]) of the volume (G) of the inorganic oxide particles contained in the coating solution for forming the particle layer and the volume (M) of the resin emulsion particles is 0.25 to 0.25. The method for producing a substrate with a water-repellent coating according to any one of [16] to [18], which is in a range of 0.9.
[20] As emulsion resins, ester resins, polycarbonate resins, amide resins, imide resins, polyphenylene oxide resins, acrylic resins, vinyl chloride resins, vinyl acetate resins, silicone resins, urethane resins, Alternatively, a resin emulsion particle suspension obtained by suspending a resin emulsion particle composed of a styrene resin or a copolymer resin thereof in a polar solvent, and an inorganic oxide particle dispersion obtained by dispersing inorganic oxide particles in a polar solvent. The method for producing a substrate with a water-repellent coating according to any one of [16] to [19], wherein a coating solution for forming a particle layer is prepared by mixing.
[21] The method according to any one of [16] to [20], wherein the resin emulsion particles are collapsed by any one of heat drying, electron beam irradiation, or ultraviolet (UV) irradiation. A method for producing a substrate with a water-repellent coating.

本発明の撥水性被膜付基材は、該撥水性被膜が、無機酸化物粒子を含み、該無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材の間隙に接着材が介在する粒子層を有し、該無機酸化物粒子の上部が前記接着材から露出して高低差の大きな凹凸形状が形成されており、該凹凸形状を保つように前記オーバーコート層によって覆われた高低差の大きな凹凸構造が該撥水性被膜表面に形成されている。このように、無機酸化物粒子が接着材から露出する部分の凹凸形状がマトリックス成分(接着材)によって埋もれることがないので、水滴が該被膜表面に接触したときに、オーバーコート層の撥水性によって水滴が被膜表面に付着し難く、水滴が被膜表面から浮いた状態になる。さらに被膜表面の高低差の大きな凹凸構造の凹部に空気が入り込んで空気溜りになるので、いっそう水滴が被膜表面に付着し難くなる。具体的には、例えば、凸部平均高さ(T)が10〜300nmであって凸部間の平均距離(ピッチ幅)(W)が1〜1000nmの凹凸構造が被膜表面に形成されていることによって、水との接触角が130°以上の撥水性を有することができ、好ましくは150°以上の超撥水性を有することができる。 In the substrate with a water-repellent coating according to the present invention, the water-repellent coating includes inorganic oxide particles, and an adhesive is interposed between the inorganic oxide particles and between the inorganic oxide particles and the substrate. A top and bottom of the inorganic oxide particles are exposed from the adhesive material to form a large uneven shape with a height difference, and the height difference covered with the overcoat layer so as to maintain the uneven shape. A large uneven structure is formed on the surface of the water-repellent coating. As described above, since the uneven shape of the portion where the inorganic oxide particles are exposed from the adhesive is not buried by the matrix component (adhesive), the water repellent property of the overcoat layer when the water droplet comes into contact with the coating surface. It is difficult for water droplets to adhere to the surface of the film, and the water droplets float from the surface of the film. Further, since air enters the concave portions of the uneven structure having a large height difference on the surface of the coating and becomes an air reservoir, water droplets are more difficult to adhere to the coating surface. Specifically, for example, a concavo-convex structure having a convex average height (T F ) of 10 to 300 nm and an average distance (pitch width) (W F ) between convex portions of 1 to 1000 nm is formed on the coating surface. Therefore, the contact angle with water can have a water repellency of 130 ° or more, preferably a super water repellency of 150 ° or more.

さらに、本発明の撥水性被膜付基材は、無機酸化物粒子の表面に微細凹凸が形成されている場合、無機酸化物粒子自体の存在による大きな凹凸構造と、該無機酸化物粒子の表面の微細凹凸との二つのフラクタル様構造をとることにより、さらに高い撥水性を有していると考えられる。特にヒマワリ状粒子は、粒子径の揃った基体粒子上に粒子径の揃った微細粒子が配置されているので、上記のフラクタル様構造を取り易く、そのため他の無機酸化物粒子に比べ、より超撥水性を発現しやすいと考えている。さらに詳細は良くわかっていないが、これら二つのフラクタル様構造によって超撥水性と撥油性の両機能を得ることができるものと考えられる。   Furthermore, the substrate with a water-repellent coating of the present invention has a large uneven structure due to the presence of the inorganic oxide particles themselves and the surface of the inorganic oxide particles when fine unevenness is formed on the surface of the inorganic oxide particles. By adopting two fractal-like structures with fine irregularities, it is considered that it has higher water repellency. In particular, since sunflower-like particles have fine particles having a uniform particle size arranged on base particles having a uniform particle size, the above-mentioned fractal-like structure is easily obtained, and therefore, the particle size is higher than that of other inorganic oxide particles. We think that it is easy to express water repellency. Although further details are not well understood, it is considered that these two fractal-like structures can provide both super water repellency and oil repellency functions.

本発明の撥水性被膜付基材は、無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材の間隙に接着材が介在しているので、無機酸化物粒子相互および該無機酸化物粒子と前記基材との接合強度が大きく、撥水性被膜を長期間維持することができ、また耐摩耗性に優れている。   In the substrate with a water-repellent coating according to the present invention, an adhesive is interposed in the gap between the inorganic oxide particles and in the gap between the inorganic oxide particles and the substrate. The bonding strength between the particles and the substrate is high, the water-repellent coating can be maintained for a long time, and the wear resistance is excellent.

本発明の撥水性被膜は透明であるので、ガラスやプラスチックなどの透明基材上に該被膜を形成したものは、建物や自動車あるいは観測装置の窓やメータの表示部分の透明材料として好適に用いることができる。   Since the water-repellent coating of the present invention is transparent, a material in which the coating is formed on a transparent substrate such as glass or plastic is suitably used as a transparent material for a window of a building, an automobile, an observation device, or a meter display portion. be able to.

また、本発明の撥水性被膜付基材は水処理用の分離膜などにも好適に用いることができる。一般に水処理用として、濾過膜や浸透膜などの用途に応じた細孔を有する親水性や疎水性の分離膜が用いられる。水処理用の細孔を有するポリスルホンやポリエチレンテレフタレート、ポリエステル等の不織布基材表面に本発明の撥水性被膜を形成したものは、水処理用基材として好適である。さらに、基体上に形成された撥水層が薄いため、繊維に用いた時には風合いや意匠性を損なうことがない。   Moreover, the base material with a water-repellent coating of the present invention can be suitably used for a separation membrane for water treatment. In general, hydrophilic or hydrophobic separation membranes having pores corresponding to applications such as filtration membranes and osmosis membranes are used for water treatment. What formed the water-repellent film of this invention in the surface of nonwoven fabric base materials, such as polysulfone which has the pore for water treatment, a polyethylene terephthalate, and polyester, is suitable as a base material for water treatment. Furthermore, since the water-repellent layer formed on the substrate is thin, the texture and design properties are not impaired when used for fibers.

さらに本発明の撥水性被膜付基材は、ナイロンやポリエステル、綿等の繊維上や外装建材、屋根瓦などを基材として撥水性被膜を形成することによって、汚れを流水で流れ落とす防汚材としても好適に用いることができる。また、ナイロンやポリエステル、外装建材などは防藻や抗菌性も必要な場合があり、このような場合は、無機酸化物粒子にAg、Cu、Zn等の金属を担持させてなる無機酸化物粒子(または複合酸化物粒子)と、防藻性や抗菌性を示す有機系化合物または有機珪素系化合物で修飾された無機酸化物粒子(または複合酸化物粒子)の何れかあるいは両方を併用することによって、本発明の撥水性被膜付基材は、撥水性と共に防藻性や抗菌性の複数の機能を有することができる。   Furthermore, the substrate with a water-repellent coating of the present invention is an antifouling material that causes dirt to flow down with running water by forming a water-repellent coating on a fiber such as nylon, polyester, or cotton, exterior building materials, roof tiles, etc. Can also be suitably used. In addition, nylon, polyester, exterior building materials, etc. may also need anti-algae and antibacterial properties. In such cases, inorganic oxide particles obtained by supporting inorganic oxide particles such as Ag, Cu, Zn, etc. (Or composite oxide particles) and either or both of inorganic oxide particles (or composite oxide particles) modified with an organic compound or an organosilicon compound exhibiting anti-algal and antibacterial properties The substrate with a water-repellent coating according to the present invention can have a plurality of functions of algae and antibacterial properties as well as water repellency.

本発明の粒子層形成用塗布液は、無機酸化物粒子と樹脂エマルジョン粒子とが混在して分散した状態で使用することによって、被膜形成時に粒子が凝集することなく単分散状態で配列し、フラクタル様構造の形成を意図しており、接着材から無機酸化物粒子が露出した粒子層を容易に基板上に形成することができる。また、該塗布液には接着材を形成する樹脂エマルジョン粒子が無機酸化物粒子と共に含まれているので、別途、接着材を基材表面に塗布する必要がなく、作業工程を簡略化することができる。   The coating solution for forming a particle layer according to the present invention is used in a state where inorganic oxide particles and resin emulsion particles are mixed and dispersed, whereby the particles are arranged in a monodispersed state without agglomeration during film formation. The formation of such a structure is intended, and the particle layer in which the inorganic oxide particles are exposed from the adhesive can be easily formed on the substrate. In addition, since the coating liquid contains resin emulsion particles that form an adhesive together with inorganic oxide particles, it is not necessary to separately apply an adhesive to the surface of the substrate, and the work process can be simplified. it can.

本発明の撥水性被膜付基材の製造方法は、無機酸化物粒子と樹脂エマルジョン粒子が混在して単分散した粒子層形成用塗布液を用いるので、接着材は樹脂エマルジョン粒子の状態で無機酸化物粒子と共に塗布されるので、塗布作業が少なく、撥水性被膜を容易に形成することができる。   The method for producing a substrate with a water-repellent coating of the present invention uses a coating solution for forming a particle layer in which inorganic oxide particles and resin emulsion particles are mixed and monodispersed. Since it is applied together with the product particles, there is little application work and a water-repellent coating can be easily formed.

本発明の撥水性被膜付基材の製造方法は、無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材との間隙に樹脂エマルジョン粒子を介在させ、この樹脂エマルジョン粒子を塗布形成後、加熱乾燥させることによって崩壊させ、前記間隙に樹脂を入り込ませて接着材を介在させるので、無機酸化物粒子相互および該無機酸化物粒子と前記基材とが強固に接合されるため、接合強度の大きな撥水性被膜を形成することができる。さらに無機酸化物粒子が一層に配列した形態であるので、透明性が高く、風合いを損なわない基材が得られる。   In the method for producing a substrate with a water-repellent coating according to the present invention, resin emulsion particles are interposed in the gaps between inorganic oxide particles and in the gaps between the inorganic oxide particles and the substrate, and the resin emulsion particles are applied and formed. Since it is disintegrated by heating and drying, a resin is introduced into the gap and an adhesive is interposed, so that the inorganic oxide particles and the inorganic oxide particles and the base material are strongly bonded to each other. Large water-repellent coating can be formed. Furthermore, since the inorganic oxide particles are arranged in a single layer, a base material that is highly transparent and does not impair the texture can be obtained.

本発明の撥水性被膜付基材の製造方法では、樹脂エマルジョン粒子は無機酸化物粒子相互の間隙に介在し、無機酸化物粒子が樹脂エマルジョン粒子によって覆われないので、無機酸化物粒子の上部が接着材から露出した高低差の大きな凹凸構造を形成することができる。例えば、無機酸化物粒子の平均粒子径(D)と同等か小さい(D≦D)平均粒子径(D)の樹脂エマルジョン粒子が分散した塗布液を用いれば、乾燥時に平均粒子径の大きな無機酸化物粒子と基材との間のメニスカスに存在する溶媒の張力によって、樹脂エマルジョン粒子がメニスカスに引き込まれ、確実に無機酸化物粒子が樹脂エマルジョン粒子によって覆われないようにすることができ、例えば、無機酸化物粒子の平均粒子半径の1/3〜2/3が露出した被膜を形成することができる。 In the method for producing a substrate with a water-repellent coating according to the present invention, the resin emulsion particles are interposed in the gaps between the inorganic oxide particles, and the inorganic oxide particles are not covered with the resin emulsion particles. An uneven structure with a large difference in height exposed from the adhesive can be formed. For example, with the use of the inorganic oxide average particle diameter of the particles (D P) and equal to or less (D e ≦ D P) average coating liquid resin emulsion particles are dispersed particle diameter (D e), the average particle size upon drying The tension of the solvent present in the meniscus between the large inorganic oxide particles and the substrate may cause the resin emulsion particles to be drawn into the meniscus and ensure that the inorganic oxide particles are not covered by the resin emulsion particles. For example, a film in which 1/3 to 2/3 of the average particle radius of the inorganic oxide particles is exposed can be formed.

本発明の撥水性被膜付基材の模式断面図。The schematic cross section of the base material with a water-repellent film of this invention. 本発明の撥水性被膜付基材の水との接触角を示す説明図。Explanatory drawing which shows the contact angle with the water of the base material with a water-repellent film of this invention. ひまわり状無機酸化物粒子の模式断面図。The schematic cross section of a sunflower-like inorganic oxide particle. ヒマワリ状粒子を用いた撥水性被膜付基材の模式断面図。The schematic cross section of the base material with a water-repellent film using a sunflower-like particle | grain. 本発明の撥水性被膜付基材の製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of the base material with a water-repellent film of this invention.

〔撥水性被膜付基材〕
本発明の撥水性被膜付基材は、基材表面に撥水性の被膜を有する撥水性基材であって、前記被膜が無機酸化物粒子を含み、該無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材の間隙に接着材が介在する粒子層と、該粒子層を覆う撥水性のオーバーコート層とを有し、前記無機酸化物粒子の上部が前記接着材から露出した凹凸形状をなし、該凹凸形状を保つように前記オーバーコート層によって覆われた凹凸構造を前記被膜表面に有することを特徴とする撥水性被膜付基材である。
[Base material with water-repellent coating]
The substrate with a water-repellent coating of the present invention is a water-repellent substrate having a water-repellent coating on the surface of the substrate, the coating containing inorganic oxide particles, and the gap between the inorganic oxide particles and the inorganic oxide Concave and convexity having a particle layer in which an adhesive is interposed between the oxide particles and the base material, and a water-repellent overcoat layer covering the particle layer, the upper part of the inorganic oxide particles being exposed from the adhesive A substrate with a water-repellent coating, characterized by having a concavo-convex structure formed on the surface of the coating so as to have a shape and maintain the concavo-convex shape.

本発明の撥水性被膜付基材の一例を図1に示す。図示するように、撥水性被膜付基材10は、基材1と、該基材1の表面に形成された撥水性の被膜2を有している。該被膜2は粒子層3とオーバーコート層7によって形成されている。   An example of the substrate with a water-repellent coating of the present invention is shown in FIG. As shown in the drawing, a substrate 10 with a water-repellent coating has a substrate 1 and a water-repellent coating 2 formed on the surface of the substrate 1. The coating 2 is formed by the particle layer 3 and the overcoat layer 7.

前記粒子層3は、多数の無機酸化物粒子5が基材表面に並んだ層であり、基本的には単層に形成されており、前記無機酸化物粒子5の相互の間隙および該無機酸化物粒子5と前記基材1の間隙に介在している接着材4を含む層である。好ましくは、該接着材4は前記無機酸化物粒子5の相互の間隙および該無機酸化物粒子5と前記基材1の間隙に介在した樹脂エマルジョン粒子の崩壊によって形成される。前記無機酸化物粒子5の上部は前記接着材4の表面から露出しており、無機酸化物粒子5の上部が露出していることによって粒子層3の表面には高低差の大きな凹凸形状が形成されている。この中の粒子層3は基本的には単層で形成しており、必要に応じて2〜3層に形成してもよい。4層以上形成すると、繊維に使用する場合は、風合いの低下や粒子が脱落することがあり目的の強度・密着性が得られない場合がある。これらを2〜3層形成するには、撥水性被膜形成用塗布液の濃度を最適な濃度に調整することで形成可能である。   The particle layer 3 is a layer in which a large number of inorganic oxide particles 5 are arranged on the surface of a base material, and is basically formed as a single layer. This is a layer including the adhesive 4 interposed in the gap between the physical particles 5 and the substrate 1. Preferably, the adhesive 4 is formed by disintegrating the resin emulsion particles interposed in the gaps between the inorganic oxide particles 5 and the gaps between the inorganic oxide particles 5 and the substrate 1. The upper part of the inorganic oxide particles 5 is exposed from the surface of the adhesive 4, and the upper part of the inorganic oxide particles 5 is exposed to form a large uneven shape on the surface of the particle layer 3. Has been. The particle layer 3 in this is basically formed as a single layer, and may be formed in two or three layers as necessary. When four or more layers are formed, when used for fibers, the texture may be lowered or the particles may fall off, and the intended strength and adhesion may not be obtained. In order to form these two to three layers, it can be formed by adjusting the concentration of the coating solution for forming the water repellent coating film to an optimum concentration.

無機酸化物粒子5の平均粒子径(D)は20〜600nmの範囲が好ましい。該無機酸化物粒子5の平均粒子径(D)が20nm未満では、接着材4の膜厚(U)が下記膜厚範囲の上限値に近いときに、該無機酸化物粒子5の大部分が接着材4に取り込まれ、接着材4から露出する高さが小さくなり、高低差の大きな凹凸形状が得られない。また、該無機酸化物粒子の平均粒子径(D)が600nmを上回ると、凹凸形状の凸部の平均高さが所望の範囲外になる場合があり、目的の凹凸形状が得られない。なお、無機酸化物粒子の平均粒子径(D)は粒子層3の層厚になる。 The average particle diameter (D P ) of the inorganic oxide particles 5 is preferably in the range of 20 to 600 nm. When the average particle diameter (D P ) of the inorganic oxide particles 5 is less than 20 nm, the thickness of the inorganic oxide particles 5 is large when the film thickness (U F ) of the adhesive 4 is close to the upper limit value of the following film thickness range. A part is taken in by the adhesive material 4, and the height exposed from the adhesive material 4 becomes small, so that an uneven shape with a large height difference cannot be obtained. On the other hand, if the average particle diameter (D P ) of the inorganic oxide particles exceeds 600 nm, the average height of the concavo-convex convex portions may be outside the desired range, and the desired concavo-convex shape cannot be obtained. The average particle diameter (D P ) of the inorganic oxide particles is the layer thickness of the particle layer 3.

接着材4の層厚(U)は6〜400nmの範囲が好ましい。接着材4の膜厚(U)が6nm未満では、無機酸化物粒子5の平均粒子径(D )が前記粒径範囲の上限に近いときに、該無機酸化物粒子5の該接着材4に埋まる深さが少なくなり、接着強度が十分に得られない。接着材4の膜厚(U)が400nmを上回ると、無機酸化物粒子5の平均粒子径(D)が前記粒径範囲の下限に近いときに、該無機酸化物粒子5が該接着材4から露出する高さが小さくなり、高低差の大きな凹凸形状が得られない。 The layer thickness (U F ) of the adhesive 4 is preferably in the range of 6 to 400 nm. If the film thickness (U F ) of the adhesive 4 is less than 6 nm, the adhesive of the inorganic oxide particles 5 when the average particle diameter (D P ) of the inorganic oxide particles 5 is close to the upper limit of the particle size range. The depth embedded in 4 decreases, and sufficient adhesive strength cannot be obtained. When the film thickness (U F ) of the adhesive 4 exceeds 400 nm, the inorganic oxide particles 5 are bonded when the average particle diameter (D P ) of the inorganic oxide particles 5 is close to the lower limit of the particle size range. The height exposed from the material 4 becomes small, and a large uneven shape with a difference in height cannot be obtained.

該無機酸化物粒子5の平均粒子径(D)に対する接着材の層厚(U)の比(U/D)は1/3〜2/3が好ましく、従って、該無機酸化物粒子5の平均粒子径(D)の1/3〜2/3が接着材4から露出しているのが好ましい。このように無機酸化物粒子5の平均粒子径(D)の1/3〜2/3が接着材4から露出していることによって、被膜2の表面に高低差の大きな凹凸形状が形成されることになり、被膜2が高い撥水性を有するようになる。 The ratio (U F / D P ) of the layer thickness (U F ) of the adhesive to the average particle diameter (D P ) of the inorganic oxide particles 5 is preferably 1/3 to 2/3. It is preferable that 1/3 to 2/3 of the average particle diameter (D P ) of the particles 5 is exposed from the adhesive 4. In this way, when 1/3 to 2/3 of the average particle diameter (D P ) of the inorganic oxide particles 5 is exposed from the adhesive 4, an uneven shape having a large height difference is formed on the surface of the coating 2. As a result, the coating 2 has high water repellency.

本発明の撥水性被膜付基材は、例えば、無機酸化物粒子の平均粒子径(D)が60〜100nmのとき、接着材の膜厚(U)が10〜70nmであって、該無機酸化物粒子の平均粒子径(D )に対する接着材の層厚(U)の比(U/D)が1/3〜2/3であり、従って、無機酸化物粒子の平均粒子径(D )の1/3〜2/3が接着材から露出している。 The substrate with a water-repellent coating of the present invention has a thickness (U F ) of an adhesive of 10 to 70 nm when the average particle diameter (D P ) of the inorganic oxide particles is 60 to 100 nm, for example, The ratio (U F / D P ) of the layer thickness (U F ) of the adhesive to the average particle diameter (D P ) of the inorganic oxide particles is 1/3 to 2/3, and therefore the average of the inorganic oxide particles 1/3 to 2/3 of the particle diameter (D P ) is exposed from the adhesive.

前記オーバーコート層7は該粒子層3の表面を覆う撥水性の薄い表面層であり、フッ素含有化合物、アルキル基含有化合物またはシリコーン系化合物の少なくとも1種を含むものが好ましい。フッ素含有化合物として、は含フッ素シラン誘導体、含フッ素ホスホン酸誘導体などが挙げられる。アルキル基含有化合物として、はカルボキシデシルホスホン酸、ヒドロキシウンデシルホスホン酸、これらの誘導体などが挙げられる。シリコーン系化合物としては変性反応性シリコーンなどが挙げられる。該変性反応性シリコーンは官能基としてアクリル基、アクリロキシ基、エポキシ基、シラノール基、フェノール基、カルボキシル基などを含むものが好ましい。なかでも、式:R−SiX4−n(式中、Rは炭素数1〜10の炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数)で表されるメトキシシランやエトキシシランなどの加水分解性有機ケイ素化合物の加水分解重縮合物が好ましく用いられる。 The overcoat layer 7 is a thin, water-repellent surface layer that covers the surface of the particle layer 3, and preferably contains at least one of a fluorine-containing compound, an alkyl group-containing compound, or a silicone compound. Examples of the fluorine-containing compound include a fluorine-containing silane derivative and a fluorine-containing phosphonic acid derivative. Examples of the alkyl group-containing compound include carboxydecylphosphonic acid, hydroxyundecylphosphonic acid, and derivatives thereof. Examples of silicone compounds include modified reactive silicones. The modified reactive silicone preferably contains an acrylic group, acryloxy group, epoxy group, silanol group, phenol group, carboxyl group or the like as a functional group. Among them, the formula: in R n -SiX 4-n (wherein, R is a hydrocarbon group having 1 to 10 carbon atoms, optionally being the same or different .X: 1 to 4 carbon atoms Hydrolyzed polycondensates of hydrolyzable organosilicon compounds such as methoxysilane and ethoxysilane represented by an alkoxy group, a hydroxyl group, halogen, hydrogen, n: an integer of 1 to 3) are preferably used.

オーバーコート層7の膜厚(O)は0.5〜10nmが好ましい。オーバーコート層7の膜厚(O)が0.5nm未満ではオーバーコート層7の撥水性が不十分であり、また耐久性が乏しい。一方、オーバーコート層7の膜厚(O)が10nmより大きいと、無機酸化物粒子5によって形成された凹凸形状がオーバーコート層7によって埋められ、高低差の大きな凹凸構造が得られ難くなる。 The film thickness (O F ) of the overcoat layer 7 is preferably 0.5 to 10 nm. When the film thickness (O F ) of the overcoat layer 7 is less than 0.5 nm, the water repellency of the overcoat layer 7 is insufficient and the durability is poor. On the other hand, if the film thickness (O F ) of the overcoat layer 7 is larger than 10 nm, the uneven shape formed by the inorganic oxide particles 5 is filled with the overcoat layer 7 and it is difficult to obtain an uneven structure with a large height difference. .

オーバーコート層7を含む撥水性被膜2の膜厚は20nm〜700nmの範囲が好ましく、40〜600nmの範囲がさらに好ましい。該膜厚が20nmより薄いと耐久性が低下し、また表面に十分な凹凸構造を形成することが難しい。一方、該膜厚が700nmより大きくても撥水性の効果はあまり変わらない。また、最外層に凹凸構造が形成されている限り、撥水性の効果はあまり変わらない。   The film thickness of the water-repellent coating 2 including the overcoat layer 7 is preferably in the range of 20 nm to 700 nm, and more preferably in the range of 40 to 600 nm. When the film thickness is less than 20 nm, the durability is lowered and it is difficult to form a sufficient uneven structure on the surface. On the other hand, even if the film thickness is larger than 700 nm, the water repellency effect does not change much. Moreover, as long as the concavo-convex structure is formed in the outermost layer, the effect of water repellency is not so changed.

本発明の撥水性被膜付基材は、例えば、無機酸化物粒子の平均粒子径(D )が60〜100nmのとき、接着材の膜厚(U)が10〜70nmであって、該無機酸化物粒子の平均粒子径(D )に対する接着材の層厚(U)の比(U/D)が1/3〜2/3であり、撥水性被膜2の膜厚が25〜160nmである。 The substrate with a water-repellent coating of the present invention has a thickness (U F ) of an adhesive of 10 to 70 nm when the average particle diameter (D P ) of the inorganic oxide particles is 60 to 100 nm, for example, The ratio (U F / D P ) of the layer thickness (U F ) of the adhesive to the average particle diameter (D P ) of the inorganic oxide particles is 1/3 to 2/3, and the film thickness of the water repellent coating 2 is 25-160 nm.

撥水性被膜2の表面の凹凸構造は、凸部平均高さ(T)は10〜300nmの範囲が好ましく、凸部間の平均距離(ビッチ幅)(W)は1〜1000nmの範囲が好ましい。凸部平均高さ(T)が10nm未満では、該凹凸構造の高低差が小さくなり被膜の撥水性を高めるのが難しくなる。一方、凸部平均高さ(T)が300nmより大きくても撥水性はあまり変わらなくなる。また、前記凸部間のピッチ幅(W)が1nm未満では、凹部が狭くなり、該凸部間のピッチ幅(W)が1000nmを上回る場合には凹部が広すぎるので何れの場合も凹凸構造の効果が不十分になり、被膜の撥水性を高めるのが難しくなる。 The uneven structure on the surface of the water-repellent coating 2 preferably has a convex average height (T F ) in the range of 10 to 300 nm, and an average distance (bitch width) (W F ) between the convex portions in the range of 1 to 1000 nm. preferable. If the average height (T F ) of the convex portion is less than 10 nm, the height difference of the concave-convex structure becomes small and it becomes difficult to increase the water repellency of the coating film. On the other hand, the water repellency does not change much even if the average height of the convex portion (T F ) is larger than 300 nm. Further, if the pitch width (W F ) between the protrusions is less than 1 nm, the recesses become narrow, and if the pitch width (W F ) between the protrusions exceeds 1000 nm, the recesses are too wide. The effect of the uneven structure becomes insufficient, and it becomes difficult to increase the water repellency of the coating.

〔基材〕
基材1の材質は制限されない。例えば、ガラス、ポリカーボネート、アクリル樹脂、PET、TAC、ポリエステル樹脂、ナイロン樹脂等のプラスチックシート、プラスチックフィルム等、プラスチックパネル等、繊維等、不織布等やモルタル材、スレート材、コンクリート等を用いることができる。接着材4はエステル系樹脂、ポリカーボネート系樹脂、アミド系樹脂、イミド系樹脂、ポリフェニレンオキサイド系樹脂、アクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、シリコーン系樹脂、ウレタン系樹脂、またはスチレン系樹脂、スチレン樹脂、および、これらの共重合体樹脂から選ばれる少なくとも1種によって形成することができる。
〔Base material〕
The material of the substrate 1 is not limited. For example, glass, polycarbonate, acrylic resin, PET, TAC, polyester resin, nylon resin or other plastic sheet, plastic film, plastic panel, fiber, nonwoven fabric, mortar material, slate material, concrete, or the like can be used. . The adhesive 4 is an ester resin, polycarbonate resin, amide resin, imide resin, polyphenylene oxide resin, acrylic resin, vinyl chloride resin, vinyl acetate resin, silicone resin, urethane resin, or styrene resin. It can be formed by at least one selected from a resin, a styrene resin, and a copolymer resin thereof.

〔無機酸化物粒子〕
無機酸化物粒子5は、例えば、SiO、Al、Sb、ZrO、TiO、Fe、CeO、AgO、CuO、CuO、ZnOおよびこれらの複合酸化物または混合物から選ばれる少なくとも1種を用いることができる。これらの粒子は所望の粒子径の球状粒子を容易に得ることができ、化学的にも安定であるので好ましい。
[Inorganic oxide particles]
The inorganic oxide particles 5 are, for example, SiO 2 , Al 2 O 3 , Sb 2 O 5 , ZrO 2 , TiO 2 , Fe 2 O 3 , CeO 2 , AgO, CuO, Cu 2 O, ZnO, and composite oxides thereof. At least one selected from a product or a mixture can be used. These particles are preferable because spherical particles having a desired particle diameter can be easily obtained and are chemically stable.

無機酸化物粒子5の形状は、前記凹凸構造を形成できる形状であればよく、制限されない。例えば、球状粒子、板状粒子、金平糖状粒子、塊状粒子、ヒマワリ状粒子の何れの形状でも用いることができる。これらの球状粒子、板状粒子金平糖状粒子、塊状粒子ヒマワリ状粒子などは多孔質構造であっても良い。球状粒子は平均粒子径(D )の1/3〜2/3が接着材4から露出した状態にすることが容易であり、被膜表面に高低差の大きな凹凸構造を形成することができる。これらの粒子は単一粒子が好ましいが、2〜3個連続した構造でも良い。なお、連続した構造が4個以上になると基材と粒子間に空隙が存在し、図1のような膜が得られない場合がある。また、ヒマワリ状粒子は粒子上部が接着材から露出することによって高低差の大きな凹凸形状が形成され、さらにヒマワリ状粒子表面に微細な凹凸を有するので、これらの凹凸のフラクタル効果によって、撥水性に優れた被膜を得ることができる。なお、これらの粒子の平均粒子径は長軸の長さを基準にして定められる。このように、複数の凹凸構造を有するため、同時に撥油効果を持たせることもできる。 The shape of the inorganic oxide particles 5 may be any shape as long as the uneven structure can be formed, and is not limited. For example, any shape of spherical particles, plate-like particles, confetti particles, block particles, and sunflower particles can be used. These spherical particles, plate-like particles, confetti particles, massive particles and sunflower particles may have a porous structure. Spherical particles can be easily brought into a state in which 1/3 to 2/3 of the average particle diameter (D P ) is exposed from the adhesive material 4, and a concavo-convex structure having a large difference in height can be formed on the coating surface. These particles are preferably single particles, but may have a continuous structure of 2 to 3 particles. In addition, when there are four or more continuous structures, voids exist between the substrate and the particles, and the film as shown in FIG. 1 may not be obtained. In addition, sunflower-like particles are exposed to the upper part of the particle from the adhesive material, so that a large uneven shape is formed on the surface of the sunflower, and since the sunflower-like particle surface has fine unevenness, the fractal effect of these unevenness makes the water repellent An excellent film can be obtained. The average particle diameter of these particles is determined based on the length of the major axis. Thus, since it has several uneven structure, it can also have an oil-repellent effect simultaneously.

なお、本願において、前記無機酸化物粒子の形状が球状の場合、球状粒子または球状無機酸化物粒子と称する。以下、同様に板状の場合を板状粒子または板状無機酸化物粒子、金平糖状の場合を金平糖状粒子または金平糖状無機酸化物粒子、塊状の場を塊状粒子または塊状無機酸化物粒子と称する。また、前記無機酸化物粒子の形状がヒマワリ状の場合、ヒマワリ状の粒子、ヒマワリ状粒子またはヒマワリ状無機酸化物粒子と称する。   In addition, in this application, when the shape of the said inorganic oxide particle is spherical, it calls a spherical particle or a spherical inorganic oxide particle. Hereinafter, similarly, a plate-like case is called a plate-like particle or plate-like inorganic oxide particle, a gold flat sugar-like case is called a flat plate-like sugar-like particle or gold-plated sugar-like inorganic oxide particle, and a massive field is called a massive particle or massive inorganic oxide particle. . Moreover, when the shape of the said inorganic oxide particle is a sunflower shape, it is called a sunflower-like particle | grain, a sunflower-like particle | grain, or a sunflower-like inorganic oxide particle.

先述のとおり、無機酸化物粒子の形状は、球状粒子、板状粒子、金平糖状粒子、塊状粒子またはヒマワリ状粒子の何れの形状であっても構わない。また、該無機酸化物粒子は、これらの各形状の粒子であって、更に多孔質であっても構わない。無機酸化物粒子が多孔質である場合、その形状が相当し平均粒子径が同程度の無機酸化物粒子に比べて相対的に大きな比表面積の値を示す。一般に無機酸化物粒子の比表面積は、その無機酸化物粒子またはその無機酸化物粒子を含有した被膜の撥水性向上に寄与する。   As described above, the shape of the inorganic oxide particles may be any of spherical particles, plate-like particles, confetti particles, block particles, or sunflower particles. Further, the inorganic oxide particles are particles of these shapes, and may be further porous. When the inorganic oxide particles are porous, the specific surface area is relatively large as compared with the inorganic oxide particles having the same shape and the same average particle diameter. In general, the specific surface area of the inorganic oxide particles contributes to an improvement in water repellency of the inorganic oxide particles or a coating containing the inorganic oxide particles.

金平糖状無機酸化物粒子
金平糖状無機酸化物粒子は、その粒子表面に多数の疣状突起を有する球状の粒子で疣状突起と粒子表面のメニスカスの曲率半径が負となるものであり、その構造は概ね金平糖に類似したものである。後述するヒマワリ状粒子は基体粒子に微細粒子を接合して凹凸を有しているが、微細粒子と基体粒子のメニスカスの曲率半径は正となるものである。金平糖状無機酸化物粒子の平均粒子径(D)は10〜150nm、さらには10〜130nmの範囲にあることが好ましい。金平糖状無機酸化物粒子の平均粒子径(D)が10nm未満では、疣状突起を有する粒子としては得ることが困難であり、所望の微細凹凸が形成することが難しい。また、金平糖状無機酸化物粒子の平均粒子径(D)が150nmを超えると撥水性被膜の強度、硬度、基材との密着性が不十分となる場合がある。
Gold-peeled inorganic oxide particles Gold-peeled inorganic oxide particles are spherical particles having a large number of hook-shaped protrusions on the particle surface, and the curvature radius of the hook-shaped protrusions and the meniscus on the particle surface is negative, and the structure Is generally similar to confetti. The sunflower-like particles to be described later have irregularities formed by bonding fine particles to base particles, but the radius of curvature of the meniscus of the fine particles and base particles is positive. The average particle diameter (D A ) of the confetti-like inorganic oxide particles is preferably in the range of 10 to 150 nm, more preferably 10 to 130 nm. The confetti-like inorganic oxide average particle diameter (D A) is less than 10nm particles, it is difficult to obtain as particles having a wart-like projections, it is difficult to form desired fine irregularities. On the other hand, if the average particle diameter (D A ) of the confetti inorganic oxide particles exceeds 150 nm, the strength, hardness, and adhesion to the substrate of the water-repellent coating may be insufficient.

金平糖状無機酸化物粒子の疣状突起の平均高さ(H)は0.3〜45nmの範囲が好ましく、0.5〜40nmの範囲がさらに好ましい。疣状突起の平均高さ(H)が0.3nm未満では撥水性被膜の撥水性が不十分となる場合がある。疣状突起の平均高さ(H)が45nmを超えると疣状突起が大き過ぎ、粒子表面の疣状突起の個数が少なくなるので微細凹凸の個数が減少し、撥水性の発現に有効な外表面積の低下を招く。   The average height (H) of the ridge-like projections of the confetti-like inorganic oxide particles is preferably in the range of 0.3 to 45 nm, and more preferably in the range of 0.5 to 40 nm. If the average height (H) of the hook-shaped protrusions is less than 0.3 nm, the water repellency of the water repellent film may be insufficient. When the average height (H) of the hook-shaped protrusions exceeds 45 nm, the hook-shaped protrusions are too large, and the number of hook-shaped protrusions on the particle surface is reduced, so that the number of fine irregularities is reduced, which is effective for the expression of water repellency. The surface area is reduced.

金平糖状無機酸化物粒子の疣状突起の平均高さ(H)と金平糖状無機酸化物粒子の平均粒子径(D)との比(H)/(D)は0.03〜0.30の範囲が好ましく、0.05〜0.27の範囲がさらに好ましい。該比(H)/(D)が0.03未満の場合は撥水性被膜の撥水性が不十分となる場合がある。一方、該比(H)/(D)が0.30を超えると、疣状突起が大き過ぎ、粒子表面の疣状突起の数が少なくなるので微細凹凸の数が減少する。 The ratio (H) / (D A ) between the average height (H) of the ridge-like protrusions of the confetti-like inorganic oxide particles and the average particle diameter (D A ) of the confetti-like inorganic oxide particles is 0.03 to 0. The range of 30 is preferable, and the range of 0.05 to 0.27 is more preferable. When the ratio (H) / (D A ) is less than 0.03, the water repellency of the water repellent film may be insufficient. On the other hand, when the ratio (H) / (D A ) exceeds 0.30, the ridge-like protrusions are too large, and the number of ridge-like protrusions on the particle surface decreases, so the number of fine irregularities decreases.

金平糖状無機酸化物粒子の疣状突起によって形成される表面粗度は下記式(1)によって示すことができる。なお、(SA)はBET法により測定される比表面積であり、(SA)は下記式(2)で表される等価球換算式で計算される比表面積であり、dは金平糖状無機酸化物粒子の密度であり、6000は換算係数である。(D)はTEM像で求めた任意に選んだ100個の平均粒子径である。
金平糖状無機酸化物粒子の表面粗度=(SA)/(SA) ・・・(1)
(SA)=6000/(D)×d・・・・・・(2)
The surface roughness formed by the ridge-like projections of the confetti-like inorganic oxide particles can be expressed by the following formula (1). In addition, (SA 1 ) is a specific surface area measured by the BET method, (SA 2 ) is a specific surface area calculated by an equivalent sphere conversion formula represented by the following formula (2), and d is a confetti-like inorganic substance It is the density of oxide particles, and 6000 is a conversion factor. (D A ) is an average particle diameter of 100 arbitrarily selected from the TEM image.
Surface roughness of confetti sugar-like inorganic oxide particles = (SA 1 ) / (SA 2 ) (1)
(SA 2 ) = 6000 / (D A ) × d (2)

ここで比表面積は単位質量当りの表面積を示すから、表面粗度(SA)/(SA)の値については、粒子が球状であって、粒子表面の疣状突起が多いほど、(SA)/(SA)の値は大きくなり、一方、粒子表面の疣状突起が少なく、平滑であるほど、(SA)/(SA)の値は小さくなり、その値は1に近くなる。 Here, since the specific surface area indicates the surface area per unit mass, the value of the surface roughness (SA 1 ) / (SA 2 ) is such that the more spherical the particle surface is, the more (SA) 1 ) / (SA 2 ) increases, while the smaller the number of wrinkles on the particle surface and the smoother, the smaller the value of (SA 1 ) / (SA 2 ), which is close to 1. Become.

本発明に用いる金平糖状無機酸化物粒子の表面粗度(SA)/(SA)は1.7〜5.0の範囲が好ましい。表面粗度が1.7未満の場合、疣状突起の割合が少ないか、あるいは疣状突起自体が金平糖状無機酸化物粒子の粒子径に比べて極めて小さくなり、球状粒子に近くなる。一方、表面粗度の値が5.0を超える場合は、調製が困難である。表面粗度の範囲は1.8〜4.5の範囲がさらに好ましい。 The surface roughness (SA 1 ) / (SA 2 ) of the gold flat sugar-like inorganic oxide particles used in the present invention is preferably in the range of 1.7 to 5.0. When the surface roughness is less than 1.7, the ratio of the ridge-like protrusions is small, or the ridge-like protrusions themselves are extremely smaller than the particle diameter of the gold-plated sugar-like inorganic oxide particles and become close to spherical particles. On the other hand, when the value of surface roughness exceeds 5.0, preparation is difficult. The range of the surface roughness is more preferably in the range of 1.8 to 4.5.

金平糖状無機酸化物粒子の平均粒子径(D)および疣状突起の平均高さ(H)は走査型電子顕微鏡写真(SEM)の画像解析により測定することができる。具体的には、走査型電子顕微鏡によって撮影した投影図の、例えば、任意の50個の粒子について、その最大径を測定して平均値を平均粒子径(D)とすればよい。また、任意の疣状突起の頂点から疣状突起と球状粒子部分との接点までの距離を3箇所ずつ測定し、その平均値を疣状突起の平均高さ(H)とすればよい。 The average particle diameter (D A ) and the average height (H) of the ridge-like protrusions of the confetti-like inorganic oxide particles can be measured by image analysis of a scanning electron micrograph (SEM). Specifically, for example, for an arbitrary 50 particles in a projection image taken with a scanning electron microscope, the maximum diameter may be measured and the average value may be set as the average particle diameter (D A ). Further, the distance from the apex of an arbitrary hook-shaped protrusion to the contact point between the hook-shaped protrusion and the spherical particle portion is measured at three locations, and the average value may be set as the average height (H) of the hook-shaped protrusion.

塊状粒子(塊状無機酸化物粒子)
塊状粒子は、粒子が不規則に固まっている粒子である。これを構成する粒子は、異形や不定形状等のものでも良く、複数の形状のものから構成されていてもよい。塊状になると粒子表面に不規則な凹凸が形成されるため撥水被膜を得た場合により高い撥水性が得られる。
Bulk particles (bulk inorganic oxide particles)
Agglomerated particles are particles in which the particles are randomly set. The particles constituting this may have irregular shapes, irregular shapes, etc., or may be composed of a plurality of shapes. When it is agglomerated, irregular irregularities are formed on the particle surface, so that a higher water repellency can be obtained when a water-repellent coating is obtained.

ヒマワリ状粒子(ヒマワリ状無機酸化物粒子)
ヒマワリ状粒子20は、図3の断面図に示すように、無機酸化物の基体粒子21と、該基体粒子表面を被覆する無機酸化物の微細粒子22を有し、粒子全体の断面がヒマワリ状の粒子である。図示する基体粒子21は模式的に球状を示しているが、異形、板状、多面体状であってもよい。微細粒子22は概ね球状粒子である。ヒマワリ状粒子20は基体粒子21の表面が前記微細粒子22による微細な凹凸を有しているので、優れた撥水性が得られ、密着性が強く、親水被膜によるファウリングや劣化が効果的に抑制され、防汚性を有し、長期にわたって高い撥水性を維持することができる。
Sunflower-like particles (sunflower-like inorganic oxide particles)
As shown in the cross-sectional view of FIG. 3, the sunflower-like particle 20 has inorganic oxide substrate particles 21 and inorganic oxide fine particles 22 covering the surface of the substrate particles, and the entire particle has a sunflower-like cross section. Particles. Although the illustrated base particles 21 are schematically spherical, they may be irregular, plate-like, or polyhedral. The fine particles 22 are generally spherical particles. Since the surface of the base particle 21 has fine irregularities due to the fine particles 22, the sunflower-like particles 20 have excellent water repellency, strong adhesion, and effective fouling and deterioration due to the hydrophilic coating. It is suppressed, has antifouling properties, and can maintain high water repellency over a long period of time.

該微細凹凸の凸部平均高さ0.5〜10nmの範囲が好ましい。該凸部平均高さが前記範囲よりも小さいと十分な凹凸が形成され難く、前記範囲を超えるものは微細粒子22の粒子径が大きいので、基体粒子21の表面を覆う微細粒子22の数が限られるようになり、基体粒子表面に十分な微細凹凸が形成され難くなる。   The average height of the convex and concave portions of the fine irregularities is preferably in the range of 0.5 to 10 nm. If the average height of the convex portion is smaller than the above range, it is difficult to form sufficient irregularities. If the average height exceeds the above range, the particle size of the fine particles 22 is large, so the number of fine particles 22 covering the surface of the base particle 21 is small. As a result, it becomes difficult to form sufficient fine irregularities on the surface of the substrate particles.

該微細凹凸の凸部間の平均距離(ビッチ幅)は1〜30nmの範囲が好ましい。該平均距離(ビッチ幅)が1nm未満では凹部が狭くなり、凸部間のピッチ幅が30nmを上回る場合には凹部が広すぎるので、何れの場合も微細凹凸による十分な効果が得られ難くなる。   The average distance (bitch width) between the convex portions of the fine irregularities is preferably in the range of 1 to 30 nm. When the average distance (bitch width) is less than 1 nm, the recesses become narrow, and when the pitch width between the protrusions exceeds 30 nm, the recesses are too wide. In any case, it is difficult to obtain a sufficient effect due to fine unevenness. .

ヒマワリ状粒子の基体粒子21の平均粒子径(DC1)は40〜600nmの範囲が好ましく、50〜500nmの範囲がさらに好ましい。この平均粒子径(DC1)が小さいと、基材上に塗布した際に凸部の高さ、凸部間距離(ピッチ幅)が小さくなりすぎる場合があり、高い撥水性が得られ難い。一方、該平均粒子径(DC1)が大きすぎても、凸部の高さおよび凸部間距離(ピッチ幅)が大きくなり過ぎるため高い撥水性被膜が得られ難い。 The average particle diameter (D C1 ) of the base particles 21 of sunflower-like particles is preferably in the range of 40 to 600 nm, and more preferably in the range of 50 to 500 nm. When this average particle diameter (D C1 ) is small, the height of the convex portions and the distance between the convex portions (pitch width) may be too small when applied on the substrate, and it is difficult to obtain high water repellency. On the other hand, even if the average particle diameter (D C1 ) is too large, the height of the projections and the distance between the projections (pitch width) are too large, and it is difficult to obtain a high water-repellent coating.

なお、基体用粒子11の平均粒子径(DC1)および微細粒子22の平均粒子径(DC2)は下記式(3)で表される等価球換算式で求められる平均粒子径である。なお、式(3)のDは平均粒子径(nm)、SAはBET法で測定された比表面積(m/g)、dは粒子の密度(g/cm)、6000は換算係数である。また、該平均粒子径Dは動的光散乱法(日機装社製品:マイクロトラックUPA)を用いて測定することができる。通常の比表面積の実測値はBET法で測定される。
D=6000/SA×d・・・・(3)
The average particle diameter (D C2) having an average particle diameter (D C1) and fine particles 22 of the base particles 11 is the average particle diameter determined by the equivalent spherical conversion formula represented by the following formula (3). Incidentally, Equation (3) is D having an average particle diameter (nm), SA M is measured specific surface area by the BET method (m 2 / g), d the density of the particle (g / cm 3), 6000 is the conversion factor It is. The average particle diameter D can be measured using a dynamic light scattering method (Nikkiso Co., Ltd. product: Microtrac UPA). The actual measured value of the specific surface area is measured by the BET method.
D = 6000 / SA M xd (3)

微細粒子22の平均粒子径(DC2)は4〜60nmの範囲が好ましく、5〜40nmの範囲がさらに好ましい。該平均粒子径(DC2)が小さいと、安定に単分散したヒマワリ状無機酸化物粒子を得ることが難しい。該平均粒子径(DC2)が大きすぎても、微細凹凸が大きくなり、ヒマワリ状無機酸化物粒子の比表面積も低くなるので、充分な撥水性が得られ難くなる。 The average particle diameter (D C2 ) of the fine particles 22 is preferably in the range of 4 to 60 nm, and more preferably in the range of 5 to 40 nm. When the average particle diameter (D C2 ) is small, it is difficult to obtain sunflower-like inorganic oxide particles that are stably monodispersed. Even if the average particle diameter (D C2 ) is too large, fine irregularities are increased and the specific surface area of the sunflower-like inorganic oxide particles is also decreased, so that it is difficult to obtain sufficient water repellency.

基体粒子21の平均粒子径(DC1)と微細粒子22の平均粒子径(DC2)との比(DC2)/(DC1)は0.007〜0.5の範囲が好ましく、0.008〜0.4の範囲がさらに好ましい。該比(DC2)/(DC1)が前記範囲よりも小さいと微細凹凸が小さくなり、充分な撥水性が得られ難い。該比(DC2)/(DC1)が前記範囲を超える微細凹凸が大きくなり、充分な撥水性が得られ難い。 The average ratio of particle diameter (D C2) having an average particle diameter (D C1) and fine particles 22 of the base particles 21 (D C2) / (D C1) is preferably in the range of 0.007 to 0.5, 0. The range of 008 to 0.4 is more preferable. When the ratio (D C2 ) / (D C1 ) is smaller than the above range, fine irregularities are reduced, and it is difficult to obtain sufficient water repellency. Fine irregularities with the ratio (D C2 ) / (D C1 ) exceeding the above range become large, and it is difficult to obtain sufficient water repellency.

基体粒子21の微細粒子22による被覆率は下記式(4)によって表される。該被覆率は30〜100%の範囲が好ましく、50〜100%の範囲がさらに好ましい。該被覆率が小さいと、微細凹凸が充分に形成できない。基体粒子21の表面に微細粒子22が被覆したヒマワリ状粒子の平均粒子径は、被覆率によっても異なるが、概ね48〜720nmの範囲である。   The coverage of the base particles 21 with the fine particles 22 is expressed by the following formula (4). The coverage is preferably in the range of 30 to 100%, and more preferably in the range of 50 to 100%. If the coverage is small, sufficient fine irregularities cannot be formed. The average particle diameter of the sunflower-like particles with the fine particles 22 coated on the surface of the substrate particles 21 is generally in the range of 48 to 720 nm, although it varies depending on the coverage.

被覆率(%)={[ヒマワリ状無機酸化物粒子の実測の比表面積(SC1)−基体用無機酸化物粒子の実測の比表面積(S)]/[100%被覆したとした場合のヒマワリ状無機酸化物粒子の計算上の比表面積(S )−基体用無機酸化物粒子の実測の比表面積(S)]}×100・・・・・・・(4) Covering rate (%) = {[actual specific surface area of sunflower-like inorganic oxide particles (S C1 ) −measured specific surface area of inorganic oxide particles for substrate (S M )] / [100% covered) Calculated specific surface area of sunflower-like inorganic oxide particles (S C ) —Measured specific surface area of inorganic oxide particles for substrate (S M )]} × 100 (4)

基体粒子の表面を微細粒子で100%被覆したとした場合のヒマワリ状無機酸化物粒子の計算上の比表面積(S)は、次の算定方法で求めた。
微細粒子の1個当たりの表面積=4π( (DC2)/2)
基体粒子の1個当たりの表面積=4π( (DC1)/2)
ヒマワリ状無機酸化物粒子1個あたりの微細粒子の個数(n)=4π(DC1/2+DC2/2)(R/(π(DC2/2))) 〔ここで、Rは最密充填時の充填率を表す。〕
1個当たりの微細粒子の重量=(4/3π)(DC2/2)(dC2
1個当たりの基体粒子の重量=(4/3π)(DC1/2)(dC1
〔ここで、dC1は基体粒子の粒子密度(g/ml)を、dC2は微細粒子の粒子密度(g/ml)を表す。〕
ヒマワリ状無機酸化物粒子1個当たりの重量=[微細粒子の個数(n)]×[微細粒子1個当たりの重量]+[基体粒子1個の重量]
これらより、ヒマワリ状無機酸化物粒子の1個あたりの表面積=[基体粒子の1個当たりの表面積]+[微細粒子の1個当たりの表面積]×[ヒマワリ状無機酸化物粒子1個あたりの微細粒子の個数(n)] となる。
従って、ヒマワリ状無機酸化物粒子の計算上の比表面積(S)(m/g)は、
比表面積(S)=[ヒマワリ状無機酸化物粒子の1個あたりの表面積]/[ヒマワリ状無機酸化物粒子1個当たりの重量] となる。
なお、シリカの粒子密度は2.2g/mlであり、基体粒子や微細粒子としてシリカを使用した場合はこの値を使用した。
Computational specific surface area of the sunflower-like inorganic oxide particles when the surface of the base particles was coated 100% fine particles (S C) was determined by the following calculation method.
Surface area per fine particle = 4π ((D C2 ) / 2) 2
Surface area per substrate particle = 4π ((D C1 ) / 2) 2
Number of fine particles per sunflower-like inorganic oxide particle (n) = 4π (D C1 / 2 + D C2 / 2) 2 (R / (π (D C2 / 2) 2 )) Represents the filling rate during close packing. ]
Weight of fine particles per particle = (4 / 3π) (D C2 / 2) (d C2 )
Weight of substrate particles per particle = (4 / 3π) (D C1 / 2) (d C1 )
[Where d C1 represents the particle density (g / ml) of the base particles, and d C2 represents the particle density (g / ml) of the fine particles. ]
Weight per sunflower-like inorganic oxide particle = [number of fine particles (n)] × [weight per fine particle] + [weight of one base particle]
From these, the surface area per sunflower-like inorganic oxide particle = [surface area per substrate particle] + [surface area per fine particle] × [fine per sunflower-like inorganic oxide particle] The number of particles (n)].
Therefore, the calculated specific surface area (S C ) (m 2 / g) of the sunflower-like inorganic oxide particles is
Specific surface area (S C ) = [surface area per sunflower-like inorganic oxide particle] / [weight per sunflower-like inorganic oxide particle]
The particle density of silica was 2.2 g / ml, and this value was used when silica was used as the base particle or fine particle.

基体粒子21および微細粒子22の成分は同一であっても異なっていてもよく、SiO、Al、Sb、ZrO、TiO、Fe、CeO、AgO、CuO、CuO、ZnOおよびこれらの複合酸化物または混合物から選ばれる少なくとも1種であることが好ましい。これらの成分の粒子は粒子径が前記範囲にある球状粒子を容易に得ることができ、化学的にも安定であるので好適に用いることができる。なかでも、SiO粒子は、粒子径の大小に拘わらず均一な粒子径を有する球状粒子が得られ、化学的に安定であるので好ましい。 The components of the base particles 21 and the fine particles 22 may be the same or different. SiO 2 , Al 2 O 3 , Sb 2 O 5 , ZrO 2 , TiO 2 , Fe 2 O 3 , CeO 2 , AgO, It is preferably at least one selected from CuO, Cu 2 O, ZnO and complex oxides or mixtures thereof. As the particles of these components, spherical particles having a particle diameter in the above range can be easily obtained, and since they are chemically stable, they can be preferably used. Of these, SiO 2 particles are preferable because spherical particles having a uniform particle size can be obtained regardless of the size of the particle size and are chemically stable.

ヒマワリ状粒子は、正または負の表面電位を有する基体粒子の水分散液と、これと反対の表面電気を有する微細粒子の水分散液を混合してpHを弱酸性に調整し、該混合液をイオン交換樹脂に通液して陰イオンを除去し、pHをほぼ中性の範囲に調整し、乾燥することによって得ることができる。もしくは、基体粒子の表面電位と微細粒子の表面電位が同符号の時は、その積は400mV以下が好ましい。 The sunflower-like particles are prepared by mixing an aqueous dispersion of base particles having a positive or negative surface potential and an aqueous dispersion of fine particles having the opposite surface electricity to adjust the pH to a weak acidity, Is passed through an ion exchange resin to remove anions, the pH is adjusted to a neutral range, and drying is performed. Alternatively, when the surface potential of the substrate particles and the surface potential of the fine particles have the same sign, the product is preferably 400 mV 2 or less.

無機酸化物粒子5としてヒマワリ状粒子20を用いた撥水性被膜付基材の断面図を図4に示す。基材1の表面に形成された撥水性の被膜2は粒子層3とオーバーコート層7によって形成されている。該粒子層3は、基体1の表面に並んだ多数のヒマワリ状粒子20を含み、該ヒマワリ状粒子20は基体粒子21と該基体粒子表面の微細粒子22によって形成されている。該粒子層3は多数の該ヒマワリ状粒子20と、該ヒマワリ状粒子20の相互の間隙および該ヒマワリ状粒子20と前記基材1の間隙に介在している接着材4によって形成されている。   FIG. 4 shows a cross-sectional view of a water repellent coated substrate using sunflower-like particles 20 as the inorganic oxide particles 5. A water-repellent coating 2 formed on the surface of the substrate 1 is formed by a particle layer 3 and an overcoat layer 7. The particle layer 3 includes a large number of sunflower-like particles 20 arranged on the surface of the substrate 1, and the sunflower-like particles 20 are formed by substrate particles 21 and fine particles 22 on the surface of the substrate particles. The particle layer 3 is formed by a large number of the sunflower-like particles 20, the gaps between the sunflower-like particles 20 and the adhesive 4 interposed in the gaps between the sunflower-like particles 20 and the substrate 1.

該ヒマワリ状粒子20の上部は前記接着材4の表面から露出しており、ヒマワリ状粒子20の上部が露出していることによって高低差の大きな凹凸形状が形成されている。さらに、該ヒマワリ状粒子20は基体粒子表面の微細粒子22よって形成された微細凹凸を表面に有している。   The upper part of the sunflower-like particles 20 is exposed from the surface of the adhesive material 4, and the upper and lower parts of the sunflower-like particles 20 are exposed to form an uneven shape with a large height difference. Further, the sunflower-like particles 20 have fine irregularities formed on the surface thereof by the fine particles 22 on the surface of the base particles.

前記オーバーコート層7は撥水性の表面層であり、好ましくは、フッ素含有化合物、アルキル基含有化合物またはシリコーン系化合物の少なくとも1種を含む層である。該オーバーコート層7のこれらの化合物は図1に示す撥水性被膜付基材1のオーバーコート層7含まるものと同じで良い。   The overcoat layer 7 is a water-repellent surface layer, and is preferably a layer containing at least one of a fluorine-containing compound, an alkyl group-containing compound or a silicone compound. These compounds in the overcoat layer 7 may be the same as those contained in the overcoat layer 7 of the substrate 1 with a water-repellent film shown in FIG.

オーバーコート層7によって粒子層3の表面が覆われている。該オーバーコート層7の膜厚は、ヒマワリ状粒子20によって形成された凹凸形状、および該ヒマワリ状粒子表面の微細凹凸が保たれる薄い膜厚であり、例えば、図1に示す撥水性被膜付基材1のオーバーコート層7と同様の膜厚であればよい。   The surface of the particle layer 3 is covered with the overcoat layer 7. The film thickness of the overcoat layer 7 is a thin film thickness that maintains the uneven shape formed by the sunflower-like particles 20 and the fine unevenness on the surface of the sunflower-like particles. The film thickness may be the same as that of the overcoat layer 7 of the substrate 1.

なお、無機酸化物粒子の粒子層の表面に、金属アルコキシドの部分加水分解物や有機樹脂のモノマーやポリマーの分子状のマトリックス成分(接着材)をコートして粒子と基材を接着させる場合、あるいは、無機酸化物粒子より大きなエマルジョン樹脂粒子と無機酸化物粒子とを混合したマトリックス成分を含む塗布液を用いて粒子層を形成する場合、前記マトリックス成分が微細凹凸を埋めた状態になると撥水性の高い被膜が得られない。あるいは基体とヒマワリ状粒子間に均等にエマルジョン粒子が侵入しないため、ヒマワリ状粒子を基体に固着できない。また、このようなマトリックス成分を使用するときに、無機酸化物粒子をクラスター状にして被膜を形成することが知られているが、被膜の密着性が不十分であったり、繊維に被膜を形成すると繊維の風合いを損ねたり、透明被膜を得たいときに透明性の低い膜になる場合がある。   When the surface of the particle layer of inorganic oxide particles is coated with a partial hydrolyzate of metal alkoxide, a monomer of an organic resin, or a molecular matrix component (adhesive) of a polymer to adhere the particle and the substrate, Alternatively, when a particle layer is formed using a coating liquid containing a matrix component in which emulsion resin particles and inorganic oxide particles larger than the inorganic oxide particles are mixed, the water repellency is obtained when the matrix component fills fine irregularities. High film thickness cannot be obtained. Alternatively, since the emulsion particles do not penetrate evenly between the substrate and the sunflower-like particles, the sunflower-like particles cannot be fixed to the substrate. In addition, when such a matrix component is used, it is known that inorganic oxide particles are clustered to form a film, but the film adhesion is insufficient, or a film is formed on the fiber. As a result, the texture of the fiber may be impaired, or a film with low transparency may be obtained when it is desired to obtain a transparent film.

一方、本発明の撥水性被膜は、無機酸化物粒子5によって形成された高低差の大きな凹凸形状、および該ヒマワリ状粒子20では該粒子表面の微細凹凸がオーバーコート層7によって埋められず、粒子層3の表面を覆うオーバーコート層7の膜厚は、前記凹凸形状および微細凹凸を保つ薄い膜厚であるので、被膜表面の凹凸構造による効果が十分に発揮され、高い撥水性を有する。また、被膜の密着性に優れており、繊維上に被膜を形成しても繊維の風合いが損なわれず、また透明性の高い被膜を得ることができる。   On the other hand, the water-repellent coating of the present invention has a large uneven shape with a difference in height formed by the inorganic oxide particles 5 and the sunflower-like particles 20 in which fine unevenness on the particle surface is not filled with the overcoat layer 7. Since the film thickness of the overcoat layer 7 covering the surface of the layer 3 is a thin film thickness that keeps the uneven shape and fine unevenness, the effect of the uneven structure on the surface of the coating is sufficiently exhibited and has high water repellency. Moreover, it is excellent in the adhesiveness of the coating, and even if a coating is formed on the fiber, the texture of the fiber is not impaired, and a highly transparent coating can be obtained.

〔撥水性被膜形成用塗布液〕
本発明の撥水性被膜付基材を製造する被膜形成用塗布液は、無機酸化物粒子と樹脂エマルジョン粒子が極性溶媒中に混在して単分散している粒子層形成用塗布液と、撥水性のオーバーコート層形成用塗布液とからなる。
[Coating liquid for forming a water-repellent film]
The coating solution for forming a film for producing a substrate with a water-repellent coating according to the present invention includes a coating solution for forming a particle layer in which inorganic oxide particles and resin emulsion particles are mixed and monodispersed in a polar solvent, and a water-repellent agent. And an overcoat layer forming coating solution.

粒子層形成用塗布液
粒子層形成用塗布液は無機酸化物粒子と樹脂エマルジョン粒子が極性溶媒中に混在して単分散している液である。該塗布液において、樹脂エマルジョン粒子の平均粒子径(D)は無機酸化物粒子の平均粒子径(D)と同等か小さい(D≦D)ことが好ましい。樹脂エマルジョン粒子の平均粒子径(D)が無機酸化物粒子の平均粒子径(D)と同等か小さい(D≦D)ことによって、無機酸化物粒子が樹脂エマルジョン粒子によって覆われ難くすることができる。樹脂エマルジョン粒子の平均粒子径(D)が無機酸化物粒子の平均粒子径(D)より大きいと、樹脂エマルジョン粒子が崩壊したときに、無機酸化物粒子が崩壊した樹脂によって被覆される場合がある。
Particle Layer Forming Coating Liquid The particle layer forming coating liquid is a liquid in which inorganic oxide particles and resin emulsion particles are mixed and monodispersed in a polar solvent. In the coating solution, the average particle size (D e ) of the resin emulsion particles is preferably equal to or smaller than the average particle size (D P ) of the inorganic oxide particles (D e ≦ D P ). When the average particle diameter (D e ) of the resin emulsion particles is equal to or smaller than the average particle diameter (D P ) of the inorganic oxide particles (D e ≦ D P ), the inorganic oxide particles are not easily covered with the resin emulsion particles. can do. When the average particle size (D e ) of the resin emulsion particles is larger than the average particle size (D P ) of the inorganic oxide particles, when the resin emulsion particles are collapsed, the inorganic oxide particles are covered with the collapsed resin There is.

粒子層形成用塗布液において、無機酸化物粒子の体積量(G)と、樹脂エマルジョン粒子の体積量(M)との体積量比(G/[G+M])は0.25以上(無機酸化物粒子の体積量Gが25%以上)の範囲が好ましく、0.29〜0.9の範囲がさらに好ましい。該量比(G/[G+M])が前記範囲より小さいと被膜中の無機酸化物粒子の数が少なくなり、被膜の撥水性および耐久性が不十分になる懸念がある。一方、該量比(G/[G+M])が前記範囲より大きいと相対的に樹脂量が少なくなり、接着強度が低下する懸念がある。   In the particle layer forming coating solution, the volume ratio (G / [G + M]) between the volume (G) of the inorganic oxide particles and the volume (M) of the resin emulsion particles is 0.25 or more (inorganic oxide) The range of the volume G of the particles is 25% or more is preferable, and the range of 0.29 to 0.9 is more preferable. When the amount ratio (G / [G + M]) is smaller than the above range, the number of inorganic oxide particles in the coating is decreased, and there is a concern that the water repellency and durability of the coating are insufficient. On the other hand, if the amount ratio (G / [G + M]) is larger than the above range, the amount of resin is relatively small, and there is a concern that the adhesive strength is lowered.

粒子層形成用塗布液は、無機酸化物粒子が極性溶媒に分散した分散液と、樹脂エマルジョン粒子が極性溶媒に懸濁した懸濁液とからなり、該分散液と該懸濁液の混合によって無機酸化物粒子と樹脂エマルジョン粒子が極性溶媒中に混在して分散した状態になるものを用いることができる。前記粒子層形成用塗布液を無機酸化物粒子分散液と樹脂エマルジョン粒子懸濁液の二液にすることによって保存性を高めることができる。   The coating solution for forming a particle layer is composed of a dispersion in which inorganic oxide particles are dispersed in a polar solvent, and a suspension in which resin emulsion particles are suspended in a polar solvent. By mixing the dispersion and the suspension, A material in which inorganic oxide particles and resin emulsion particles are mixed and dispersed in a polar solvent can be used. By making the coating solution for forming the particle layer into two liquids of the inorganic oxide particle dispersion and the resin emulsion particle suspension, the storage stability can be improved.

樹脂エマルジョン粒子懸濁液を調製せずに、無機酸化物粒子分散液に樹脂を直接に添加し、撹拌して樹脂エマルジョン粒子を形成させて前記粒子層形成用塗布液を調製してもよい。この場合には使用時に二液を混合する必要が無いので作業性が良い。   Instead of preparing a resin emulsion particle suspension, the coating liquid for particle layer formation may be prepared by directly adding a resin to the inorganic oxide particle dispersion and stirring to form resin emulsion particles. In this case, since it is not necessary to mix two liquids at the time of use, workability is good.

無機酸化物粒子分散液と樹脂エマルジョン粒子懸濁液と調製し、これらを混合して粒子層形成用塗布液を調製する工程を以下に示す。
無機酸化物粒子分散液の調製
無機酸化物粒子を極性溶媒に加え、ミキサーなどで撹拌して無機酸化物粒子分散液を調製する。無機酸化物粒子分散液の固形分濃度は0.1〜20重量%が好ましく、0.2〜15重量%がさらに好ましい。該無機酸化物粒子の平均粒子径(D)は20〜600nmの範囲が好ましい。
A process of preparing an inorganic oxide particle dispersion and a resin emulsion particle suspension and mixing them to prepare a coating solution for forming a particle layer is shown below.
Preparation of inorganic oxide particle dispersion The inorganic oxide particles are added to a polar solvent and stirred with a mixer or the like to prepare an inorganic oxide particle dispersion. The solid content concentration of the inorganic oxide particle dispersion is preferably 0.1 to 20% by weight, more preferably 0.2 to 15% by weight. The average particle diameter (D P ) of the inorganic oxide particles is preferably in the range of 20 to 600 nm.

前記無機酸化物粒子分散液の極性溶媒は、例えば、以下の溶媒(イ)〜(ト)を用いることができる。これらは単独で使用してもよく、また2種以上混合して使用してもよい。
(イ)メタノール、エタノール、プロパノール、2−プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール等のアルコール類。
(ロ)酢酸メチル、酢酸エチル、酢酸イソプルピル、酢酸プルピル、酢酸イソブチル、酢酸ブチル、酢酸イソペンチル、酢酸ペンチル、酢酸3−メトキシブチル、酢酸2−エチルブチル、酢酸シクロヘキシル、エチレングリコールモノアセテート等のエステル類。
(ハ)エチレングリコール、ヘキシレングリコール等のグリコール類。
(ニ)ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプルピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プルピレングリコールモノプロピルエーテル等のエーテル類を含む撥水性溶媒。
(ホ)アセトン、メチルエチルケトン、メチルイソブチルケトン、ブチルメチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジプロピルケトン、メチルペンチルケトン、ジイソブチルケトン等のケトン類。
(ヘ)トルエン等、N−メチルピロリドン等。
(ト)水
For example, the following solvents (A) to (G) can be used as the polar solvent of the inorganic oxide particle dispersion. These may be used singly or in combination of two or more.
(A) Alcohols such as methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol and the like.
(B) Esters such as methyl acetate, ethyl acetate, isopropyl acetate, isopropyl acetate, isobutyl acetate, butyl acetate, isopentyl acetate, pentyl acetate, 3-methoxybutyl acetate, 2-ethylbutyl acetate, cyclohexyl acetate, and ethylene glycol monoacetate.
(C) Glycols such as ethylene glycol and hexylene glycol.
(D) Diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol isopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, pull Water repellent solvent containing ethers such as pyrene glycol monopropyl ether.
(E) Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, butyl methyl ketone, cyclohexanone, methyl cyclohexanone, dipropyl ketone, methyl pentyl ketone, and diisobutyl ketone.
(F) Toluene, N-methylpyrrolidone, etc.
(G) Water

樹脂エマルジョン粒子懸濁液の調製
樹脂エマルジョン粒子懸濁液は樹脂エマルジョン粒子が極性溶媒に懸濁した懸濁液である。エマルジョン樹脂としては、エステル系樹脂、ポリカーボネート系樹脂、アミド系樹脂、イミド系樹脂、ポリフェニレンオキサイド系樹脂、アクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、シリコーン系樹脂、ウレタン系樹脂、またはスチレン系樹脂、あるいはこれらの共重合樹脂が好ましい。被膜形成工程で樹脂エマルジョン粒子を崩壊させて接着材を形成するので、これらの樹脂は接着材の成分になる。
Preparation of Resin Emulsion Particle Suspension Resin emulsion particle suspension is a suspension in which resin emulsion particles are suspended in a polar solvent. Emulsion resins include ester resins, polycarbonate resins, amide resins, imide resins, polyphenylene oxide resins, acrylic resins, vinyl chloride resins, vinyl acetate resins, silicone resins, urethane resins, or styrene. A resin based on these or a copolymer resin thereof is preferred. Since the resin emulsion particles are collapsed in the film forming step to form an adhesive, these resins become components of the adhesive.

前記樹脂を極性溶媒に加え、ミキサー等で撹拌すれば極性溶媒中で樹脂エマルジョン粒子が形成され、樹脂エマルジョン粒子懸濁液を得ることができる。極性溶媒は無機酸化物粒子分散液と同様のものを使用することができる。界面活性剤やpH調整剤を添加して高速撹拌することによって、樹脂エマルジョン粒子の粒子径を調整することができる。界面活性剤やpH調整剤の添加量、撹拌速度は樹脂および極性溶媒の種類、分散液中の樹脂量などによって樹脂エマルジョン粒子が目的の粒子径になるように調整すればよい。なお、樹脂エマルジョン粒子懸濁液は市販品を用いることができる。   If the resin is added to a polar solvent and stirred with a mixer or the like, resin emulsion particles are formed in the polar solvent, and a resin emulsion particle suspension can be obtained. A polar solvent similar to the inorganic oxide particle dispersion can be used. The particle diameter of the resin emulsion particles can be adjusted by adding a surfactant or a pH adjuster and stirring at high speed. The addition amount of the surfactant and the pH adjusting agent and the stirring speed may be adjusted so that the resin emulsion particles have a desired particle size depending on the kind of the resin and the polar solvent, the amount of the resin in the dispersion, and the like. A commercially available product can be used as the resin emulsion particle suspension.

粒子層形成用塗布液の調製
無機酸化物粒子分散液と樹脂エマルジョン粒子懸濁液を混合し、撹拌して無機酸化物粒子と樹脂エマルジョン粒子とが極性溶媒中に混在し単分散した粒子層形成用塗布液を調製する。無機酸化物粒子分散液に珪酸液を添加し、加熱熟成させた後に樹脂エマルジョン粒子懸濁液を混合すると良い。珪酸液を添加すると、無機酸化物粒子としてヒマワリ状粒子を用いたときに、ヒマワリ状粒子の微細粒子が基体粒子に良く固着して脱落しない。
Preparation of coating solution for particle layer formation Inorganic particle dispersion and resin emulsion particle suspension are mixed and stirred to form a particle layer in which inorganic oxide particles and resin emulsion particles are mixed in a polar solvent and monodispersed. A coating solution is prepared. It is advisable to add a silicic acid solution to the inorganic oxide particle dispersion and heat aging to mix the resin emulsion particle suspension. When the silicic acid solution is added, when sunflower-like particles are used as the inorganic oxide particles, the fine particles of the sunflower-like particles are well fixed to the base particles and do not fall off.

前記塗布液には、架橋材や架橋抑制材などを入れ、エマルション粒子が崩壊・固着する温度を制御してもよい。さらにレベリング剤や分散剤を入れ、塗膜をより綺麗にすることができる。また必要に応じて光重合開始剤や熱硬化促進剤を入れてもよい。   In the coating solution, a crosslinking material or a crosslinking inhibitor may be added to control the temperature at which the emulsion particles are disintegrated and fixed. Furthermore, a leveling agent and a dispersing agent can be added to make the coating film cleaner. Moreover, you may put a photoinitiator and a thermosetting accelerator as needed.

粒子層形成用塗布液において、無機酸化物粒子濃度は0.1〜10重量%の範囲が好ましく、0.5〜8重量%の範囲がさらに好ましい。該濃度が前記範囲より低いと、無機酸化物粒子層の厚みが薄く、所望の凹凸が形成できない場合があり、また、無機酸化物粒子の無い塗布ムラが生じやすいため、充分な撥水性、強度、硬度、耐擦傷性が得られない場合がある。一方、該濃度が前記範囲より高いと、塗布方法によっても異なるが、塗工性が低下して所望の凹凸を形成できない場合がある。また、無機酸化物粒子層が厚くなり過ぎて透明性が低下し、またヘーズが高くなる場合がある。   In the coating solution for forming a particle layer, the inorganic oxide particle concentration is preferably in the range of 0.1 to 10% by weight, and more preferably in the range of 0.5 to 8% by weight. If the concentration is lower than the above range, the thickness of the inorganic oxide particle layer may be thin and desired irregularities may not be formed, and coating unevenness without inorganic oxide particles is likely to occur. , Hardness and scratch resistance may not be obtained. On the other hand, when the concentration is higher than the above range, although depending on the coating method, there are cases where the coating property is lowered and desired irregularities cannot be formed. In addition, the inorganic oxide particle layer may become too thick, resulting in a decrease in transparency and an increase in haze.

粒子層形成用塗布液の樹脂エマルジョンの濃度は0.1〜10重量%の範囲が好ましく、0.5〜8重量%の範囲がさらに好ましい。樹脂エマルジョン濃度が前記範囲より低いと、十分な膜厚の接着材を形成することができず、接着強度も低下する懸念がある。一方、樹脂エマルジョン濃度が前記範囲より高いと、相対的に無機酸化物粒子濃度が低くなり、無機酸化物粒子層の厚みが薄く、所望の凹凸が形成できない場合がある。   The concentration of the resin emulsion in the coating solution for forming the particle layer is preferably in the range of 0.1 to 10% by weight, and more preferably in the range of 0.5 to 8% by weight. When the resin emulsion concentration is lower than the above range, an adhesive having a sufficient film thickness cannot be formed, and the adhesive strength may be lowered. On the other hand, when the resin emulsion concentration is higher than the above range, the inorganic oxide particle concentration is relatively low, the thickness of the inorganic oxide particle layer is thin, and desired unevenness may not be formed.

前述したように、粒子層形成用塗布液に含まれる樹脂エマルジョン粒子の平均粒子径(D )は無機酸化物粒子の平均粒子径(D )と同等か小さい(D ≦D )ことが好ましい。また、無機酸化物粒子の体積量(G)と、樹脂エマルジョン粒子の体積量(M)との体積量比(G/[G+M])は0.25以上(無機酸化物粒子体積量Gが25重量%以上)の範囲が好ましく、0.29〜0.9の範囲がさらに好ましい。これらの体積を算出するには、樹脂エマルションは比重1.1、シリカの比重は2.2を用いて計算した。 As described above, the average particle size (D e ) of the resin emulsion particles contained in the coating solution for forming the particle layer is equal to or smaller than the average particle size (D P ) of the inorganic oxide particles (D e ≦ D P ). Is preferred. The volume ratio (G / [G + M]) of the volume (G) of the inorganic oxide particles and the volume (M) of the resin emulsion particles is 0.25 or more (the volume of the inorganic oxide particles G is 25). % By weight) is preferable, and a range of 0.29 to 0.9 is more preferable. In order to calculate these volumes, the specific gravity of the resin emulsion was 1.1 and the specific gravity of silica was 2.2.

オーバーコート層形成用塗布液の調製
オーバーコート層形成用塗布液は、粒子層表面を覆う撥水性のオーバーコート層を形成する液であり、フッ素含有化合物、アルキル基含有化合物またはシリコーン系化合物の少なくとも1種を含むものが好ましい。
フッ素含有化合物としては、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシランなどの含フッ素シラン誘導体、パーフルオロヘキシルホスホン酸、パーフルオロオクチルホスホン酸、パーフルオロデシルホスホン酸などの含フッ素ホスホン酸誘導体、あるいは市販品ではフロロテクノロジー製のフロロサーフ、NODASCREEN製のINTシリーズなどが挙げられる。
Preparation of Overcoat Layer Forming Coating Liquid The overcoat layer forming coating liquid is a liquid that forms a water-repellent overcoat layer that covers the surface of the particle layer, and includes at least a fluorine-containing compound, an alkyl group-containing compound, or a silicone-based compound. Those containing one kind are preferred.
Examples of the fluorine-containing compound include perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltriisopropoxysilane, trifluoropropyltrimethoxysilane, and other fluorine-containing silane derivatives, perfluorohexylphosphonic acid, Fluorine-containing phosphonic acid derivatives such as perfluorooctyl phosphonic acid and perfluorodecyl phosphonic acid, or commercially available products such as Fluorosurf manufactured by Fluoro Technology and INT series manufactured by NODASCREEN are listed.

アルキル基含有化合物としては、10−カルボキシデシルホスホン酸、11−ヒドロキシウンデシルホスホン酸、11−(ナフタレン−2−イルオキシ)ウンデシルホスホン酸、11−[2[2−(2−メトキシエトキシ)エトキシ]エトキシ]ウンデシルホスホン酸、オクタデシルホスホン酸、11−フタルイミドウンデシルホスホン酸などホスホン酸誘導体が挙げられる。   Examples of the alkyl group-containing compound include 10-carboxydecylphosphonic acid, 11-hydroxyundecylphosphonic acid, 11- (naphthalen-2-yloxy) undecylphosphonic acid, and 11- [2 [2- (2-methoxyethoxy) ethoxy. ] Ethoxy] undecylphosphonic acid, octadecylphosphonic acid, 11-phthalimidoundecylphosphonic acid and other phosphonic acid derivatives.

シリコーン系化合物としては変性反応性シリコーン等が挙げられる。該変性反応性シリコーンは、官能基としてアクリル基(メタ)アクリロキシ基、エポキシ基、シラノール基、フェノール基、カルボキシル基などを含むものが好ましい。なかでも、式:R−SiX4−n(但し、式中、Rは炭素数1〜10の炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数)で表される加水分解性有機ケイ素化合物の加水分解物や該加水分解物が加熱処理によって重縮合した加水分解重縮合物が好ましい。 Examples of silicone compounds include modified reactive silicones. The modified reactive silicone preferably contains an acrylic group , a (meth) acryloxy group, an epoxy group, a silanol group, a phenol group, a carboxyl group or the like as a functional group. Among them, the formula: R n -SiX 4-n (In the formula, R represents a hydrocarbon group having 1 to 10 carbon atoms, optionally being the same or different .X: 1 carbon atoms Hydrolyzate of hydrolyzable organosilicon compound represented by -4 alkoxy group, hydroxyl group, halogen, hydrogen, n: integer of 1 to 3) or hydrolytic polycondensation in which the hydrolyzate is polycondensed by heat treatment Things are preferred.

このような加水分解性有機ケイ素化合物としては、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル−3,3,3−トリフルオロプロピルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシメチルトリメトキシシラン、γ−グリシドキシメチルトリエトキシシラン、γ−グリシドキシエチルトリメトキシシラン、γ−グリシドキシエチルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−(β−グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ−(メタ)アクリロオキシメチルトリエトキシシラン、γ−(メタ)アクリロオキシエチルトリメトキシシラン、γ−(メタ)アクリロオキシエチルトリエトキシシラン、γ−(メタ)アクリロオキシプロピルトリメトキシシラン、γ−(メタ)アクリロオキシプロピルトリメトキシシラン、γ−(メタ)アクリロオキシプロピルトリエトキシシラン、γ−(メタ)アクリロオキシプロピルトリエトキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、へキシルトリエトキシシラオクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3−ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、N−β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン等およびこれらの混合物が挙げられる。   Examples of such hydrolyzable organosilicon compounds include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, Isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxymethyltrimethoxysilane, γ-glycidoxymethyltriethoxysilane, γ-glycidoxyethyltri Methoxysilane, γ-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltri Ethoxysilane, γ- (β-glycidoxyethoxy) propyltrimethoxysilane, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltriethoxysilane, γ- (meth) acryl Rooxyethyltrimethoxysilane, γ- (meth) acrylooxyethyltriethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meta ) Acryloxypropyltriethoxysilane, γ- (meth) a Lilooxypropyltriethoxysilane, butyltrimethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilaoctyltriethoxysilane, decyltriethoxysilane, butyltriethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilane, octyltriethoxy Silane, decyltriethoxysilane, 3-ureidoisopropylpropyltriethoxysilane, perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltriisopropoxysilane, trifluoropropyltrimethoxysilane, N- β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, trimethylsilanol, methyltrichlorosilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ -Aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, trimethylsilanol, methyltrichlorosilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropyl Methyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-mercaptopropylmethyldimethoxysilane and the like, and These mixtures are mentioned.

前記シラン化合物のなかで、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシランなどのフッ素置換炭化水素基を含む加水分解性有機ケイ素化合物の加水分解重縮合物は、より撥水性に優れた被膜を得ることができる。   Among the silane compounds, hydrolyzable containing fluorine-substituted hydrocarbon groups such as perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltriisopropoxysilane, and trifluoropropyltrimethoxysilane. A hydrolyzed polycondensate of an organosilicon compound can provide a film with better water repellency.

フッ素含有化合物、アルキル基含有化合物またはシリコーン系化合物などのオーバーコート層形成成分を分散媒に分散させてオーバーコート層形成用塗布液を調製する。オーバーコート層形成用塗布液の分散媒としては、前記無機酸化物粒子分散液の分散媒と同様の分散媒を用いることができる。   An overcoat layer-forming coating solution is prepared by dispersing an overcoat layer-forming component such as a fluorine-containing compound, an alkyl group-containing compound, or a silicone-based compound in a dispersion medium. As the dispersion medium for the coating liquid for forming the overcoat layer, the same dispersion medium as that for the inorganic oxide particle dispersion liquid can be used.

オーバーコート層形成用塗布液の濃度は固形分としてとして0.05〜20重量%が好ましく、0.1〜10重量%の範囲がさらに好ましい。該塗布液の濃度が低いと、一部オーバーコート層の無い塗布ムラが生じ、充分な撥水性が得られない場合がある。オーバーコート層形成用塗布液の濃度が高すぎても、所望の凹凸構造が得られない場合があり、撥水性が向上せず、むしろ低下する場合がある。ただし、オーバーコート層形成用塗布液の濃度は基体との濡れ性で適宜調整することが好ましい。濡れ性の良い基体であれば少なめの調整が、濡れにくい基体であれば、前処理するか固形分としてとして多めに調整することが好ましい。   The concentration of the overcoat layer-forming coating solution is preferably 0.05 to 20% by weight, more preferably 0.1 to 10% by weight as the solid content. If the concentration of the coating solution is low, coating unevenness without a partial overcoat layer may occur, and sufficient water repellency may not be obtained. Even if the concentration of the overcoat layer forming coating solution is too high, the desired uneven structure may not be obtained, and the water repellency may not be improved, but rather may be lowered. However, the concentration of the overcoat layer forming coating solution is preferably adjusted as appropriate by the wettability with the substrate. If the substrate has good wettability, a small amount of adjustment is preferable. If the substrate is difficult to wet, it is preferable to pre-treat or adjust the solid content as much as possible.

〔撥水性被膜付基材の製造方法〕
本発明の撥水性被膜付基材は、前記被膜形成用塗布液を用い、該塗布液を基材に塗布して前記無機酸化物粒子相互の間隙に前記樹脂エマルジョン粒子が介在した粒子層を形成し、塗布後、加熱乾燥して該樹脂エマルジョン粒子の崩壊によって前記無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材との間隙に樹脂(接着材)が入り込み、該無機酸化物粒子の上部が該接着材から露出した凹凸形状を有する粒子層を形成し、該粒子層の表面に撥水性のオーバーコート層を形成することによって製造される。
[Method for producing substrate with water-repellent coating]
The substrate with a water-repellent coating of the present invention uses the coating-forming coating solution, and the coating solution is applied to the substrate to form a particle layer in which the resin emulsion particles are interposed between the inorganic oxide particles. After the coating, the resin emulsion particles are disintegrated by heating and drying so that a resin (adhesive) enters the gap between the inorganic oxide particles and the gap between the inorganic oxide particles and the base material. It is manufactured by forming a particle layer having a concavo-convex shape in which the upper part of the particle is exposed from the adhesive, and forming a water-repellent overcoat layer on the surface of the particle layer.

撥水性被膜付基材の製造方法の概略を図5に示す。図示する製造工程は、(I)無機酸化物粒子分散液調製工程、(II)樹脂エマルジョン粒子懸濁液調整工程、(III)前記分散液と前記懸濁液を混合して粒子層形成用塗布液を調製する工程、(IV)塗布工程、(V)粒子層形成工程、(VI)オーバーコート層形成工程を示している。なお、(I)工程〜(III)工程に代えて予め調整した粒子層形成用塗布液を用いてもよい。オーバーコート層形成工程の後に、(VII)基材加熱処理工程を行う。   An outline of a method for producing a substrate with a water-repellent coating is shown in FIG. The manufacturing process shown in the figure includes (I) inorganic oxide particle dispersion preparation step, (II) resin emulsion particle suspension preparation step, and (III) coating for forming a particle layer by mixing the dispersion and the suspension. A step of preparing a liquid, (IV) a coating step, (V) a particle layer forming step, and (VI) an overcoat layer forming step are shown. In addition, instead of the steps (I) to (III), a particle layer forming coating solution prepared in advance may be used. After the overcoat layer forming step, (VII) a substrate heat treatment step is performed.

(I)無機酸化物粒子5が極性溶媒31に分散した分散液30を調整する工程(無機酸化物粒子分散液調製工程)。
(II)樹脂エマルジョン粒子32を極性溶媒33に懸濁させた樹脂エマルジョン粒子懸濁液34を調製する工程(樹脂エマルジョン粒子懸濁液調整工程)。
(III)分散液30と懸濁液34を混合して被膜形成用塗布液35を調製する工程(塗布液調製工程)。
(IV)塗布液35を基材1に塗布し、無機酸化物粒子5の相互の間隙に樹脂エマルジョン粒子32が介在した塗布液の層を形成する工程(塗布工程)。
(V)塗布液を加熱乾燥して樹脂エマルジョン粒子34を崩壊させて無機酸化物粒子5の相互間隙および無機酸化物粒子5と基材1との間隙に樹脂(接着材)を入り込ませて、無機酸化物粒子の上部が接着材から露出した粒子層3を形成する工程(粒子層形成工程)。
(VI)粒子層3の表面にオーバーコート層形成用塗布液を塗布し、乾燥させてオーバーコート層7を形成する工程(オーバーコート層形成工程)。
(VII)オーバーコート層を形成した後に基材を加熱処理する(基材の加熱処理工程)。
(I) A step of adjusting the dispersion 30 in which the inorganic oxide particles 5 are dispersed in the polar solvent 31 (inorganic oxide particle dispersion preparing step).
(II) A step of preparing a resin emulsion particle suspension 34 in which the resin emulsion particles 32 are suspended in a polar solvent 33 (resin emulsion particle suspension adjustment step).
(III) A step of preparing the coating solution 35 for coating formation by mixing the dispersion 30 and the suspension 34 (coating solution preparation step).
(IV) A step of applying the coating solution 35 to the substrate 1 and forming a layer of the coating solution in which the resin emulsion particles 32 are interposed in the gaps between the inorganic oxide particles 5 (application step).
(V) The coating liquid is heated and dried to disintegrate the resin emulsion particles 34 so that the resin (adhesive) enters the gap between the inorganic oxide particles 5 and the gap between the inorganic oxide particles 5 and the substrate 1. A step of forming the particle layer 3 in which the upper part of the inorganic oxide particles is exposed from the adhesive (particle layer forming step).
(VI) A step of applying an overcoat layer forming coating solution on the surface of the particle layer 3 and drying to form the overcoat layer 7 (overcoat layer forming step).
(VII) The base material is heat-treated after the overcoat layer is formed (heat-treatment process of the base material).

前記製造工程(IV)〜(VII)を詳しく説明する。
(IV)塗布工程:塗布液を基材に塗布し、無機酸化物粒子相互の間隙に樹脂エマルジョン粒子が介在した粒子層を形成する。塗布方法は特に制限されず、例えば、バーコーター法、ディップ法、スプレー法、スピナー法、ロールコート法、グラビアコート法、スリットコート法、加圧塗布法等を用いることができる。前記塗布液には無機酸化物粒子と共に樹脂エマルジョン粒子が含まれているので、一度の塗布作業で無機酸化物粒子と樹脂エマルジョン粒子を基材上に塗布することができる。また、塗布液中で無機酸化物粒子と樹脂エマルジョン粒子は均一に分散しているので、この塗布作業によって、無機酸化物粒子相互の間隙に樹脂エマルジョン粒子が介在した状態の塗布液の層を形成することができる。
The production steps (IV) to (VII) will be described in detail.
(IV) Coating step: A coating solution is coated on a substrate to form a particle layer in which resin emulsion particles are interposed between the inorganic oxide particles. The coating method is not particularly limited, and for example, a bar coater method, a dip method, a spray method, a spinner method, a roll coating method, a gravure coating method, a slit coating method, a pressure coating method, or the like can be used. Since the coating solution contains the resin emulsion particles together with the inorganic oxide particles, the inorganic oxide particles and the resin emulsion particles can be coated on the substrate by a single coating operation. In addition, since the inorganic oxide particles and the resin emulsion particles are uniformly dispersed in the coating solution, this coating operation forms a coating solution layer in which the resin emulsion particles are interposed between the inorganic oxide particles. can do.

(V)粒子層形成工程:塗布した液を加熱乾燥し、樹脂エマルジョン粒子を崩壊させて無機酸化物粒子の相互間隙および無機酸化物粒子と基材との間隙に樹脂(接着材)を入り込ませて粒子層3を形成する。加熱温度は樹脂エマルジョン粒子が崩壊する温度であれば良い。樹脂の種類によって異なるが、一般には60〜200℃に加熱すれば樹脂エマルジョン粒子が崩壊して樹脂が流れ出す。その後、必要に応じて、UV照射等やアニールを行って硬化を促進させてもよい。樹脂エマルジョン粒子の粒子径は無機酸化物粒子の粒子径と同等か小さいので、樹脂エマルジョン粒子の崩壊によって無機酸化物粒子の上部は樹脂(接着材)に覆われず、無機酸化物粒子が接着材から露出した粒子層が形成される。 (V) Particle layer forming step: The applied liquid is dried by heating, and the resin emulsion particles are collapsed to allow the resin (adhesive) to enter the gap between the inorganic oxide particles and the gap between the inorganic oxide particles and the substrate. Thus, the particle layer 3 is formed. The heating temperature may be a temperature at which the resin emulsion particles collapse. Although it varies depending on the type of resin, generally, when heated to 60 to 200 ° C., the resin emulsion particles collapse and the resin flows out. Thereafter, if necessary, curing may be promoted by UV irradiation or annealing. Since the particle diameter of the resin emulsion particles is equal to or smaller than the particle diameter of the inorganic oxide particles, the upper part of the inorganic oxide particles is not covered with the resin (adhesive) due to the collapse of the resin emulsion particles, and the inorganic oxide particles are the adhesive material. A particle layer exposed from is formed.

(VI)オーバーコート層形成用塗布液を粒子層の表面に塗布する。塗布方法は粒子層表面に均一に塗布できる方法であれば良く、制限されない。例えば、ディッピング法、バーコーター法、スプレー法、スピナー法、ロールコート法、グラビアコート法、スリットコート法、カーテンコート法などであれば良い。 (VI) An overcoat layer forming coating solution is applied to the surface of the particle layer. The coating method is not limited as long as it is a method capable of uniformly coating the particle layer surface. For example, a dipping method, a bar coater method, a spray method, a spinner method, a roll coating method, a gravure coating method, a slit coating method, a curtain coating method, etc. may be used.

オーバーコート層形成用塗布液を塗布後、乾燥することが好ましく、乾燥方法は従来公知の方法を採用することができる。乾燥温度はオーバーコート層形成用塗布液の分散媒を実質的に除去できる温度であれば良い。概ね50〜120℃が好ましく、60〜100℃がより好ましい。   It is preferable to dry after applying the overcoat layer forming coating solution, and a conventionally known method can be adopted as the drying method. The drying temperature may be any temperature that can substantially remove the dispersion medium of the overcoat layer forming coating solution. In general, 50 to 120 ° C is preferable, and 60 to 100 ° C is more preferable.

(VII)前記乾燥処理の後に基材を加熱処理する。加熱処理温度は、基材の種類によっても異なるが、130〜700℃が好ましく、150〜500℃の範囲がさらに好ましい。基材の乾燥・加熱処理によって、基材と粒子層および粒子層とオーバーコート層の結合が増し、粒子層およびオーバーコート層からなる被膜と基材との密着性、膜の強度、硬度、耐擦傷性等に優れた撥水性被膜を形成することができる。加熱処理温度が低いと前記密着性、膜の強度、硬度、耐擦傷性等が不十分になる場合がある。加熱処理温度が高すぎると基材の種類によっては基材が変質する場合がある。 (VII) The substrate is heated after the drying treatment. Although heat processing temperature changes also with the kind of base material, 130-700 degreeC is preferable and the range of 150-500 degreeC is further more preferable. By drying and heating the substrate, the bond between the substrate and the particle layer and between the particle layer and the overcoat layer is increased, and the adhesion between the particle layer and the overcoat layer and the substrate, the strength of the film, the hardness, It is possible to form a water-repellent film having excellent scratch resistance and the like. When the heat treatment temperature is low, the adhesion, film strength, hardness, scratch resistance and the like may be insufficient. If the heat treatment temperature is too high, the substrate may be altered depending on the type of the substrate.

以上の工程によって製造された撥水性被膜付基材は、無機酸化物粒子が接着材から露出することによって形成されている高低差の大きな凹凸形状、さらには無機酸化物粒子表面の微細凹凸との相乗的な凹凸構造の効果によって高い撥水性を有している。具体的には、水との接触角が130°以上の撥水性、好ましくは150°以上の超撥水性を有することができる。   The substrate with a water-repellent coating produced by the above process has a large concavo-convex shape formed by exposure of the inorganic oxide particles from the adhesive, and further, fine undulations on the surface of the inorganic oxide particles. It has high water repellency due to the synergistic uneven structure effect. Specifically, it can have water repellency with a contact angle with water of 130 ° or more, preferably 150 ° or more.

以下、本発明を実施例によって具体的に説明する。なお、本発明はこれらの実施例によって限定されない。   Hereinafter, the present invention will be specifically described by way of examples. In addition, this invention is not limited by these Examples.

〔実施例1〕
〔標準粒子径ヒマワリ状粒子、樹脂量標準、アクリル−スチレン〕
無機酸化物粒子(ヒマワリ状粒子)分散液[A1]の調製
(基体粒子の調製)
シリカゾル(日揮触媒化成社製:カタロイドSI−80P、平均粒子径80nm、表面電位−60mV、SiO濃度20重量%、pH10.2)750gに、陽イオン交換樹脂(ROHMHARS社製:デュオライト)150gを混合し、0.5時間撹拌した。ついで、陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学社製:SUNNUP−C)135gを混合し、0.5時間撹拌した後に該陰イオン交換樹脂を分離して、SiO濃度20重量%の精製シリカゾル750gを調製した。
(基体粒子分散液の調製)
精製シリカゾル750gに、ポリ塩化アルミニウム(多木化学社製:タキバイン#1000、Al濃度23.55重量%)5.1gを添加し、常温で0.5時間撹拌した。ついで、純水2903gを添加して希釈してSiO濃度4.1重量%のシリカからなる基体粒子分散液3658gを調製した。該基体粒子分散液のpHは3.7であった。
(微細粒子の添加)
前記基体粒子分散液(SiO濃度4.1重量%)3658gに、被覆用の微細粒子としてシリカゾル(日揮触媒化成社製:カタロイドSN−350、平均粒子径7nm、表面電位−23mV、SiO濃度16.6重量%、pH3.7)294gを混合した。この混合分散液のSiO濃度は5.0重量%、pHは3.5であった。
(ヒマワリ状粒子分散液の調製)
前記混合分散液に陰イオン交換樹脂(三菱化学社製:SUNNUP−C)135gを混合し、0.5時間撹拌し、ついで、陰イオン交換樹脂を分離し、ロータリーエバポレーターによってSiO濃度10重量%のシリカからなるヒマワリ状粒子分散液[A1]を調製した。該分散液のHは7.0であった。
(平均粒子径Dの測定)
ヒマワリ状粒子の平均粒子径(D)は、透過型電子顕微鏡写真(TEM)を撮影し、10個の長径を測定し、その平均値とした。
(被覆率の測定)
ヒマワリ状粒子の分散液を120℃に加熱して乾燥し、該ヒマワリ状粒子の比表面積をBET法で測定し、被覆率を求めた。被覆率は前記式(4)に従って求めた。
[Example 1]
[Standard particle size sunflower-like particles, resin standard, acrylic-styrene]
Preparation of inorganic oxide particle (sunflower-like particle) dispersion [A1] ( Preparation of substrate particles)
750 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI-80P, average particle size 80 nm, surface potential -60 mV, SiO 2 concentration 20 wt%, pH 10.2), 150 g of cation exchange resin (manufactured by ROHMHARS: Duolite) Were mixed and stirred for 0.5 hour. Next, after separating the cation exchange resin, 135 g of an anion exchange resin (Mitsubishi Chemical Co., Ltd .: SUNUP-C) was mixed, and after stirring for 0.5 hour, the anion exchange resin was separated to obtain a SiO 2 concentration. 750 g of 20% by weight purified silica sol was prepared.
(Preparation of substrate particle dispersion)
To 750 g of purified silica sol, 5.1 g of polyaluminum chloride (manufactured by Taki Chemical Co., Ltd .: Takibaine # 1000, Al 2 O 3 concentration 23.55 wt%) was added and stirred at room temperature for 0.5 hour. Subsequently, 2903 g of pure water was added and diluted to prepare 3658 g of a base particle dispersion liquid composed of silica having a SiO 2 concentration of 4.1% by weight. The pH of the substrate particle dispersion was 3.7.
(Addition of fine particles)
Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SN-350, average particle diameter 7 nm, surface potential -23 mV, SiO 2 concentration as fine particles for coating in 3658 g of the substrate particle dispersion (SiO 2 concentration 4.1 wt%) 294 g of 16.6 wt%, pH 3.7) were mixed. This mixed dispersion had a SiO 2 concentration of 5.0% by weight and a pH of 3.5.
(Preparation of sunflower-like particle dispersion)
The mixed dispersion was mixed with 135 g of an anion exchange resin (Mitsubishi Chemical Corporation: SUNUP-C) and stirred for 0.5 hour, and then the anion exchange resin was separated, and the SiO 2 concentration was 10 wt% by a rotary evaporator. A sunflower-like particle dispersion [A1] composed of silica was prepared. The dispersion H was 7.0.
(Measurement of average particle diameter D P)
The average particle diameter (D P ) of the sunflower-like particles was taken as an average value obtained by taking a transmission electron micrograph (TEM) and measuring 10 major axes.
(Measurement of coverage)
The sunflower-like particle dispersion was heated to 120 ° C. and dried, and the specific surface area of the sunflower-like particles was measured by the BET method to determine the coverage. The coverage was determined according to the above equation (4).

粒子層形成用塗布液[C1]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を1.8g添加し、80℃で3時間熟成した。その後、樹脂エマルジョン粒子懸濁液[B1](DIC社製CG8370:粒子サイズ100nm:濃度50重量%、アクリル−スチレン)を2g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して粒子層形成用塗布液[C1]を得た。該塗布液のpHは7.5であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径(D)、D/D比、樹脂量、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
Preparation of Particle Layer Forming Coating Solution [C1] 1.8 g of 5% silicic acid solution was added to 90 g of the sunflower particle dispersion [A1] and aged at 80 ° C. for 3 hours. Thereafter, 2 g of resin emulsion particle suspension [B1] (CG 8370 manufactured by DIC: particle size 100 nm: concentration 50 wt%, acrylic-styrene) was added, and then ethanol was added to adjust the solid content concentration to 5 wt%. Then, the mixture was stirred with a magnetic stirrer at room temperature for 1 hour to obtain a coating solution [C1] for forming a particle layer. The coating solution had a pH of 7.5. Concentration of sunflower-like particles, the kind of the resin, the particle diameter (D e), D e / D P ratio of the resin emulsion particles, the amount of resin, the amount ratio of the sunflower-like particles and resin emulsion particles [Sunflower particles / (Sunflower particles + Resin emulsion particles], solid content concentration, pH are shown in Table 1.

オーバーコート層形成用塗布液[D1]の調製
変性アルコール(日本アルコール販売社製品:ソルミックスA−11、メタノールとエタノールとイソプロピルアルコールの混合アルコール)22525gに水1590gと濃度61重量%の硝酸33gを添加し、25℃で5分撹拌した。ついで、トリデカフルオロオクチルトリメトキシシラン(MOMENTIVE社製品:TSL8257、固形分濃度98%)464gを添加し、25℃で5分間撹拌した後に、60℃で3時間処理した。その後、プロピレングリコールモノメチルエーテル(PGM)356.9gとジアセトンアルコール(DAA)21391gを添加し、25℃で30分処理して固形分濃度150重量%のフッ素含有シリカ系塗布液を調製した。
ついで、固形分濃度1.50重量%のフッ素含有シリカ系塗布液100gにPGM10gと混合アルコール(日本アルコール販売社製品:ソルミックスA−11、メタノールとエタノールとイソプロピルアルコールの混合アルコール)40gを添加し、固形分濃度10%のオーバーコート層形成用塗布液[D1]を調製した。
Preparation of coating liquid for overcoat layer formation [D1] Modified alcohol (Nippon Alcohol Sales Company product: Solmix A-11, mixed alcohol of methanol, ethanol and isopropyl alcohol) 2252 . 5 g of water 159 . 0 g and 61 wt% nitric acid 3 . 3 g was added and stirred at 25 ° C. for 5 minutes. Then, tridecafluorooctyltrimethoxysilane (product of MOMENTIVE: TSL8257, solid content concentration 98%) 46 . After adding 4 g and stirring at 25 ° C. for 5 minutes, the mixture was treated at 60 ° C. for 3 hours. Thereafter, 356.9 g of propylene glycol monomethyl ether (PGM) and diacetone alcohol (DAA) 213 . 91 g was added and treated at 25 ° C. for 30 minutes to obtain a solid content of 1 . A 50 wt% fluorine-containing silica-based coating solution was prepared.
Next, 100 g of fluorine-containing silica-based coating solution having a solid content concentration of 1.50% by weight is added with 10 g of PGM and mixed alcohol (Japan Alcohol Sales Company product: Solmix A-11, mixed alcohol of methanol, ethanol and isopropyl alcohol). , Solid content concentration 1 . A 0% overcoat layer forming coating solution [D1] was prepared.

撥水性被膜付基材[E1]の製造
ナイロン繊維を粒子層形成用塗布液[C1]に1分間ディッピングした後、4mm/secで引き上げた。その後80℃にて30分乾燥した。ついで、固形分濃度1.0%のオーバーコート層形成用塗布液[D1]に1分間ディッピングした後に4mm/secで引き上げた。その後80℃にて30分乾燥した。さらに、その後150℃にて30分加熱処理し撥水性被膜付基材[E1]を調製した。該撥水性被膜付基材[E1]について、粒子層の膜厚(D )、接着材の膜厚(U)、被膜の凹凸構造の平均凸部高さ(T)、平均凸部間距離(W)、微細凹凸の微細凹凸(TFF)、微細凹凸のピッチ幅(WFF)、撥水性(接触角)、風合い、汚れ落ち性、密着性を測定した。この結果を表2に示す。
Manufacture of substrate [E1] with water-repellent coating Nylon fiber was dipped in coating solution [C1] for particle layer formation for 1 minute, and then pulled up at 4 mm / sec. Thereafter, it was dried at 80 ° C. for 30 minutes. Then, after dipping for 1 minute in an overcoat layer forming coating solution [D1] having a solid content concentration of 1.0%, it was pulled up at 4 mm / sec. Thereafter, it was dried at 80 ° C. for 30 minutes. Further, the substrate was then heat-treated at 150 ° C. for 30 minutes to prepare a substrate [E1] with a water-repellent coating. For the substrate with water-repellent coating [E1], the film thickness of the particle layer (D P ), the film thickness of the adhesive (U F ), the average convexity height (T F ) of the concave-convex structure of the coating, the average convexity The distance (W F ), fine unevenness (T FF ), fine uneven pitch width (W FF ), water repellency (contact angle), texture, dirt removal, and adhesion were measured. The results are shown in Table 2.

被膜の凸部平均高さ(T)、凸部のピッチ幅(W)は撥水性被膜断面の透過型電子顕微鏡写真(TEM)を撮影し、10個の凸部の高さ、ピッチ間距離を測定してその平均値とした。無機酸化物粒子層膜厚(D )、接着材膜厚(U)も同様に撥水性被膜断面の透過型電子顕微鏡写真(TEM)を撮影し、これらの10個所の厚さを測定しその平均値とし、この平均値を用いて膜厚比(U )を算出した。 The average height of projections (T F ) and pitch width (W F ) of the coatings were obtained by taking a transmission electron micrograph (TEM) of the cross section of the water-repellent coating. The distance was measured and taken as the average value. The inorganic oxide particle layer thickness (D P ) and the adhesive material thickness (U F ) are similarly measured by taking a transmission electron micrograph (TEM) of the cross section of the water-repellent coating and measuring the thickness of these 10 locations. The average value was used, and the film thickness ratio (U F / D P ) was calculated using this average value.

被膜表面の微細凹凸(TFF)はAFMを用い500nm範囲を測定し、単粒子上の表面粗さ(Ra)を3点測定して、その平均値を微細凹凸とした。微細凹凸のピッチ幅(WFF)は、走査電子顕微量(SEM)を撮影し、10個の凸部の高さ、ピッチ間距離を測定し、その平均値とした。 The fine irregularities (T FF ) on the surface of the coating were measured in a 500 nm range using AFM, and the surface roughness (Ra) on a single particle was measured at three points, and the average value was defined as fine irregularities. The pitch width (W FF ) of the fine irregularities was obtained by photographing a scanning electron microscopic amount (SEM), measuring the height of 10 convex portions and the distance between pitches, and taking the average value.

被膜の撥水性は、全自動接触角計(協和界面科学社製DM700)を用い、5μL水との接触角及び5μLのオレイン酸との接触角を測定した。   The water repellency of the coating was measured using a fully automatic contact angle meter (DM700 manufactured by Kyowa Interface Science Co., Ltd.) and the contact angle with 5 μL water and the contact angle with 5 μL oleic acid.

被膜の耐洗濯性は、撥水性透明被膜付基材[E1]を全自動洗濯機に入れ洗剤(花王製アタックを10g)入れ、30分の洗濯・5分の脱水を繰り返し10回行い、風乾燥後の水の接触角を測定し、洗濯前との接触角の変化を表3に示した。   Washing resistance of the film is determined by placing the substrate with water-repellent transparent film [E1] in a fully automatic washing machine, putting detergent (10g of Kao Attack), repeating 30 minutes of washing and 5 minutes of dehydration 10 times. The contact angle of water after drying was measured, and the change in contact angle before washing was shown in Table 3.

被膜の汚れ落ち性は、撥水性透明被膜付基材[E1]の表面に三菱油性マーカー(細字 ピース赤)を用いて3cm線を書き、その後に流水で3分間流した際のインクの残りを目視で確認して評価した。評価基準を以下に示す。
インクが完全に落ちる :◎ インクがよく見ると残っている:○
インクがやや残っている:△ インクが明らかに残っている :×
The stain removal property of the film is the same as that of the water-repellent transparent coated substrate [E1] with a 3cm line drawn on the surface using a Mitsubishi oil marker (small piece red). Evaluation was made by visual confirmation. The evaluation criteria are shown below.
Ink completely falls: ◎ If ink looks closely, it remains: ○
Ink is slightly left: △ Ink is clearly left: ×

被膜の風合いは塗膜前後の手による触感に基づいて評価した。評価基準を以下に示す。
塗布前後で感触が変わらないもの :◎
塗布後に僅かにゴワゴワ感があるもの :○
塗布後に少しゴワゴワ感があるもの :△
塗布後に明らかにゴワゴワ感があるもの:×
The texture of the coating was evaluated based on the hand touch before and after the coating. The evaluation criteria are shown below.
The feel does not change before and after application: ◎
Slightly irritating after application: ○
Somewhat awkward after application: △
Clearly tingling after application: ×

〔実施例2〕
〔標準粒子径ヒマワリ状粒子、樹脂少量、アクリル−スチレン〕
粒子層形成用塗布液[C2]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を18g添加し、80℃で3時間熟成した。その後、樹脂エマルジョン粒子懸濁液[B1](DIC株式会社製CG8370:粒子サイズ100nm:濃度50重量%、アクリル−スチレン)を0.2g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して粒子層形成用塗布液[C2]を得た。該塗布液のpHは7.5であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
撥水性被膜付基材[E2]の製造
粒子層形成用塗布液[C2]を使用した以外は実施例1と同様にして撥水性被膜付基材[E2]を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
[Example 2]
[Standard particle size sunflower particles, small amount of resin, acrylic-styrene]
Preparation of particle layer forming coating solution [C2 ] To 90 g of the sunflower-like particle dispersion [A1], 5% silicic acid solution was added . 8 g was added and aged at 80 ° C. for 3 hours. Thereafter, 0.2 g of resin emulsion particle suspension [B1] (CG 8370 manufactured by DIC Corporation: particle size 100 nm: concentration 50 wt%, acrylic-styrene) was added, and then ethanol was added to obtain a solid content concentration of 5 wt. And stirred with a magnetic stirrer at room temperature for 1 hour to obtain a particle layer forming coating solution [C2]. The coating solution had a pH of 7.5. Table 1 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.
Production of water repellent coated substrate [E2] A water repellent coated substrate [E2] was produced in the same manner as in Example 1 except that the particle layer forming coating solution [C2] was used. The physical properties of the film were measured. The results are shown in Table 2.

〔実施例3〕
〔標準粒子径ヒマワリ状粒子、樹脂多量、アクリル−スチレン〕
被膜形成用塗布液[C3]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を18g添加し、80℃で3時間熟成した。その後、樹脂エマルジョン粒子懸濁液[B1](DIC社製CG8370:粒子サイズ100nm:濃度50重量%、アクリル−スチレン)を5g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して粒子層形成用塗布液[C3]を得た。該塗布液のpHは75であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
撥水性被膜付基材[E3]の製造
粒子層形成用塗布液[C3]を使用した以外は実施例1と同様にして撥水性被膜付基材[E3]を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
Example 3
[Standard particle size sunflower-like particles, large amount of resin, acrylic-styrene]
Preparation of coating solution [C3] for coating film formation To 90 g of the sunflower-like particle dispersion [A1], 1% of 5% silicic acid solution was added . 8 g was added and aged at 80 ° C. for 3 hours. Thereafter, 5 g of resin emulsion particle suspension [B1] (CG 8370 manufactured by DIC: particle size 100 nm: concentration 50 wt%, acrylic-styrene) was added, and then ethanol was added to adjust the solid content concentration to 5 wt%. Then, the mixture was stirred with a magnetic stirrer at room temperature for 1 hour to obtain a particle layer forming coating solution [C3]. The pH of the coating solution is 7 . It was 5. Table 1 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.
Production of water repellent coated substrate [E3] A water repellent coated substrate [E3] was produced in the same manner as in Example 1 except that the particle layer forming coating solution [C3] was used. The physical properties of the film were measured. The results are shown in Table 2.

〔実施例4〕
〔標準粒子径ヒマワリ状粒子、樹脂量標準、エマルシ゛ョン粒子径小、アクリル−スチレン〕
エマルション樹脂粒子懸濁液[B2]の調製
樹脂エマルジョン粒子懸濁液[B1](DIC社製CG8370:粒子サイズ100nm:濃度50重量%、アクリル−スチレン)100gに1%塩酸と純水を添加してpH4.5の20%希釈液250gを調製した。その後、ホモミキサーを用いて1500rpmで15分撹拌して、エマルション樹脂粒子懸濁液[B2]を調製した。この樹脂エマルション懸濁液[B2]について、TEMを用いて観察したところ、平均粒子径30nmの樹脂エマルションであった。
粒子層形成用塗布液[C4]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を18g添加し、80℃で3時間熟成した。その後、樹脂エマルジョン粒子懸濁液[B2]を5g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して粒子層形成用塗布液[C4]を得た。該塗布液のpHは6.0であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
撥水性被膜付基材[E4]の製造
粒子層形成用塗布液[C4]を使用した以外は実施例1と同様にして撥水性被膜付基材[E4]を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
Example 4
[Standard particle size sunflower-like particles, resin standard, emulsion particle size small, acrylic-styrene]
Preparation of emulsion resin particle suspension [B2] 1% hydrochloric acid and pure water were added to 100 g of resin emulsion particle suspension [B1] (CG 8370 manufactured by DIC: particle size 100 nm: concentration 50% by weight, acrylic-styrene). 250 g of a 20% diluted solution with a pH of 4.5 was prepared. Then, it stirred for 15 minutes at 1500 rpm using the homomixer, and prepared emulsion resin particle suspension [B2]. When this resin emulsion suspension [B2] was observed using TEM, it was a resin emulsion having an average particle diameter of 30 nm.
Preparation of particle layer forming coating solution [C4 ] To 90 g of the sunflower-like particle dispersion [A1], 5% silicic acid solution was added . 8 g was added and aged at 80 ° C. for 3 hours. Thereafter, 5 g of the resin emulsion particle suspension [B2] is added, and then ethanol is added to adjust the solid content concentration to 5% by weight. The mixture is stirred for 1 hour at room temperature with a magnetic stirrer to form a particle layer. A coating solution [C4] was obtained. The pH of the coating solution was 6.0. Table 1 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.
Production of water-repellent coated substrate [E4] A water-repellent coated substrate [E4] was produced in the same manner as in Example 1 except that the particle layer forming coating solution [C4] was used. The physical properties of the film were measured. The results are shown in Table 2.

〔実施例5〕
〔標準粒子径ヒマワリ状粒子、樹脂量標準、アクリル−ウレタン〕
粒子層形成用塗布液[C5]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を1.8g添加し、80℃で3時間熟成した。その後、樹脂エマルジョン粒子懸濁液[B3](DIC社製CG-5010EF:粒子サイズ100nm:濃度45重量%、アクリル−ウレタン)を2.22g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して粒子層形成用塗布液[C5]を得た。該塗布液のpHは75であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
撥水性被膜付基材[E5]の製造
粒子層形成用塗布液[C5]を使用した以外は実施例1と同様にして撥水性被膜付基材[E5]を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
Example 5
[Standard particle size sunflower particles, resin standard, acrylic-urethane]
Preparation of Particle Layer Forming Coating Solution [C5] 1.8 g of 5% silicic acid solution was added to 90 g of the sunflower particle dispersion [A1] and aged at 80 ° C. for 3 hours. Thereafter, 2.22 g of resin emulsion particle suspension [B3] (CG-5010EF manufactured by DIC: particle size 100 nm: concentration 45 wt%, acrylic-urethane) was added, and then ethanol was added to obtain a solid content concentration of 5 The mixture was prepared in a weight percent and stirred with a magnetic stirrer at room temperature for 1 hour to obtain a particle layer forming coating solution [C5]. The pH of the coating solution is 7 . It was 5. Table 1 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.
Production of water repellent coated substrate [E5] A water repellent coated substrate [E5] was produced in the same manner as in Example 1 except that the particle layer forming coating solution [C5] was used. The physical properties of the film were measured. The results are shown in Table 2.

〔実施例6〕
〔標準粒子径ヒマワリ状粒子、樹脂量標準、アクリル−シリコーン〕
粒子層形成用塗布液[C6]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を18g添加し、80℃で3時間熟成した。その後、樹脂エマルジョン粒子懸濁液[B4](DIC社製SA−6360:粒子サイズ150nm:濃度50重量%、アクリル−シリコーン)を2g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して粒子層形成用塗布液[C6]を得た。該塗布液のpHは8.5であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
撥水性被膜付基材[E6]の製造
粒子層形成用塗布液[C6]を使用した以外は実施例1と同様にして撥水性被膜付基材[E6]を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
Example 6
[Standard particle size sunflower particles, resin standard, acrylic-silicone]
Preparation of particle layer forming coating solution [C6 ] To 90 g of the sunflower-like particle dispersion [A1], 5% silicic acid solution was added . 8 g was added and aged at 80 ° C. for 3 hours. Thereafter, 2 g of a resin emulsion particle suspension [B4] (SA-6360 manufactured by DIC: particle size 150 nm: concentration 50 wt%, acrylic-silicone) was added, and then ethanol was added to obtain a solid content concentration of 5 wt%. And stirred with a magnetic stirrer at room temperature for 1 hour to obtain a coating solution [C6] for forming a particle layer. The pH of the coating solution was 8.5. Table 1 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.
Production of water repellent coated substrate [E6] A water repellent coated substrate [E6] was produced in the same manner as in Example 1 except that the particle layer forming coating solution [C6] was used. The physical properties of the film were measured. The results are shown in Table 2.

〔実施例7〕
〔小粒子ヒマワリ状粒子、樹脂量標準、アクリル−スチレン〕
無機酸化物粒子(ヒマワリ状粒子)分散液[A2]の調製
(基体粒子の調製)
シリカゾル(日揮触媒化成社製:カタロイドSI−45P、平均粒子径45nm、表面電位−60mV、SiO濃度20重量%、pH10.2)750gに陽イオン交換樹脂(ROHMHARS社製:デュオライト)150gを混合し、30℃で0.5時間撹拌した。ついで、陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学社製:SUNNUP−C)135gを混合し、0.5時間撹拌し、ついで、陰イオン交換樹脂を分離して、SiO濃度20重量%の精製シリカゾル750gを調製した。ついで、精製シリカゾル750gにポリ塩化アルミニウム(多木化学社製:タキバイン#1000、Al濃度23.55重量%)9.2gを添加し、常温で0.5時間撹拌した。ついで、純水2903gを添加して希釈したSiO濃度4.1重量%のシリカからなる基体用金属酸化物粒子分散液[a−2]3662gを調製した。ついで、この基体用金属酸化物粒子分散液[a-2]3662gに、シリカゾル(日揮触媒化成社製:カタロイドSN−350、平均粒子径7nm、表面電位−23mV、SiO濃度16.6重量%、pH3.7)595gを混合した。このとき、混合分散液のpHは3.5であった。ついで、混合分散液に陰イオン交換樹脂(三菱化学(株)製:SUNNUP−C)135gを混合し、0.5時間撹拌し、ついで、陰イオン交換樹脂を分離し、ロータリーエバポレーターによりSiO濃度10重量%のシリカからなる無機酸化物粒子(ヒマワリ状粒子)分散液[A2]を調製した。分散液のpHは6.5であった。
粒子層形成用塗布液[C7]の調製
前記ヒマワリ状粒子分散液[A2]90gを使用した以外は実施例1と同様にして粒子層形成用塗布液[C7]を得た。該塗布液のpHは75であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
撥水性被膜付基材[E7]の製造
粒子層形成用塗布液[C7]を使用した以外は実施例1と同様にして撥水性被膜付基材[E7]を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
Example 7
[Small particle sunflower-like particles, resin standard, acrylic-styrene]
Preparation of inorganic oxide particle (sunflower-like particle) dispersion [A2] ( Preparation of substrate particles)
150 g of cation exchange resin (ROHMHARS: Duolite) is added to 750 g of silica sol (manufactured by JGC Catalysts & Chemicals: Cataloid SI-45P, average particle size 45 nm, surface potential -60 mV, SiO 2 concentration 20 wt%, pH 10.2). Mix and stir at 30 ° C. for 0.5 h. Next, after separating the cation exchange resin, 135 g of an anion exchange resin (Mitsubishi Chemical Co., Ltd .: SUNUP-C) is mixed and stirred for 0.5 hour, and then the anion exchange resin is separated to obtain SiO 2. 750 g of purified silica sol having a concentration of 20% by weight was prepared. Next, 9.2 g of polyaluminum chloride (manufactured by Taki Chemical Co., Ltd .: Takibaine # 1000, Al 2 O 3 concentration 23.55 wt%) was added to 750 g of purified silica sol, and the mixture was stirred at room temperature for 0.5 hour. Next, 3661 g of a metal oxide particle dispersion [a-2] for a substrate made of silica having a SiO 2 concentration of 4.1 wt% diluted by adding 2903 g of pure water was prepared. Subsequently, to the 3662 g of the metal oxide particle dispersion [a-2] for the substrate, silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SN-350, average particle diameter 7 nm, surface potential -23 mV, SiO 2 concentration 16.6 wt% , PH 3.7) 595 g was mixed. At this time, the pH of the mixed dispersion was 3.5. Next, 135 g of an anion exchange resin (Mitsubishi Chemical Co., Ltd .: SUNUP-C) was mixed with the mixed dispersion and stirred for 0.5 hour. Then, the anion exchange resin was separated and the SiO 2 concentration was measured by a rotary evaporator. An inorganic oxide particle (sunflower particle) dispersion [A2] composed of 10% by weight of silica was prepared. The pH of the dispersion was 6.5.
Preparation of Particle Layer Forming Coating Solution [C7] A particle layer forming coating solution [C7] was obtained in the same manner as in Example 1 except that 90 g of the sunflower particle dispersion [A2] was used. The pH of the coating solution is 7 . It was 5. Table 1 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.
Production of water repellent coated substrate [E7] A water repellent coated substrate [E7] was produced in the same manner as in Example 1 except that the particle layer forming coating solution [C7] was used. The physical properties of the film were measured. The results are shown in Table 2.

〔実施例8〕
〔金平糖粒子、樹脂量標準、アクリル−スチレン〕
粒子層形成用塗布液[C8]の調製
金平糖シリカ粒子分散液(日揮触媒化成社製:カタロイドCO−80A、平均粒子径80nm、比表面積43m/g、表面電位−60mV、SiO濃度40重量%、pH102)22.5gを使用した以外は実施例1と同様にして粒子層形成用塗布液[C8]を得た。該塗布液のpHは9.5であった。金平糖粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、金平糖粒子と樹脂エマルジョン粒子の量比〔金平糖粒子/(金平糖粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
撥水性被膜付基材[E8]の製造
粒子層形成用塗布液[C8]を使用した以外は実施例1と同様にして撥水性被膜付基材[E8]を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
Example 8
[Kinpei particles, resin standard, acrylic-styrene]
Preparation of coating liquid [C8] for particle layer formation Dispersion of gold flat sugar silica (manufactured by JGC Catalysts & Chemicals: Cataloid CO-80A, average particle diameter 80 nm, specific surface area 43 m 2 / g, surface potential −60 mV, SiO 2 concentration 40 weight % to obtain a pH 10. 2) except for using 22.5g in the same manner as in example 1 particle layer forming coating solution [C8]. The pH of the coating solution was 9.5. Table 1 shows the concentration of confetti particles, the type of resin, the particle diameter of resin emulsion particles, the quantitative ratio of confetti particles to resin emulsion particles [competitive saccharide particles / (competitive saccharide particles + resin emulsion particles), solid content concentration, and pH.
Production of water repellent coated substrate [E8] A water repellent coated substrate [E8] was produced in the same manner as in Example 1 except that the particle layer forming coating solution [C8] was used. The physical properties of the film were measured. The results are shown in Table 2.

〔実施例9〕
〔実施例1の基材変更〕
撥水性被膜付基材[E9]の製造
粒子層形成用塗布液[C1]を、ガラス基板(浜新社製品:FL硝子、厚さ:3mm、屈折率:1.51)にバーコーター法で塗布し、80℃で10分間乾燥し以外は実施例1と同様にして撥水性被膜付基材[E9]を製造し、耐洗濯性以外は実施例1と同様に膜の物性を測定した。
Example 9
[Substrate change of Example 1]
Manufacture of substrate [E9] with water repellent coating A coating solution [C1] for forming a particle layer is applied to a glass substrate (Hamashinsha product: FL glass, thickness: 3 mm, refractive index: 1.51) by a bar coater method. A substrate [E9] with a water-repellent coating was produced in the same manner as in Example 1 except that it was applied and dried at 80 ° C. for 10 minutes, and the physical properties of the film were measured in the same manner as in Example 1 except for the washing resistance.

被膜の密着性は、撥水性透明被膜付基材[E9]の表面にナイフで縦横1mmの間隔で11本の平行な傷を付けて100個の升目を作り、これにセロファンテープを接着して剥離したときに、剥離せず残存している被膜の升目の数を、以下の3段階に分類することによって評価した。評価基準を以下に示す。
残存升目の数100個: ◎ 残存升目の数95〜99個:○
残存升目の数90〜94個:△ 残存升目の数89個以下 :×
測定結果を表1、表2に示す。
The adhesion of the film was made by making 11 parallel scratches on the surface of the substrate [E9] with a water-repellent transparent film [E9] at intervals of 1 mm in length and width by making 100 squares, and attaching cellophane tape to this. When peeled, the number of cells of the film remaining without being peeled was evaluated by classifying into the following three stages. The evaluation criteria are shown below.
Number of remaining cells: ◎ Number of remaining cells: 95 to 99: ○
Number of remaining cells 90 to 94: Δ Number of remaining cells 89 or less: ×
The measurement results are shown in Tables 1 and 2.

〔実施例10〕
〔ヒマワリ状粒子AgO複合化、樹脂量標準、アクリル−スチレン〕
無機酸化物粒子(ヒマワリ状粒子)分散液[A3]の調製
(基体粒子の調製)
シリカゾル(日揮触媒化成社製:カタロイドSI−80P、平均粒子径80nm、表面電位−60mV、SiO濃度20重量%、pH10.2)750gに、陽イオン交換樹脂(ROHMHARS社製:デュオライト)150gを混合し、0.5時間撹拌した。ついで、陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学社製:SUNNUP−C)135gを混合し、0.5時間撹拌した後に該陰イオン交換樹脂を分離して、SiO濃度20重量%の精製シリカゾル750gを調製した。
(基体粒子分散液の調製)
前記精製シリカゾル750gに、ポリ塩化アルミニウム(多木化学社製:タキバイン#1000、Al濃度23.55重量%)5.1gを添加し、常温で0.5時間撹拌した。ついで、純水2903gを添加して希釈してSiO濃度4.1重量%のシリカからなる基体粒子分散液3658gを調製した。該基体粒子分散液のpHは3.7であった。
(微細粒子の添加)
前記基体粒子分散液(SiO濃度4.1重量%)3658gに、被覆用の微細粒子としてAgO-SiO-Alナノ粒子(日揮触媒化成社製:ATOMY BALL UA平均粒子径10nm、表面電位−20mV、濃度1.5重量%、pH7.0)3253gを混合した。その後ロータリーエバポレーターで濃度5.0重量に濃縮した。
(ヒマワリ状粒子分散液の調製)
前記混合分散液に陰イオン交換樹脂(三菱化学社製:SUNNUP−C)135gを混合し、0.5時間撹拌し、ついで、陰イオン交換樹脂を分離し、ロータリーエバポレーターによりSiO濃度10重量%のシリカからなるヒマワリ状粒子分散液[A3]を調製した。該分散液のHは7.0であった。
(平均粒子径Dの測定)
前記ヒマワリ状粒子の平均粒子径は、透過型電子顕微鏡写真(TEM)を撮影し、10個の長径を測定し、その平均値とした。
(被覆率の測定)
前記ヒマワリ状粒子の分散液を120℃に加熱して乾燥し、該ヒマワリ状粒子の比表面積をBET法で測定し、被覆率を求めた。被覆率は前記式(4)に従って求めた。
粒子層形成用塗布液[C10]の調製
前記ヒマワリ状粒子分散液[A3]90gに、5%珪酸液を1.8g添加し、80℃で3時間熟成した。その後、樹脂エマルジョン粒子懸濁液[B1](DIC社製CG8370:粒子サイズ100nm:濃度50重量%、アクリル−スチレン)を2g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して粒子層形成用塗布液[C11]を得た。該塗布液のpHは7.5であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
撥水性被膜付基材[E10]の製造
粒子層形成用塗布液[C10]を使用した以外は実施例10と同様にして撥水性被膜付基材[E10]を製造し、耐洗濯性以外は実施例1と同様に膜の物性を測定した。この結果を表2に示す。
Example 10
[Sunflower particle AgO composite, resin standard, acrylic-styrene]
Preparation of inorganic oxide particle (sunflower-like particle) dispersion [A3] ( Preparation of substrate particles)
750 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI-80P, average particle size 80 nm, surface potential -60 mV, SiO 2 concentration 20 wt%, pH 10.2), 150 g of cation exchange resin (manufactured by ROHMHARS: Duolite) Were mixed and stirred for 0.5 hour. Next, after separating the cation exchange resin, 135 g of an anion exchange resin (Mitsubishi Chemical Co., Ltd .: SUNUP-C) was mixed, and after stirring for 0.5 hour, the anion exchange resin was separated to obtain a SiO 2 concentration. 750 g of 20% by weight purified silica sol was prepared.
(Preparation of substrate particle dispersion)
To 750 g of the purified silica sol, 5.1 g of polyaluminum chloride (manufactured by Taki Chemical Co., Ltd .: Takibaine # 1000, Al 2 O 3 concentration 23.55 wt%) was added and stirred at room temperature for 0.5 hour. Subsequently, 2903 g of pure water was added and diluted to prepare 3658 g of a base particle dispersion liquid composed of silica having a SiO 2 concentration of 4.1% by weight. The pH of the substrate particle dispersion was 3.7.
(Addition of fine particles)
3658 g of the substrate particle dispersion (SiO 2 concentration: 4.1 wt%), AgO—SiO—Al 2 O 3 nanoparticles (manufactured by JGC Catalysts & Chemicals Co., Ltd .: ATOMY BALL UA average particle diameter of 10 nm, surface) as fine particles for coating 3253 g of an electric potential of −20 mV, a concentration of 1.5% by weight, and a pH of 7.0 were mixed. Thereafter, the solution was concentrated to 5.0 weight by a rotary evaporator.
(Preparation of sunflower-like particle dispersion)
135 g of anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SUNUP-C) was mixed with the mixed dispersion, and the mixture was stirred for 0.5 hours, and then the anion exchange resin was separated, and the SiO 2 concentration was 10% by weight using a rotary evaporator. A sunflower-like particle dispersion [A3] comprising silica was prepared. The dispersion H was 7.0.
(Measurement of average particle diameter D P)
The average particle diameter of the sunflower-like particles was taken as an average value obtained by taking a transmission electron micrograph (TEM) and measuring 10 major diameters.
(Measurement of coverage)
The dispersion of the sunflower-like particles was heated to 120 ° C. and dried, and the specific surface area of the sunflower-like particles was measured by the BET method to determine the coverage. The coverage was determined according to the above equation (4).
Preparation of Particle Layer Forming Coating Solution [C10] 1.8 g of 5% silicic acid solution was added to 90 g of the sunflower particle dispersion [A3] and aged at 80 ° C. for 3 hours. Thereafter, 2 g of resin emulsion particle suspension [B1] (CG 8370 manufactured by DIC: particle size 100 nm: concentration 50 wt%, acrylic-styrene) was added, and then ethanol was added to adjust the solid content concentration to 5 wt%. Then, the mixture was stirred with a magnetic stirrer at room temperature for 1 hour to obtain a coating solution [C11] for forming a particle layer. The coating solution had a pH of 7.5. Table 1 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.
Production of water repellent coated substrate [E10] A water repellent coated substrate [E10] was produced in the same manner as in Example 10 except that the particle layer forming coating solution [C10] was used. The physical properties of the film were measured in the same manner as in Example 1. The results are shown in Table 2.

Figure 2017177683
Figure 2017177683

Figure 2017177683
Figure 2017177683

〔比較例1〕
〔標準粒子径ヒマワリ状粒子、樹脂オリゴマー(非エマルジョン)〕
接着材形成用塗布液[R1]の調製
変性アルコール(日本アルコール販売社製:ソルミックスA−11、メタノールとエタノールとイソプロピルアルコールの混合アルコール)72.5gに水10.0gと濃度61重量%の硝酸0.1gを添加し、25℃で10分撹拌した。ついで、テトラエトキシシラン(多摩化学工業社製:正珪酸エチル‐A、SiO濃度28.8重量%)17.4gを添加し、30℃で30分撹拌してテトラエトキシシラン加水分解物(固形分濃度5.0重量%、分子量1000)のシリカからなる接着材形成用塗布液[R1]を調製した。
粒子層形成用塗布液[R2]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を1.8g添加し、80℃で3時間熟成した。その後、粒子層形成用塗布液[R1]を20g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して被膜形成用塗布液[R2]を得た。該塗布液のpHは3.8であった。ヒマワリ状粒子の濃度、樹脂の種類、ヒマワリ状粒子と樹脂の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表3に示した。
撥水性被膜付基材[R3]の製造
粒子層形成用塗布液[R2]を使用した以外は実施例1と同様にして撥水性被膜付基材[R3]を製造し、実施例1と同様に膜の物性を測定した。この結果を表4に示す。
[Comparative Example 1]
[Standard particle size sunflower-like particles, resin oligomer (non- emulsion )]
Preparation of Adhesive Forming Coating Solution [R1] Modified alcohol (manufactured by Nippon Alcohol Sales Co., Ltd .: Solmix A-11, mixed alcohol of methanol, ethanol and isopropyl alcohol) 72.5 g of water 10.0 g and concentration 61% by weight Nitric acid 0.1g was added and it stirred at 25 degreeC for 10 minutes. Next, 17.4 g of tetraethoxysilane (manufactured by Tama Chemical Industry Co., Ltd .: normal ethyl silicate-A, SiO 2 concentration of 28.8 wt%) was added and stirred at 30 ° C. for 30 minutes to hydrolyze tetraethoxysilane (solid An adhesive forming coating solution [R1] made of silica having a concentration of 5.0% by weight and a molecular weight of 1000) was prepared.
Preparation of Particle Layer Forming Coating Solution [R2] To 90 g of the sunflower particle dispersion [A1], 1.8 g of 5% silicic acid solution was added and aged at 80 ° C. for 3 hours. Thereafter, 20 g of the particle layer forming coating solution [R1] was added, and then ethanol was added to adjust the solid content concentration to 5% by weight, followed by stirring with a magnetic stirrer at room temperature for 1 hour for coating forming. A liquid [R2] was obtained. The coating solution had a pH of 3.8. Table 3 shows the concentration of sunflower-like particles, the type of resin, the ratio of the amount of sunflower-like particles to the resin (sunflower-like particles / (sunflower-like particles + resin emulsion particles)), solid content concentration, and pH.
Production of water-repellent coated substrate [R3] A water-repellent coated substrate [R3] was produced in the same manner as in Example 1 except that the particle layer forming coating solution [R2] was used. The physical properties of the film were measured. The results are shown in Table 4.

〔比較例2〕
〔標準粒子径ヒマワリ状粒子、樹脂無添加〕
粒子層形成用塗布液[L2]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を1.8g添加し、80℃で3時間熟成した。その後エタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して粒子層形成用塗布液[L2]を得た。該塗布液のpHは7.5であった。ヒマワリ状粒子の濃度、樹脂の種類、ヒマワリ状粒子と樹脂の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表3に示した。
撥水性被膜付基材[L3]の製造
粒子層形成用塗布液[L2]を使用した以外は実施例1と同様にして撥水性被膜付基材[L3]を製造し、実施例1と同様に膜の物性を測定した。この結果を表4に示す。
[Comparative Example 2]
[Standard particle size sunflower-like particles, no resin added]
Preparation of Particle Layer Forming Coating Liquid [L2] 1.8 g of 5% silicic acid solution was added to 90 g of the sunflower particle dispersion [A1] and aged at 80 ° C. for 3 hours. Thereafter, ethanol was added to adjust the solid concentration to 5% by weight, and the mixture was stirred with a magnetic stirrer at room temperature for 1 hour to obtain a particle layer forming coating solution [L2]. The coating solution had a pH of 7.5. Table 3 shows the concentration of sunflower-like particles, the type of resin, the ratio of the amount of sunflower-like particles to the resin (sunflower-like particles / (sunflower-like particles + resin emulsion particles)), solid content concentration, and pH.
Production of water-repellent coated substrate [L3] A water-repellent coated substrate [L3] was produced in the same manner as in Example 1 except that the particle layer forming coating solution [L2] was used. The physical properties of the film were measured. The results are shown in Table 4.

〔比較例3〕
〔標準粒子径ヒマワリ状粒子、樹脂過剰量〕
粒子層形成用塗布液[M2]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を1.8g添加し、80℃で3時間熟成した。その後、樹脂エマルジョン粒子懸濁液[B1](DIC株式会社製CG8370:粒子サイズ100nm:濃度50重量%、アクリル−スチレン)を72g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して粒子層形成用塗布液(R3)を得た。該塗布液のpHは7.5であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表3に示した。
撥水性被膜付基材[M3]の製造
粒子層形成用塗布液[M2]を使用した以外は実施例1と同様にして撥水性被膜付基材[M3]を製造し、実施例1と同様に膜の物性を測定した。この結果を表4に示す。
[Comparative Example 3]
[Standard particle size sunflower-like particles, excess resin]
Preparation of Particle Layer Forming Coating Solution [M2] 1.8 g of 5% silicic acid solution was added to 90 g of the sunflower particle dispersion [A1] and aged at 80 ° C. for 3 hours. Thereafter, 72 g of resin emulsion particle suspension [B1] (CG 8370 manufactured by DIC Corporation: particle size 100 nm: concentration 50 wt%, acrylic-styrene) was added, and then ethanol was added to obtain a solid content concentration of 5 wt%. The resulting mixture was stirred with a magnetic stirrer at room temperature for 1 hour to obtain a particle layer forming coating solution (R3). The pH of the coating solution was 7.5. Table 3 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.
Production of water repellent coated substrate [M3] A water repellent coated substrate [M3] was produced in the same manner as in Example 1 except that the particle layer forming coating solution [M2] was used. The physical properties of the film were measured. The results are shown in Table 4.

〔比較例4〜6〕
〔基材の物性〕
実施例1〜10に使用した基材(ナイロン、ガラス、スレート)の物性を測定して表4に示した。
[Comparative Examples 4 to 6]
[Physical properties of the substrate]
The physical properties of the base materials (nylon, glass, slate) used in Examples 1 to 10 were measured and shown in Table 4.

Figure 2017177683
Figure 2017177683

Figure 2017177683
Figure 2017177683

1−基材、2−被膜、3−粒子層、4−接着材、5−無機酸化物粒子、6−水滴、7−オーバーコート層、10−撥水性被膜付基材、20−ヒマワリ状粒子、21−基体粒子、22−微細粒子、30−分散液、31−極性溶媒、32−樹脂エマルジョン粒子、33−極性溶媒、34−懸濁液。
1-Substrate, 2-Coating, 3-Particle Layer, 4-Adhesive, 5-Inorganic Oxide Particle, 6-Water Drop, 7-Overcoat Layer, 10-Substrate with Water-repellent Coating, 20-Sunflower-like Particle 21-substrate particles, 22-fine particles, 30-dispersion, 31-polar solvent, 32-resin emulsion particles, 33-polar solvent, 34-suspension.

Claims (21)

基材表面に撥水性の被膜を有する撥水性基材であって、前記被膜が無機酸化物粒子を含み、該無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材の間隙に接着材が介在する粒子層と、該粒子層を覆う撥水性のオーバーコート層とを有し、前記無機酸化物粒子の上部が前記接着材から露出した凹凸形状をなし、該凹凸形状を保つように前記オーバーコート層によって覆われた凹凸構造を前記被膜表面に有することを特徴とする撥水性被膜付基材。   A water-repellent substrate having a water-repellent coating on the surface of the substrate, wherein the coating contains inorganic oxide particles and adheres to the gap between the inorganic oxide particles and the gap between the inorganic oxide particles and the substrate. A particle layer interposing a material and a water-repellent overcoat layer covering the particle layer, the upper portion of the inorganic oxide particles having an uneven shape exposed from the adhesive, and maintaining the uneven shape A substrate with a water-repellent coating, characterized by having a concavo-convex structure covered with the overcoat layer on the surface of the coating. 無機酸化物粒子の平均粒子径(D)が20〜600nmであって、接着材の膜厚(U)が6〜400nmであり、該無機酸化物粒子の平均粒子径(D)に対する接着材の膜厚(U)の比(U/D)が1/3〜2/3であって、該無機酸化物粒子の平均粒子径(D )の1/3〜2/3が接着材から露出していることを特徴とする請求項1に記載する撥水性被膜付基材。 The average particle diameter (D P ) of the inorganic oxide particles is 20 to 600 nm, the film thickness (U F ) of the adhesive is 6 to 400 nm, and the average particle diameter (D P ) of the inorganic oxide particles is The ratio of the film thickness (U F ) of the adhesive (U F / D P ) is 1/3 to 2/3, and the average particle diameter (D P ) of the inorganic oxide particles is 1/3 to 2 / 3. The substrate with a water-repellent coating according to claim 1, wherein 3 is exposed from the adhesive. 撥水性被膜の膜厚が30nm〜700nmであることを特徴とする請求項1または請求項2の何れかに記載する撥水性被膜付基材。   The substrate with a water-repellent coating according to claim 1 or 2, wherein the water-repellent coating has a thickness of 30 nm to 700 nm. 撥水性被膜表面の凹凸構造の凸部平均高さ(T)が10〜300nmの範囲であり、凸部間の平均距離(ビッチ幅)(W)が1〜1000nmの範囲であることを特徴とする請求項1〜請求項3の何れかに記載する撥水性被膜付基材。 The average height of the projections of the bumpy structure of the water repellent coating film surface (T F) is in the range of 10 to 300 nm, the average distance between convex portions (Bitch width) (W F) is in the range of 1~1000nm The substrate with a water-repellent coating according to any one of claims 1 to 3. 無機酸化物粒子は、形状が球状、板状、金平糖状、塊状またはヒマワリ状の何れかであるか、または形状が球状、板状、金平糖状、塊状またはヒマワリ状の何れかであって多孔質であることを特徴とする請求項1〜請求項4の何れかに記載する撥水性被膜付基材。   The inorganic oxide particles have a spherical shape, a plate shape, a confetti shape, a lump shape or a sunflower shape, or a spherical shape, a plate shape, a confetti shape, a lump shape or a sunflower shape, and are porous. The substrate with a water-repellent coating according to any one of claims 1 to 4, wherein the substrate has a water-repellent coating. 前記ヒマワリ状の粒子は、無機酸化物からなる基体粒子と、該基体粒子表面を被覆する無機酸化物の微細粒子からなり、該ヒマワリ状の粒子表面が該微細粒子による微細凹凸を有することを特徴とする請求項5に記載する撥水性被膜付基材。   The sunflower-like particles are composed of base particles made of an inorganic oxide and fine particles of an inorganic oxide covering the surface of the base particle, and the sunflower-like particle surface has fine irregularities due to the fine particles. The substrate with a water-repellent coating according to claim 5. 前記ヒマワリ状の粒子は、撥水性被膜の凹凸構造の表面に微細な凹凸を有し、該微細凹凸の凸部平均高さ(TFF)が0.5〜10nmの範囲であり、該微細凹凸の凸部間の平均距離(ビッチ幅)(WFF)が1〜30nmの範囲であることを特徴とする請求項6に記載する撥水性被膜付基材。 The sunflower-shaped particles have fine irregularities on the surface of the irregular structure of the water-repellent coating, and the average height of the fine irregularities (T FF ) is in the range of 0.5 to 10 nm. The base material with a water-repellent coating according to claim 6, wherein an average distance (bitch width) (W FF ) between the convex portions is in the range of 1 to 30 nm. 水との接触角が130°以上であることを特徴とする請求項1〜請求項7の何れかに記載する撥水性被膜付基材。   The contact angle with water is 130 degrees or more, The substrate with a water-repellent coating according to any one of claims 1 to 7. 無機酸化物粒子がSiO、Al、Sb、ZrO、TiO、Fe、CeO、AgO、CuO、CuO、ZnOおよびこれらの複合酸化物または混合物から選ばれる少なくとも1種であることを特徴とする請求項1〜請求項8の何れかに記載する撥水性被膜付基材。 Inorganic oxide particles are composed of SiO 2 , Al 2 O 3 , Sb 2 O 5 , ZrO 2 , TiO 2 , Fe 2 O 3 , CeO 2 , AgO, CuO, Cu 2 O, ZnO and their complex oxides or mixtures. The substrate with a water-repellent coating according to any one of claims 1 to 8, which is at least one selected. 接着材が、エマルジョン樹脂であって、エステル系樹脂、ポリカーボネート系樹脂、アミド系樹脂、イミド系樹脂、ポリフェニレンオキサイド系樹脂、アクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、シリコーン系樹脂、ウレタン系樹脂、またはスチレン系樹脂、あるいはこれらの共重合樹脂から選ばれる少なくとも1種であることを特徴とする請求項1〜請求項9の何れかに記載する撥水性被膜付基材。   Adhesive is emulsion resin, ester resin, polycarbonate resin, amide resin, imide resin, polyphenylene oxide resin, acrylic resin, vinyl chloride resin, vinyl acetate resin, silicone resin, urethane The base material with a water-repellent coating according to any one of claims 1 to 9, wherein the base material is at least one selected from a base resin, a styrene resin, or a copolymer resin thereof. 無機酸化物粒子と樹脂エマルジョン粒子が極性溶媒中に混在して単分散している粒子層形成用塗布液と、撥水性のオーバーコート層形成用塗布液とからなることを特徴とする撥水性被膜形成用塗布液。   A water-repellent coating comprising: a coating solution for forming a particle layer in which inorganic oxide particles and resin emulsion particles are mixed and monodispersed in a polar solvent; and a coating solution for forming a water-repellent overcoat layer Coating liquid for forming. 樹脂エマルジョン粒子の平均粒子径(D)が、無機酸化物粒子の平均粒子径(D)と同等か小さい(D≦D)ことを特徴とする請求項11に記載する撥水性被膜形成用塗布液。 12. The water repellent coating film according to claim 11, wherein the average particle size (D e ) of the resin emulsion particles is equal to or smaller than the average particle size (D P ) of the inorganic oxide particles (D e ≦ D P ). Coating liquid for forming. 無機酸化物粒子の体積量(G)と、樹脂エマルジョン粒子の体積量(M)との体積量比(G/[G+M])が0.25〜0.9の範囲であることを特徴とする請求項11または請求項12に記載する撥水性被膜形成用塗布液。   The volume ratio (G / [G + M]) of the volume (G) of the inorganic oxide particles and the volume (M) of the resin emulsion particles is in the range of 0.25 to 0.9. The coating liquid for forming a water repellent film according to claim 11 or claim 12. 粒子層形成用塗布液が、無機酸化物粒子が極性溶媒に分散した分散液と、樹脂エマルジョン粒子が極性溶媒に懸濁した懸濁液とからなり、前記分散液と前記懸濁液の混合によって無機酸化物粒子と樹脂エマルジョン粒子が極性溶媒中に混在して単分散した粒子層形成用塗布液になる請求項11〜請求項13の何れかに記載する撥水性被膜形成用塗布液。   The coating solution for forming a particle layer is composed of a dispersion in which inorganic oxide particles are dispersed in a polar solvent, and a suspension in which resin emulsion particles are suspended in a polar solvent. By mixing the dispersion and the suspension, The coating liquid for forming a water-repellent coating according to any one of claims 11 to 13, wherein the coating liquid for forming a particle layer is formed by mixing inorganic oxide particles and resin emulsion particles in a polar solvent and monodispersing them. オーバーコート層形成用塗布液が、フッ素含有化合物、アルキル基含有化合物またはシリコーン系化合物の少なくとも1種を含むことを特徴とする請求項11〜請求項14の何れかに記載する撥水性被膜形成用塗布液。   The coating liquid for overcoat layer formation contains at least 1 sort (s) of a fluorine-containing compound, an alkyl-group containing compound, or a silicone type compound, The water repellent film formation in any one of Claims 11-14 characterized by the above-mentioned. Coating liquid. 無機酸化物粒子と樹脂エマルジョン粒子とが極性溶媒中に単分散し懸濁している粒子層形成用塗布液を基材に塗布して前記無機酸化物粒子相互の間隙に前記樹脂エマルジョン粒子を介在させ、塗布後、該樹脂エマルジョン粒子を崩壊させて前記無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材との間隙に樹脂を入り込ませて接着材を介在させると共に該無機酸化物粒子の上部が該接着材から露出した凹凸形状を有する粒子層を形成し、次いで、該粒子層の無機酸化物粒子が露出した凹凸形状表面に、該凹凸形状を保つようにオーバーコート層形成用塗布液を塗布して、該オーバーコート層によって覆われた凹凸構造を有する撥水性被膜を基材表面に形成することを特徴とする撥水性被膜付基材の製造方法。   A coating solution for forming a particle layer in which inorganic oxide particles and resin emulsion particles are monodispersed and suspended in a polar solvent is applied to a base material, and the resin emulsion particles are interposed between the inorganic oxide particles. After the coating, the resin emulsion particles are disintegrated so that the resin enters the gap between the inorganic oxide particles and the gap between the inorganic oxide particles and the base material to interpose an adhesive and the inorganic oxide particles An overcoat layer forming coating is formed so as to maintain a concavo-convex shape on the surface of the concavo-convex shape where the inorganic oxide particles of the particle layer are exposed. A method for producing a substrate with a water-repellent coating, comprising applying a liquid to form a water-repellent coating having a concavo-convex structure covered with the overcoat layer on the surface of the substrate. 無機酸化物粒子の分散液と樹脂エマルジョン粒子の懸濁液を混合して、無機酸化物粒子と樹脂エマルジョン粒子とが極性溶媒中に混在して単分散した粒子層形成用塗布液を調製し、該塗布液を基材に塗布する請求項16に記載する撥水性被膜付基材の製造方法。   A dispersion of inorganic oxide particles and a suspension of resin emulsion particles are mixed to prepare a coating solution for forming a particle layer in which inorganic oxide particles and resin emulsion particles are mixed in a polar solvent and monodispersed. The manufacturing method of the base material with a water-repellent film of Claim 16 which apply | coats this coating liquid to a base material. 粒子層形成用塗布液に含まれる樹脂エマルジョン粒子の平均粒子径(D)が無機酸化物粒子の平均粒子径(D)と同等か小さい(D≦D)ことを特徴とする請求項16または請求項17に記載する撥水性被膜付基材の製造方法。 The average particle size (D e ) of the resin emulsion particles contained in the coating liquid for forming the particle layer is equal to or smaller than the average particle size (D P ) of the inorganic oxide particles (D e ≦ D P ). Item 18. A method for producing a substrate with a water-repellent coating according to Item 16 or Item 17. 粒子層形成用塗布液に含まれる無機酸化物粒子の体積量(G)と、樹脂エマルジョン粒子の体積量(M)との体積量比(G/[G+M])が0.25〜0.9の範囲であることを特徴とする請求項16〜請求項18の何れかに記載する撥水性被膜付基材の製造方法。   The volume ratio (G / [G + M]) between the volume (G) of the inorganic oxide particles contained in the coating liquid for forming the particle layer and the volume (M) of the resin emulsion particles is 0.25 to 0.9. The method for producing a substrate with a water-repellent coating according to any one of claims 16 to 18, wherein the substrate has a water-repellent coating. エマルジョン樹脂として、エステル系樹脂、ポリカーボネート系樹脂、アミド系樹脂、イミド系樹脂、ポリフェニレンオキサイド系樹脂、アクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、シリコーン系樹脂、ウレタン系樹脂、またはスチレン系樹脂、あるいはこれらの共重合樹脂からなる樹脂エマルジョン粒子を極性溶媒に懸濁させた樹脂エマルジョン粒子懸濁液と、無機酸化物粒子を極性溶媒に分散させた無機酸化物粒子分散液を混合して粒子層形成用塗布液を調製することを特徴とする請求項16〜請求項19の何れかに記載する撥水性被膜付基材の製造方法。   As emulsion resin, ester resin, polycarbonate resin, amide resin, imide resin, polyphenylene oxide resin, acrylic resin, vinyl chloride resin, vinyl acetate resin, silicone resin, urethane resin, or styrene resin A resin emulsion particle suspension obtained by suspending resin emulsion particles composed of a resin or a copolymer resin thereof in a polar solvent and an inorganic oxide particle dispersion obtained by dispersing inorganic oxide particles in a polar solvent are mixed. The method for producing a substrate with a water-repellent coating according to any one of claims 16 to 19, wherein a coating liquid for forming a particle layer is prepared. 前記樹脂エマルジョン粒子の崩壊を、加熱乾燥、電子線の照射または紫外線(UV)の照射の何れかにより行うことを特徴とする請求項16〜請求項20の何れかに記載する撥水性被膜付基材の製造方法。

21. The water-repellent film-coated base according to claim 16, wherein the resin emulsion particles are collapsed by any one of heat drying, electron beam irradiation, or ultraviolet (UV) irradiation. A method of manufacturing the material.

JP2016071261A 2016-03-31 2016-03-31 Substrate with water-repellent coating and method for producing the same Active JP6713319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016071261A JP6713319B2 (en) 2016-03-31 2016-03-31 Substrate with water-repellent coating and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016071261A JP6713319B2 (en) 2016-03-31 2016-03-31 Substrate with water-repellent coating and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017177683A true JP2017177683A (en) 2017-10-05
JP6713319B2 JP6713319B2 (en) 2020-06-24

Family

ID=60003265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016071261A Active JP6713319B2 (en) 2016-03-31 2016-03-31 Substrate with water-repellent coating and method for producing the same

Country Status (1)

Country Link
JP (1) JP6713319B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108912663A (en) * 2018-07-06 2018-11-30 齐鲁工业大学 A kind of visible light-responded nanometer Cu2The preparation method of O antibiosis and self-cleaning film
KR20200029084A (en) * 2018-09-07 2020-03-18 한국세라믹기술원 Super water-repellent coating method
WO2021157449A1 (en) * 2020-02-06 2021-08-12 バンドー化学株式会社 Water-repellent structure, manufacturing method therefor, and water-repellent coating agent employed in same
CN114190774A (en) * 2021-12-17 2022-03-18 武汉苏泊尔炊具有限公司 Cooker and method for manufacturing the same
WO2022130620A1 (en) * 2020-12-18 2022-06-23 三菱電機株式会社 Heat exchanger and method for manufacturing heat exchanger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224951A (en) * 1990-01-30 1991-10-03 Ig Tech Res Inc High weather proof metal ricin plate
JP2014069557A (en) * 2012-10-02 2014-04-21 Toppan Printing Co Ltd Heat sealable film
WO2014104008A1 (en) * 2012-12-27 2014-07-03 日揮触媒化成株式会社 Base material having water-repellant transparent film attached thereto and production method therefor
JP2015110285A (en) * 2013-12-06 2015-06-18 日揮触媒化成株式会社 Base material coated with water-repellent transparent film, and method of producing the same
JP2015116731A (en) * 2013-12-18 2015-06-25 日揮触媒化成株式会社 Substrate with repellent coating film and manufacturing method therefor
WO2015122453A1 (en) * 2014-02-14 2015-08-20 日揮触媒化成株式会社 Coating solution for forming transparent film, and method for forming substrate with transparent film
JP2015214340A (en) * 2014-05-08 2015-12-03 凸版印刷株式会社 Packaging material sealant and method of manufacturing the same
JP2017100358A (en) * 2015-12-02 2017-06-08 日揮触媒化成株式会社 Substrate with superhydrophilic coating film, and coating liquid and production method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224951A (en) * 1990-01-30 1991-10-03 Ig Tech Res Inc High weather proof metal ricin plate
JP2014069557A (en) * 2012-10-02 2014-04-21 Toppan Printing Co Ltd Heat sealable film
WO2014104008A1 (en) * 2012-12-27 2014-07-03 日揮触媒化成株式会社 Base material having water-repellant transparent film attached thereto and production method therefor
JP2015110285A (en) * 2013-12-06 2015-06-18 日揮触媒化成株式会社 Base material coated with water-repellent transparent film, and method of producing the same
JP2015116731A (en) * 2013-12-18 2015-06-25 日揮触媒化成株式会社 Substrate with repellent coating film and manufacturing method therefor
WO2015122453A1 (en) * 2014-02-14 2015-08-20 日揮触媒化成株式会社 Coating solution for forming transparent film, and method for forming substrate with transparent film
JP2015214340A (en) * 2014-05-08 2015-12-03 凸版印刷株式会社 Packaging material sealant and method of manufacturing the same
JP2017100358A (en) * 2015-12-02 2017-06-08 日揮触媒化成株式会社 Substrate with superhydrophilic coating film, and coating liquid and production method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108912663A (en) * 2018-07-06 2018-11-30 齐鲁工业大学 A kind of visible light-responded nanometer Cu2The preparation method of O antibiosis and self-cleaning film
CN108912663B (en) * 2018-07-06 2020-09-04 齐鲁工业大学 Visible light response nano Cu2Preparation method of O antibacterial self-cleaning film
KR20200029084A (en) * 2018-09-07 2020-03-18 한국세라믹기술원 Super water-repellent coating method
KR102203462B1 (en) 2018-09-07 2021-01-15 한국세라믹기술원 Super water-repellent coating method
WO2021157449A1 (en) * 2020-02-06 2021-08-12 バンドー化学株式会社 Water-repellent structure, manufacturing method therefor, and water-repellent coating agent employed in same
JP6972425B1 (en) * 2020-02-06 2021-11-24 バンドー化学株式会社 Water-repellent structure, its manufacturing method, and water-repellent coating agent used for it.
US11746242B2 (en) 2020-02-06 2023-09-05 Bando Chemical Industries, Ltd. Water-repellent structure, manufacturing method therefor, and water-repellent coating agent employed in same
EP4091814A4 (en) * 2020-02-06 2023-10-11 Bando Chemical Industries, Ltd. Water-repellent structure, manufacturing method therefor, and water-repellent coating agent employed in same
WO2022130620A1 (en) * 2020-12-18 2022-06-23 三菱電機株式会社 Heat exchanger and method for manufacturing heat exchanger
CN114190774A (en) * 2021-12-17 2022-03-18 武汉苏泊尔炊具有限公司 Cooker and method for manufacturing the same
CN114190774B (en) * 2021-12-17 2023-08-04 武汉苏泊尔炊具有限公司 Cooker and method for manufacturing the same

Also Published As

Publication number Publication date
JP6713319B2 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
JP6713319B2 (en) Substrate with water-repellent coating and method for producing the same
JP4801234B2 (en) Improved hydrophilic or hydrophobic support with irregularity
Nimittrakoolchai et al. Deposition of organic-based superhydrophobic films for anti-adhesion and self-cleaning applications
CN102239222B (en) Silica coating for enhanced hydrophilicity
US8216483B2 (en) Preparation of super water repellent surface
US9221076B2 (en) Composition for forming an optically transparent, superhydrophobic coating
JP5680900B2 (en) Oil-repellent coated article and method for producing the same
JP2009527011A (en) Method for coating glass plates
JP6480658B2 (en) Substrate with water-repellent coating and method for producing the same
JP2003147340A (en) Super water repellent and super-water-repellent material made by using it
JP6826985B2 (en) Glass plate with coating film and its manufacturing method
US20200399170A1 (en) Coated glass sheet and method for producing same
JP2016525963A (en) Cross-linked poly (vinyl alcohol) and silica nanoparticle multilayer coating and method
US20140272127A1 (en) Anti-Glare Coatings with Sacrificial Surface Roughening Agents and Methods for Forming the Same
KR101406116B1 (en) Forming method of superhydrophobic coating layer using inorganic oxide supraparticles and the superhydrophobic coating layer formed thereby
JP2003238947A (en) Ultra water-repellent film and method for manufacturing the same
US10253190B2 (en) Transparent durable superhydrophobic ceramic coating
CN112143332B (en) Super-hydrophobic coating and preparation method thereof
JP2019210392A (en) Liquid repellent surface and manufacturing method therefor
Nomeir et al. Recent progress on transparent and self-cleaning surfaces by superhydrophobic coatings deposition to optimize the cleaning process of solar panels
JP6749093B2 (en) Substrate with superhydrophilic coating, coating solution and manufacturing method thereof
Ullah et al. Fabrication and characterization of functionalized nano-silica based transparent superhydrophobic surface
JP2015110285A (en) Base material coated with water-repellent transparent film, and method of producing the same
JP4175880B2 (en) Sol-gel film having a convex, concave or concave surface shape, coating liquid and production method
JP4438594B2 (en) Coating material composition and painted product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200603

R150 Certificate of patent or registration of utility model

Ref document number: 6713319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250