JP2017100358A - Substrate with superhydrophilic coating film, and coating liquid and production method therefor - Google Patents

Substrate with superhydrophilic coating film, and coating liquid and production method therefor Download PDF

Info

Publication number
JP2017100358A
JP2017100358A JP2015235332A JP2015235332A JP2017100358A JP 2017100358 A JP2017100358 A JP 2017100358A JP 2015235332 A JP2015235332 A JP 2015235332A JP 2015235332 A JP2015235332 A JP 2015235332A JP 2017100358 A JP2017100358 A JP 2017100358A
Authority
JP
Japan
Prior art keywords
particles
inorganic oxide
substrate
oxide particles
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015235332A
Other languages
Japanese (ja)
Other versions
JP6749093B2 (en
JP2017100358A5 (en
Inventor
光章 熊澤
Mitsuaki Kumazawa
光章 熊澤
吉田 聡
Satoshi Yoshida
聡 吉田
小松 通郎
Michio Komatsu
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2015235332A priority Critical patent/JP6749093B2/en
Publication of JP2017100358A publication Critical patent/JP2017100358A/en
Publication of JP2017100358A5 publication Critical patent/JP2017100358A5/ja
Application granted granted Critical
Publication of JP6749093B2 publication Critical patent/JP6749093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide: a substrate with a hydrophilic coating film, which maintains excellent hydrophilicity for a long term, has abrasion resistance, and is excellent in adhesion strength between particles with each other in the coating film and between the coating film and the substrate; and a production method of the substrate.SOLUTION: Provided is a substrate with a superhydrophilic coating film, in which the superhydrophilic film on the substrate surface comprises: a particle layer containing inorganic oxide particles; and an adhesive layer included in a space between the inorganic oxide particles and a space between the inorganic oxide particles and the substrate, where a surface of the inorganic oxide particle is hydrophilic and has an uneven structure where an upper part of the inorganic oxide particle is exposed from the adhesive layer. The substrate with a superhydrophilic coating film is produced by: preparing a coating liquid for forming a coating film by mixing a dispersion of inorganic oxide particles and a suspension of resin emulsion particles; forming a particle layer where the resin emulsion particles are included in a space between the inorganic oxide particles by coating the coating liquid, and forming an adhesive layer by breaking the resin emulsion particles.SELECTED DRAWING: Figure 4

Description

本発明は、親水性に優れた被膜付基材およびその製造方法に関し、水処理用およびその他の用途に好適な親水性に優れた被膜を基材上に有する超親水性被膜付基材と、その塗布液および製造方法に関する。   The present invention relates to a substrate with a coating excellent in hydrophilicity and a method for producing the same, and a substrate with a superhydrophilic coating having a coating excellent in hydrophilicity suitable for water treatment and other uses on the substrate, The present invention relates to the coating liquid and the manufacturing method.

親水性被膜について、例えば、自動車や建物の窓ガラス、鏡面などの表面に生じる結露などを防止するために親水性被膜を設けることが知られており、(イ)チタニア粒子とシリカ粒子の分散液を塗布し焼成してなる被膜、(ロ)シリカ前駆体とチタニアゾルの混合液を塗布し焼成してなる被膜などが知られている。しかし、前記被膜(イ)はバインダーがないため基板との結合力が低く耐摩耗性に劣り、前記被膜(ロ)はチタニア粒子をシリカ前駆体が覆い光触媒としての親水性が発現し難く、親水性を長期間持続するのが難しいなどの問題が指摘されている(特許文献1)。   As for the hydrophilic coating, it is known to provide a hydrophilic coating to prevent, for example, dew condensation that occurs on the surface of automobiles and buildings, such as window glass and mirror surfaces, and (i) a dispersion of titania particles and silica particles. There are known coatings obtained by coating and baking, and (b) coatings obtained by applying and baking a mixed solution of a silica precursor and titania sol. However, since the coating film (a) has no binder and has low bonding strength with the substrate due to the absence of a binder, the coating film (b) has titania particles covered with a silica precursor and hardly exhibits hydrophilicity as a photocatalyst. It has been pointed out that it is difficult to maintain the sex for a long time (Patent Document 1).

また、親水性被膜は防汚材料として用いられており、(ハ)酸化チタン等の光触媒微粒子を含有する親水性被膜、(ニ)ゾルゲル法等で形成されるシリカ質被膜、(ホ)珪素とジルコニウムの複合酸化物と水、または酸化珪素と酸化ジルコニウムの混合物と水を含有する親水性被膜などが知られている。しかし、前記被膜(ハ)はバインダーが粒子を覆うため親水性が十分でなく、前記被膜(ニ)は低温処理のためシロキサン結合が発達せず、耐水性が弱く、前記被膜(ホ)は樹脂基板上での密着強度が十分ではないことが指摘されている(特許文献2)。   Further, the hydrophilic film is used as an antifouling material, (c) a hydrophilic film containing photocatalyst fine particles such as titanium oxide, (d) a siliceous film formed by a sol-gel method, (e) silicon and Known are hydrophilic coatings containing a complex oxide of zirconium and water, or a mixture of silicon oxide and zirconium oxide and water. However, the coating film (c) is not sufficiently hydrophilic because the binder covers the particles, and the coating film (d) does not develop a siloxane bond due to low temperature treatment, and the water resistance is weak. It has been pointed out that the adhesion strength on the substrate is not sufficient (Patent Document 2).

さらに、水処理用に好適な親水性被膜付基材が知られている。特許文献3には、基材と該基材表面の親水性透明被膜からなり、該親水性透明被膜が無機酸化物微粒子を含む無機酸化物微粒子層と該無機酸化物微粒子層上の結合材層とからなり、該親水性透明被膜表面が凹凸構造を有し、該凸部の平均高さが30〜500nmの範囲であって平均凸部間距離(ピッチ幅)が50〜1000nmの範囲にあり、水との接触角が20°以下であることを特徴とする親水性透明被膜付基材が記載されている。   Furthermore, a substrate with a hydrophilic film suitable for water treatment is known. Patent Document 3 discloses a base material and a hydrophilic transparent film on the surface of the base material, wherein the hydrophilic transparent film includes an inorganic oxide fine particle layer containing inorganic oxide fine particles and a binder layer on the inorganic oxide fine particle layer. The surface of the hydrophilic transparent coating has a concavo-convex structure, the average height of the convex portions is in the range of 30 to 500 nm, and the average convex portion distance (pitch width) is in the range of 50 to 1000 nm. A substrate with a hydrophilic transparent coating is described, wherein the contact angle with water is 20 ° or less.

特許文献3に記載されている親水性被膜付基材は、基材との密着性、透明性、硬度、耐擦傷性、耐摩耗性、ヘーズ等に優れており、例えば、ガラス基材上に前記被膜を設けた場合、該被膜に滴下した水滴が速やかに被膜表面で拡散して透明な状態を維持し、また、RO膜や不織布上に該被膜を設けた場合、ファウリングを抑制することができ、水処理に好適であるなどの利点を有している。   The substrate with a hydrophilic film described in Patent Document 3 is excellent in adhesion to the substrate, transparency, hardness, scratch resistance, abrasion resistance, haze, etc., for example, on a glass substrate. When the coating is provided, water drops dripped onto the coating are quickly diffused on the coating surface to maintain a transparent state, and when the coating is provided on an RO membrane or nonwoven fabric, fouling is suppressed. And has advantages such as being suitable for water treatment.

一方、特許文献3の親水性被膜付基材は、無機酸化物微粒子層上に結合材層が設けられているので、無機酸化物微粒子によって形成された被膜表面の凹凸構造が結合層によって覆われるために凹凸構造による効果が十分に発揮され難い場合がある。また、無機酸化物微粒子の粒子層を形成した後に結合層を塗布する工程が必要であり、さらに基材上に下地の接合層を設けた後に粒子層を形成し、この粒子層の上に表面接合層を積層する場合には、接合層の塗布工程が多くなり、コストが高い問題があった。   On the other hand, since the base material with a hydrophilic film of patent document 3 is provided with the binder layer on the inorganic oxide fine particle layer, the concavo-convex structure on the surface of the film formed by the inorganic oxide fine particle is covered with the bond layer. For this reason, the effect of the uneven structure may not be sufficiently exhibited. In addition, it is necessary to apply a bonding layer after forming a particle layer of inorganic oxide fine particles. Further, after forming a base bonding layer on a substrate, a particle layer is formed, and a surface is formed on the particle layer. In the case of laminating the bonding layer, there is a problem that the number of steps of applying the bonding layer increases and the cost is high.

特開2003−176426号公報JP 2003-176426 A 特開2007−161770号公報JP 2007-161770 A 特開2015−136669号公報JP2015-136669A

本発明は、従来の前記(イ)〜前記(ホ)の親水性被膜の問題を解消し、また特許文献3の親水性被膜付基材について、被膜の凹凸構造がその上側の結合層などによって覆われずに凹凸構造による効果を十分に発揮できるようにし、さらに製造工程を簡略化すると共に被膜の密着強度を高めたものであり、本発明によれば、優れた親水性を長期間保ち、耐摩耗性を有すると共に、被膜中の粒子相互および被膜と基材の密着強度に優れた親水性被膜付基材と、その塗布液および製造方法が提供される。   The present invention solves the problems of the conventional hydrophilic coatings of the above (a) to (e), and the substrate with a hydrophilic coating of Patent Document 3 has a concavo-convex structure of the coating by an upper binding layer or the like. The effect of the concavo-convex structure can be sufficiently exhibited without being covered, and the manufacturing process is further simplified and the adhesion strength of the coating is increased.According to the present invention, excellent hydrophilicity is maintained for a long period of time, Provided are a substrate with a hydrophilic coating that has wear resistance and excellent adhesion strength between particles in the coating and between the coating and the substrate, and a coating solution and a production method therefor.

本発明の超親水性被膜付基材は以下の構成を有する。
〔1〕基材表面に超親水性の被膜を有する親水性基材であって、前記被膜が無機酸化物粒子を含む粒子層と、該無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材の間隙に介在する接着層からなり、該無機酸化物粒子の表面が親水性であって、該無機酸化物粒子の上部が前記接着層から露出した凹凸構造を前記被膜表面に有することを特徴とする超親水性被膜付基材。
〔2〕無機酸化物粒子の平均粒子径(D)が20〜600nmであって、接着層の膜厚(U)が6〜400nmであり、該無機酸化物粒子の平均粒子径(D)に対する接着層の膜厚(U)の比(U/D)が1/3〜2/3であって、該無機酸化物粒子の平均粒子径(D)の1/3〜2/3が接着層から露出していることを特徴とする前記[1]に記載する超親水性被膜付基材。
〔3〕親水性被膜表面の凹凸構造の凸部平均高さ(T)が10〜300nmの範囲であり、凸部間の平均距離(ピッチ幅)(W)が1〜1000nmの範囲であることを特徴とする前記[1]または前記[2]の何れかに記載する超親水性被膜付基材。
〔4〕親水性被膜の膜厚が20nm〜700nmであることを特徴とする前記[1]〜前記[3]の何れかに記載する超親水性被膜付基材。
〔5〕無機酸化物粒子が、球状、板状、金平糖状、またはヒマワリ状の何れかであることを特徴とする前記[1]〜前記[4]の何れかに記載する超親水性被膜付基材。
〔6〕無機酸化物粒子が、球状、板状、金平糖状、またはヒマワリ状の何れかであって多孔質であることを特徴とする前記[5]に記載する超親水性被膜付基材。
〔7〕無機酸化物粒子が、無機酸化物の基体粒子と、該基体粒子表面を被覆する無機酸化物の微細粒子からなるヒマワリ状粒子であり、該無機酸化物粒子表面が該微細粒子による微細凹凸を有することを特徴とする前記[1]〜前記[4]の何れかに記載する超親水性被膜付基材。
〔8〕無機酸化物粒子がその表面に微細な凹凸を有し、該微細凹凸の凸部平均高さ(TFF)が0.5〜10nmの範囲であり、該微細凹凸の凸部間の平均距離(ピッチ幅)(WFF)が1〜30nmの範囲であることを特徴とする前記[1]〜前記[7]の何れかに記載する超親水性被膜付基材。
〔9〕無機酸化物粒子の表面が、SiXの式(式中、X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素)で示される加水分解性有機ケイ素化合物による親水基で修飾されていることを特徴とする前記[1]〜前記[8]の何れかに記載する超親水性被膜付基材。
〔10〕水との接触角が10°以下であることを特徴とする前記[1]〜前記[9]の何れかに記載する超親水性被膜付基材。
〔11〕無機酸化物粒子がSiO、Al、Sb、ZrO、TiO、Fe、CeO、AgO、CuO、CuO、およびこれらの複合酸化物または混合物から選ばれる少なくとも1種であることを特徴とする前記[1]〜前記[10]の何れかに記載する超親水性被膜付基材。
〔12〕接着層が、エマルジョン用樹脂であって、エステル系樹脂、ポリカーボネート系樹脂、アミド系樹脂、イミド系樹脂、ポリフェニレンオキサイド系樹脂、アクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、シリコーン系樹脂、ウレタン系樹脂、またはスチレン系樹脂、あるいはこれらの共重合樹脂から選ばれる少なくとも1種であることを特徴とする前記[1]〜前記[11]の何れかに記載する超親水性被膜付基材。
The substrate with a superhydrophilic film of the present invention has the following configuration.
[1] A hydrophilic substrate having a superhydrophilic coating on the substrate surface, wherein the coating includes a particle layer containing inorganic oxide particles, a gap between the inorganic oxide particles, and the inorganic oxide particles. It is composed of an adhesive layer interposed in the gap of the base material, the surface of the inorganic oxide particles is hydrophilic, and has an uneven structure in which the upper part of the inorganic oxide particles is exposed from the adhesive layer on the surface of the coating A substrate with a super-hydrophilic coating characterized by
[2] The average particle diameter (D P ) of the inorganic oxide particles is 20 to 600 nm, the film thickness (U F ) of the adhesive layer is 6 to 400 nm, and the average particle diameter (D a ratio (U F / D P) is 1 / 3-2 / 3 of the thickness of the adhesive layer (U F) for P), 1/3 of the average particle diameter of the inorganic oxide particles (D P) ~ 2/3 is exposed from the adhesive layer, The substrate with a superhydrophilic film as described in [1] above.
[3] the average height of the projections of the uneven structure of the hydrophilic coating surface (T F) is in the range of 10 to 300 nm, the average distance between convex portions (pitch) (W F) is in the range of 1~1000nm The substrate with a superhydrophilic film according to any one of [1] or [2], wherein the substrate has a superhydrophilic film.
[4] The substrate with super hydrophilic coating according to any one of [1] to [3] above, wherein the hydrophilic coating has a thickness of 20 nm to 700 nm.
[5] The superhydrophilic coating film according to any one of [1] to [4] above, wherein the inorganic oxide particles are spherical, plate-shaped, confetti-shaped, or sunflower-shaped. Base material.
[6] The substrate with a superhydrophilic film as described in [5] above, wherein the inorganic oxide particles are spherical, plate-like, confetti-like, or sunflower-like and porous.
[7] The inorganic oxide particles are sunflower-like particles composed of inorganic oxide substrate particles and inorganic oxide fine particles covering the surface of the substrate particles, and the inorganic oxide particle surfaces are finely divided by the fine particles. The substrate with a superhydrophilic film according to any one of [1] to [4] above, which has irregularities.
[8] The inorganic oxide particles have fine irregularities on the surface, and the average height of convex portions (T FF ) of the fine irregularities is in the range of 0.5 to 10 nm. The substrate with a superhydrophilic film according to any one of [1] to [7] above, wherein an average distance (pitch width) (W FF ) is in the range of 1 to 30 nm.
[9] The surface of the inorganic oxide particles is modified with a hydrophilic group by a hydrolyzable organosilicon compound represented by the formula of SiX 4 (where X is an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a halogen, or hydrogen). The substrate with a superhydrophilic film as described in any one of [1] to [8] above, wherein
[10] The substrate with a superhydrophilic film according to any one of [1] to [9], wherein a contact angle with water is 10 ° or less.
[11] The inorganic oxide particles are SiO 2 , Al 2 O 3 , Sb 2 O 5 , ZrO 2 , TiO 2 , Fe 2 O 3 , CeO 2 , AgO, CuO, Cu 2 O, and a composite oxide thereof. The substrate with a superhydrophilic film according to any one of [1] to [10] above, which is at least one selected from a mixture.
[12] The adhesive layer is an emulsion resin, which is an ester resin, polycarbonate resin, amide resin, imide resin, polyphenylene oxide resin, acrylic resin, vinyl chloride resin, vinyl acetate resin, silicone The superhydrophilic film according to any one of [1] to [11] above, which is at least one selected from a resin based on resin, a urethane based resin, a styrene based resin, or a copolymer resin thereof Attached base material.

本発明は以下の構成からなる超親水性被膜形成用塗布液を含む。
〔13〕粒子表面が親水性の無機酸化物粒子と、樹脂エマルジョン粒子が、極性溶媒中に混在して単分散していることを特徴とする超親水性被膜形成用塗布液。
〔14〕樹脂エマルジョン粒子の平均粒子径(De)が、無機酸化物粒子の平均粒子径(D)と同等か小さい(De≦D)ことを特徴とする前記[13]に記載する超親水性被膜形成用塗布液。
〔15〕無機酸化物粒子の量(G)と、樹脂エマルジョン粒子の量(M)との量比(G/[G+M])が0.5〜0.98の範囲であることを特徴とする前記[13]または前記[14]に記載する超親水性被膜形成用塗布液。
〔16〕粒子表面が親水性の無機酸化物粒子が極性溶媒に分散した分散液と、樹脂エマルジョン粒子が極性溶媒に懸濁した懸濁液との二液からなり、前記分散液と前記懸濁液の混合によって無機酸化物粒子と樹脂エマルジョン粒子が極性溶媒中に混在して単分散した状態になる前記[13]〜前記[15]の何れかに記載する超親水性被膜形成用塗布液。
The present invention includes a coating solution for forming a superhydrophilic film having the following constitution.
[13] A coating solution for forming a superhydrophilic film, characterized in that inorganic oxide particles having hydrophilic particle surfaces and resin emulsion particles are mixed and monodispersed in a polar solvent.
[14] The super-size according to [13], wherein the average particle size (De) of the resin emulsion particles is equal to or smaller than the average particle size (D P ) of the inorganic oxide particles (De ≦ D P ). Coating liquid for forming a hydrophilic film.
[15] The quantity ratio (G / [G + M]) of the amount (G) of inorganic oxide particles and the amount (M) of resin emulsion particles is in the range of 0.5 to 0.98. The coating solution for forming a superhydrophilic film according to [13] or [14].
[16] The dispersion is composed of two liquids, a dispersion in which inorganic oxide particles having hydrophilic particle surfaces are dispersed in a polar solvent, and a suspension in which resin emulsion particles are suspended in a polar solvent. The superhydrophilic film-forming coating liquid according to any one of [13] to [15], wherein the inorganic oxide particles and the resin emulsion particles are mixed in a polar solvent and monodispersed by mixing the liquids.

本発明は以下の構成からなる超親水性被膜付基材の製造方法を含む。
〔17〕粒子表面が親水性の無機酸化物粒子と樹脂エマルジョン粒子とが極性溶媒中に分散し懸濁している被膜形成用塗布液を基材に塗布して前記無機酸化物粒子相互の間隙に前記樹脂エマルジョン粒子が介在した粒子層を形成し、塗布後、加熱乾燥して該樹脂エマルジョン粒子の崩壊によって前記無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材との間隙に樹脂を入り込ませて接着層を形成し、該無機酸化物粒子の上部が該接着層から露出した凹凸構造を有する超親水性被膜を基材上に形成することを特徴とする超親水性被膜付基材の製造方法。
〔18〕粒子表面が親水性の無機酸化物粒子の分散液と、樹脂エマルジョン粒子の懸濁液とを混合して、無機酸化物粒子と樹脂エマルジョン粒子とが極性溶媒中に混在し単分散している被膜形成用塗布液を調製し、該塗布液を基材に塗布する前記[17]に記載する超親水性被膜付基材の製造方法。
〔19〕被膜形成用塗布液に含まれる樹脂エマルジョン粒子の平均粒子径(De)が無機酸化物粒子の平均粒子径(D)と同等か小さい(De≦D)ことを特徴とする前記[17]または前記[18]に記載する超親水性被膜付基材の製造方法。
〔20〕被膜形成用塗布液に含まれる無機酸化物粒子の量(G)と樹脂エマルジョン粒子の量(M)との量比(G/[G+M])が0.5〜0.98の範囲であることを特徴とする前記[17]〜前記[19]の何れかに記載する超親水性被膜付基材の製造方法。
〔21〕エマルジョン用樹脂として、エステル系樹脂、ポリカーボネート系樹脂、アミド系樹脂、イミド系樹脂、ポリフェニレンオキサイド系樹脂、アクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、シリコーン系樹脂、ウレタン系樹脂、またはスチレン系樹脂、あるいはこれらの共重合樹脂からなる樹脂エマルジョン粒子を極性溶媒に懸濁させた樹脂エマルジョン粒子懸濁液と、無機酸化物粒子を極性溶媒に分散させた無機酸化物粒子分散液を混合して被膜形成用塗布液を調製することを特徴とする前記[17]〜は前記[20]の何れかに記載する超親水性被膜付基材の製造方法。
〔22〕被膜形成用塗布液を基材に塗布した後に60〜200℃に加熱乾燥して樹脂エマルジョン粒子を崩壊させることを特徴とする前記[17]〜前記[21]の何れかに記載する超親水性被膜付基材の製造方法。
This invention includes the manufacturing method of the base material with a super hydrophilic film which consists of the following structures.
[17] A coating solution for forming a film, in which inorganic oxide particles having hydrophilic particle surfaces and resin emulsion particles are dispersed and suspended in a polar solvent, is applied to a base material, and the gaps between the inorganic oxide particles are formed. A resin layer is formed between the inorganic oxide particles and the gap between the inorganic oxide particles and the base material by forming a particle layer with the resin emulsion particles interposed between them and heating and drying to disintegrate the resin emulsion particles. A superhydrophilic film-coated base, wherein a superhydrophilic film having a concavo-convex structure in which an upper portion of the inorganic oxide particles is exposed from the adhesive layer is formed on a substrate A method of manufacturing the material.
[18] A dispersion of inorganic oxide particles having a hydrophilic particle surface and a suspension of resin emulsion particles are mixed, and the inorganic oxide particles and the resin emulsion particles are mixed in a polar solvent and monodispersed. The method for producing a substrate with a superhydrophilic coating film according to the above [17], wherein a coating solution for forming a coating film is prepared, and the coating solution is applied to the substrate.
[19] The average particle diameter (De) of the resin emulsion particles contained in the coating liquid for forming a film is equal to or smaller than the average particle diameter (D P ) of the inorganic oxide particles (De ≦ D P ). [17] The method for producing a substrate with a superhydrophilic film according to [18].
[20] The ratio (G / [G + M]) of the amount of inorganic oxide particles (G) and the amount of resin emulsion particles (M) contained in the coating liquid for forming a film is in the range of 0.5 to 0.98. The method for producing a substrate with a superhydrophilic film as described in any one of [17] to [19], wherein
[21] As emulsion resins, ester resins, polycarbonate resins, amide resins, imide resins, polyphenylene oxide resins, acrylic resins, vinyl chloride resins, vinyl acetate resins, silicone resins, urethane resins Or a resin emulsion particle suspension obtained by suspending a resin emulsion particle composed of a styrene resin or a copolymer resin thereof in a polar solvent, and an inorganic oxide particle dispersion obtained by dispersing inorganic oxide particles in a polar solvent. The above-mentioned [17] to [20] are the methods for producing a substrate with a superhydrophilic film according to any one of the above [20], wherein a coating solution for forming a film is prepared by mixing.
[22] The method according to any one of [17] to [21], wherein the coating liquid for coating formation is applied to a substrate and then dried by heating to 60 to 200 ° C. to disintegrate the resin emulsion particles. A method for producing a substrate with a superhydrophilic coating.

本発明の超親水性被膜付基材は、無機酸化物粒子を含む粒子層と、該無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材の間隙に介在する接着層によって前記被膜が形成されており、親水性の無機酸化物粒子表面の上部が該接着層から露出している。この露出している無機酸化物粒子表面に水滴が引き付けられ、さらに無機酸化物粒子の露出によって高低差(凸部の平均高さ)の大きな凹凸構造が被膜表面に形成されているので、粒子表面に引き付けられた水滴が崩れやすくなり、優れた親水性を有するようになる。具体的には、例えば、凸部平均高さ(T)が10〜300nmであって凸部間の平均距離(ピッチ幅)(W)が1〜1000nmの凹凸構造を被膜表面に有することによって、水との接触角が10°以下、好ましくは5°以下の超親水性を有することができる。 The substrate with a superhydrophilic film of the present invention comprises a particle layer containing inorganic oxide particles, a gap between the inorganic oxide particles, and an adhesive layer interposed in the gap between the inorganic oxide particles and the substrate. The upper part of the surface of the hydrophilic inorganic oxide particle is exposed from the adhesive layer. Water droplets are attracted to the exposed inorganic oxide particle surface, and a large uneven structure with a height difference (average height of convex portions) is formed on the coating surface due to the exposure of the inorganic oxide particles. The water droplets attracted to the surface are easily broken and have excellent hydrophilicity. Specifically, for example, the average distance (pitch width) between the convex portions the average height of the projections (T F) is a 10 to 300 nm (W F) have an uneven structure 1~1000nm the film surface Can have superhydrophilicity with a contact angle with water of 10 ° or less, preferably 5 ° or less.

また、本発明の超親水性被膜付基材は、無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材の間隙に接着層が介在しているので、無機酸化物粒子相互および該無機酸化物粒子と前記基材の密着性が良く、これらの接合強度が大きいので、親水性を長期間維持することができ、また耐摩耗性に優れている。   Moreover, since the adhesive layer is interposed in the gap between the inorganic oxide particles and in the gap between the inorganic oxide particles and the substrate, the substrate with a superhydrophilic film of the present invention has a mutual adhesion between the inorganic oxide particles and the inorganic oxide particles. Since the adhesion between the inorganic oxide particles and the substrate is good and the bonding strength between them is high, the hydrophilicity can be maintained for a long period of time, and the wear resistance is excellent.

本発明の超親水性被膜は透明であるので、ガラスやプラスチックなどの透明基材上に該被膜を形成したものは、建物や自動車あるいは観測装置の窓やメータの表示部分の透明材料として好適に用いることができる。   Since the superhydrophilic film of the present invention is transparent, a film formed on a transparent substrate such as glass or plastic is suitably used as a transparent material for a display part of a window of a building, an automobile, an observation apparatus, or a meter. Can be used.

また、本発明の超親水性被膜付基材は水処理用の分離膜等にも好適に用いることができる。一般に水処理用として、濾過膜や浸透膜などの用途に応じた細孔を有する親水性や疎水性の分離膜が用いられる。水処理用の細孔を有するポリスルホンやポリエチレンテレフタレート、ポリエステル等の不織布基材表面に本発明の超親水性被膜を形成したものは、水処理用基材として好適である。   Further, the substrate with a superhydrophilic film of the present invention can be suitably used for a separation membrane for water treatment. In general, hydrophilic or hydrophobic separation membranes having pores corresponding to applications such as filtration membranes and osmosis membranes are used for water treatment. What formed the super hydrophilic film of this invention on the nonwoven fabric base-material surface, such as polysulfone which has the pore for water treatment, a polyethylene terephthalate, and polyester, is suitable as a base material for water treatment.

さらに本発明の超親水性被膜付基材は、ナイロンやポリエステル、綿等の繊維上や外装建材、屋根瓦などを基材として超親水性被膜を形成することによって、汚れを流水で流れ落とす防汚材としても好適に用いることができる。また、ナイロンやポリエステル、外装建材などは防藻や抗菌性も必要な場合があり、このような場合は無機酸化物粒子にAg、Cu、Zn等の金属を担持させた複合酸化物微粒子を用いることによって親水性と共に防藻や抗菌性の複数の機能を有することができる。   Furthermore, the substrate with a superhydrophilic coating of the present invention is formed by forming a superhydrophilic coating on fibers such as nylon, polyester, and cotton, exterior building materials, roof tiles, etc., thereby preventing dirt from running off with running water. It can also be suitably used as a dirty material. In addition, nylon, polyester, exterior building materials, etc. may require anti-algae and antibacterial properties. In such cases, composite oxide fine particles in which a metal such as Ag, Cu, Zn is supported on inorganic oxide particles are used. Thus, it can have a plurality of functions such as anti-algae and antibacterial properties as well as hydrophilicity.

本発明の被膜形成用塗布液は、無機酸化物粒子と樹脂エマルジョン粒子とが混在して単分散した状態で使用することによって、被膜形成時に粒子が凝集することなく単分散状態で配列し、接着層から無機酸化物粒子が露出した超親水性被膜を容易に基板上に形成することができる。また、前記塗布液には接着層を形成する樹脂エマルジョン粒子が無機酸化物粒子と共に含まれているので、別途、接着層を塗布する必要がなく、作業工程を簡略化することができる。   The coating liquid for forming a film of the present invention is used in a monodispersed state in which inorganic oxide particles and resin emulsion particles are mixed, so that the particles are arranged in a monodispersed state without agglomeration during film formation, and bonded. A superhydrophilic film in which inorganic oxide particles are exposed from the layer can be easily formed on the substrate. Moreover, since the resin emulsion particles that form the adhesive layer are included together with the inorganic oxide particles in the coating liquid, it is not necessary to separately apply the adhesive layer, and the work process can be simplified.

本発明の親水性被膜付基材の製造方法は、粒子表面が親水性の無機酸化物粒子の分散液と樹脂エマルジョン粒子の懸濁液を混合した被膜形成用塗布液を用いるので、接着成分は樹脂エマルジョン粒子の状態で無機酸化物粒子分散液と共に塗布されるので、塗布作業が少なく、親水性被膜を容易に形成することができる。   The method for producing a substrate with a hydrophilic coating of the present invention uses a coating-forming coating solution in which a dispersion of inorganic oxide particles having a hydrophilic particle surface and a suspension of resin emulsion particles are used. Since it is applied together with the inorganic oxide particle dispersion in the state of resin emulsion particles, there are few application operations and a hydrophilic film can be easily formed.

本発明の親水性被膜付基材の製造方法は、無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材との間隙に樹脂エマルジョン粒子を介在させ、この樹脂エマルジョン粒子を崩壊させ、これらの間隙に樹脂を入り込ませて接着層を形成するので、無機酸化物微粒子の微細凹凸がマトリックス成分で埋もれることがなく、無機酸化物粒子相互および該無機酸化物粒子と前記基材とが強固に接合されるため、密着強度の大きな親水性被膜を形成することができる。さらに無機酸化物粒子が一層に配列した形態であるので、透明性が高く、風合いを損なわない基材が得られる。   In the method for producing a substrate with a hydrophilic coating according to the present invention, resin emulsion particles are interposed in a gap between inorganic oxide particles and in the gap between the inorganic oxide particles and the substrate, and the resin emulsion particles are collapsed. Since the adhesive layer is formed by allowing the resin to enter these gaps, the fine irregularities of the inorganic oxide fine particles are not filled with the matrix component, and the inorganic oxide particles and the inorganic oxide particles and the substrate are firmly bonded to each other. Therefore, it is possible to form a hydrophilic film having a high adhesion strength. Furthermore, since the inorganic oxide particles are arranged in a single layer, a base material that is highly transparent and does not impair the texture can be obtained.

本発明の親水性被膜付基材の製造方法では、樹脂エマルジョン粒子は無機酸化物粒子相互の間隙に介在し、無機酸化物粒子が樹脂エマルジョン粒子によって覆われないので、無機酸化物粒子の上部が接着層から露出した高低差の大きな凹凸構造を形成することができる。例えば、無機酸化物粒子の平均粒子径(D)と同等か小さい(De≦D)平均粒子径(De)の樹脂エマルジョン粒子の懸濁液を用いれば、乾燥時に平均粒子径の大きな無機酸化物粒子と基材との間のメニスカスに存在する溶媒の張力によって、樹脂エマルジョン粒子がメニスカスに引き込まれ、確実に無機酸化物粒子が樹脂エマルジョン粒子によって覆われないようにすることができ、例えば、無機酸化物粒子の平均粒子半径の1/3〜2/3が露出した被膜を形成することができる。 In the method for producing a substrate with a hydrophilic coating of the present invention, the resin emulsion particles are interposed in the gaps between the inorganic oxide particles, and the inorganic oxide particles are not covered with the resin emulsion particles. A concavo-convex structure with a large difference in height exposed from the adhesive layer can be formed. For example, equal to the average particle diameter of the inorganic oxide particles (D P) less (De ≦ D P) by using the suspension of the resin emulsion particles having an average particle diameter (De), a large inorganic mean particle size upon drying The tension of the solvent present in the meniscus between the oxide particles and the substrate can cause the resin emulsion particles to be drawn into the meniscus and ensure that the inorganic oxide particles are not covered by the resin emulsion particles, for example A film in which 1/3 to 2/3 of the average particle radius of the inorganic oxide particles is exposed can be formed.

本発明の超親水性被膜付基材の模式断面図。The schematic cross section of the base material with a super-hydrophilic film of this invention. 本発明の超親水性被膜付基材の水との接触角を示す説明図。Explanatory drawing which shows the contact angle with the water of the base material with a superhydrophilic film of this invention. ひまわり状無機酸化物粒子の模式断面図。The schematic cross section of a sunflower-like inorganic oxide particle. ヒマワリ状粒子を用いた超親水性被膜付基材の模式断面図。The schematic cross section of the base material with a super hydrophilic film using a sunflower-like particle | grain. 本発明の超親水性被膜付基材の製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of the base material with a super hydrophilic film of this invention.

〔超親水性被膜付基材〕
本発明の超親水性被膜付基材は、基材表面に超親水性の被膜を有する親水性基材であって、前記被膜が無機酸化物粒子を含む粒子層と、該無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材の間隙に介在する接着層からなり、該無機酸化物粒子表面が親水性であって、該無機酸化物粒子の上部が前記接着層から露出した凹凸構造を前記被膜表面に有することを特徴とする超親水性被膜付基材である。
[Substrate with super hydrophilic coating]
The substrate with a superhydrophilic coating of the present invention is a hydrophilic substrate having a superhydrophilic coating on the surface of the substrate, wherein the coating includes a particle layer containing inorganic oxide particles and the inorganic oxide particles mutually. And an unevenness in which the surface of the inorganic oxide particle is hydrophilic and the upper part of the inorganic oxide particle is exposed from the adhesive layer. A substrate with a superhydrophilic film, characterized by having a structure on the surface of the film.

本発明の超親水性被膜付基材の一例を図1に示す。図示するように、超親水性被膜付基材10は、基材1と、該基材1の表面に形成された超親水性の被膜2を有している。該被膜2は粒子層3と接着層4によって形成されている。該粒子層3は多数の無機酸化物粒子5が基材表面に分散して配列して並んだ層であり、基本的には単層に形成されている。前記接着層4は接着成分からなる層であり、前記無機酸化物粒子5の相互の間隙および該無機酸化物粒子5と前記基材1の間隙に介在している。該接着層4は前記無機酸化物粒子5の相互の間隙および該無機酸化物粒子5と前記基材1の間隙に介在した樹脂エマルジョン粒子の崩壊によって形成される。前記無機酸化物粒子5の上部は前記接着層4の表面から露出しており、無機酸化物粒子5の上部が露出していることによって高低差の大きな凹凸構造が形成されている。   An example of the substrate with a superhydrophilic film of the present invention is shown in FIG. As shown in the figure, the superhydrophilic film-coated substrate 10 has a substrate 1 and a superhydrophilic film 2 formed on the surface of the substrate 1. The coating 2 is formed by a particle layer 3 and an adhesive layer 4. The particle layer 3 is a layer in which a large number of inorganic oxide particles 5 are dispersed and arranged on the substrate surface, and is basically formed as a single layer. The adhesive layer 4 is a layer made of an adhesive component, and is interposed in the gap between the inorganic oxide particles 5 and the gap between the inorganic oxide particles 5 and the substrate 1. The adhesive layer 4 is formed by the disintegration of the resin emulsion particles interposed in the gaps between the inorganic oxide particles 5 and the gaps between the inorganic oxide particles 5 and the substrate 1. The upper part of the inorganic oxide particles 5 is exposed from the surface of the adhesive layer 4, and the upper part of the inorganic oxide particles 5 is exposed to form a concavo-convex structure with a large difference in height.

無機酸化物粒子5の平均粒子径(D)は20〜600nmの範囲が好ましい。該無機酸化物粒子5の平均粒子径(D)が20nm未満では、接着層4の膜厚(U)が下記膜厚範囲の上限値に近いときに、該無機酸化物粒子5の大部分が接着層4に取り込まれ、接着層4から露出する凸部の高さが小さくなり、十分な高低差の凹凸構造が得られない。また、該無機酸化物粒子の平均粒子径(D)が600nmを上回ると、凹凸構造の凸部の平均高さが所望の範囲外になる場合があり、目的の凹凸構造が得られない。なお、無機酸化物粒子の平均粒子径(D)は粒子層3の層厚になる。 The average particle diameter (D P ) of the inorganic oxide particles 5 is preferably in the range of 20 to 600 nm. When the average particle diameter (D P ) of the inorganic oxide particles 5 is less than 20 nm, when the film thickness (U F ) of the adhesive layer 4 is close to the upper limit value of the following film thickness range, The portion is taken into the adhesive layer 4, and the height of the convex portion exposed from the adhesive layer 4 is reduced, so that a concavo-convex structure having a sufficient height difference cannot be obtained. On the other hand, if the average particle diameter (D P ) of the inorganic oxide particles exceeds 600 nm, the average height of the convex portions of the concavo-convex structure may be outside the desired range, and the target concavo-convex structure cannot be obtained. The average particle diameter (D P ) of the inorganic oxide particles is the layer thickness of the particle layer 3.

接着層4の層厚(U)は6〜400nmの範囲が好ましい。接着層4の膜厚(U)が6nm未満では、無機酸化物粒子5の平均粒子径(D)が前記粒径範囲の上限に近いときに、該無機酸化物粒子5の該接着層4に埋まる深さが少なくなり、接着強度が十分に得られない。接着層4の膜厚(U)が400nmを上回ると、無機酸化物粒子5の平均粒子径(D)が前記粒径範囲の下限に近いときに、該無機酸化物粒子5が該接着層4から露出する高さが小さくなり、高低差の大きな凹凸構造が得られない。 The layer thickness (U F ) of the adhesive layer 4 is preferably in the range of 6 to 400 nm. When the film thickness (U F ) of the adhesive layer 4 is less than 6 nm, the adhesive layer of the inorganic oxide particles 5 when the average particle diameter (D P ) of the inorganic oxide particles 5 is close to the upper limit of the particle size range. The depth embedded in 4 decreases, and sufficient adhesive strength cannot be obtained. When the film thickness (U F ) of the adhesive layer 4 exceeds 400 nm, when the average particle diameter (D P ) of the inorganic oxide particles 5 is close to the lower limit of the particle size range, the inorganic oxide particles 5 are bonded. The height exposed from the layer 4 becomes small, and a concavo-convex structure with a large height difference cannot be obtained.

該無機酸化物粒子5の平均粒子径(D)に対する接着層の層厚(U)の比(U/D)は1/3〜2/3が好ましく、従って、該無機酸化物粒子5の平均粒子径(D)の1/3〜2/3が接着層4から露出しているのが好ましい。このように無機酸化物粒子5の平均粒子径D)の1/3〜2/3が接着層4から露出していることによって、被膜2の表面に高低差の大きな凹凸構造が形成されることになり、被膜2の表面が高い親水性を有するようになる。 The ratio (U F / D P ) of the thickness (U F ) of the adhesive layer to the average particle diameter (D P ) of the inorganic oxide particles 5 is preferably 1/3 to 2/3. It is preferable that 1/3 to 2/3 of the average particle diameter (D P ) of the particles 5 is exposed from the adhesive layer 4. In this way, 1/3 to 2/3 of the average particle diameter D P ) of the inorganic oxide particles 5 is exposed from the adhesive layer 4, so that a concavo-convex structure with a large difference in height is formed on the surface of the coating 2. As a result, the surface of the coating 2 has high hydrophilicity.

本発明の超親水性被膜付基材10は、具体的には、例えば、図1に示すように、被膜2の表面の凹凸構造は、凸部平均高さ(T)は10〜300nmの範囲が好ましく、凸部間の平均距離(ピッチ幅)(W)は1〜1000nmの範囲が好ましい。凸部平均高さ(T)が10nm未満では、該凹凸構造の高低差が小さくなり被膜の親水性を高めるのが難しくなる。一方、凸部平均高さ(T)が300nmより大きくても親水性はあまり変わらなくなる。また、前記凸部間のピッチ幅(W)が1nm未満では、凹部が狭くなり、該凸部間のピッチ幅(W)が1000nmを上回る場合には凹部が広すぎるので何れの場合も凹凸構造の効果が不十分になり、被膜の親水性を高めるのが難しくなる。 Specifically, for example, as shown in FIG. 1, the substrate 10 with a superhydrophilic film of the present invention has a concavo-convex structure on the surface of the film 2 having an average height (T F ) of a convex part of 10 to 300 nm. The range is preferable, and the average distance (pitch width) (W F ) between the convex portions is preferably in the range of 1 to 1000 nm. If the average height (T F ) of the convex portion is less than 10 nm, the height difference of the concave-convex structure becomes small and it becomes difficult to increase the hydrophilicity of the coating film. On the other hand, the hydrophilicity does not change much even if the average height of the convex part ( TF ) is larger than 300 nm. Further, if the pitch width (W F ) between the protrusions is less than 1 nm, the recesses become narrow, and if the pitch width (W F ) between the protrusions exceeds 1000 nm, the recesses are too wide. The effect of the uneven structure becomes insufficient, and it becomes difficult to increase the hydrophilicity of the coating.

親水性被膜の膜厚は20nm〜700nmの範囲が好ましく、40〜600nmの範囲がさらに好ましい。該膜厚が20nmより薄いと耐久性が低下し、また表面に十分な凹凸構造を形成することが難しい。一方、該膜厚が700nmより大きくても親水性の効果はあまり変わらない。   The thickness of the hydrophilic coating is preferably in the range of 20 nm to 700 nm, and more preferably in the range of 40 to 600 nm. When the film thickness is less than 20 nm, the durability is lowered and it is difficult to form a sufficient uneven structure on the surface. On the other hand, even if the film thickness is larger than 700 nm, the hydrophilic effect does not change much.

〔基材〕
基材1の材質は制限されない。例えば、ガラス、ポリカーボネート、アクリル樹脂、PET、TAC、ポリエステル樹脂、ナイロン樹脂等のプラスチックシート、プラスチックフィルム等、プラスチックパネル等、繊維等、不織布等やモルタル材、スレート材、コンクリート等を用いることができる。接着層4はエステル系樹脂、ポリカーボネート系樹脂、アミド系樹脂、イミド系樹脂、ポリフェニレンオキサイド系樹脂、アクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、シリコーン系樹脂、ウレタン系樹脂、またはスチレン系樹脂、スチレン樹脂、および、これらの共重合体樹脂から選ばれる少なくとも1種によって形成することができる。
〔Base material〕
The material of the substrate 1 is not limited. For example, glass, polycarbonate, acrylic resin, PET, TAC, polyester resin, nylon resin or other plastic sheet, plastic film, plastic panel, fiber, nonwoven fabric, mortar material, slate material, concrete, or the like can be used. . The adhesive layer 4 is an ester resin, polycarbonate resin, amide resin, imide resin, polyphenylene oxide resin, acrylic resin, vinyl chloride resin, vinyl acetate resin, silicone resin, urethane resin, or styrene resin. It can be formed by at least one selected from a resin, a styrene resin, and a copolymer resin thereof.

〔無機酸化物粒子〕
無機酸化物粒子5は、例えば、SiO、Al、Sb、ZrO、TiO、Fe、CeO、AgO、CuO、CuO、およびこれらの複合酸化物または混合物から選ばれる少なくとも1種を用いることができる。これらの無機酸化物粒子5の表面は一般に親水性であり、該無機酸化物粒子5の上部が接着層4から露出しているので、従来の凹凸構造のない被膜に比べて親水性の範囲が広い。このため、図2に示すように、被膜2の表面に接触する水滴6は無機酸化物粒子表面との親和力によって該表面に引き付けられ、しかも該表面は高低差の大きな凹凸構造になっているので水滴6は崩れやすくなり、被膜2の表面は高い親水性を示すようになる。具体的には、水滴6と被膜2の表面との接触角θが5°以下の超親水性を有することができる。
[Inorganic oxide particles]
The inorganic oxide particles 5 include, for example, SiO 2 , Al 2 O 3 , Sb 2 O 5 , ZrO 2 , TiO 2 , Fe 2 O 3 , CeO 2 , AgO, CuO, Cu 2 O, and composite oxides thereof. Alternatively, at least one selected from a mixture can be used. The surface of these inorganic oxide particles 5 is generally hydrophilic, and the upper portion of the inorganic oxide particles 5 is exposed from the adhesive layer 4, so that the hydrophilic range is larger than that of a conventional coating film without an uneven structure. wide. For this reason, as shown in FIG. 2, the water droplet 6 in contact with the surface of the coating 2 is attracted to the surface by affinity with the surface of the inorganic oxide particles, and the surface has a concavo-convex structure with a large difference in height. The water droplet 6 is liable to collapse, and the surface of the coating 2 becomes highly hydrophilic. Specifically, it can have super hydrophilicity with a contact angle θ between the water droplet 6 and the surface of the coating 2 of 5 ° or less.

無機酸化物粒子5は表面処理によって親水性を高めたものを用いることができる。このような親水性表面処理剤として、例えば、SiXの式(式中、X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素)で示される加水分解性有機ケイ素化合物を用いることができる。該加水分解性有機ケイ素化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシシラン、テトラブトキシシラン等が挙げられる。 As the inorganic oxide particles 5, those having improved hydrophilicity by surface treatment can be used. As such a hydrophilic surface treating agent, for example, a hydrolyzable organosilicon compound represented by the formula of SiX 4 (wherein X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, halogen, hydrogen) is used. it can. Examples of the hydrolyzable organosilicon compound include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.

無機酸化物粒子5の形状は、前記凹凸構造を形成できる形状であればよく、制限されない。例えば、球状粒子、金平糖状粒子、ヒマワリ状粒子の何れの形状でも用いることができる。これらの球状粒子、金平糖状粒子、ヒマワリ状粒子などは多孔質構造であっても良い。球状粒子は平均粒子径(D)の1/3〜2/3が接着層4から露出した状態にすることが容易であり、被膜表面に高低差の大きな凹凸構造を形成することができる。これらの粒子は単一粒子が好ましいが、2〜3個連結した構造でも良い。なお、連結した構造が4個以上になると基材と粒子間に空隙が存在し、図1のような膜が得られない場合がある。
また、ヒマワリ状粒子は粒子表面に適度な凹凸を有し、さらに該凹凸の表面に微細な凹凸を有するので、親水性に優れた親水性被膜を得ることができる。なお、これらの粒子の平均粒子径は長軸の長さを基準にして定められる。
The shape of the inorganic oxide particles 5 may be any shape as long as the uneven structure can be formed, and is not limited. For example, any shape of spherical particles, confetti particles, and sunflower particles can be used. These spherical particles, confetti particles, sunflower particles and the like may have a porous structure. Spherical particles can be easily in a state in which 1/3 to 2/3 of the average particle diameter (D P ) is exposed from the adhesive layer 4, and a concavo-convex structure with a large difference in height can be formed on the coating surface. These particles are preferably single particles, but may have a structure in which 2 to 3 particles are connected. Note that when there are four or more connected structures, voids exist between the substrate and the particles, and the film as shown in FIG. 1 may not be obtained.
Further, since the sunflower-like particles have moderate irregularities on the particle surface and further have fine irregularities on the irregular surface, a hydrophilic coating having excellent hydrophilicity can be obtained. The average particle diameter of these particles is determined based on the length of the major axis.

多孔質球状無機酸化物粒子
多孔質球状無機酸化物粒子は、無機酸化物粒子の子表面に多数の孔が存在する球状の微粒子である。多孔質球状無機酸化物粒子の平均粒子径(D)は10〜600nm、さらには10〜1300nmの範囲にあることが好ましい。多孔質球状無機酸化物粒子の平均粒子径(D)が10nm未満では、比表面積が大きくなるため得ることが困難である。平均粒子径(D)が600nmを超えると親水性被膜の強度、硬度、基材との密着性が不十分となる場合がある。
Porous spherical inorganic oxide particles Porous spherical inorganic oxide particles are spherical fine particles having a large number of pores on the surface of the inorganic oxide particles. The average particle diameter (D A ) of the porous spherical inorganic oxide particles is preferably in the range of 10 to 600 nm, more preferably 10 to 1300 nm. When the average particle diameter (D A ) of the porous spherical inorganic oxide particles is less than 10 nm, it is difficult to obtain because the specific surface area becomes large. If the average particle diameter (D A ) exceeds 600 nm, the strength, hardness, and adhesion to the substrate may be insufficient.

多孔質球状無機酸化物粒子は、ミクロ細孔(PD)を有するので、比表面積(SA)が大きい。比表面積(SA)はBET法により測定される比表面積であり、ミクロ細孔(PD)も同様な方法で測定することが出来る。多孔質球状無機酸化物微粒子の比表面積(SA)は、粒子径により異なるが、100〜1500mが好ましい。比表面積(SA)が100mより小さいと、粒子表面の微細凹凸構造が少なく、被膜にした際に充分な親水性が得られない場合がある。比表面積(SA)が1500mを超える場合は、十分な親水性は得られるが、比表面積が大きいために粒子どうしの相互作用が大きくなり、安定な塗料が得られない場合がある。 Since the porous spherical inorganic oxide particles have micropores (PD), the specific surface area (SA) is large. The specific surface area (SA) is a specific surface area measured by the BET method, and the micropores (PD) can be measured by the same method. The specific surface area (SA) of the porous spherical inorganic oxide fine particles varies depending on the particle diameter, but is preferably 100-1500 m 2 . When the specific surface area (SA) is less than 100 m 2 , the fine uneven structure on the particle surface is small, and sufficient hydrophilicity may not be obtained when formed into a film. When the specific surface area (SA) exceeds 1500 m 2 , sufficient hydrophilicity can be obtained. However, since the specific surface area is large, the interaction between particles increases, and a stable paint may not be obtained.

多孔質球状無機酸化物微粒子の細孔径(PD)は、粒子径により異なるが、0.1〜5nmが好ましい。細孔径(PD)が0.1nmより小さいと、被膜にした際の微細凹凸構造が少なく、被膜にした際に充分な親水性が得られない場合がある。細孔径(PD)が5nmを超えると、十分な親水性は得られるが、粒子の強度が弱く、被膜を得た際の強度が弱くなる場合がある。   The pore diameter (PD) of the porous spherical inorganic oxide fine particles varies depending on the particle diameter, but is preferably 0.1 to 5 nm. When the pore diameter (PD) is smaller than 0.1 nm, there are few fine uneven structures when formed into a film, and sufficient hydrophilicity may not be obtained when formed into a film. When the pore diameter (PD) exceeds 5 nm, sufficient hydrophilicity can be obtained, but the strength of the particles is weak, and the strength at the time of obtaining a film may be weak.

金平糖状無機酸化物粒子
金平糖状無機酸化物粒子は、その粒子表面に多数の疣状突起を有する球状の微粒子であり、その構造は概ね金平糖に類似したものである。金平糖状無機酸化物粒子の平均粒子径(D)は10〜150nm、さらには10〜130nmの範囲にあることが好ましい。金平糖状無機酸化物粒子の平均粒子径(D)が10nm未満では、疣状突起を有する粒子としては得ることが困難であり、所望の微細凹凸が形成することが難しい。また、金平糖状無機酸化物粒子の平均粒子径(D)が150nmを超えると親水性被膜の強度、硬度、基材との密着性が不十分となる場合がある。
Gold-peeled inorganic oxide particles Gold-peeled inorganic oxide particles are spherical fine particles having a number of ridge-like projections on the surface of the particles, and the structure thereof is generally similar to that of gold-peeled sugar. The average particle diameter (D A ) of the confetti-like inorganic oxide particles is preferably in the range of 10 to 150 nm, more preferably 10 to 130 nm. The confetti-like inorganic oxide average particle diameter (D A) is less than 10nm particles, it is difficult to obtain as particles having a wart-like projections, it is difficult to form desired fine irregularities. On the other hand, if the average particle size (D A ) of the confetti inorganic oxide particles exceeds 150 nm, the strength, hardness, and adhesion to the substrate of the hydrophilic coating may be insufficient.

金平糖状無機酸化物粒子の疣状突起の平均高さ(H)は0.3〜45nmの範囲が好ましく、0.5〜40nmの範囲がさらに好ましい。疣状突起の平均高さ(H)が0.3nm未満では親水性被膜の親水性が不十分となる場合がある。疣状突起の平均高さ(H)が45nmを超えると疣状突起が大き過ぎ、粒子表面の疣状突起の数が少なくなるので微細凹凸の数が減少する。   The average height (H) of the ridge-like projections of the confetti-like inorganic oxide particles is preferably in the range of 0.3 to 45 nm, and more preferably in the range of 0.5 to 40 nm. If the average height (H) of the hook-shaped projections is less than 0.3 nm, the hydrophilicity of the hydrophilic film may be insufficient. When the average height (H) of the hook-like protrusions exceeds 45 nm, the hook-like protrusions are too large, and the number of hook-like protrusions on the particle surface is reduced, so that the number of fine irregularities is reduced.

金平糖状無機酸化物粒子の疣状突起の平均高さ(H)と金平糖状無機酸化物粒子の平均粒子径(D)との比(H)/(D)は0.03〜0.30の範囲が好ましく、0.05〜0.27の範囲がさらに好ましい。該比(H)/(D)が0.03未満の場合は親水性被膜の親水性が不十分となる場合がある。一方、該比(H)/(D)が0.30を超えると、疣状突起が大き過ぎ、粒子表面の疣状突起の数が少なくなるので微細凹凸の数が減少する。 The ratio (H) / (D A ) between the average height (H) of the ridge-like protrusions of the confetti-like inorganic oxide particles and the average particle diameter (D A ) of the confetti-like inorganic oxide particles is 0.03 to 0.03. The range of 30 is preferable, and the range of 0.05 to 0.27 is more preferable. When the ratio (H) / (D A ) is less than 0.03, the hydrophilicity of the hydrophilic film may be insufficient. On the other hand, when the ratio (H) / (D A ) exceeds 0.30, the ridge-like protrusions are too large, and the number of ridge-like protrusions on the particle surface decreases, so the number of fine irregularities decreases.

金平糖状無機酸化物粒子の疣状突起によって形成される表面粗度は下記式(1)によって示すことができる。なお、(SA)はBET法により測定される比表面積であり、(SA)は下記式(2)で表される等価球換算式で計算される比表面積であり、dは金平糖状無機酸化物粒子の密度であり、6000は換算係数である。
金平糖状無機酸化物粒子の表面粗度=(SA)/(SA) ・・・(1)
(SA)=6000/(D)×d・・・・・・(2)
The surface roughness formed by the ridge-like projections of the confetti-like inorganic oxide particles can be expressed by the following formula (1). In addition, (SA 1 ) is a specific surface area measured by the BET method, (SA 2 ) is a specific surface area calculated by an equivalent sphere conversion formula represented by the following formula (2), and d is a confetti-like inorganic substance It is the density of oxide particles, and 6000 is a conversion factor.
Surface roughness of confetti sugar-like inorganic oxide particles = (SA 1 ) / (SA 2 ) (1)
(SA 2 ) = 6000 / (D A ) × d (2)

ここで比表面積は単位質量当りの表面積を示すから、表面粗度(SA)/(SA)の値については、粒子が球状であって、粒子表面の疣状突起が多いほど、(SA)/(SA)の値は大きくなり、一方、粒子表面の疣状突起が少なく、平滑であるほど、(SA)/(SA)の値は小さくなり、その値は1に近くなる。 Here, since the specific surface area indicates the surface area per unit mass, the value of the surface roughness (SA 1 ) / (SA 2 ) is such that the more spherical the particle surface is, the more (SA) 1 ) / (SA 2 ) increases, while the smaller the number of wrinkles on the particle surface and the smoother, the smaller the value of (SA 1 ) / (SA 2 ), which is close to 1. Become.

本発明に用いる金平糖状無機酸化物粒子の表面粗度(SA)/(SA)は1.7〜5.0の範囲が好ましい。表面粗度が1.7未満の場合、疣状突起の割合が少ないか、あるいは疣状突起自体が金平糖状無機酸化物粒子の粒子径に比べて極めて小さくなり、球状微粒子に近くなる。一方、表面粗度の値が5.0を超える場合は、調製が困難である。表面粗度の範囲は1.8〜4.5の範囲がさらに好ましい。 The surface roughness (SA 1 ) / (SA 2 ) of the gold flat sugar-like inorganic oxide particles used in the present invention is preferably in the range of 1.7 to 5.0. When the surface roughness is less than 1.7, the ratio of the ridge-like protrusions is small, or the ridge-like protrusions themselves are extremely smaller than the particle size of the confetti-like inorganic oxide particles, and become close to spherical fine particles. On the other hand, when the surface roughness value exceeds 5.0, preparation is difficult. The range of the surface roughness is more preferably in the range of 1.8 to 4.5.

金平糖状無機酸化物粒子の平均粒子径(D)および疣状突起の平均高さ(H)は走査型電子顕微鏡写真(SEM)の画像解析により測定することができる。具体的には、走査型電子顕微鏡によって撮影した投影図の、例えば、任意の50個の粒子について、その最大径を測定して平均値を平均粒子径(D)とすればよい。また、任意の疣状突起の頂点から疣状突起と球状粒子部分との接点までの距離を3箇所ずつ測定し、その平均値を疣状突起の平均高さ(H)とすればよい。 The average particle diameter (D A ) and the average height (H) of the ridge-like protrusions of the confetti-like inorganic oxide particles can be measured by image analysis of a scanning electron micrograph (SEM). Specifically, for example, for an arbitrary 50 particles in a projection image taken with a scanning electron microscope, the maximum diameter may be measured and the average value may be set as the average particle diameter (D A ). Further, the distance from the apex of an arbitrary hook-shaped protrusion to the contact point between the hook-shaped protrusion and the spherical particle portion is measured at three locations, and the average value may be set as the average height (H) of the hook-shaped protrusion.

ヒマワリ状無機酸化物粒子
ヒマワリ状無機酸化物粒子(以下、ヒマワリ状粒子とも云う。)の断面を図3に示す。図示するように、ヒマワリ状粒子20は無機酸化物の基体粒子21と、該基体粒子表面を被覆する無機酸化物の微細粒子22によって形成されている。図示する基体粒子21は、模式的に球状を示しているが、異形、板状、多面体状であってもよい。微細粒子22は球状粒子であり、粒子全体の断面がヒマワリ状の粒子である。ヒマワリ状粒子20は基体粒子21の表面が前記微細粒子22による微細な凹凸を有するので高い親水性が得られ、密着性が強く、親水被膜によるファウリングや劣化が効果的に抑制され、防汚性を示し、長期にわたって高い親水性を維持することができる。
Sunflower-like inorganic oxide particles sunflower like inorganic oxide particles (hereinafter, also referred to as sunflower-like particles.) The cross-section of FIG. 3. As shown in the figure, the sunflower-like particles 20 are formed of inorganic oxide substrate particles 21 and inorganic oxide fine particles 22 covering the surface of the substrate particles. The illustrated base particle 21 is schematically spherical, but may be irregular, plate-like, or polyhedral. The fine particles 22 are spherical particles, and the entire cross section of the particles is a sunflower-like particle. Since the surface of the base particle 21 has fine irregularities due to the fine particles 22, the sunflower-like particles 20 have high hydrophilicity, strong adhesion, fouling and deterioration due to the hydrophilic coating are effectively suppressed, and antifouling is achieved. And can maintain high hydrophilicity over a long period of time.

該微細凹凸の凸部平均高さ(TFF)は0.5〜10nmの範囲が好ましく、該微細凹凸の凸部間の平均距離(ピッチ幅)(WFF)は1〜30nmの範囲が好ましい。凸部平均高さ(TFF)が前記範囲よりも小さいと十分な微細凹凸が形成され難く、前記範囲を超えると微細凹部が深過ぎるので、被膜表面に水滴が接触したときに該微細凹部に空気が残留しやすくなり、親水性の膜が得られ難いので好ましくない。また、微細凹凸の凸部間の平均距離(ピッチ幅)(WFF)が前記範囲よりも小さいと十分な微細凹凸が得られ難く、前記範囲を超えるものは微細粒子22の粒子径が大きいので、基体粒子21の表面を覆う微細粒子22の数が限られるようになり、基体粒子表面に十分な微細凹凸が形成され難くなる。 The convex average height (T FF ) of the fine irregularities is preferably in the range of 0.5 to 10 nm, and the average distance (pitch width) (W FF ) between the convexes of the fine irregularities is preferably in the range of 1 to 30 nm. . If the average height of the protrusion (T FF ) is smaller than the above range, it is difficult to form sufficient fine unevenness, and if it exceeds the above range, the fine recess is too deep. Since air tends to remain and it is difficult to obtain a hydrophilic film, it is not preferable. Further, if the average distance (pitch width) (W FF ) between the convex portions of the fine irregularities is smaller than the above range, it is difficult to obtain sufficient fine irregularities, and those exceeding the above range have a large particle diameter of the fine particles 22. The number of fine particles 22 covering the surface of the base particle 21 is limited, and it is difficult to form sufficient fine irregularities on the surface of the base particle.

ヒマワリ状粒子の基体粒子21の平均粒子径(DC1)は40〜600nmの範囲が好ましく、50〜500nmの範囲がさらに好ましい。この平均粒子径(DC1)が小さいと、基材上に塗布した際に凸部の高さ、凸部間距離(ピッチ幅)が小さくなりすぎる場合があり、高い親水性が得られ難い。一方、該平均粒子径(DC1)が大きすぎても、凸部の高さおよび凸部間距離(ピッチ幅)が大きくなり過ぎるため高い親水性被膜が得られ難い。 The average particle diameter (D C1 ) of the base particles 21 of sunflower-like particles is preferably in the range of 40 to 600 nm, and more preferably in the range of 50 to 500 nm. When this average particle diameter (D C1 ) is small, the height of the convex portions and the distance between the convex portions (pitch width) may be too small when applied on the substrate, and it is difficult to obtain high hydrophilicity. On the other hand, even if the average particle diameter (D C1 ) is too large, the height of the protrusions and the distance between the protrusions (pitch width) become too large, and it is difficult to obtain a high hydrophilic film.

なお、基体用粒子11の平均粒子径(DC1)および微細粒子22の平均粒子径(DC2)は下記式(3)で表される等価球換算式で求められる平均粒子径である。なお、Dは平均粒子径(nm)、SAはBET法で測定された比表面積(m/g)、dは粒子の密度(g/cm)、6000は換算係数である。また、該平均粒子径は動的光散乱法(日機装(株)製:マイクロトラックUPA)を用いて測定することができる。通常の比表面積の実測値はBET法で測定される。
D=6000/SA×d・・・・(3)
The average particle diameter (D C2) having an average particle diameter (D C1) and fine particles 22 of the base particles 11 is the average particle diameter determined by the equivalent spherical conversion formula represented by the following formula (3). Incidentally, D is the average particle diameter (nm), SA M is measured specific surface area by the BET method (m 2 / g), d the density of the particle (g / cm 3), 6000 is a conversion factor. The average particle diameter can be measured using a dynamic light scattering method (Nikkiso Co., Ltd .: Microtrac UPA). The actual measured value of the specific surface area is measured by the BET method.
D = 6000 / SA M xd (3)

微細粒子22の平均粒子径(DC2)は4〜60nmの範囲が好ましく、5〜40nmの範囲がさらに好ましい。該平均粒子径(DC2)が小さいと、安定に単分散したヒマワリ状無機酸化物粒子を得ることが難しい。該平均粒子径(DC2)が大きすぎても、微細凹凸が大きくなり、ヒマワリ状無機酸化物粒子の比表面積も低くなるので、充分な親水性が得られ難くなる。 The average particle diameter (D C2 ) of the fine particles 22 is preferably in the range of 4 to 60 nm, and more preferably in the range of 5 to 40 nm. When the average particle diameter (D C2 ) is small, it is difficult to obtain sunflower-like inorganic oxide particles that are stably monodispersed. Even if the average particle diameter (D C2 ) is too large, fine irregularities are increased and the specific surface area of the sunflower-like inorganic oxide particles is also decreased, so that it is difficult to obtain sufficient hydrophilicity.

基体粒子21の平均粒子径(DC1)と微細粒子22の平均粒子径(DC2)との比(DC2)/(DC1)は0.007〜0.5の範囲が好ましく、0.008〜0.4の範囲がさらに好ましい。該比(DC2)/(DC1)が前記範囲よりも小さいと微細凹凸が小さくなり、充分な親水性が得られ難い。該比(DC2)/(DC1)が前記範囲を超える微細凹凸が大きくなり、充分な親水性が得られ難い。 The average ratio of particle diameter (D C2) having an average particle diameter (D C1) and fine particles 22 of the base particles 21 (D C2) / (D C1) is preferably in the range of 0.007 to 0.5, 0. The range of 008 to 0.4 is more preferable. When the ratio (D C2 ) / (D C1 ) is smaller than the above range, fine irregularities are reduced, and it is difficult to obtain sufficient hydrophilicity. Fine irregularities with the ratio (D C2 ) / (D C1 ) exceeding the above range become large, and it is difficult to obtain sufficient hydrophilicity.

基体粒子21の微細粒子22による被覆率は下記式(4)によって表される。該被覆率は30〜100%の範囲が好ましく、50〜100%の範囲がさらに好ましい。該被覆率が小さいと、微細凹凸が充分に形成できない。基体粒子21の表面に微細粒子22が被覆したヒマワリ状粒子の平均粒子径は、被覆率によっても異なるが、概ね48〜720nmの範囲である。   The coverage of the base particles 21 with the fine particles 22 is expressed by the following formula (4). The coverage is preferably in the range of 30 to 100%, and more preferably in the range of 50 to 100%. If the coverage is small, sufficient fine irregularities cannot be formed. The average particle diameter of the sunflower-like particles with the fine particles 22 coated on the surface of the substrate particles 21 is generally in the range of 48 to 720 nm, although it varies depending on the coverage.

被覆率(%)={[ヒマワリ状無機酸化物粒子の実測の比表面積(SC1)−基体用無機酸化物粒子の実測の比表面積(S)]/[100%被覆したとした場合のヒマワリ状無機酸化物粒子の計算上の比表面積(SC)−基体用無機酸化物粒子の実測の比表面積(S)]}×100・・・・・・・(4) Covering rate (%) = {[actual specific surface area of sunflower-like inorganic oxide particles (S C1 ) −measured specific surface area of inorganic oxide particles for substrate (S M )] / [100% covered) Calculated specific surface area of sunflower-like inorganic oxide particles (S C ) —Measured specific surface area of inorganic oxide particles for substrate (S M )]} × 100 (4)

(S)=ヒマワリ状無機酸化物粒子1個当たりの表面積×単位重量(1g)当たりの粒子数。
ヒマワリ状無機酸化物粒子1個当たりの表面積=4π・[(DC1)/2+(DC2)/2]
単位重量(1g)当たりの基体粒子の個数=1/[4/3・π[(DC1)/2]・d]
dは基体粒子の粒子密度(g/ml)を表す。シリカの粒子密度は2.2g/mlである。
(S C) = sunflower-shaped inorganic oxide particle number of the particle surface area × unit weight (1 g) per 1 per.
Surface area per sunflower-like inorganic oxide particle = 4π · [(D C1 ) / 2 + (D C2 ) / 2] 2
Number of substrate particles per unit weight (1 g) = 1 / [4/3 · π [(D C1 ) / 2] 3 · d]
d represents the particle density (g / ml) of the substrate particles. The particle density of silica is 2.2 g / ml.

基体粒子21および微細粒子22の成分は同一であっても異なっていてもよく、SiO、Al、Sb、ZrO、TiO、Fe、CeO、AgO、CuO、Cu2O、およびこれらの複合酸化物または混合物から選ばれる少なくとも1種であることが好ましい。これらの成分の粒子は粒子径が前記範囲にある球状粒子を容易に得ることができ、化学的にも安定であるので好適に用いることができる。なかでも、SiOからなる粒子が好ましい。SiO粒子は、粒子径の大小に拘わらず均一な粒子径を有する球状粒子が得られ、化学的に安定である。 The components of the base particles 21 and the fine particles 22 may be the same or different. SiO 2 , Al 2 O 3 , Sb 2 O 5 , ZrO 2 , TiO 2 , Fe 2 O 3 , CeO 2 , AgO, It is preferably at least one selected from CuO, Cu 2 O, and complex oxides or mixtures thereof. As the particles of these components, spherical particles having a particle diameter in the above range can be easily obtained, and since they are chemically stable, they can be preferably used. Among these, particles made of SiO 2 are preferable. As for the SiO 2 particles, spherical particles having a uniform particle diameter can be obtained regardless of the size of the particle diameter, and are chemically stable.

ヒマワリ状粒子は、正または負の表面電位を有する基体粒子の水分散液と、これと反対の表面電気を有する微細粒子の水分散液を混合してpHを弱酸性に調整し、該混合液をイオン交換樹脂に通液して陰イオンを除去し、pHをほぼ中性の範囲に調整し、乾燥することによって得ることができる。   The sunflower-like particles are prepared by mixing an aqueous dispersion of base particles having a positive or negative surface potential and an aqueous dispersion of fine particles having the opposite surface electricity to adjust the pH to a weak acidity, Is passed through an ion exchange resin to remove anions, the pH is adjusted to a neutral range, and drying is performed.

無機酸化物粒子5としてヒマワリ粒子20を用いた超親水性被膜付基材の断面図を図4に示す。被膜2の表面は基体粒子21によって大きな凹凸構造が形成されており、この基体粒子21の表面には微細粒子22によって微細な凹凸が形成されている。これらの表面は親水性であるので、被膜2の表面に接触する水滴はこれら親水性の表面に引き付けられる。さらに、水滴が引き付けられている表面は基体粒子21による大きな凹凸構造と微細粒子22による微細凹凸との二重の凹凸構造になっているので、この凹凸構造に引き付けられた水滴は容易に崩れやすくなり、より高い親水性を示すようになる。   FIG. 4 shows a cross-sectional view of a substrate with a superhydrophilic film using sunflower particles 20 as the inorganic oxide particles 5. A large uneven structure is formed on the surface of the coating 2 by the base particles 21, and fine unevenness is formed on the surface of the base particles 21 by the fine particles 22. Since these surfaces are hydrophilic, water droplets coming into contact with the surface of the coating 2 are attracted to these hydrophilic surfaces. Furthermore, since the surface on which the water droplets are attracted has a double concavo-convex structure consisting of a large concavo-convex structure formed by the base particles 21 and a fine concavo-convex structure formed by the fine particles 22, the water droplets attracted to the concavo-convex structure are easily broken. And higher hydrophilicity is exhibited.

無機酸化物粒子表面の親水性は、粒子表面の−OH基の数が多くなると親水性が高くなり、さらに−OH基の数以外に、無機酸化物粒子表面にナノサイズの微細凹凸を有することによって親水性がさらに高くなる。   The hydrophilicity of the inorganic oxide particle surface increases as the number of —OH groups on the particle surface increases, and in addition to the number of —OH groups, the surface of the inorganic oxide particle has nano-sized fine irregularities. The hydrophilicity is further increased.

なお、無機酸化物粒子の粒子層を形成した後に、金属アルコキシドの部分加水分解物や有機樹脂のモノマーやポリマーの分子状のマトリックス成分を該粒子層にコートして粒子と基材を接着させる場合、あるいは、無機酸化物粒子より大きなエマルジョン樹脂粒子と無機酸化物粒子とを混合したマトリックス成分を含む塗布液を用いて粒子層を形成する場合、前記マトリックス成分が微細凹凸を埋めると超親水性膜が得られない。また、このようなマトリックス成分を使用するときに、無機酸化物粒子をクラスター状にして被膜を形成することが知られているが、被膜の密着性が不十分であったり、繊維に被膜を形成すると繊維の風合いを損ねたり、透明被膜を得たいときに透明性の低い膜になる場合がある。   In addition, after forming a particle layer of inorganic oxide particles, the particle layer is coated with a partial hydrolyzate of metal alkoxide, a monomer of an organic resin, or a molecular matrix component of a polymer to adhere the particle and the substrate. Alternatively, when the particle layer is formed using a coating liquid containing a matrix component in which emulsion resin particles larger than inorganic oxide particles and inorganic oxide particles are mixed, a super hydrophilic film is formed when the matrix component fills fine irregularities. Cannot be obtained. In addition, when such a matrix component is used, it is known that inorganic oxide particles are clustered to form a film, but the film adhesion is insufficient, or a film is formed on the fiber. As a result, the texture of the fiber may be impaired, or a film with low transparency may be obtained when it is desired to obtain a transparent film.

一方、本発明の超親水性被膜は、粒子層の上側にトップコートが無いので、粒子の露出による凹凸構造およびヒマワリ状粒子の微細粒子による微細凹凸がトップコートによって埋め込まれることが無く、高い親水性を発揮する。また、被膜の密着性に優れており、繊維上に被膜を形成しても繊維の風合いが損なわれず、また透明性の高い被膜を得ることができる。   On the other hand, since the superhydrophilic film of the present invention does not have a top coat on the upper side of the particle layer, the uneven structure due to the exposure of the particles and the fine unevenness due to the fine particles of the sunflower-like particles are not embedded by the top coat, and the highly hydrophilic film Demonstrate sex. Moreover, it is excellent in the adhesiveness of the coating, and even if a coating is formed on the fiber, the texture of the fiber is not impaired, and a highly transparent coating can be obtained.

〔超親水性被膜形成用塗布液〕
本発明の超親水性被膜付基材を製造する被膜形成用塗布液として、粒子表面が親水性の無機酸化物粒子と、樹脂エマルジョン粒子が、極性溶媒中に混在して単分散していることを特徴とする塗布液を用いると良い。該塗布液において、樹脂エマルジョン粒子の平均粒子径(De)は、無機酸化物粒子の平均粒子径(D)と同等か小さい(De≦D)ことが好ましい。樹脂エマルジョン粒子の平均粒子径(De)が無機酸化物粒子の平均粒子径(D)と同等か小さい(De≦D)ことによって、無機酸化物粒子が樹脂エマルジョン粒子によって覆われ難くすることができる。樹脂エマルジョン粒子の平均粒子径(De)が無機酸化物粒子の平均粒子径(D)より大きいと、樹脂エマルジョン粒子が崩壊したときに、無機酸化物粒子が崩壊した樹脂によって被覆される場合がある。
[Super hydrophilic coating liquid]
The coating liquid for forming a film for producing a substrate with a superhydrophilic film according to the present invention has inorganic particles having hydrophilic particle surfaces and resin emulsion particles monodispersed in a polar solvent. It is good to use the coating liquid characterized by these. In the coating solution, the average particle diameter (De) of the resin emulsion particles is preferably equal to or smaller than the average particle diameter (D P ) of the inorganic oxide particles (De ≦ D P ). By making the average particle diameter (De) of the resin emulsion particles equal to or smaller than the average particle diameter (D P ) of the inorganic oxide particles (De ≦ D P ), the inorganic oxide particles are hardly covered with the resin emulsion particles. Can do. If the average particle size (De) of the resin emulsion particles is larger than the average particle size (D P ) of the inorganic oxide particles, the inorganic oxide particles may be covered with the collapsed resin when the resin emulsion particles are collapsed. is there.

前記塗布液において、無機酸化物粒子の量(G)と樹脂エマルジョン粒子の量(M)との量比(G/[G+M])は0.5以上(無機酸化物粒子量Gが50重量%以上)の範囲が好ましく、0.5〜0.98の範囲がさらに好ましい。該量比(G/[G+M])が前記範囲より小さいと被膜中の無機酸化物粒子の数が少なくなり、被膜の親水性および耐久性が不十分になる懸念がある。一方、該量比(G/[G+M])が前記範囲より大きいと相対的に樹脂量が少なくなり、接着強度が低下する懸念がある。   In the coating solution, the ratio (G / [G + M]) of the amount of inorganic oxide particles (G) to the amount of resin emulsion particles (M) is 0.5 or more (inorganic oxide particle amount G is 50% by weight). The above range is preferable, and the range of 0.5 to 0.98 is more preferable. If the amount ratio (G / [G + M]) is smaller than the above range, the number of inorganic oxide particles in the coating is decreased, and there is a concern that the hydrophilicity and durability of the coating are insufficient. On the other hand, if the amount ratio (G / [G + M]) is larger than the above range, the amount of resin is relatively small, and there is a concern that the adhesive strength is lowered.

前記塗布液は、粒子表面が親水性の無機酸化物粒子が極性溶媒に分散した分散液と、樹脂エマルジョン粒子が極性溶媒に懸濁した懸濁液との二液からなるものでも良い。この二液からなる塗布液は、無機酸化物粒子分散液と樹脂エマルジョン粒子懸濁液とを混合することによって、無機酸化物粒子と樹脂エマルジョン粒子とが極性溶媒中に混在し分散した塗布液にして用いる。二液にすることによって保存性を高めることができる。前記(ロ)の塗布液は使用時に二液を混合する必要が無いので作業性が良い。   The coating liquid may be composed of two liquids: a dispersion liquid in which inorganic oxide particles having hydrophilic particle surfaces are dispersed in a polar solvent and a suspension liquid in which resin emulsion particles are suspended in a polar solvent. This two-part coating solution is prepared by mixing an inorganic oxide particle dispersion and a resin emulsion particle suspension to form a coating solution in which inorganic oxide particles and resin emulsion particles are mixed and dispersed in a polar solvent. Use. Storage stability can be improved by using two liquids. The coating solution (b) has good workability because it is not necessary to mix the two solutions at the time of use.

無機酸化物粒子分散液の調製
前記無機酸化物粒子分散液は粒子表面が親水性の無機酸化物粒子を極性溶媒に分散した液である。無機酸化物粒子を極性溶媒に加え、ミキサーなどで撹拌して無機酸化物粒子分散液を調製する。該無機酸化物粒子の平均粒子径(D)は20〜600nmの範囲が好ましい。無機酸化物微粒子分散液の固形分濃度は0.1〜20重量%が好ましく、0.2〜15重量%がさらに好ましい。
Preparation of inorganic oxide particle dispersion The inorganic oxide particle dispersion is a liquid in which inorganic oxide particles having a hydrophilic particle surface are dispersed in a polar solvent. Inorganic oxide particles are added to a polar solvent and stirred with a mixer or the like to prepare an inorganic oxide particle dispersion. The average particle diameter (D P ) of the inorganic oxide particles is preferably in the range of 20 to 600 nm. The solid content concentration of the inorganic oxide fine particle dispersion is preferably 0.1 to 20% by weight, and more preferably 0.2 to 15% by weight.

前記無機酸化物粒子分散液の極性溶媒は、例えば、以下の溶媒(イ)〜(ト)を用いることができる。これらは単独で使用してもよく、また2種以上混合して使用してもよい。
(イ)メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール等のアルコール類。
(ロ)酢酸メチル、酢酸エチル、酢酸イソプルピル、酢酸プルピル、酢酸イソブチル、酢酸ブチル、酢酸イソペンチル、酢酸ペンチル、酢酸3−メトキシブチル、酢酸2−エチルブチル、酢酸シクロヘキシル、エチレングリコールモノアセテート等のエステル類。
(ハ)エチレングリコール、ヘキシレングリコール等のグリコール類。
(ニ)ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプルピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プルピレングリコールモノプロピルエーテル等のエーテル類。
(ホ)アセトン、メチルエチルケトン、メチルイソブチルケトン、ブチルメチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジプロピルケトン、メチルペンチルケトン、ジイソブチルケトン等のケトン類。
(ヘ)トルエン等、N−メチルピロリドン等。
(ト)水
For example, the following solvents (A) to (G) can be used as the polar solvent of the inorganic oxide particle dispersion. These may be used singly or in combination of two or more.
(A) Alcohols such as methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, and tetrahydrofurfuryl alcohol.
(B) Esters such as methyl acetate, ethyl acetate, isopropyl acetate, isopropyl acetate, isobutyl acetate, butyl acetate, isopentyl acetate, pentyl acetate, 3-methoxybutyl acetate, 2-ethylbutyl acetate, cyclohexyl acetate, and ethylene glycol monoacetate.
(C) Glycols such as ethylene glycol and hexylene glycol.
(D) Diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol isopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, pull Ethers such as pyrene glycol monopropyl ether.
(E) Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, butyl methyl ketone, cyclohexanone, methyl cyclohexanone, dipropyl ketone, methyl pentyl ketone, and diisobutyl ketone.
(F) Toluene, N-methylpyrrolidone, etc.
(G) Water

樹脂エマルジョン粒子懸濁液の調製
樹脂エマルジョン粒子懸濁液は樹脂エマルジョン粒子が極性溶媒に懸濁した懸濁液である。エマルジョン用樹脂としては、エステル系樹脂、ポリカーボネート系樹脂、アミド系樹脂、イミド系樹脂、ポリフェニレンオキサイド系樹脂、アクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、シリコーン系樹脂、ウレタン系樹脂、またはスチレン系樹脂、あるいはこれらの共重合樹脂が好ましい。被膜形成工程で樹脂エマルジョン粒子を崩壊させて接着層を形成するので、これらの樹脂は接着層の成分になる。
Preparation of Resin Emulsion Particle Suspension Resin emulsion particle suspension is a suspension in which resin emulsion particles are suspended in a polar solvent. Emulsion resins include ester resins, polycarbonate resins, amide resins, imide resins, polyphenylene oxide resins, acrylic resins, vinyl chloride resins, vinyl acetate resins, silicone resins, urethane resins, or Styrenic resins or copolymer resins thereof are preferred. Since the resin emulsion particles are collapsed in the film forming step to form an adhesive layer, these resins become components of the adhesive layer.

前記樹脂を極性溶媒に加え、ミキサー等で撹拌すれば極性溶媒中で樹脂エマルジョン粒子が形成され、樹脂エマルジョン粒子懸濁液を得ることができる。極性溶媒は無機酸化物粒子分散液と同様のものを使用することができる。界面活性剤やpH調整剤を添加して高速撹拌することによって、樹脂エマルジョン粒子の粒子径を調整することができる。界面活性剤やpH調整剤の添加量、撹拌速度は樹脂および極性溶媒の種類、分散液中の樹脂量などによって樹脂エマルジョン粒子が目的の粒子径になるように調整すればよい。なお、樹脂エマルジョン粒子懸濁液は市販品を用いることができる。   If the resin is added to a polar solvent and stirred with a mixer or the like, resin emulsion particles are formed in the polar solvent, and a resin emulsion particle suspension can be obtained. A polar solvent similar to the inorganic oxide particle dispersion can be used. The particle diameter of the resin emulsion particles can be adjusted by adding a surfactant or a pH adjuster and stirring at high speed. The addition amount of the surfactant and the pH adjusting agent and the stirring speed may be adjusted so that the resin emulsion particles have a desired particle size depending on the kind of the resin and the polar solvent, the amount of the resin in the dispersion, and the like. A commercially available product can be used as the resin emulsion particle suspension.

被膜形成用塗布液の調製
無機酸化物粒子分散液と樹脂エマルジョン粒子懸濁液を混合し、撹拌して無機酸化物粒子と樹脂エマルジョン粒子とが極性溶媒中に混在し分散している被膜形成用塗布液を調製する。無機酸化物粒子分散液に珪酸液を添加し、加熱熟成させた後に樹脂エマルジョン粒子懸濁液を混合すると良い。珪酸液を添加するとヒマワリ粒子の微細粒子と基体粒子が良く固着して微細粒子が脱落しない。なお、樹脂エマルジョン粒子懸濁液を調製せずに、無機酸化物粒子分散液に樹脂を直接に添加し、撹拌して樹脂エマルジョン粒子を形成させて被膜形成用塗布液を調製してもよい。
Preparation of coating solution for film formation For coating film formation, inorganic oxide particle dispersion and resin emulsion particle suspension are mixed and stirred to mix inorganic oxide particles and resin emulsion particles in a polar solvent. A coating solution is prepared. It is advisable to add a silicic acid solution to the inorganic oxide particle dispersion and heat aging to mix the resin emulsion particle suspension. When the silicic acid solution is added, the fine particles of the sunflower particles and the base particles adhere well, and the fine particles do not fall off. Instead of preparing the resin emulsion particle suspension, the resin may be directly added to the inorganic oxide particle dispersion and stirred to form the resin emulsion particles to prepare a coating liquid for forming a film.

前記塗布液には、架橋材や架橋抑制材などを入れ、エマルション粒子が崩壊・固着する温度を制御してもよい。さらにレベリング剤や分散剤を入れ、塗膜をより綺麗にすることができる。また必要に応じて光重合開始剤や熱硬化促進剤を入れてもよい。   In the coating solution, a crosslinking material or a crosslinking inhibitor may be added to control the temperature at which the emulsion particles are disintegrated and fixed. Furthermore, a leveling agent and a dispersing agent can be added to make the coating film cleaner. Moreover, you may put a photoinitiator and a thermosetting accelerator as needed.

被膜形成用塗布液において、無機酸化物粒子濃度は0.1〜10重量%の範囲が好ましく、0.5〜8重量%の範囲がさらに好ましい。該濃度が前記範囲より低いと、無機酸化物粒子層の厚みが薄く、所望の凹凸が形成できない場合があり、また、無機酸化物粒子層の無い塗布ムラが生じやすいため、充分な親水性、強度、硬度、耐擦傷性が得られない場合がある。一方、該濃度が前記範囲より高いと、塗布方法によっても異なるが、塗工性が低下して所望の凹凸を形成できない場合がある。また、無機酸化物粒子層が厚くなり過ぎて透明性が低下し、またヘーズが高くなる場合がある。   In the coating liquid for forming a film, the inorganic oxide particle concentration is preferably in the range of 0.1 to 10% by weight, and more preferably in the range of 0.5 to 8% by weight. When the concentration is lower than the above range, the thickness of the inorganic oxide particle layer is thin, and desired irregularities may not be formed, and coating unevenness without the inorganic oxide particle layer is likely to occur. Strength, hardness, and scratch resistance may not be obtained. On the other hand, when the concentration is higher than the above range, although depending on the coating method, there are cases where the coating property is lowered and desired irregularities cannot be formed. In addition, the inorganic oxide particle layer may become too thick, resulting in a decrease in transparency and an increase in haze.

塗布液の樹脂エマルジョンの濃度は0.1〜10重量%の範囲が好ましく、0.5〜8重量%の範囲がさらに好ましい。樹脂エマルジョン濃度が前記範囲より低いと、十分な膜厚の接着層を形成することができず、接着強度も低下する懸念がある。一方、樹脂エマルジョン濃度が前記範囲より高いと、相対的に無機酸化物粒子濃度が低くなり、無機酸化物粒子層の厚みが薄く、所望の凹凸が形成できない場合がある。   The concentration of the resin emulsion in the coating solution is preferably in the range of 0.1 to 10% by weight, more preferably in the range of 0.5 to 8% by weight. If the resin emulsion concentration is lower than the above range, an adhesive layer having a sufficient film thickness cannot be formed, and the adhesive strength may be lowered. On the other hand, when the resin emulsion concentration is higher than the above range, the inorganic oxide particle concentration is relatively low, the thickness of the inorganic oxide particle layer is thin, and desired unevenness may not be formed.

被膜形成用塗布液に含まれる樹脂エマルジョン粒子の平均粒子径(De)は無機酸化物粒子の平均粒子径(D)と同等か小さい(De≦D)ことが好ましい。樹脂エマルジョン粒子の平均粒子径(De)が無機酸化物粒子の平均粒子径(D)と同等か小さい(De≦D)ことによって、無機酸化物粒子が樹脂エマルジョン粒子によって覆われ難くすることができ、例えば、無機酸化物粒子の平均粒子半径の1/3〜2/3が接着層から露出した被膜を形成することができる。樹脂エマルジョン粒子の平均粒子径(De)が無機酸化物粒子の平均粒子径(D)より大きいと、樹脂エマルジョン粒子が崩壊したときに、無機酸化物粒子が崩壊した樹脂によって被覆される場合があるので好ましくない。 The average particle size (De) of the resin emulsion particles contained in the coating liquid for forming a film is preferably equal to or smaller than the average particle size (D P ) of the inorganic oxide particles (De ≦ D P ). By making the average particle diameter (De) of the resin emulsion particles equal to or smaller than the average particle diameter (D P ) of the inorganic oxide particles (De ≦ D P ), the inorganic oxide particles are hardly covered with the resin emulsion particles. For example, a film in which 1/3 to 2/3 of the average particle radius of the inorganic oxide particles is exposed from the adhesive layer can be formed. If the average particle size (De) of the resin emulsion particles is larger than the average particle size (D P ) of the inorganic oxide particles, the inorganic oxide particles may be covered with the collapsed resin when the resin emulsion particles are collapsed. This is not preferable.

被膜形成用塗布液に含まれる無機酸化物粒子の量(G)と樹脂エマルジョン粒子の量(M)との量比(G/[G+M])は0.5以上(無機酸化物粒子量Gが50重量%以上の範囲が好ましく、0.5〜0.98の範囲がさらに好ましい。該量比(G/[G+M])が前記範囲より小さいと被膜中の無機酸化物粒子の数が少なくなり、被膜の親水性および耐久性が不十分になる懸念がある。一方、該量比(G/[G+M])が前記範囲より大きいと相対的に樹脂量が少なくなり、接着強度が低下する懸念がある。   The amount ratio (G / [G + M]) of the amount (G) of inorganic oxide particles contained in the coating liquid for coating formation and the amount (M) of resin emulsion particles is 0.5 or more (the amount of inorganic oxide particles G is A range of 50% by weight or more is preferable, and a range of 0.5 to 0.98 is more preferable, and if the amount ratio (G / [G + M]) is smaller than the above range, the number of inorganic oxide particles in the coating is reduced. On the other hand, when the ratio (G / [G + M]) is larger than the above range, the amount of resin is relatively small, and the adhesive strength may be lowered. There is.

〔超親水性被膜付基材の製造方法〕
本発明の超親水性被膜付基材は、前記被膜形成用塗布液を用い、該塗布液を基材に塗布して前記無機酸化物粒子相互の間隙に前記樹脂エマルジョン粒子が介在した粒子層を形成し、塗布後、加熱乾燥して該樹脂エマルジョン粒子の崩壊によって前記無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材との間隙に樹脂を入り込ませて接着層を形成し、該無機酸化物粒子の上部が該接着層から露出した凹凸構造を有する超親水性被膜を基材上に形成することによって製造される。
[Method for producing substrate with super hydrophilic coating]
The substrate with a superhydrophilic film of the present invention uses the coating liquid for forming a film, and applies the coating liquid to the substrate to form a particle layer in which the resin emulsion particles are interposed between the inorganic oxide particles. After forming, applying and drying by heating, the resin emulsion particles are disintegrated to allow the resin to enter the gap between the inorganic oxide particles and the gap between the inorganic oxide particles and the base material to form an adhesive layer, It is manufactured by forming a superhydrophilic film having a concavo-convex structure in which the upper part of the inorganic oxide particles is exposed from the adhesive layer on a substrate.

超親水性被膜付基材の製造方法の概略を図5に示す。図示する製造工程は、下記の(I)無機酸化物粒子分散液調製工程、(II)樹脂エマルジョン粒子懸濁液調整工程、(III)前記分散液と前記懸濁液を混合して塗布液を調製する工程、(IV)塗布工程、(V)接着層形成工程を有している。なお、(I)工程〜(III)工程に代えて予め調整した被膜形成用塗布液を用い、(IV)塗布工程、(V)接着層形成工程によって被膜を形成してもよい。   FIG. 5 shows an outline of a method for producing a substrate with a superhydrophilic film. The manufacturing process shown in the figure includes the following (I) inorganic oxide particle dispersion preparation step, (II) resin emulsion particle suspension adjustment step, and (III) the dispersion and the suspension are mixed to form a coating solution. A step of preparing, (IV) a coating step, and (V) an adhesive layer forming step. In addition, it may replace with (I) process-(III) process, and may form a film by (IV) application | coating process and (V) contact bonding layer formation process using the coating liquid for film formation prepared previously.

(I)無機酸化物粒子5が極性溶媒31に分散した分散液30を調整する工程(無機酸化物粒子分散液調製工程)。
(II)樹脂エマルジョン粒子32を極性溶媒33に懸濁させた樹脂エマルジョン粒子懸濁液34を調製する工程(樹脂エマルジョン粒子懸濁液調整工程)。
(III)分散液30と懸濁液34を混合して被膜形成用塗布液35を調製する工程(塗布液調製工程)。
(IV)塗布液35を基材1に塗布し、無機酸化物粒子5の相互の間隙に樹脂エマルジョン粒子32が介在した粒子層を形成する工程(塗布工程)。
(V)塗布液を加熱乾燥して樹脂エマルジョン粒子34を崩壊させて無機酸化物粒子5の相互間隙および無機酸化物粒子5と基材1との間隙に樹脂を入り込ませて、無機酸化物粒子の上部が露出した接着層4を形成する工程(接着層形成工程)。
(I) A step of adjusting the dispersion 30 in which the inorganic oxide particles 5 are dispersed in the polar solvent 31 (inorganic oxide particle dispersion preparing step).
(II) A step of preparing a resin emulsion particle suspension 34 in which the resin emulsion particles 32 are suspended in a polar solvent 33 (resin emulsion particle suspension adjustment step).
(III) A step of preparing the coating solution 35 for coating formation by mixing the dispersion 30 and the suspension 34 (coating solution preparation step).
(IV) The process of apply | coating the coating liquid 35 to the base material 1, and forming the particle layer in which the resin emulsion particle | grains 32 intervened in the mutual gap | interval of the inorganic oxide particle 5 (application | coating process).
(V) The coating liquid is heated and dried to disintegrate the resin emulsion particles 34 so that the resin enters the gaps between the inorganic oxide particles 5 and the gaps between the inorganic oxide particles 5 and the substrate 1. Forming the adhesive layer 4 with the upper portion exposed (adhesive layer forming step).

前記製造工程(IV)〜(V)を詳しく説明する。
(IV)塗布工程:塗布液を基材に塗布し、無機酸化物粒子相互の間隙に樹脂エマルジョン粒子が介在した粒子層を形成する。塗布方法は特に制限されず、例えば、バーコーター法、ディップ法、スプレー法、スピナー法、ロールコート法、グラビアコート法、スリットコート法、加圧塗布法等を用いることができる。前記塗布液には無機酸化物粒子と共に樹脂エマルジョン粒子が含まれているので、一度の塗布作業で無機酸化物粒子と樹脂エマルジョン粒子を基材上に塗布することができる。また、塗布液中で無機酸化物粒子と樹脂エマルジョン粒子は均一に分散しているので、この塗布作業によって、無機酸化物粒子相互の間隙に樹脂エマルジョン粒子が介在した状態の粒子層を形成することができる。
The production steps (IV) to (V) will be described in detail.
(IV) Coating step: A coating solution is coated on a substrate to form a particle layer in which resin emulsion particles are interposed between the inorganic oxide particles. The coating method is not particularly limited, and for example, a bar coater method, a dip method, a spray method, a spinner method, a roll coating method, a gravure coating method, a slit coating method, a pressure coating method, or the like can be used. Since the coating solution contains the resin emulsion particles together with the inorganic oxide particles, the inorganic oxide particles and the resin emulsion particles can be coated on the substrate by a single coating operation. In addition, since the inorganic oxide particles and the resin emulsion particles are uniformly dispersed in the coating solution, this coating operation forms a particle layer in which the resin emulsion particles are interposed in the gaps between the inorganic oxide particles. Can do.

(V)接着層形成工程:塗布した液を加熱乾燥し、樹脂エマルジョン粒子を崩壊させて無機酸化物粒子の相互間隙および無機酸化物粒子と基材との間隙に樹脂を入り込ませる。加熱温度は樹脂エマルジョン粒子が崩壊する温度であれば良い。樹脂の種類によって異なるが、一般には60〜200℃に加熱すれば樹脂エマルジョン粒子が崩壊して樹脂が流れ出す。その後、必要に応じて、UV照射等やアニールを行って硬化を促進させてもよい。 (V) Adhesive layer forming step: The applied liquid is dried by heating, the resin emulsion particles are collapsed, and the resin enters the gaps between the inorganic oxide particles and between the inorganic oxide particles and the substrate. The heating temperature may be a temperature at which the resin emulsion particles collapse. Although it varies depending on the type of resin, generally, when heated to 60 to 200 ° C., the resin emulsion particles collapse and the resin flows out. Thereafter, if necessary, curing may be promoted by UV irradiation or annealing.

以上の工程によって製造された親水性被膜付基材は、無機酸化物粒子表面の親水性と共に、無機酸化物粒子が露出することによって形成されている高低差の大きな凹凸構造、さらには無機酸化物粒子表面の微細凹凸による形状特性との相乗的な効果によって高い親水性を有している。具体的には、水との接触角が10°以下、好ましくは5°以下の超親水性を有することができる。   The base material with a hydrophilic film produced by the above steps is composed of an uneven structure having a large height difference formed by exposing the inorganic oxide particles together with the hydrophilicity of the surface of the inorganic oxide particles, and also the inorganic oxide. It has high hydrophilicity due to a synergistic effect with shape characteristics due to fine irregularities on the particle surface. Specifically, it can have super hydrophilicity with a contact angle with water of 10 ° or less, preferably 5 ° or less.

以下、本発明を実施例によって具体的に説明する。なお、本発明はこれらの実施例によって限定されない。   Hereinafter, the present invention will be specifically described by way of examples. In addition, this invention is not limited by these Examples.

〔実施例1〕
〔標準粒子径ヒマワリ状粒子、樹脂量標準、アクリル−スチレン〕
無機酸化物粒子(ヒマワリ状粒子)分散液[A1]の調製
(基体粒子の調製)
シリカゾル(日揮触媒化成社製:カタロイドSI−80P、平均粒子径80nm、表面電位−60mV、SiO濃度20重量%、pH10.2)750gに、陽イオン交換樹脂(ROHMHARS社製:デュオライト)150gを混合し、0.5時間撹拌した。ついで、陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学社製:SUNNUP−C)135gを混合し、0.5時間撹拌した後に該陰イオン交換樹脂を分離して、SiO濃度20重量%の精製シリカゾル750gを調製した。
(基体粒子分散液の調製)
精製シリカゾル750gに、ポリ塩化アルミニウム(多木化学社製:タキバイン#1000、Al濃度23.55重量%)5.1gを添加し、常温で0.5時間撹拌した。ついで、純水2903gを添加して希釈してSiO濃度4.1重量%のシリカからなる基体粒子分散液3658gを調製した。該基体粒子分散液のpHは3.7であった。
(微細粒子の添加)
前記基体粒子分散液(SiO濃度4.1重量%)3658gに、被覆用の微細粒子としてシリカゾル(日揮触媒化成社製:カタロイドSN−350、平均粒子径7nm、表面電位−23mV、SiO濃度16.6重量%、pH3.7)294gを混合した。この混合分散液のSiO濃度は5.0重量%、pHは3.5であった。
(ヒマワリ状粒子分散液の調製)
前記混合分散液に陰イオン交換樹脂(三菱化学(株)製:SUNNUP−C)135gを混合し、0.5時間撹拌し、ついで、陰イオン交換樹脂を分離し、ロータリーエバポレーターによりSiO濃度10重量%のシリカからなるヒマワリ状粒子分散液[A]を調製した。該分散液のHは7.0であった。
(平均粒子径Dの測定)
前記ヒマワリ状粒子の平均粒子径は、透過型電子顕微鏡写真(TEM)を撮影し、10個の長径を測定し、その平均値とした。
(被覆率の測定)
前記ヒマワリ状粒子の分散液を120℃に加熱して乾燥し、該ヒマワリ状粒子の比表面積をBET法で測定し、被覆率を求めた。被覆率は前記式(4)に従って求めた。
[Example 1]
[Standard particle size sunflower-like particles, resin standard, acrylic-styrene]
Preparation of inorganic oxide particle (sunflower-like particle) dispersion [A1] ( Preparation of substrate particles)
750 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI-80P, average particle diameter 80 nm, surface potential -60 mV, SiO 2 concentration 20 wt%, pH 10.2), 150 g of cation exchange resin (ROHMHARS: Duolite) Were mixed and stirred for 0.5 hour. Next, after separating the cation exchange resin, 135 g of an anion exchange resin (Mitsubishi Chemical Co., Ltd .: SUNUP-C) was mixed and stirred for 0.5 hour, and then the anion exchange resin was separated to obtain SiO 2 concentration. 750 g of 20% by weight purified silica sol was prepared.
(Preparation of substrate particle dispersion)
To 750 g of purified silica sol, 5.1 g of polyaluminum chloride (manufactured by Taki Chemical Co., Ltd .: Takibaine # 1000, Al 2 O 3 concentration 23.55 wt%) was added and stirred at room temperature for 0.5 hour. Subsequently, 2903 g of pure water was added and diluted to prepare 3658 g of a base particle dispersion liquid composed of silica having a SiO 2 concentration of 4.1 wt%. The pH of the substrate particle dispersion was 3.7.
(Addition of fine particles)
Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SN-350, average particle diameter 7 nm, surface potential -23 mV, SiO 2 concentration as a fine particle for coating to 3658 g of the substrate particle dispersion (SiO 2 concentration 4.1 wt%) 294 g of 16.6 wt%, pH 3.7) were mixed. This mixed dispersion had a SiO 2 concentration of 5.0% by weight and a pH of 3.5.
(Preparation of sunflower-like particle dispersion)
135 g of an anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SUNUP-C) was mixed with the mixed dispersion and stirred for 0.5 hour, and then the anion exchange resin was separated, and the SiO 2 concentration was 10 with a rotary evaporator. A sunflower-like particle dispersion [A] composed of silica by weight was prepared. The dispersion H was 7.0.
(Measurement of average particle diameter D P)
The average particle diameter of the sunflower-like particles was taken as an average value obtained by taking a transmission electron micrograph (TEM) and measuring 10 major diameters.
(Measurement of coverage)
The dispersion of the sunflower-like particles was heated to 120 ° C. and dried, and the specific surface area of the sunflower-like particles was measured by the BET method to determine the coverage. The coverage was determined according to the above equation (4).

被膜形成用塗布液[C1]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を1.8g添加し、80℃で3時間熟成した。その後、樹脂エマルジョン粒子懸濁液[B1](DIC社製CG8370:粒子サイズ100nm:濃度50重量%、アクリル−スチレン)を2g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して被膜形成用塗布液[C1]を得た。該塗布液のpHは7.5であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
Preparation of Coating Solution for Coating Form [C1] To 90 g of the sunflower-like particle dispersion [A1], 1.8 g of 5% silicic acid solution was added and aged at 80 ° C. for 3 hours. Thereafter, 2 g of resin emulsion particle suspension [B1] (CG 8370 manufactured by DIC: particle size 100 nm: concentration 50 wt%, acrylic-styrene) was added, and then ethanol was added to adjust the solid content concentration to 5 wt%. Then, the mixture was stirred for 1 hour at room temperature with a magnetic stirrer to obtain a coating solution for film formation [C1]. The pH of the coating solution was 7.5. Table 1 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.

親水性被膜付基材[D1]の製造
被膜形成用塗布液[C1]を、ガラス基板(浜新社製品:FL硝子、厚さ:3mm、屈折率:1.51)にバーコーター法で塗布し、80℃で10分間乾燥して、親水性被膜付基材[D1]を製造した。乾燥した被膜の層厚、被膜の凹凸構造の凸部平均高さ(T)、凸部間のピッチ幅(W)、無機酸化物粒子層膜厚(D)、接着層膜厚(U)、(U)/(D)比を表2に示す。
Manufacture of substrate [D1] with hydrophilic coating Coating solution [C1] for coating formation is applied to a glass substrate (Hamashinsha product: FL glass, thickness: 3 mm, refractive index: 1.51) by a bar coater method. And it dried for 10 minutes at 80 degreeC, and manufactured the base material [D1] with a hydrophilic film. The thickness of the dried film, the average height of protrusions (T F ) in the uneven structure of the film, the pitch width (W F ) between the protrusions, the thickness of the inorganic oxide particle layer (D P ), the thickness of the adhesive layer ( The U F ) and (U F ) / (D P ) ratios are shown in Table 2.

凸部平均高さ(T)、ピッチ幅(W)は親水性被膜断面の透過型電子顕微鏡写真(TEM)を撮影し、10個の凸部の高さ、ピッチ間距離を測定してその平均値とした。無機酸化物粒子層膜厚(D)、接着層膜厚(U)も同様に親水性被膜断面の透過型電子顕微鏡写真(TEM)を撮影し、これらの10個所の厚さを測定しその平均値とし、この平均値を用いて膜厚比(U/D)を算出した。 Convex part average height (T F ) and pitch width (W F ) are taken by transmission electron micrograph (TEM) of the cross section of the hydrophilic coating, and the height of the ten convex parts and the distance between the pitches are measured. The average value was used. The inorganic oxide particle layer thickness (D P ) and adhesive layer thickness (U F ) are similarly measured by taking a transmission electron micrograph (TEM) of a cross section of the hydrophilic coating and measuring the thickness of these 10 locations. The average value was used, and the film thickness ratio (U F / D P ) was calculated using this average value.

さらに、無機酸化物粒子について、微細凹凸(TFF)、微細凹凸のピッチ幅(WFF)を表1に示す。微細凹凸(TFF)はAFMを用い500nm範囲を測定した。さらに単粒子上の表面粗さ(Ra)を3点測定しその平均値を微細凹凸とした。微細凹凸のピッチ幅(WFF)は、走査電子顕微量(SEM)を撮影し、10個の凸部の高さ、ピッチ間距離を測定し、その平均値とした。 Furthermore, regarding the inorganic oxide particles, Table 1 shows the fine unevenness (T FF ) and the pitch width (W FF ) of the fine unevenness. The fine unevenness (T FF ) was measured in the 500 nm range using AFM. Further, the surface roughness (Ra) on the single particle was measured at three points, and the average value was defined as fine irregularities. The pitch width (W FF ) of the fine irregularities was obtained by photographing a scanning electron microscopic amount (SEM), measuring the height of 10 convex portions and the distance between pitches, and taking the average value.

得られた膜の鉛筆硬度、密着性、親水性、汚れ落ち性、全光線透過率、およびヘーズを測定した。結果を表2に示す。全光線透過率およびヘーズは、ヘーズメーター(スガ試験機社製)によって測定した。なお、未塗布のガラスは全光線透過率が92.0%、ヘーズが0.1%であった。   The resulting film was measured for pencil hardness, adhesion, hydrophilicity, stain removal, total light transmittance, and haze. The results are shown in Table 2. The total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.). The uncoated glass had a total light transmittance of 92.0% and a haze of 0.1%.

被膜の親水性、鉛筆硬度、密着性、汚れ落ち性は以下の方法で測定した。
(イ)親水性
親水性は全自動接触角計(協和界面科学社製DM700)を用いて5μL水との接触角を測定した。
(ロ)鉛筆硬度
鉛筆硬度はJIS−K−5600に準じて鉛筆硬度試験器により測定した。評価基準を以下に示す。
2H以上:◎ H〜2H:○
B〜H :△ B以下 :×
(ハ)密着性
密着性は親水性透明被膜付基材(1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付けて100個の升目を作り、これにセロファンテープを接着、剥離したときの被膜が剥離せず残存している升目の数を、以下の3段階に分類することによって密着性を評価した。評価基準を以下に示す。
残存升目の数100個: ◎ 残存升目の数95〜99個:○
残存升目の数90〜94個:△ 残存升目の数89個以下 :×
(ニ)汚れ落ち性
汚れ落ち性は親水性透明被膜付基材[C1]の表面に三菱油性マーカー(細字 ピース赤)を用いて3cm線を書き、その後に流水で3分流した際のインクの残りを目視で確認して評価した。評価基準を以下に示す。
インクが完全に落ちる :◎ インクがよく見ると残っている:○
インクがやや残っている:△ インクが明らかに残っている :×
The hydrophilicity, pencil hardness, adhesion, and dirt removal properties of the coating were measured by the following methods.
(A) Hydrophilicity The hydrophilicity was measured by using a fully automatic contact angle meter (DM700 manufactured by Kyowa Interface Science Co., Ltd.) and the contact angle with 5 μL water.
(B) Pencil hardness Pencil hardness was measured with a pencil hardness tester in accordance with JIS-K-5600. The evaluation criteria are shown below.
2H or more: ◎ H to 2H: ○
B to H: Δ B or less: ×
(C) Adhesion Adhesion is achieved by making 11 parallel scratches with a knife on the surface of the substrate (1) with a hydrophilic transparent coating (1) at intervals of 1 mm in length and width, and attaching cellophane tape to this. Adhesiveness was evaluated by classifying the number of cells remaining without peeling when the film was peeled into the following three stages. The evaluation criteria are shown below.
Number of remaining cells: ◎ Number of remaining cells: 95 to 99: ○
Number of remaining cells 90 to 94: Δ Number of remaining cells 89 or less: ×
(D) Stain-off property The soil-removal property is determined by writing a 3cm line on the surface of the substrate [C1] with a hydrophilic transparent coating using a Mitsubishi oil marker (small piece red), and then running the ink for 3 minutes with running water. The rest was visually checked and evaluated. The evaluation criteria are shown below.
Ink completely falls: ◎ If ink looks closely, it remains: ○
Ink is slightly left: △ Ink is clearly left: ×

〔実施例2〕
〔標準粒子径ヒマワリ状粒子、樹脂少量、アクリル−スチレン〕
被膜形成用塗布液[C2]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を1.8g添加し、80℃で3時間熟成した。その後、樹脂エマルジョン粒子懸濁液[B1](DIC株式会社製CG8370:粒子サイズ100nm:濃度50重量%、アクリル−スチレン)を0.2g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して被膜形成用塗布液[C2]を得た。該塗布液のpHは7.5であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
親水性被膜付基材[D2]の製造
被膜形成用塗布液[C2]を使用した以外は実施例1と同様にして親水性被膜付基材[D2]を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
[Example 2]
[Standard particle size sunflower particles, small amount of resin, acrylic-styrene]
Preparation of Coating Solution for Coating Film [C2] To 90 g of the sunflower-like particle dispersion [A1], 1.8 g of 5% silicic acid solution was added and aged at 80 ° C. for 3 hours. Thereafter, 0.2 g of resin emulsion particle suspension [B1] (CG 8370 manufactured by DIC Corporation: particle size 100 nm: concentration 50 wt%, acrylic-styrene) was added, and then ethanol was added to obtain a solid content concentration of 5 wt. % And stirred with a magnetic stirrer at room temperature for 1 hour to obtain a coating liquid for film formation [C2]. The pH of the coating solution was 7.5. Table 1 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.
Production of hydrophilic coated substrate [D2] A hydrophilic coated substrate [D2] was produced in the same manner as in Example 1 except that the coating film forming coating solution [C2] was used. The physical properties of the film were measured. The results are shown in Table 2.

〔実施例3〕
〔標準粒子径ヒマワリ状粒子、樹脂多量、アクリル−スチレン〕
被膜形成用塗布液[C3]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を1.8g添加し、80℃で3時間熟成した。その後、樹脂エマルジョン粒子懸濁液[B1](DIC社製CG8370:粒子サイズ100nm:濃度50重量%、アクリル−スチレン)を5g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して被膜形成用塗布液[C3]を得た。該塗布液のpHは7.5であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
親水性被膜付基材[D3]の製造
被膜形成用塗布液[C3]を使用した以外は実施例1と同様にして親水性被膜付基材[D3]を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
Example 3
[Standard particle size sunflower-like particles, large amount of resin, acrylic-styrene]
Preparation of Coating Solution for Forming Film [C3] 1.8 g of 5% silicic acid solution was added to 90 g of the sunflower-like particle dispersion [A1] and aged at 80 ° C. for 3 hours. Thereafter, 5 g of resin emulsion particle suspension [B1] (CG 8370 manufactured by DIC: particle size 100 nm: concentration 50 wt%, acrylic-styrene) was added, and then ethanol was added to adjust the solid content concentration to 5 wt%. Then, the mixture was stirred with a magnetic stirrer at room temperature for 1 hour to obtain a coating film forming coating solution [C3]. The pH of the coating solution was 7.5. Table 1 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.
Production of hydrophilic coated substrate [D3] A hydrophilic coated substrate [D3] was produced in the same manner as in Example 1 except that the coating film forming coating solution [C3] was used. The physical properties of the film were measured. The results are shown in Table 2.

〔実施例4〕
〔標準粒子径ヒマワリ状粒子、樹脂量標準、エマルシ゛ョン粒子径小、アクリル−スチレン〕
エマルション樹脂粒子懸濁液[B2]の調製
樹脂エマルジョン粒子懸濁液[B1](DIC社製CG8370:粒子サイズ100nm:濃度50重量%、アクリル−スチレン)100gに1%塩酸と純水を添加してpH4.5の20%希釈液250gを調製した。その後、ホモミキサーを用いて1500rpmで15分撹拌して、エマルション樹脂粒子懸濁液[B2]を調製した。この樹脂エマルション懸濁液[B2]について、TEMを用いて観察したところ、平均粒子径30nmの樹脂エマルションであった。
被膜形成用塗布液[C4]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を1.8g添加し、80℃で3時間熟成した。その後、樹脂エマルジョン粒子懸濁液[B2]を5g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して被膜形成用塗布液[C4]を得た。該塗布液のpHは6.0であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
親水性被膜付基材[D4]の製造
被膜形成用塗布液[C4]を使用した以外は実施例1と同様にして親水性被膜付基材[D4]を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
Example 4
[Standard particle size sunflower-like particles, resin standard, emulsion particle size small, acrylic-styrene]
Preparation of emulsion resin particle suspension [B2] 1% hydrochloric acid and pure water were added to 100 g of resin emulsion particle suspension [B1] (CG 8370 manufactured by DIC: particle size 100 nm: concentration 50% by weight, acrylic-styrene). 250 g of a 20% diluted solution with a pH of 4.5 was prepared. Then, it stirred for 15 minutes at 1500 rpm using the homomixer, and prepared emulsion resin particle suspension [B2]. When this resin emulsion suspension [B2] was observed using TEM, it was a resin emulsion having an average particle diameter of 30 nm.
Preparation of Coating Solution for Coating Form [C4] To 90 g of the sunflower-like particle dispersion [A1], 1.8 g of 5% silicic acid solution was added and aged at 80 ° C. for 3 hours. Thereafter, 5 g of the resin emulsion particle suspension [B2] was added, and then ethanol was added to adjust the solid content concentration to 5 wt%, followed by stirring with a magnetic stirrer at room temperature for 1 hour for coating formation. A liquid [C4] was obtained. The pH of the coating solution was 6.0. Table 1 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.
Production of hydrophilic coated substrate [D4] A hydrophilic coated substrate [D4] was produced in the same manner as in Example 1 except that the coating film forming coating solution [C4] was used. The physical properties of the film were measured. The results are shown in Table 2.

〔実施例5〕
〔標準粒子径ヒマワリ状粒子、樹脂量標準、アクリル−ウレタン〕
被膜形成用塗布液[C5]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を1.8g添加し、80℃で3時間熟成した。その後、樹脂エマルジョン粒子懸濁液[B3](DIC社製CG-5010EF:粒子サイズ100nm:濃度45重量%、アクリル−ウレタン)を2.22g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して被膜形成用塗布液[C5]を得た。該塗布液のpHは7.5であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
親水性被膜付基材[D5]の製造
被膜形成用塗布液[C5]を使用した以外は実施例1と同様にして親水性被膜付基材[D5]を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
Example 5
[Standard particle size sunflower particles, resin standard, acrylic-urethane]
Preparation of Coating Solution for Forming Film [C5] To 90 g of the sunflower-like particle dispersion [A1], 1.8 g of 5% silicic acid solution was added and aged at 80 ° C. for 3 hours. Thereafter, 2.22 g of resin emulsion particle suspension [B3] (CG-5010EF manufactured by DIC: particle size 100 nm: concentration 45 wt%, acrylic-urethane) was added, and then ethanol was added to obtain a solid content concentration of 5 The coating solution [C5] for film formation was prepared by stirring at room temperature for 1 hour with a magnetic stirrer. The pH of the coating solution was 7.5. Table 1 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.
Production of hydrophilic coated substrate [D5] A hydrophilic coated substrate [D5] was produced in the same manner as in Example 1 except that the coating solution [C5] for forming a coated film was used. The physical properties of the film were measured. The results are shown in Table 2.

〔実施例6〕
〔標準粒子径ヒマワリ状粒子、樹脂量標準、アクリル−シリコーン〕
被膜形成用塗布液[C6]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を1.8g添加し、80℃で3時間熟成した。その後、樹脂エマルジョン粒子懸濁液[B4](DIC社製SA-6360:粒子サイズ150nm:濃度50重量%、アクリル−シリコーン)を2g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して被膜形成用塗布液[C6]を得た。該塗布液のpHは8.5であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
親水性被膜付基材[D6]の製造
被膜形成用塗布液[C6]を使用した以外は実施例1と同様にして親水性被膜付基材[D6]を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
Example 6
[Standard particle size sunflower particles, resin standard, acrylic-silicone]
Preparation of Coating Solution for Forming Film [C6] To 90 g of the sunflower-like particle dispersion [A1], 1.8 g of 5% silicic acid solution was added and aged at 80 ° C. for 3 hours. Thereafter, 2 g of resin emulsion particle suspension [B4] (SA-6360 manufactured by DIC: particle size 150 nm: concentration 50 wt%, acrylic-silicone) was added, and then ethanol was added to obtain a solid content concentration of 5 wt%. And stirred with a magnetic stirrer at room temperature for 1 hour to obtain a coating liquid for film formation [C6]. The pH of the coating solution was 8.5. Table 1 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.
Manufacture of substrate [D6] with a hydrophilic coating A substrate [D6] with a hydrophilic coating was manufactured in the same manner as in Example 1 except that the coating solution [C6] for forming a coating was used. The physical properties of the film were measured. The results are shown in Table 2.

〔実施例7〕
〔小粒子ヒマワリ状粒子、樹脂量標準、アクリル−スチレン〕
無機酸化物粒子(ヒマワリ状粒子)分散液[A2]の調製
(基体粒子の調製)
シリカゾル(日揮触媒化成社製:カタロイドSI―45P、平均粒子径45nm、表面電位−60mV、SiO濃度20重量%、pH10.2)750gに陽イオン交換樹脂(ROHMHARS社製:デュオライト)150gを混合し、30℃で0.5時間撹拌した。ついで、陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学社製:SUNNUP−C)135gを混合し、0.5時間撹拌し、ついで、陰イオン交換樹脂を分離して、SiO濃度20重量%の精製シリカゾル750gを調製した。ついで、精製シリカゾル750gにポリ塩化アルミニウム(多木化学社製:タキバイン#1000、Al濃度23.55重量%)9.2gを添加し、常温で0.5時間撹拌した。ついで、純水2903gを添加して希釈したSiO濃度4.1重量%のシリカからなる基体用金属酸化物粒子分散液[a-2]3662gを調製した。ついで、この基体用金属酸化物粒子分散液[a-2]3662gに、シリカゾル(日揮触媒化成社製:カタロイドSN−350、平均粒子径7nm、表面電位−23mV、SiO濃度16.6重量%、pH3.7)595gを混合した。このとき、混合分散液のpHは3.5であった。ついで、混合分散液に陰イオン交換樹脂(三菱化学(株)製:SUNNUP−C)135gを混合し、0.5時間撹拌し、ついで、陰イオン交換樹脂を分離し、ロータリーエバポレーターによりSiO濃度10重量%のシリカからなる無機酸化物粒子(ヒマワリ状粒子)分散液[A2]を調製した。分散液のpHは6.5であった。
被膜形成用塗布液[C7]の調製
前記ヒマワリ状粒子分散液[A2]90gを使用した以外は実施例1と同様にして被膜形成用塗布液[C7]を得た。該塗布液のpHは7.5であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
親水性被膜付基材[D7]の製造
被膜形成用塗布液[C7]を使用した以外は実施例1と同様にして親水性被膜付基材[D7]を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
Example 7
[Small particle sunflower-like particles, resin standard, acrylic-styrene]
Preparation of inorganic oxide particle (sunflower-like particle) dispersion [A2] ( Preparation of substrate particles)
150 g of cation exchange resin (manufactured by ROHMHARS: Duolite) is added to 750 g of silica sol (manufactured by JGC Catalysts & Chemicals: Cataloid SI-45P, average particle size 45 nm, surface potential -60 mV, SiO 2 concentration 20 wt%, pH 10.2). Mix and stir at 30 ° C. for 0.5 h. Next, after separating the cation exchange resin, 135 g of an anion exchange resin (Mitsubishi Chemical Co., Ltd .: SUNUP-C) is mixed and stirred for 0.5 hour, and then the anion exchange resin is separated to obtain SiO 2. 750 g of purified silica sol having a concentration of 20% by weight was prepared. Next, 9.2 g of polyaluminum chloride (manufactured by Taki Chemical Co., Ltd .: Takibaine # 1000, Al 2 O 3 concentration 23.55 wt%) was added to 750 g of purified silica sol, and the mixture was stirred at room temperature for 0.5 hour. Next, 3661 g of a metal oxide particle dispersion [a-2] for a substrate made of silica having a SiO 2 concentration of 4.1% by weight diluted with 2903 g of pure water was prepared. Subsequently, to the 3662 g of the metal oxide particle dispersion [a-2] for the substrate, silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SN-350, average particle diameter 7 nm, surface potential -23 mV, SiO 2 concentration 16.6 wt% , PH 3.7) 595 g was mixed. At this time, the pH of the mixed dispersion was 3.5. Next, 135 g of an anion exchange resin (Mitsubishi Chemical Co., Ltd .: SUNUP-C) was mixed with the mixed dispersion and stirred for 0.5 hour. Then, the anion exchange resin was separated and the SiO 2 concentration was measured by a rotary evaporator. An inorganic oxide particle (sunflower particle) dispersion [A2] composed of 10% by weight of silica was prepared. The pH of the dispersion was 6.5.
Preparation of Coating Solution for Coating Film [C7] Coating solution for coating film formation [C7] was obtained in the same manner as in Example 1 except that 90 g of the sunflower-like particle dispersion [A2] was used. The pH of the coating solution was 7.5. Table 1 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.
Production of hydrophilic coated substrate [D7] A hydrophilic coated substrate [D7] was produced in the same manner as in Example 1 except that the coating film forming coating solution [C7] was used. The physical properties of the film were measured. The results are shown in Table 2.

〔実施例8〕
〔金平糖粒子、樹脂量標準、アクリル−スチレン〕
被膜形成用塗布液[C8]の調製
金平糖シリカ粒子分散液(日揮触媒化成社製:カタロイドCO-80A、平均粒子径80nm、比表面積43m/g、表面電位−60mV、SiO濃度40重量%、pH10.2)22.5gを使用した以外は実施例1と同様にして被膜形成用塗布液[C8]を得た。該塗布液のpHは9.5であった。金平糖粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、金平糖粒子と樹脂エマルジョン粒子の量比〔金平糖粒子/(金平糖粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
親水性被膜付基材[D8]の製造
被膜形成用塗布液[C8]を使用した以外は実施例1と同様にして親水性被膜付基材[D8] を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
Example 8
[Kinpei particles, resin standard, acrylic-styrene]
Preparation of coating solution [C8] for coating film formation Dispersion of gold flat sugar silica (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid CO-80A, average particle diameter 80 nm, specific surface area 43 m 2 / g, surface potential −60 mV, SiO 2 concentration 40% by weight , PH 10.2) A coating solution for forming a film [C8] was obtained in the same manner as in Example 1 except that 22.5 g was used. The pH of the coating solution was 9.5. Table 1 shows the concentration of confetti particles, the type of resin, the particle diameter of resin emulsion particles, the quantitative ratio of confetti particles to resin emulsion particles [competitive saccharide particles / (competitive saccharide particles + resin emulsion particles), solid content concentration, and pH.
Production of hydrophilic coated substrate [D8] A hydrophilic coated substrate [D8] was produced in the same manner as in Example 1 except that the coating film forming coating solution [C8] was used. The physical properties of the film were measured. The results are shown in Table 2.

〔実施例9〕
〔多孔質粒子、樹脂量標準、アクリル−スチレン〕
被膜形成用塗布液[C9]の調製
多孔質シリカアルミナ粒子分散液(日揮触媒化成社製:カタロイドUSBB−120、平均粒子径30nm、比表面積800m/g、濃度20重量%、pH11.2)22.5gを使用した以外は実施例1と同様にして被膜形成用塗布液[C9]を得た。該塗布液のpHは9.5であった。多孔質粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、多孔質粒子と樹脂エマルジョン粒子の量比〔多孔質粒子/(多孔質粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
親水性被膜付基材[D9]の製造
被膜形成用塗布液[C9]を使用した以外は実施例1と同様にして親水性被膜付基材[D9] を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
Example 9
[Porous particles, resin standard, acrylic-styrene]
Preparation of coating liquid for forming film [C9] Porous silica alumina particle dispersion (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid USBB-120, average particle diameter 30 nm, specific surface area 800 m 2 / g, concentration 20 wt%, pH 11.2) A coating solution for forming a film [C9] was obtained in the same manner as in Example 1 except that 22.5 g was used. The pH of the coating solution was 9.5. Table 1 shows the concentration of porous particles, resin type, particle diameter of resin emulsion particles, quantitative ratio of porous particles to resin emulsion particles [porous particles / (porous particles + resin emulsion particles), solid content concentration, pH] It was shown to.
Manufacture of substrate [D9] with hydrophilic coating A substrate [D9] with hydrophilic coating is manufactured in the same manner as in Example 1 except that the coating solution [C9] for forming a coating is used. The physical properties of the film were measured. The results are shown in Table 2.

〔実施例10〕
〔実施例1の基材変更〕
親水性被膜付基材[D10]の製造
基材をスレート板に使用した以外は実施例1と同様にして親水性被膜付基材[D10]を製造し、実施例1と同様に膜の物性を測定した。この結果を表1〜に示す。
Example 10
[Substrate change of Example 1]
Production of hydrophilic coated substrate [D10] A hydrophilic coated substrate [D10] was produced in the same manner as in Example 1 except that the substrate was used as a slate plate. Was measured. The results are shown in Tables 1 to 1.

〔実施例11〕
〔ヒマワリ状粒子AgO複合化、樹脂量標準、アクリル−スチレン〕
無機酸化物粒子(ヒマワリ状粒子)分散液[A3]の調製
(基体粒子の調製)
シリカゾル(日揮触媒化成社製:カタロイドSI−80P、平均粒子径80nm、表面電位−60mV、SiO濃度20重量%、pH10.2)750gに、陽イオン交換樹脂(ROHMHARS社製:デュオライト)150gを混合し、0.5時間撹拌した。ついで、陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学社製:SUNNUP−C)135gを混合し、0.5時間撹拌した後に該陰イオン交換樹脂を分離して、SiO濃度20重量%の精製シリカゾル750gを調製した。
(基体粒子分散液の調製)
前記精製シリカゾル750gに、ポリ塩化アルミニウム(多木化学社製:タキバイン#1000、Al濃度23.55重量%)5.1gを添加し、常温で0.5時間撹拌した。ついで、純水2903gを添加して希釈してSiO濃度4.1重量%のシリカからなる基体粒子分散液3658gを調製した。該基体粒子分散液のpHは3.7であった。
(微細粒子の添加)
前記基体粒子分散液(SiO濃度4.1重量%)3658gに、被覆用の微細粒子としてAgO-SiO-Alナノ粒子(日揮触媒化成社製:ATOMY BALL UA平均粒子径10nm、表面電位−20mV、濃度1.5重量%、pH7.0)3253gを混合した。その後ロータリーエバポレーターで濃度5.0重量に濃縮した。
(ヒマワリ状粒子分散液の調製)
前記混合分散液に陰イオン交換樹脂(三菱化学社製:SUNNUP−C)135gを混合し、0.5時間撹拌し、ついで、陰イオン交換樹脂を分離し、ロータリーエバポレーターによりSiO濃度10重量%のシリカからなるヒマワリ状粒子分散液[A3]を調製した。該分散液のHは7.0であった。
(平均粒子径Dpの測定)
前記ヒマワリ状粒子の平均粒子径は、透過型電子顕微鏡写真(TEM)を撮影し、10個の長径を測定し、その平均値とした。
(被覆率の測定)
前記ヒマワリ状粒子の分散液を120℃に加熱して乾燥し、該ヒマワリ状粒子の比表面積をBET法で測定し、被覆率を求めた。被覆率は前記式(4)に従って求めた。
被膜形成用塗布液[C11]の調製
前記ヒマワリ状粒子分散液[A3]90gに、5%珪酸液を1.8g添加し、80℃で3時間熟成した。その後、樹脂エマルジョン粒子懸濁液[B1](DIC社製CG8370:粒子サイズ100nm:濃度50重量%、アクリル−スチレン)を2g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して被膜形成用塗布液[C11]を得た。該塗布液のpHは7.5であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表1に示した。
親水性被膜付基材[D11]の製造
被膜形成用塗布液[C11]を使用した以外は実施例10と同様にして親水性被膜付基材[D11]を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
Example 11
[Sunflower particle AgO composite, resin standard, acrylic-styrene]
Preparation of inorganic oxide particle (sunflower-like particle) dispersion [A3] ( Preparation of substrate particles)
750 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI-80P, average particle diameter 80 nm, surface potential -60 mV, SiO 2 concentration 20 wt%, pH 10.2), 150 g of cation exchange resin (ROHMHARS: Duolite) Were mixed and stirred for 0.5 hour. Next, after separating the cation exchange resin, 135 g of an anion exchange resin (Mitsubishi Chemical Co., Ltd .: SUNUP-C) was mixed and stirred for 0.5 hour, and then the anion exchange resin was separated to obtain SiO 2 concentration. 750 g of 20% by weight purified silica sol was prepared.
(Preparation of substrate particle dispersion)
To 750 g of the purified silica sol, 5.1 g of polyaluminum chloride (manufactured by Taki Chemical Co., Ltd .: Takibaine # 1000, Al 2 O 3 concentration 23.55 wt%) was added and stirred at room temperature for 0.5 hour. Subsequently, 2903 g of pure water was added and diluted to prepare 3658 g of a base particle dispersion liquid composed of silica having a SiO 2 concentration of 4.1 wt%. The pH of the substrate particle dispersion was 3.7.
(Addition of fine particles)
3658 g of the substrate particle dispersion (SiO 2 concentration: 4.1 wt%), AgO—SiO—Al 2 O 3 nanoparticles (manufactured by JGC Catalysts & Chemicals Co., Ltd .: ATOMY BALL UA average particle diameter of 10 nm, surface) as fine particles for coating 3253 g of an electric potential of −20 mV, a concentration of 1.5% by weight, and a pH of 7.0) were mixed. Thereafter, the solution was concentrated to 5.0 weight by a rotary evaporator.
(Preparation of sunflower-like particle dispersion)
135 g of an anion exchange resin (Mitsubishi Chemical Corporation: SUNUP-C) was mixed with the mixed dispersion, and the mixture was stirred for 0.5 hour, then the anion exchange resin was separated, and the SiO 2 concentration was 10% by weight using a rotary evaporator. A sunflower-like particle dispersion [A3] comprising silica was prepared. The dispersion H was 7.0.
(Measurement of average particle diameter Dp)
The average particle diameter of the sunflower-like particles was taken as an average value obtained by taking a transmission electron micrograph (TEM) and measuring 10 major diameters.
(Measurement of coverage)
The dispersion of the sunflower-like particles was heated to 120 ° C. and dried, and the specific surface area of the sunflower-like particles was measured by the BET method to determine the coverage. The coverage was determined according to the above equation (4).
Preparation of Coating Solution for Forming Film [C11] To 90 g of the sunflower-like particle dispersion [A3], 1.8 g of 5% silicic acid solution was added and aged at 80 ° C. for 3 hours. Thereafter, 2 g of resin emulsion particle suspension [B1] (CG 8370 manufactured by DIC: particle size 100 nm: concentration 50 wt%, acrylic-styrene) was added, and then ethanol was added to adjust the solid content concentration to 5 wt%. Then, the mixture was stirred with a magnetic stirrer at room temperature for 1 hour to obtain a coating film forming coating solution [C11]. The pH of the coating solution was 7.5. Table 1 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.
Production of hydrophilic coated substrate [D11] A hydrophilic coated substrate [D11] was produced in the same manner as in Example 10 except that the coating film forming coating solution [C11] was used. The physical properties of the film were measured. The results are shown in Table 2.

〔実施例12〕
〔実施例1の基材変更〕
親水性被膜付基材[D12]の製造
被膜形成用塗布液[A1]をナイロン繊維(線径10μm細孔径1μm)にディップ法で、乾燥層厚が表1の値になるように塗布し、80℃で10分間乾燥して親水性被膜付基材[D12]を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。ナイロンについて風合いを確認した。風合いは、塗膜前後の手による触感に基づいて評価した。評価基準を以下に示す。
塗布前後で感触が変わらないもの :◎
塗布後に僅かにゴワゴワ感があるもの :○
塗布後に少しゴワゴワ感があるもの :△
塗布後に明らかにゴワゴワ感があるもの:×
Example 12
[Substrate change of Example 1]
Production of base material with hydrophilic coating [D12] The coating solution [A1] for coating formation was applied to nylon fibers (wire diameter 10 μm, pore diameter 1 μm) by the dipping method so that the dry layer thickness was the value shown in Table 1. The substrate [D12] with a hydrophilic film was produced by drying at 80 ° C. for 10 minutes, and the physical properties of the film were measured in the same manner as in Example 1. The results are shown in Table 2. The texture of nylon was confirmed. The texture was evaluated based on the hand touch before and after the coating film. The evaluation criteria are shown below.
The feel does not change before and after application: ◎
Slightly irritating after application: ○
Somewhat awkward after application: △
Clearly tingling after application: ×

〔実施例13〕
〔ヒマワリ状粒子AgO複合化、基材変更〕
親水性被膜付基材[D13]の製造
被膜形成用塗布液[C11]をナイロン繊維(線径10μm細孔径1μm)にディップ法で、乾燥層厚が表1の値になるように塗布し、80℃で10分間乾燥して親水性被膜付基材[D13]を製造し、実施例1と同様に膜の物性を測定した。この結果を表2に示す。
Example 13
[Sunflower particle AgO composite, base material change]
Production of substrate [D13] with hydrophilic coating [C11] A coating solution [C11] for coating formation was applied to nylon fibers (wire diameter: 10 μm, pore diameter: 1 μm) by the dip method so that the dry layer thickness was the value shown in Table 1. The substrate [D13] with hydrophilic coating was produced by drying at 80 ° C. for 10 minutes, and the physical properties of the membrane were measured in the same manner as in Example 1. The results are shown in Table 2.

Figure 2017100358
Figure 2017100358

Figure 2017100358
Figure 2017100358

〔比較例1〕
〔標準粒子径ヒマワリ状粒子、樹脂オリゴマー(非エマルシ゛ョン)〕
接着層形成用塗布液[R1]の調製
変性アルコール(日本アルコール販売社製:ソルミックスA−11、メタノールとエタノールとイソプロピルアルコールの混合アルコール)72.5gに水10.0gと濃度61重量%の硝酸0.1gを添加し、25℃で10分撹拌した。ついで、テトラエトキシシラン(多摩化学工業社製:正珪酸エチル‐A、SiO濃度28.8重量%)17.4gを添加し、30℃で30分撹拌してテトラエトキシシラン加水分解物(固形分濃度5.0重量%、分子量1000)のシリカからなる接着層形成用塗布液[R1]を調製した。
被膜形成用塗布液[R2]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を1.8g添加し、80℃で3時間熟成した。その後、接着層形成用塗布液[R1]を20g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して被膜形成用塗布液[R2]を得た。該塗布液のpHは3.8であった。ヒマワリ状粒子の濃度、樹脂の種類、ヒマワリ状粒子と樹脂の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表3に示した。
親水性被膜付基材[R3]の製造
被膜形成用塗布液[R2]を使用した以外は実施例1と同様にして親水性被膜付基材[R3]を製造し、実施例1と同様に膜の物性を測定した。この結果を表4に示す。
[Comparative Example 1]
[Standard particle size sunflower-like particles, resin oligomer (non-emulsion)]
Preparation of Adhesive Layer Forming Coating Solution [R1] Modified alcohol (manufactured by Nippon Alcohol Sales Co., Ltd .: Solmix A-11, mixed alcohol of methanol, ethanol and isopropyl alcohol) 72.5 g of water 10.0 g and concentration of 61% by weight Nitric acid 0.1g was added and it stirred at 25 degreeC for 10 minutes. Then, 17.4 g of tetraethoxysilane (manufactured by Tama Chemical Industry Co., Ltd .: normal ethyl silicate-A, SiO 2 concentration 28.8 wt%) was added and stirred at 30 ° C. for 30 minutes to hydrolyze tetraethoxysilane (solid A coating solution [R1] for forming an adhesive layer made of silica having a partial concentration of 5.0% by weight and a molecular weight of 1000) was prepared.
Preparation of coating solution [R2] for film formation To 90 g of the sunflower-like particle dispersion [A1], 1.8 g of 5% silicic acid solution was added and aged at 80 ° C. for 3 hours. Thereafter, 20 g of the adhesive layer forming coating solution [R1] was added, and then ethanol was added to adjust the solid content concentration to 5% by weight, followed by stirring with a magnetic stirrer at room temperature for 1 hour for coating forming. A liquid [R2] was obtained. The pH of the coating solution was 3.8. Table 3 shows the concentration of sunflower-like particles, the type of resin, the ratio of the amount of sunflower-like particles to the resin (sunflower-like particles / (sunflower-like particles + resin emulsion particles)), solid content concentration, and pH.
Production of hydrophilic coated substrate [R3] A hydrophilic coated substrate [R3] was produced in the same manner as in Example 1 except that the coating film forming coating solution [R2] was used. The physical properties of the film were measured. The results are shown in Table 4.

〔比較例2〕
〔標準粒子径ヒマワリ状粒子、樹脂無添加〕
被膜形成用塗布液[L2]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を1.8g添加し、80℃で3時間熟成した。その後エタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して被膜形成用塗布液[L2]を得た。該塗布液のpHは7.5であった。ヒマワリ状粒子の濃度、樹脂の種類、ヒマワリ状粒子と樹脂の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表3に示した。
親水性被膜付基材[L3]の製造
被膜形成用塗布液[L2]を使用した以外は実施例1と同様にして親水性被膜付基材[L3]を製造し、実施例1と同様に膜の物性を測定した。この結果を表4に示す。
[Comparative Example 2]
[Standard particle size sunflower-like particles, no resin added]
Preparation of Coating Liquid for Coating Formation [L2] 1.8 g of 5% silicic acid solution was added to 90 g of the sunflower-like particle dispersion [A1] and aged at 80 ° C. for 3 hours. Thereafter, ethanol was added to adjust the solid content concentration to 5% by weight, and the mixture was stirred with a magnetic stirrer at room temperature for 1 hour to obtain a coating-forming coating solution [L2]. The pH of the coating solution was 7.5. Table 3 shows the concentration of sunflower-like particles, the type of resin, the ratio of the amount of sunflower-like particles to the resin (sunflower-like particles / (sunflower-like particles + resin emulsion particles)), solid content concentration, and pH.
Production of hydrophilic coated substrate [L3] A hydrophilic coated substrate [L3] was produced in the same manner as in Example 1 except that the coating liquid for coating film formation [L2] was used. The physical properties of the film were measured. The results are shown in Table 4.

〔比較例3〕
〔標準粒子径ヒマワリ状粒子、樹脂過剰量〕
被膜形成用塗布液[M2]の調製
前記ヒマワリ状粒子分散液[A1]90gに、5%珪酸液を1.8g添加し、80℃で3時間熟成した。その後、樹脂エマルジョン粒子懸濁液[B1](DIC株式会社製CG8370:粒子サイズ100nm:濃度50重量%、アクリル−スチレン)を72g添加し、次いでエタノールを添加して固形分濃度を5重量%に調製し、マグネチックスターラーで、室温下、1時間撹拌して被膜形成用塗布液(R3)を得た。該塗布液のpHは7.5であった。ヒマワリ状粒子の濃度、樹脂の種類、樹脂エマルジョン粒子の粒子径、ヒマワリ状粒子と樹脂エマルジョン粒子の量比〔ヒマワリ状粒子/(ヒマワリ状粒子+樹脂エマルジョン粒子〕、固形分濃度、pHを表3に示した。
親水性被膜付基材[M3]の製造
被膜形成用塗布液[M2]を使用した以外は実施例1と同様にして親水性被膜付基材[M3]を製造し、実施例1と同様に膜の物性を測定した。この結果を表4に示す。
[Comparative Example 3]
[Standard particle size sunflower-like particles, excess resin]
Preparation of Coating Solution for Coating Film [M2] To 90 g of the sunflower-like particle dispersion [A1], 1.8 g of 5% silicic acid solution was added and aged at 80 ° C. for 3 hours. Thereafter, 72 g of resin emulsion particle suspension [B1] (CG 8370 manufactured by DIC Corporation: particle size 100 nm: concentration 50 wt%, acrylic-styrene) was added, and then ethanol was added to obtain a solid content concentration of 5 wt%. The film was prepared and stirred with a magnetic stirrer at room temperature for 1 hour to obtain a coating liquid for forming a film (R3). The pH of the coating solution was 7.5. Table 3 shows the concentration of sunflower-like particles, the type of resin, the particle diameter of resin emulsion particles, the ratio of sunflower-like particles to resin emulsion particles [sunflower-like particles / (sunflower-like particles + resin emulsion particles), solid content concentration, pH. It was shown to.
Production of hydrophilic coated substrate [M3] A hydrophilic coated substrate [M3] was produced in the same manner as in Example 1 except that the coating film forming coating solution [M2] was used. The physical properties of the film were measured. The results are shown in Table 4.

〔比較例4〜6〕
〔基材の物性〕
実施例1〜13に使用した基材(ガラス、スレート、ナイロン)の物性を測定して表4に示した。
[Comparative Examples 4 to 6]
[Physical properties of the substrate]
The physical properties of the substrates (glass, slate, nylon) used in Examples 1 to 13 were measured and are shown in Table 4.

Figure 2017100358
Figure 2017100358

Figure 2017100358
Figure 2017100358

1−基材、2−被膜、3−粒子層、4−接着層、5−無機酸化物粒子、6−水滴、10−超親水性被膜付基材、20−ヒマワリ状粒子、21−基体粒子、22−微細粒子、30−分散液、31−極性溶媒、32−樹脂エマルジョン粒子、33−極性溶媒、34−懸濁液。
1-Substrate, 2-Coating, 3-Particle Layer, 4-Adhesive Layer, 5-Inorganic Oxide Particle, 6-Water Drop, 10-Substrate with Super Hydrophilic Coating, 20-Sunflower Particle, 21-Substrate Particle 22-fine particles, 30-dispersion, 31-polar solvent, 32-resin emulsion particles, 33-polar solvent, 34-suspension.

Claims (22)

基材表面に超親水性の被膜を有する親水性基材であって、前記被膜が無機酸化物粒子を含む粒子層と、該無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材の間隙に介在する接着層からなり、該無機酸化物粒子の表面が親水性であって、該無機酸化物粒子の上部が前記接着層から露出した凹凸構造を前記被膜表面に有することを特徴とする超親水性被膜付基材。   A hydrophilic substrate having a superhydrophilic coating on the substrate surface, wherein the coating includes a particle layer containing inorganic oxide particles, a gap between the inorganic oxide particles, and the inorganic oxide particles and the substrate. The surface of the inorganic oxide particles is hydrophilic, and the surface of the inorganic oxide particles has an uneven structure exposed from the adhesive layer. A substrate with a super-hydrophilic coating. 無機酸化物粒子の平均粒子径(D)が20〜600nmであって、接着層の膜厚(U)が6〜400nmであり、該無機酸化物粒子の平均粒子径(D)に対する接着層の膜厚(U)の比(U/D)が1/3〜2/3であって、該無機酸化物粒子の平均粒子径(D)の1/3〜2/3が接着層から露出していることを特徴とする請求項1に記載する超親水性被膜付基材。 The average particle diameter (D P ) of the inorganic oxide particles is 20 to 600 nm, the film thickness (U F ) of the adhesive layer is 6 to 400 nm, and the average particle diameter (D P ) of the inorganic oxide particles is The ratio (U F / D P ) of the film thickness (U F ) of the adhesive layer is 1/3 to 2/3, and the average particle diameter (D P ) of the inorganic oxide particles is 1/3 to 2 / The substrate with a superhydrophilic film according to claim 1, wherein 3 is exposed from the adhesive layer. 親水性被膜表面の凹凸構造の凸部平均高さ(T)が10〜300nmの範囲であり、凸部間の平均距離(ピッチ幅)(W)が1〜1000nmの範囲であることを特徴とする請求項1または請求項2の何れかに記載する超親水性被膜付基材。 The average height of the projections of the uneven structure of the hydrophilic coating surface (T F) is in the range of 10 to 300 nm, the average distance between the convex portion (pitch) (W F) is in the range of 1~1000nm The substrate with a superhydrophilic film according to any one of claims 1 and 2, wherein the substrate has a superhydrophilic film. 親水性被膜の膜厚が20nm〜700nmであることを特徴とする請求項1〜請求項3の何れかに記載する超親水性被膜付基材。   The substrate with a superhydrophilic film according to any one of claims 1 to 3, wherein the hydrophilic film has a thickness of 20 nm to 700 nm. 無機酸化物粒子が、球状、板状、金平糖状、またはヒマワリ状の何れかであることを特徴とする請求項1〜請求項4の何れかに記載する超親水性被膜付基材。   The substrate with super hydrophilic coating according to any one of claims 1 to 4, wherein the inorganic oxide particles are spherical, plate-shaped, confetti-shaped, or sunflower-shaped. 無機酸化物粒子が、球状、板状、金平糖状、またはヒマワリ状の何れかであって多孔質であることを特徴とする請求項5に記載する超親水性被膜付基材。   6. The substrate with a superhydrophilic film according to claim 5, wherein the inorganic oxide particles are spherical, plate-shaped, confetti-shaped, or sunflower-shaped and porous. 無機酸化物粒子が、無機酸化物の基体粒子と、該基体粒子表面を被覆する無機酸化物の微細粒子からなるヒマワリ状粒子であり、該無機酸化物粒子表面が該微細粒子による微細凹凸を有することを特徴とする請求項1〜請求項6の何れかに記載する超親水性被膜付基材。   The inorganic oxide particles are sunflower-like particles composed of inorganic oxide substrate particles and inorganic oxide fine particles covering the surface of the substrate particles, and the inorganic oxide particle surfaces have fine irregularities due to the fine particles. The substrate with a superhydrophilic film according to any one of claims 1 to 6, wherein the substrate has a superhydrophilic film. 無機酸化物粒子がその表面に微細な凹凸を有し、該微細凹凸の凸部平均高さ(TFF)が0.5〜10nmの範囲であり、該微細凹凸の凸部間の平均距離(ピッチ幅)(WFF)が1〜30nmの範囲であることを特徴とする請求項1〜請求項7の何れかに記載する超親水性被膜付基材。 The inorganic oxide particles have fine irregularities on the surface thereof, the average height of convex portions of the fine irregularities (T FF ) is in the range of 0.5 to 10 nm, and the average distance between the convex portions of the fine irregularities ( The substrate with a superhydrophilic film according to any one of claims 1 to 7, wherein the pitch width (W FF ) is in the range of 1 to 30 nm. 無機酸化物粒子の表面が、SiXの式(式中、X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素)で示される加水分解性有機ケイ素化合物による親水基で修飾されていることを特徴とする請求項1〜請求項8の何れかに記載する超親水性被膜付基材。 The surface of the inorganic oxide particle is modified with a hydrophilic group by a hydrolyzable organosilicon compound represented by the formula of SiX 4 (where X is a C 1-4 alkoxy group, hydroxyl group, halogen, hydrogen). The substrate with a superhydrophilic film according to any one of claims 1 to 8, wherein the substrate has a superhydrophilic film. 水との接触角が10°以下であることを特徴とする請求項1〜請求項9の何れかに記載する超親水性被膜付基材。   The contact angle with water is 10 degrees or less, The base material with a super hydrophilic film in any one of Claims 1-9 characterized by the above-mentioned. 無機酸化物粒子がSiO、Al、Sb、ZrO、TiO、Fe、CeO、AgO、CuO、CuO、およびこれらの複合酸化物または混合物から選ばれる少なくとも1種であることを特徴とする請求項1〜請求項10の何れかに記載する超親水性被膜付基材。 The inorganic oxide particles are selected from SiO 2 , Al 2 O 3 , Sb 2 O 5 , ZrO 2 , TiO 2 , Fe 2 O 3 , CeO 2 , AgO, CuO, Cu 2 O, and complex oxides or mixtures thereof. The substrate with a superhydrophilic film according to any one of claims 1 to 10, wherein the substrate has at least one kind. 接着層が、エマルジョン用樹脂であって、エステル系樹脂、ポリカーボネート系樹脂、アミド系樹脂、イミド系樹脂、ポリフェニレンオキサイド系樹脂、アクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、シリコーン系樹脂、ウレタン系樹脂、またはスチレン系樹脂、あるいはこれらの共重合樹脂から選ばれる少なくとも1種であることを特徴とする請求項1〜請求項11の何れかに記載する超親水性被膜付基材。   The adhesive layer is an emulsion resin, which is an ester resin, polycarbonate resin, amide resin, imide resin, polyphenylene oxide resin, acrylic resin, vinyl chloride resin, vinyl acetate resin, silicone resin, The substrate with a superhydrophilic film according to any one of claims 1 to 11, which is at least one selected from a urethane-based resin, a styrene-based resin, or a copolymer resin thereof. 粒子表面が親水性の無機酸化物粒子と、樹脂エマルジョン粒子が、極性溶媒中に混在して単分散していることを特徴とする超親水性被膜形成用塗布液。   A coating solution for forming a superhydrophilic film, characterized in that inorganic oxide particles having hydrophilic particle surfaces and resin emulsion particles are mixed and monodispersed in a polar solvent. 樹脂エマルジョン粒子の平均粒子径(De)が、無機酸化物粒子の平均粒子径(D)と同等か小さい(De≦D)ことを特徴とする前記[13]に記載する超親水性被膜形成用塗布液。 The superhydrophilic film according to [13], wherein the average particle size (De) of the resin emulsion particles is equal to or smaller than the average particle size (D P ) of the inorganic oxide particles (De ≦ D P ) Coating liquid for forming. 無機酸化物粒子の量(G)と、樹脂エマルジョン粒子の量(M)との量比(G/[G+M])が0.5〜0.98の範囲であることを特徴とする前記[13]または前記[14]に記載する超親水性被膜形成用塗布液。   [13] The quantitative ratio (G / [G + M]) between the amount (G) of inorganic oxide particles and the amount (M) of resin emulsion particles is in the range of 0.5 to 0.98. ] Or the coating solution for forming a superhydrophilic film described in [14] above. 粒子表面が親水性の無機酸化物粒子が極性溶媒に分散した分散液と、樹脂エマルジョン粒子が極性溶媒に懸濁した懸濁液との二液からなり、前記分散液と前記懸濁液の混合によって無機酸化物粒子と樹脂エマルジョン粒子が極性溶媒中に混在して単分散した状態になる前記[13]〜前記[15]の何れかに記載する超親水性被膜形成用塗布液。   It consists of two liquids, a dispersion liquid in which inorganic oxide particles having hydrophilic particle surfaces are dispersed in a polar solvent and a suspension liquid in which resin emulsion particles are suspended in a polar solvent, and the dispersion liquid and the suspension are mixed. The coating solution for forming a super-hydrophilic film according to any one of [13] to [15], wherein the inorganic oxide particles and the resin emulsion particles are mixed and monodispersed in a polar solvent. 粒子表面が親水性の無機酸化物粒子と樹脂エマルジョン粒子とが極性溶媒中に分散し懸濁している被膜形成用塗布液を基材に塗布して前記無機酸化物粒子相互の間隙に前記樹脂エマルジョン粒子が介在した粒子層を形成し、塗布後、加熱乾燥して該樹脂エマルジョン粒子の崩壊によって前記無機酸化物粒子相互の間隙および該無機酸化物粒子と前記基材との間隙に樹脂を入り込ませて接着層を形成し、該無機酸化物粒子の上部が該接着層から露出した凹凸構造を有する超親水性被膜を基材上に形成することを特徴とする超親水性被膜付基材の製造方法。   A coating solution for forming a film in which inorganic oxide particles having hydrophilic particle surfaces and resin emulsion particles are dispersed and suspended in a polar solvent is applied to a base material, and the resin emulsion is placed in the gap between the inorganic oxide particles. A particle layer in which particles are interposed is formed, and after application, heated and dried, and the resin emulsion particles are collapsed to allow the resin to enter the gap between the inorganic oxide particles and the gap between the inorganic oxide particles and the substrate. Forming a superhydrophilic film having a concavo-convex structure in which the upper part of the inorganic oxide particles is exposed from the adhesive layer on the base material. Method. 粒子表面が親水性の無機酸化物粒子の分散液と、樹脂エマルジョン粒子の懸濁液とを混合して、無機酸化物粒子と樹脂エマルジョン粒子とが極性溶媒中に混在し単分散している被膜形成用塗布液を調製し、該塗布液を基材に塗布する請求項17に記載する超親水性被膜付基材の製造方法。   A coating in which a dispersion of inorganic oxide particles having a hydrophilic particle surface is mixed with a suspension of resin emulsion particles, and the inorganic oxide particles and resin emulsion particles are mixed and monodispersed in a polar solvent. The manufacturing method of the base material with a superhydrophilic film of Claim 17 which prepares the coating liquid for formation and apply | coats this coating liquid to a base material. 被膜形成用塗布液に含まれる樹脂エマルジョン粒子の平均粒子径(De)が無機酸化物粒子の平均粒子径(D)と同等か小さい(De≦D)ことを特徴とする請求項17または請求項18に記載する超親水性被膜付基材の製造方法。 The average particle diameter (De) of the resin emulsion particles contained in the coating liquid for forming a film is equal to or smaller than the average particle diameter (D P ) of the inorganic oxide particles (De ≦ D P ), or The manufacturing method of the base material with a superhydrophilic film of Claim 18. 被膜形成用塗布液に含まれる無機酸化物粒子の量(M)と樹脂エマルジョン粒子の量(E)との量比(G/[G+M])が0.5〜0.98の範囲であることを特徴とする請求項17〜請求項19の何れかに記載する超親水性被膜付基材の製造方法。   The amount ratio (G / [G + M]) of the amount of inorganic oxide particles (M) and the amount of resin emulsion particles (E) contained in the coating liquid for forming a film is in the range of 0.5 to 0.98. The method for producing a substrate with a superhydrophilic film according to any one of claims 17 to 19, wherein: エマルジョン用樹脂として、エステル系樹脂、ポリカーボネート系樹脂、アミド系樹脂、イミド系樹脂、ポリフェニレンオキサイド系樹脂、アクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、シリコーン系樹脂、ウレタン系樹脂、またはスチレン系樹脂、あるいはこれらの共重合樹脂からなる樹脂エマルジョン粒子を極性溶媒に懸濁させた樹脂エマルジョン粒子懸濁液と、無機酸化物粒子を極性溶媒に分散させた無機酸化物粒子分散液を混合して被膜形成用塗布液を調製することを特徴とする請求項17〜請求項20の何れかに記載する超親水性被膜付基材の製造方法。   As emulsion resins, ester resins, polycarbonate resins, amide resins, imide resins, polyphenylene oxide resins, acrylic resins, vinyl chloride resins, vinyl acetate resins, silicone resins, urethane resins, or styrene A resin emulsion particle suspension obtained by suspending resin emulsion particles composed of a resin or a copolymer resin thereof in a polar solvent, and an inorganic oxide particle dispersion obtained by dispersing inorganic oxide particles in a polar solvent. 21. The method for producing a substrate with a superhydrophilic film according to any one of claims 17 to 20, wherein a coating liquid for forming a film is prepared. 被膜形成用塗布液を基材に塗布した後に60〜200℃に加熱乾燥して樹脂エマルジョン粒子を崩壊させることを特徴とする請求項17〜請求項21の何れかに記載する超親水性被膜付基材の製造方法。
The superhydrophilic coating film according to any one of claims 17 to 21, wherein the coating emulsion is applied to a substrate and then dried by heating to 60 to 200 ° C to disintegrate the resin emulsion particles. A method for producing a substrate.
JP2015235332A 2015-12-02 2015-12-02 Substrate with superhydrophilic coating, coating solution and manufacturing method thereof Active JP6749093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015235332A JP6749093B2 (en) 2015-12-02 2015-12-02 Substrate with superhydrophilic coating, coating solution and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015235332A JP6749093B2 (en) 2015-12-02 2015-12-02 Substrate with superhydrophilic coating, coating solution and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2017100358A true JP2017100358A (en) 2017-06-08
JP2017100358A5 JP2017100358A5 (en) 2019-01-24
JP6749093B2 JP6749093B2 (en) 2020-09-02

Family

ID=59015994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015235332A Active JP6749093B2 (en) 2015-12-02 2015-12-02 Substrate with superhydrophilic coating, coating solution and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6749093B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177683A (en) * 2016-03-31 2017-10-05 日揮触媒化成株式会社 Base material with water-repellent coating film and method for producing the same
JP2020169240A (en) * 2019-04-01 2020-10-15 スリーエム イノベイティブ プロパティズ カンパニー Laminate for frost prevention, heat exchanger including the laminate, and coating agent for frost prevention

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080830A (en) * 2000-09-08 2002-03-22 Toto Ltd Hydrophilic member and its production method
JP2004211049A (en) * 2002-11-14 2004-07-29 Toto Ltd Functional coating
JP2011148120A (en) * 2010-01-19 2011-08-04 Asahi Kasei E-Materials Corp Laminate, and method for manufacturing the same
WO2012141150A1 (en) * 2011-04-11 2012-10-18 旭硝子株式会社 Functional article, article for transport equipment, article for construction, and composition for coating
KR101302489B1 (en) * 2011-12-09 2013-09-02 인하대학교 산학협력단 A process for preparing a coating primer with conductive hybrid nano-particles for anti static
JP2015049281A (en) * 2013-08-30 2015-03-16 クラリオン株式会社 On-vehicle camera
JP2015096459A (en) * 2013-10-09 2015-05-21 セントラル硝子株式会社 Hydrophilic film-formed article, coating liquid and method of producing hydrophilic film formed article
JP2015136669A (en) * 2014-01-23 2015-07-30 日揮触媒化成株式会社 Base material with hydrophilic transparent coating film and production method of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080830A (en) * 2000-09-08 2002-03-22 Toto Ltd Hydrophilic member and its production method
JP2004211049A (en) * 2002-11-14 2004-07-29 Toto Ltd Functional coating
JP2011148120A (en) * 2010-01-19 2011-08-04 Asahi Kasei E-Materials Corp Laminate, and method for manufacturing the same
WO2012141150A1 (en) * 2011-04-11 2012-10-18 旭硝子株式会社 Functional article, article for transport equipment, article for construction, and composition for coating
KR101302489B1 (en) * 2011-12-09 2013-09-02 인하대학교 산학협력단 A process for preparing a coating primer with conductive hybrid nano-particles for anti static
JP2015049281A (en) * 2013-08-30 2015-03-16 クラリオン株式会社 On-vehicle camera
JP2015096459A (en) * 2013-10-09 2015-05-21 セントラル硝子株式会社 Hydrophilic film-formed article, coating liquid and method of producing hydrophilic film formed article
JP2015136669A (en) * 2014-01-23 2015-07-30 日揮触媒化成株式会社 Base material with hydrophilic transparent coating film and production method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177683A (en) * 2016-03-31 2017-10-05 日揮触媒化成株式会社 Base material with water-repellent coating film and method for producing the same
JP2020169240A (en) * 2019-04-01 2020-10-15 スリーエム イノベイティブ プロパティズ カンパニー Laminate for frost prevention, heat exchanger including the laminate, and coating agent for frost prevention

Also Published As

Publication number Publication date
JP6749093B2 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
US6299981B1 (en) Substrate with improved hydrophilic or hydrophobic properties, comprising irregularities
JP5700458B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating
JP4956467B2 (en) Superhydrophobic self-cleaning powder and method for producing the same
CN105246985B (en) It is crosslinked poly- (vinyl alcohol) and nano SiO 2 particle laminated coating and method
JP2009527011A (en) Method for coating glass plates
US20170073237A1 (en) Method for manufacturing hollow silica particles, hollow silica particles, and composition and thermal insulation sheet comprising same
CN103080254A (en) Inorganic oxide coating
JP6713319B2 (en) Substrate with water-repellent coating and method for producing the same
CN102849962A (en) Preparation method of SiO2 super-hydrophobic film and super-hydrophobic material
JP6826985B2 (en) Glass plate with coating film and its manufacturing method
CN112143332B (en) Super-hydrophobic coating and preparation method thereof
JP2007063477A (en) Inorganic coating composition, hydrophilic coating film, and agricultural film
WO2001023483A1 (en) Photocatalytic coating composition and product having thin photocatalytic film
CN104870386B (en) It is coated with the transparent base of at least one at least difunctional porous layer, especially glass baseplate, Manufacturing approach and use
CN113881252A (en) Super-hydrophilic anti-fog coating with good durability and preparation method thereof
WO2020179412A1 (en) Lamination film
JP6749093B2 (en) Substrate with superhydrophilic coating, coating solution and manufacturing method thereof
CN109401367A (en) A kind of high-durability super-hydrophilic coating
WO2016143297A1 (en) Glass plate provided with coating film and method for manufacturing same
JP2000192021A (en) Hydrophilic, antifogging and antistaining substrate and its preparation
JP2004083307A (en) Silica fine particle, coating material for low refractive index film formation, low refractive index film and method for manufacturing the same, and antireflection film
TWI291902B (en)
JP2016185886A (en) Glass plate having low reflective coating
JP6635329B2 (en) Organic base material with photocatalyst layer
JP5989808B2 (en) Manufacturing method of glass plate with low reflection coating and coating liquid used therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200811

R150 Certificate of patent or registration of utility model

Ref document number: 6749093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250