KR101042001B1 - Conductive and superhydrophobic coatings, and its fabrication method - Google Patents

Conductive and superhydrophobic coatings, and its fabrication method Download PDF

Info

Publication number
KR101042001B1
KR101042001B1 KR1020070110215A KR20070110215A KR101042001B1 KR 101042001 B1 KR101042001 B1 KR 101042001B1 KR 1020070110215 A KR1020070110215 A KR 1020070110215A KR 20070110215 A KR20070110215 A KR 20070110215A KR 101042001 B1 KR101042001 B1 KR 101042001B1
Authority
KR
South Korea
Prior art keywords
coating
coating film
silane
solvent
super water
Prior art date
Application number
KR1020070110215A
Other languages
Korean (ko)
Other versions
KR20090044220A (en
Inventor
한중탁
이건웅
우종석
김선영
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020070110215A priority Critical patent/KR101042001B1/en
Publication of KR20090044220A publication Critical patent/KR20090044220A/en
Application granted granted Critical
Publication of KR101042001B1 publication Critical patent/KR101042001B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/20Aqueous dispersion or solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

본 발명은 전도성 초발수 코팅막 및 그 제조방법에 관한 것으로, 탄소나노튜브(CNT) 분산액에 실란졸 혼합액을 첨가하여 코팅액을 형성시키되, 상기 실란졸 혼합액에는 불소계 실란이 포함되어 코팅액이 형성되고, 형성된 코팅액을 기질에 도포하여 고화시킴에 의해 형성되는 전도성 초발수 코팅막 및 그 제조방법을 기술적 요지로 한다.The present invention relates to a conductive super water-repellent coating film and a method for manufacturing the same, wherein a coating solution is formed by adding a silane sol mixture to a carbon nanotube (CNT) dispersion, wherein the silane sol mixture contains a fluorine-based silane and a coating solution is formed. Technical superimposition is a conductive super water-repellent coating film formed by applying a coating solution to a substrate and solidifying the same.

이에 따라, 카본나노튜브(CNT)를 전도성 물질로 사용하고, 소수성을 지니는 불소계 실란컴파운드와 CNT를 혼합하여 코팅용액을 제조하고, 코팅용액을 기질에 코팅하여 표면구조를 제어함으로써 대전방지가 가능함과 동시에 초발수가 가능하다는 이점이 있다.Accordingly, carbon nanotube (CNT) is used as a conductive material, a hydrophobic fluorine silane compound and CNT are mixed to prepare a coating solution, and the coating solution is coated on a substrate to control the surface structure to prevent antistatic and At the same time, there is an advantage that super water repellency is possible.

전도성 초발수 코팅막 불소계실란 탄소나노튜브 Conductive Super Water-Repellent Coating Membrane Fluorinated Silane Carbon Nanotube

Description

전도성 초발수 코팅막 및 그 제조방법{Conductive and superhydrophobic coatings, and its fabrication method}Conductive superhydrophobic coating film and its manufacturing method {Conductive and superhydrophobic coatings, and its fabrication method}

본 발명은 전도성 초발수 코팅막 및 그 제조방법에 관한 것으로, 더욱 상세하게는, 카본나노튜브(CNT)를 전도성 물질로 사용하고, 소수성를 지니는 불소계 실란컴파운드와 CNT를 혼합하여 코팅용액을 제조하고, 코팅용액을 기질에 코팅하여 표면구조를 제어함으로써 대전방지가 가능함과 동시에 초발수가 가능한 전도성 초발수 코팅막 및 그 제조방법에 관한 것이다. The present invention relates to a conductive super water-repellent coating film and a method for manufacturing the same, and more specifically, using a carbon nanotube (CNT) as a conductive material, by mixing a hydrophobic fluorine silane compound and CNT to prepare a coating solution, coating The present invention relates to a conductive super water-repellent coating membrane capable of antistatic and at the same time capable of super water repellent by coating a solution on a substrate to control the surface structure.

일반적으로 표면의 물 접촉각이 90도 이상인 경우 소수성 표면이라고 지칭한다. 특히, 표면의 미세구조가 평평한 경우 폴리테트라플루오로에틸렌(TeflonTM)의 표면은 물 접촉각이 최대 115도로 물이 흡착되지 않는 발수성 표면이라고 한다. 그러나 이러한 평평한 표면에서는 접촉각을 120도 이상 증가시킬 수 없다.Generally, when the water contact angle of the surface is 90 degrees or more, it is referred to as a hydrophobic surface. In particular, when the microstructure of the surface is flat, the surface of polytetrafluoroethylene (Teflon ) is said to be a water repellent surface where water is not adsorbed at a maximum contact angle of 115 degrees. However, on such flat surfaces, the contact angle cannot be increased by more than 120 degrees.

이와는 달리 표면에 마이크로 또는 나노미터 크기의 구조를 형성시킬 경우 물 접촉각이 150도 이상인 초발수성 표면을 구현할 수 있다. On the other hand, when a micro or nanometer sized structure is formed on the surface, a super water-repellent surface having a water contact angle of 150 degrees or more can be realized.

이러한 초발수 코팅은 먼지, 박테리아 등 외부 물질이 표면에 올라오더라도 그 접촉면적이 매우 작기 때문에 쉽게 붙지 않고, 붙더라도 단순한 세척에 의해 쉽게 제거되는 자가정화(self-cleaning) 특성을 지니고 있다. The super water-repellent coating has a self-cleaning property that is not easily adhered to even if foreign matter such as dust or bacteria is on the surface, because the contact area thereof is very small.

발수성을 위한 표면처리방법이 종래기술로서 다양하게 소개되어 있다. Surface treatment methods for water repellency have been variously introduced as a prior art.

발수성 표면처리 방법으로서, 한국특허출원 제2004-59924호에는 초발수성 코팅층 형성을 위해 하나 이상의 유기실란화합물을 부분적으로 가수 분해 및 중축합시켜 얻은 실리카 용액 등을 포함하는 코팅조성물, 이의 제조방법 및 이를 이용한 코팅방법이 기재되어 있다.As a water repellent surface treatment method, Korean Patent Application No. 2004-59924 discloses a coating composition comprising a silica solution obtained by partially hydrolyzing and polycondensing one or more organosilane compounds to form a super water-repellent coating layer, a method for preparing the same, and the like The coating method used is described.

그리고, 한국특허출원 제2004-74711호에는 투명한 비점착성 코팅층 형성을 위해 하나 이상의 유기실란화합물을 무기입자가 분산되어 있는 용매와 혼합하고 가수분해 및 중축합시켜 얻은 졸-겔 코팅 조성물, 이의 제조 방법 및 이를 이용한 코팅 방법이 기재되어 있다. In addition, Korean Patent Application No. 2004-74711 discloses a sol-gel coating composition obtained by mixing, hydrolyzing and polycondensing at least one organosilane compound with a solvent in which inorganic particles are dispersed in order to form a transparent non-adhesive coating layer. And coating methods using the same.

또한, 한국특허출원 제2004-83736호에는 투명도의 제어가 자유로운 높은 조도의 비점착성 초소수성 표면을 갖는 유기-무기 하이브리드 코팅층을 형성하기 위해 하나 이상의 유기실란화합물을 가수분해 및 중축합 반응시켜 얻은 유기코팅용액과 초미립 나노무기입자 분산액을 혼합하고 반응 조건 및 시효조건을 조절하는 코팅 조성물의 제조방법 및 이와 같이 얻어진 코팅조성물을 이용하여 모재의 질감을 제어하는 표면 처리 공정이 기재되어 있다.In addition, Korean Patent Application No. 2004-83736 discloses an organic material obtained by hydrolyzing and polycondensation of one or more organosilane compounds to form an organic-inorganic hybrid coating layer having a high roughness non-adhesive superhydrophobic surface free of transparency control. A method of preparing a coating composition for mixing a coating solution and an ultrafine nano inorganic particle dispersion and controlling reaction conditions and aging conditions, and a surface treatment process for controlling the texture of a base material using the coating composition thus obtained are described.

다른 종래기술로는 한국특허출원 제2005-29102호에 항균-발수 코팅 조성물, 이의 제조방법 및 이를 이용한 코팅 방법이 소개되어 있다. As another conventional technology, Korean Patent Application No. 2005-29102 discloses an antimicrobial-water repellent coating composition, a preparation method thereof, and a coating method using the same.

그러나, 상기의 기술들은 발수성은 뛰어나지만 대전방지 및 전자파 차폐 등 의 기능은 가지지 않는다. However, the above techniques are excellent in water repellency but do not have functions such as antistatic and electromagnetic shielding.

따라서, 본 발명은 상기한 종래기술들의 문제점을 해결하기 위해 안출된 것으로, 전도성을 가지는 카본나노튜브(CNT)와 소수성을 지니는 불소계 실란 컴파운드를 혼합하여 코팅용액을 제조하고, 코팅용액을 기질에 코팅하여 표면구조를 제어함으로써 대전방지가 가능함과 동시에 초발수가 가능한 전도성 초발수 코팅막 및 그 제조방법을 제공하는 것을 목적으로 한다. Therefore, the present invention has been made to solve the above problems of the prior art, to prepare a coating solution by mixing a conductive carbon nanotube (CNT) and a hydrophobic fluorine-based silane compound, coating a coating solution on a substrate It is an object of the present invention to provide a conductive super water-repellent coating film and a method of manufacturing the same, which is capable of antistatic and super water repellent by controlling the surface structure.

상기한 목적을 달성하기 위한 본 발명은, 탄소나노튜브(CNT) 분산액에 실란졸 혼합액을 첨가하여 코팅액을 형성시키되, 상기 실란졸 혼합액에는 불소계 실란이 포함되어 코팅액이 형성되고, 형성된 코팅액을 기질에 도포하여 고화시킴에 의해 형성되는 전도성 초발수 코팅막 및 그 제조방법을 기술적 요지로 한다.The present invention for achieving the above object, to form a coating solution by adding a silane sol mixture to the carbon nanotube (CNT) dispersion, the silane sol mixed solution includes a fluorine-based silane, the coating liquid is formed on the substrate The conductive super water-repellent coating film formed by coating and solidifying, and its manufacturing method are the technical gist.

여기서, 상기 탄소나노튜브 분산액은 산 용액을 이용하여 탄소나노튜브(CNT) 말단 및 표면에 히드록시기 및 카르복실기를 도입하는 산처리단계와, 산처리된 탄소나노튜브(CNT)를 분산용매에 분산시키는 용매분산단계를 거쳐 형성되고, 상기 실란졸 혼합액은 테트라알콕시실란류, 트리알콕시실란류, 디알콕시실란류 중 하나 이상이 선택되고, 이에 불소계 실란이 혼합된 후, 이를 용해용매에 녹여 형성되는 것이 바람직하다.Here, the carbon nanotube dispersion is an acid treatment step of introducing a hydroxyl group and a carboxyl group to the carbon nanotube (CNT) terminal and the surface using an acid solution, and a solvent for dispersing the acid-treated carbon nanotube (CNT) in a dispersion solvent It is formed through a dispersing step, the silane sol mixture is one or more of tetraalkoxysilanes, trialkoxysilanes, dialkoxysilanes are selected, and fluorine-based silane is mixed with it, it is preferably formed by dissolving it in a solvent. Do.

그리고, 상기 기질은 유리, 수정, 글래스 웨이퍼, 실리콘 웨이퍼, 플라스틱으로 이루어진 군으로부터 선택된 1종으로 이루어지고, 상기 코팅막은 스프레이, 딥코팅, 스핀코팅, 스크린코팅, 잉크젯프린팅, 패드프린팅, 나이프코팅, 키스코팅 및 그라비아코팅 중에서 어느 하나의 방법에 의해 이루어지고, 고화는 열 또는 자외선 경화 방법을 이용하여 고화되고, 상기 산처리 단계에서 사용된 산용액은 질산, 염산, 황산, 과산화수소 및 이들의 혼합액 중에 선택된 1종이고, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 이들의 혼합물 중에서 선택한 1종으로 이루어지는 것이 바람직하다. The substrate is one selected from the group consisting of glass, quartz, glass wafers, silicon wafers, and plastics, and the coating layer is sprayed, dip coated, spin coated, screen coated, ink jet printed, pad printed, knife coated, It is produced by any one of the key coating and gravure coating, and the solidification is solidified using a heat or ultraviolet curing method, the acid solution used in the acid treatment step is in nitric acid, hydrochloric acid, sulfuric acid, hydrogen peroxide and a mixture thereof The carbon nanotube is one selected from the group consisting of single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, and mixtures thereof.

또한, 상기 용매분산단계에서 사용된 탄소나노튜브 분산용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드로 이루어진 군으로부터 선택된 1종 이상의 것이고, 상기 코팅액은, 코팅액의 농도 조절을 위해 희석용매가 첨가되고, 상기 희석용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드, 메틸렌클로라이드 및 이들의 혼합물 중에서 선택된 1종이고, 상기 분산용매 및 희석용매는 용해용매로 사용되는 것이 바람직하다. In addition, the carbon nanotube dispersion solvent used in the solvent dispersion step is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylform Amide, dimethylacetamide, N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octa At least one selected from the group consisting of decylamine, aniline, and dimethyl sulfoxide, wherein the coating liquid is added with a diluting solvent for controlling the concentration of the coating liquid, and the diluting solvent is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, Isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethyl acet Amide, N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline , Dimethyl sulfoxide, methylene chloride, and mixtures thereof. The dispersion solvent and dilution solvent are preferably used as a dissolving solvent.

한편, 상기 코팅액에는 SiO2, ZrO2, Al2O3, TiO2, SiO2, 금, 은 중 하나 이상의 나노입자가 함유되고, 상기 탄소나노튜브는 외경이 30㎚ 이하이고, 상기 실란졸 혼합액에 포함된 실란은, 탄소나노튜브와 실란 혼합물 100 중량부에 대해 30 내지 99 중량부로 첨가되고, 상기 코팅막은 물에 대한 접촉각이 150도 이상이고, 면저항이 106 Ω/sq 이하이며, 상기 불소계 실란은, 트리데카플루오로옥틸트리에톡시실란(tridecafluorooctyltriethoxysilane), 트리플루오로프로필트리메톡시실란(trifluoropropyltrimethoxysilane), 헵타데카플루오로데실트리메톡시실란(heptadecafluorodecyltrimethoxysilane) 및 헵타데카플루오로데실트리이소프로포시실란(heptadecafluorodecyltriisopropoxysilane)로 이루어진 군으로부터 선택되는 것이 바람직하다.Meanwhile, the coating solution contains one or more nanoparticles of SiO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , SiO 2 , gold, and silver, and the carbon nanotubes have an outer diameter of 30 nm or less, and the silane sol mixed solution The silane contained in is added in an amount of 30 to 99 parts by weight based on 100 parts by weight of the carbon nanotubes and the silane mixture, and the coating film has a contact angle of water of 150 degrees or more, a sheet resistance of 10 6 Ω / sq or less, and the fluorine-based The silane is tridecafluorooctyltriethoxysilane, trifluoropropyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane, and heptadecafluorodecyltrimethoxysilane. It is preferably selected from the group consisting of silane (heptadecafluorodecyltriisopropoxysilane).

상기에서 설명한 바와 같은 본 발명은, 먼지, 물 등을 배척하는 자가정화 기능을 지니는 초발수성이 있는 코팅막이 형성되는 효과가 있다. The present invention as described above has the effect of forming a super water-repellent coating film having a self-cleaning function to reject dust, water and the like.

그리고, 도전성을 가짐에 의해 대전방지 및 전자파 차폐 등의 다양한 기능을 복합적으로 가지는 코팅막이 형성되는 효과가 또한 있다. In addition, there is an effect that a coating film having a combination of various functions such as antistatic and electromagnetic shielding is formed by having conductivity.

이하 본 발명의 바람직한 실시예를 도면을 참조로 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

본 발명에 따른 탄소나노튜브를 이용한 대전 방지 코팅막의 제조방법은, 탄소나노튜브를 산처리시키는 산처리 단계 및 산처리된 탄소나노튜브를 분산용매에 분산시키는 용매 분산단계를 거쳐 탄소나노튜브(CNT) 분산액을 형성시키고, 형성된 분산액을 불소계 실란졸이 반드시 포함된 실란졸 혼합액과 혼합하여 코팅액을 형성시킨 다음, 형성된 코팅액을 기질에 도포하여 고화시킴에 의해 제조된다. In the method for producing an antistatic coating film using carbon nanotubes according to the present invention, an acid treatment step of acid treatment of carbon nanotubes and a solvent dispersion step of dispersing the acid-treated carbon nanotubes in a dispersion solvent are performed. A dispersion is formed, and the formed dispersion is mixed with a silane sol mixture containing fluorine-based solazole to form a coating solution, and then the formed coating solution is applied to a substrate and solidified.

상기 산처리 단계는 산 용액을 이용하여 탄소나노튜브(CNT) 말단 및 표면에 히드록시기 및 카르복실기를 도입하는 단계로, 산처리 단계에서 사용된 산용액은 질산, 염산, 황산, 과산화수소 및 이들의 혼합액 중에 하나를 선택하여 사용하고 산 용액에 탄소나노튜브를 분산시킨 후 여과 건조하는 방법으로 진행되며, 산처리 단계를 거치면 말단 및 표면에 히드록시기 및 카르복실기가 도입된 탄소나노튜브가 수득 된다. The acid treatment step is to introduce a hydroxyl group and a carboxyl group on the carbon nanotube (CNT) terminal and the surface using an acid solution, the acid solution used in the acid treatment step is nitric acid, hydrochloric acid, sulfuric acid, hydrogen peroxide and a mixture thereof Select one to use and disperse the carbon nanotubes in an acid solution, and then proceed to the method of filtration and drying. After the acid treatment step, a carbon nanotube having a hydroxyl group and a carboxyl group introduced into the terminal and surface is obtained.

여기서 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 이들의 혼합물 중에서 하나가 선택되며, 평균외경이 30㎚인 것이 사용된다. Here, the carbon nanotubes are selected from single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, and mixtures thereof, and those having an average outer diameter of 30 nm are used.

다음은 탄소나노튜브의 용매분산단계가 진행되는바, 상기에서 산처리된 탄소나노튜브를 분산용매에 혼합하여 분산시키는 과정이며, 분산용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드 중 하나 이상이 사용되어 탄소나노튜브 분산액이 완성된다. Next, a solvent dispersion step of carbon nanotubes is performed, and the acid-treated carbon nanotubes are mixed and dispersed in a dispersion solvent. The dispersion solvents are acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, and isopropyl. Alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichloro One or more of benzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, and dimethyl sulfoxide are used to complete the carbon nanotube dispersion.

다음은 실란졸 혼합액을 형성시키는 과정으로, 테트라알콕시실란류, 트리알콕시실란류, 디알콕시실란류 중 하나 이상을 선택하고, 이에 불소계 실란을 혼합한 후, 이를 용해용매에 녹여 형성한다.Next, in the process of forming a silane sol mixture, one or more of tetraalkoxysilanes, trialkoxysilanes, and dialkoxysilanes are selected, fluorine-based silanes are mixed therein, and then dissolved in a solvent to form.

여기서 불소계 실란은 불소계 실란은, 트리데카플루오로옥틸트리에톡시실란(tridecafluorooctyltriethoxysilane), 트리플루오로프로필트리메톡시실란(trifluoropropyltrimethoxysilane), 헵타데카플루오로데실트리메톡시실란(heptadecafluorodecyltrimethoxysilane) 및 헵타데카플루오로데실트리이소프로포시실란(heptadecafluorodecyltriisopropoxysilane)중 하나를 사용한다.The fluorine silane is a fluorine silane, tridecafluorooctyltriethoxysilane, trifluoropropyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane and heptadecafluoro One of the decadetrifluoropropylsilanes is used.

그런 다음, 상기 탄소나노튜브 분산액과 실란졸 혼합액을 혼합하여 코팅액을 형성시킨다. 그리고 코팅액의 농도 조절을 위해서는 희석용매가 첨가될 수 있다. Then, the carbon nanotube dispersion and the silane sol mixed solution are mixed to form a coating solution. And dilute solvent may be added to adjust the concentration of the coating solution.

여기에서, 상기 희석용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드, 메틸렌클로라이드 및 이들의 혼합물 중에서 선택된 1종이 사용된다. Here, the diluent solvent is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethylacetamide, N- Methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, dimethyl sulfoxide One selected from methylene chloride and mixtures thereof is used.

그리고, 용해용매는 상기 실란졸의 종류에 따라 분산용매 또는 희석용매를 사용하면 된다. The dissolving solvent may be a dispersion solvent or a dilution solvent depending on the type of the silane sol.

상기에서 형성된 코팅액을 전도성 초발수 코팅막으로 사용하기 위하여 기질에 코팅하게 되는데, 코팅방법에 따라 농도를 조절하여야 하므로, 상기에서 언급한 바와 같이 코팅액에 희석용매가 더 첨가될 수 있다는 것은 상기에서 설명한 바와 같다.The coating liquid formed above is coated on a substrate for use as a conductive super water-repellent coating film, and since the concentration should be adjusted according to the coating method, the diluent solvent may be further added to the coating liquid as described above. same.

이와 같이 적절한 농도로 희석된 코팅액은 기질 상면에 스프레이, 딥코팅, 스핀코팅, 스크린코팅, 잉크젯프린팅, 패드프린팅, 나이프코팅, 키스코팅 및 그라비아코팅 중에서 어느 하나의 방법에 의해 코팅이 이루어지게 되며, 여기에서 상기 기질은 탄소나노튜브의 우수한 반응성 및 전기전도도 특성에 의해 전도성 또는 비전도성의 다양한 기판을 사용할 수 있으며, 바람직하게는 유리, 수정, 글래스웨이퍼, 실리콘웨이퍼, 플라스틱으로 이루어진 군으로부터 선택된 1종을 사용할 수 있다.The coating liquid diluted to an appropriate concentration is coated on the substrate by any one of spraying, dip coating, spin coating, screen coating, inkjet printing, pad printing, knife coating, key coating and gravure coating. Herein, the substrate may use a variety of conductive or non-conductive substrates due to the excellent reactivity and electrical conductivity of carbon nanotubes, and preferably one selected from the group consisting of glass, quartz, glass wafers, silicon wafers, and plastics. Can be used.

상기의 코팅방법에 의해, 상기 기질 상면에 투명한 전도성 초발수 코팅막이 용도에 따라 수십 나노미터 내지 수십 마이크로미터 두께로 코팅되며, 열 또는 자외선 경화방법을 이용하여 건조 및 고화과정을 거침으로써 전도성 초발수 코팅막이 완성되게 되는 것이다. By the above coating method, a transparent conductive super water-repellent coating film on the upper surface of the substrate is coated with a thickness of several tens of nanometers to several tens of micrometers depending on the use, and the conductive super water-repellent by drying and solidifying process using a heat or ultraviolet curing method The coating film is to be completed.

여기서, 필요에 따라 상기 코팅액에는 SiO2, ZrO2, Al2O3, TiO2, SiO2, 금, 은 중 하나 이상의 나노입자가 함유할 수 있다. Here, if necessary, the coating solution may contain one or more nanoparticles of SiO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , SiO 2 , gold, and silver.

이하 본 발명의 실시예를 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail.

< 실시예 1 > &Lt; Example 1 >

본 발명의 실시예 1로써, 탄소나노튜브/실란졸을 혼합한 코팅액을 기질에 코 팅하여 전도성 초발수 코팅막을 형성하는 기술에 관한 것이다. As Example 1 of the present invention, the present invention relates to a technique of forming a conductive super water-repellent coating film by coating a coating liquid mixed with carbon nanotubes / silazole to a substrate.

산처리된 탄소나노튜브 10㎎과 에탄올(Ethanol) 용매 100㎖를 삼각플라스크에서 혼합한 후 초음파기로 6시간 동안 분산하여 탄소나노튜브 용액을 제조하였다. 10 mg of acid-treated carbon nanotubes and 100 ml of ethanol (Ethanol) solvent were mixed in an Erlenmeyer flask and dispersed for 6 hours by an ultrasonic wave to prepare a carbon nanotube solution.

상기 용액에 바인더로서 실란졸 용액을 혼합하게 되는데, 상기 실란 졸은 테트라에틸오소실리케이트(TEOS, Tetraethyl orthosilicate) 8㎎, 헵타데카플루오로데실트리메톡시실란 2㎎ 이며, 물 3g, 염산 0.1g, 그리고 에탄올 80g 을 혼합하여 상온에서 24시간 동안 교반 하여 제조하였다.The solution is mixed with a silane sol solution as a binder, wherein the silane sol is 8 mg of tetraethyl orthosilicate (TEOS), 2 mg of heptadecafluorodecyltrimethoxysilane, 3 g of water, 0.1 g of hydrochloric acid, And 80g of ethanol was mixed to prepare for 24 hours at room temperature.

상기에서 제조된 실란 졸 용액을 탄소나노튜브 분산액에 첨가하고 추가로 실리카 나노입자를 첨가한 후 초음파기로 2시간 동안 분산하여 탄소나노튜브 실란 바인더 혼합 코팅액을 제조하였다. The silane sol solution prepared above was added to the carbon nanotube dispersion, additionally silica nanoparticles were added, and then dispersed for 2 hours by an ultrasonic wave to prepare a carbon nanotube silane binder mixed coating solution.

탄소나노튜브/실란 졸 혼합 코팅액을 스프레이 코터를 이용하여 유리 또는 고분자 기판에 도포하였다. 이때 기판의 온도를 분산용매의 끓는 점 보다 높은 온도에서 수행하였다.The carbon nanotube / silane sol mixed coating solution was applied to a glass or polymer substrate using a spray coater. At this time, the temperature of the substrate was performed at a temperature higher than the boiling point of the dispersion solvent.

도 1은 본 발명에 따른 코팅막의 면 저항을 측정하는 사진을 나타낸 개념도이고, 도 2는 본 발명에 따른 코팅막에 물이 발수되는 형상을 보여주는 사진을 나타낸 도이고, 도 3은 코팅막에 물이 발수되는 형상을 보여주는 확대 단면 사진을 나타낸도이다. 도시된 바와 같이, 본 발명의 실시예에서는 물이 발수되었으며, 면저항은 106Ω/sq 이하로 나타났다. 1 is a conceptual view showing a photo measuring the surface resistance of the coating film according to the present invention, Figure 2 is a view showing a picture showing the shape of the water repellent on the coating film according to the present invention, Figure 3 is a water repellent coating film It is a figure which shows the enlarged cross-sectional photograph which shows the shape to become. As shown, in the embodiment of the present invention the water was water repellent, the sheet resistance was 10 6 Ω / sq or less.

이하 제조된 각각의 전도성 필름의 면저항(sheet resistance) 및 투과 도(transmittance) 그리고 물에 대한 접촉각을 측정하였고, 박막의 표면 모폴로지를 전자주사현미경을 사용하여 관찰하였으며 이를 아래의 표 등에 나타내었다. The sheet resistance, transmittance, and contact angle of water of each conductive film prepared below were measured, and the surface morphology of the thin film was observed using an electron scanning microscope, and the results are shown in the table below.

< 실시예 2 >&Lt; Example 2 >

본 발명의 실시예 2로써, 탄소나노튜브를 이용한 전도성 초발수 코팅막의 실시예 1과 동일한 방법으로 제조하였으며, 헵타데카플루오로데실트리메톡시실란의 양을 8mg으로 증가시켜 수행하였다.As Example 2 of the present invention, a conductive super water-repellent coating film using carbon nanotubes was prepared in the same manner as in Example 1, and was performed by increasing the amount of heptadecafluorodecyltrimethoxysilane to 8 mg.

< 실시예 3 ><Example 3>

본 발명의 실시예 3으로써, 탄소나노튜브를 이용한 전도성 초발수 코팅기술의 실시예 1과 동일한 방법으로 제조하였으며, 헵타데카플루오로데실트리메톡시실란을 헵타데카플루오로데실트리이소프로폭시실란으로 교체하여 수행하였다.As Example 3 of the present invention, it was prepared in the same manner as in Example 1 of the conductive super water-repellent coating technology using carbon nanotubes, heptadecafluorodecyltrimethoxysilane to heptadecafluorodecyltriisopropoxysilane Replacement was performed.

< 실시예 4 ><Example 4>

본 발명의 실시예 4로써, 탄소나노튜브를 이용한 전도성 초발수 코팅기술의 실시예 1과 동일한 방법으로 제조하였으며, 실란졸과 탄소나노튜브 분산액 혼합 시, 실리카 나노입자를 첨가하지 않고 수행하였다. 이 경우, 물접촉각은 150도 이상 이지만 실시예 1에 비해 물 접촉각의 히스테리시스가 크다.As Example 4 of the present invention, it was prepared in the same manner as in Example 1 of the conductive super water-repellent coating technology using carbon nanotubes, and was carried out without adding silica nanoparticles when mixing the silane sol and carbon nanotube dispersion. In this case, the water contact angle is 150 degrees or more, but the hysteresis of the water contact angle is larger than that of the first embodiment.

< 비교예 1 ><Comparative Example 1>

본 발명의 비교예 1로써, 탄소나노튜브를 이용한 전도성 초발수 코팅기술의 실시예 1과 동일한 방법으로 제조하였으며, 실란졸 제조에 있어서 테트라에틸오소실리케이트(TEOS, Tetraethyl orthosilicate)만 10㎎, 물 2.5g, 염산 0.09g, 그리고 에탄올 50g 을 혼합하여 상온에서 24시간 동안 교반하여 제조하였다. In Comparative Example 1 of the present invention, carbon nanotubes were prepared in the same manner as in Example 1 of the conductive super water-repellent coating technique, and only 10 mg of tetraethyl orthosilicate (TEOS) and 2.5 in water were used in the preparation of the silane sol. g, hydrochloric acid 0.09g, and ethanol 50g were mixed and prepared at room temperature for 24 hours.

< 비교예 2>  <Comparative Example 2>

본 발명의 비교예 2로써, 탄소나노튜브를 이용한 전도성 초발수 코팅기술의 실시예 1과 동일한 방법으로 제조하였으며, 헵타데카플루오로데실트리메톡시실란을 트리메톡시 실란으로 대체하여 수행하였다.As Comparative Example 2 of the present invention, it was prepared in the same manner as in Example 1 of the conductive super water-repellent coating technique using carbon nanotubes, it was carried out by replacing the heptadecafluorodecyltrimethoxysilane with trimethoxy silane.

즉, 비교예 1,2에서는 불소계 실란을 사용하지 아니하였다. That is, in Comparative Examples 1 and 2, no fluorine silane was used.

다음은 상기 각각의 실시예 및 비교예에 따른 전도성 필름의 면저항(sheet resistance) 및 투과도(transmittance) 그리고 물에 대한 접촉각을 측정하였고, 박막의 표면 모폴로지를 전자주사현미경을 사용하여 관찰한 결과에 관한 것이다.Next, sheet resistance, transmittance, and contact angle of water of the conductive films according to the examples and the comparative examples were measured, and the surface morphology of the thin film was observed using an electron scanning microscope. will be.

Figure 112007078343590-pat00001
Figure 112007078343590-pat00001

이상에서 본 바와 같이 본 발명의 실시예에 따른 코팅막인 경우 물 접촉각이 150도 이상인 초발수로 나타났으며, 면저항 또한 106Ω/sq 이하이고, 투과도 또한 80이상으로 우수하게 나타났음을 알 수 있다. As described above, in the case of the coating film according to the embodiment of the present invention, the water contact angle was found to be super water-repellent of 150 degrees or more, and the sheet resistance was also 10 6 Ω / sq or less, and the transmittance was also excellent in 80 or more. .

반면에 불소계 실란을 쓰지 않은 비교예인 경우, 면저항 및 투과도는 실시예와 비슷하게 나타났지만, 물 접촉각은 5도 이하 또는 120도로서 초발수가 되지 못함을 알 수 있었다. On the other hand, in the case of the comparative example without the use of fluorine-based silane, the sheet resistance and permeability were similar to the examples, but the water contact angle was less than 5 degrees or 120 degrees, it was found that the super water repellent was not.

도 1 - 본 발명에 따른 코팅막의 면 저항을 측정하는 사진을 나타낸 개념도.1-a conceptual diagram showing a photo measuring the surface resistance of the coating film according to the present invention.

도 2 - 본 발명에 따른 코팅막에 물이 발수되는 형상을 보여주는 사진을 나타낸 도.Figure 2-Figure showing a photograph showing the shape of the water repellent on the coating film according to the invention.

도 3 - 코팅막에 물이 발수되는 형상을 보여주는 확대 단면 사진을 나타낸 도.Figure 3-an enlarged cross-sectional view showing the shape of the water repellent on the coating film.

Claims (19)

탄소나노튜브(CNT) 말단 및 표면에 히드록시기 및 카르복실기를 도입하는 산처리단계를 거쳐 형성된 탄소나노튜브(CNT) 분산액에 실란졸 혼합액을 첨가하여 코팅액을 형성시키되, 상기 실란졸 혼합액에는 불소계 실란이 포함되어 코팅액이 형성되고, 형성된 코팅액을 기질에 도포하여 고화시킴에 의해 형성됨을 특징으로 하는 전도성 초발수 코팅막의 제조방법.A coating solution is formed by adding a silane sol mixture to a carbon nanotube (CNT) dispersion formed through an acid treatment step of introducing a hydroxyl group and a carboxyl group to the carbon nanotube (CNT) terminal and surface, wherein the silane sol mixture contains a fluorine-based silane. And a coating solution is formed, and the coating solution is formed on the substrate to solidify the coating solution. 제1항에 있어서, 상기 탄소나노튜브 분산액은 산 처리된 탄소나노튜브(CNT)를 분산용매에 분산시키는 용매분산단계를 거쳐 형성됨을 특징으로 하는 전도성 초발수 코팅막의 제조방법.The method of claim 1, wherein the carbon nanotube dispersion is formed through a solvent dispersion step of dispersing the acid-treated carbon nanotubes (CNT) in a dispersion solvent. 제2항에 있어서, 상기 실란졸 혼합액은 테트라알콕시실란류, 트리알콕시실란류, 디알콕시실란류 중 하나 이상이 선택되고, 이에 불소계 실란이 혼합된 후, 이를 용해용매에 녹여 형성됨을 특징으로 하는 전도성 초발수 코팅막의 제조방법.The method of claim 2, wherein the silane sol mixture is selected from one or more of tetraalkoxysilanes, trialkoxysilanes, dialkoxysilanes, fluorine-based silane is mixed, and then dissolved in a solvent to form Method for producing a conductive super water-repellent coating film. 제3항에 있어서, 상기 기질은 유리, 수정, 글래스 웨이퍼, 실리콘 웨이퍼, 플라스틱으로 이루어진 군으로부터 선택된 1종으로 이루어진 것을 특징으로 하는 전도성 초발수 코팅막의 제조방법.The method of claim 3, wherein the substrate is one selected from the group consisting of glass, quartz, glass wafers, silicon wafers, and plastics. 제3항에 있어서, 상기 코팅막은 스프레이, 딥코팅, 스핀코팅, 스크린코팅, 잉크젯프린팅, 패드프린팅, 나이프코팅, 키스코팅 및 그라비아코팅 중에서 어느 하나의 방법에 의해 이루어지는 것을 특징으로 하는 전도성 초발수 코팅막의 제조방법.The conductive super water-repellent coating film of claim 3, wherein the coating film is formed by any one of spraying, dip coating, spin coating, screen coating, inkjet printing, pad printing, knife coating, key coating and gravure coating. Manufacturing method. 제3항에 있어서, 상기 고화는 열 또는 자외선 경화 방법을 이용하여 고화됨을 특징으로 하는 전도성 초발수 코팅막의 제조방법.The method of claim 3, wherein the solidification is performed by using a heat or ultraviolet curing method. 제3항에 있어서, 상기 산처리 단계에서 사용된 산용액은 질산, 염산, 황산, 과산화수소 및 이들의 혼합액 중에 선택된 1종인 것을 특징으로 하는 전도성 초발수 코팅막의 제조방법.The method of claim 3, wherein the acid solution used in the acid treatment step is one selected from nitric acid, hydrochloric acid, sulfuric acid, hydrogen peroxide, and a mixture thereof. 제3항에 있어서, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 이들의 혼합물 중에서 선택한 1종으로 이루어짐을 특징으로 하는 전도성 초발수 코팅막의 제조방법.The method of claim 3, wherein the carbon nanotubes are made of one selected from single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, and mixtures thereof. 제3항에 있어서, 상기 용매분산단계에서 사용된 탄소나노튜브 분산용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류 수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드로 이루어진 군으로부터 선택된 1종 이상의 것임을 특징으로 하는 전도성 초발수 코팅막의 제조방법.According to claim 3, wherein the carbon nanotube dispersion solvent used in the solvent dispersion step is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydro Furan, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, A method for producing a conductive super water-repellent coating film, characterized in that at least one member selected from the group consisting of acrylonitrile, octadecylamine, aniline, dimethyl sulfoxide. 제9항에 있어서, 상기 코팅액은, 코팅액의 농도 조절을 위해 희석용매가 첨가됨을 특징으로 하는 전도성 초발수 코팅막의 제조방법.10. The method of claim 9, wherein the coating solution is a method for producing a conductive super water-repellent coating film, characterized in that a diluent solvent is added to control the concentration of the coating solution. 제10항에 있어서, 상기 희석용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드, 메틸렌클로라이드 및 이들의 혼합물 중에서 선택된 1종인 것을 특징으로 하는 전도성 초발수 코팅막의 제조방법.The method of claim 10, wherein the dilution solvent is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethylacetamide , N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, Method for producing a conductive super water-repellent coating film, characterized in that one selected from dimethyl sulfoxide, methylene chloride and mixtures thereof. 제11항에 있어서, 상기 분산용매 및 희석용매는 용해용매로 사용됨을 특징으로 전도성 초발수 코팅막의 제조방법.The method of claim 11, wherein the dispersion solvent and the dilution solvent are used as a dissolving solvent. 제3항에 있어서, 상기 코팅액에는 SiO2, ZrO2, Al2O3, TiO2, SiO2, 금, 은 중 하나 이상의 나노입자가 함유됨을 특징으로 하는 전도성 초발수 코팅막의 제조방법.The method of claim 3, wherein the coating solution contains one or more nanoparticles of SiO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , SiO 2 , gold, and silver. 제3항에 있어서, 상기 탄소나노튜브는 외경이 30㎚ 이하인 것을 특징으로 하는 전도성 초발수 코팅막의 제조방법.The method of claim 3, wherein the carbon nanotubes have an outer diameter of 30 nm or less. 제3항에 있어서, 상기 실란졸 혼합액에 포함된 실란은,According to claim 3, The silane contained in the silane sol mixture, 탄소나노튜브와 실란 혼합물 100 중량부에 대해 30 내지 99 중량부로 첨가됨을 특징으로 하는 전도성 초발수 코팅막의 제조방법.Method for producing a conductive super water-repellent coating film, characterized in that added to 30 to 99 parts by weight based on 100 parts by weight of carbon nanotubes and silane mixture. 제3항에 있어서, 상기 코팅막은 물에 대한 접촉각이 150도 이상임을 특징으로 하는 전도성 초발수 코팅막의 제조방법.The method of claim 3, wherein the coating film has a contact angle with respect to water of 150 degrees or more. 제16항에 있어서, 상기 코팅막은 면저항이 106 Ω/sq 이하인 것을 특징으로 하는 전도성 초발수 코팅막의 제조방법.The method of claim 16, wherein the coating film has a sheet resistance of 10 6 Ω / sq or less. 제3항에 있어서, 상기 불소계 실란은, 트리데카플루오로옥틸트리에톡시실란(tridecafluorooctyltriethoxysilane), 트리플루오로프로필트리메톡시실란(trifluoropropyltrimethoxysilane), 헵타데카플루오로데실트리메톡시실 란(heptadecafluorodecyltrimethoxysilane) 및 헵타데카플루오로데실트리이소프로포시실란(heptadecafluorodecyltriisopropoxysilane)로 이루어진 군으로부터 선택되는 것을 특징으로 하는 전도성 초발수 코팅막의 제조방법.According to claim 3, The fluorine-based silane, tridecafluorooctyltriethoxysilane (tridecafluorooctyltriethoxysilane), trifluoropropyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane (heptadecafluorodecyltrimethoxysilane) Heptadecafluorodecyl triisopropoxysilane (heptadecafluorodecyltriisopropoxysilane) A method for producing a conductive super water-repellent coating film, characterized in that selected from the group consisting of. 제1항 내지 제18항 중 어느 하나의 항에 의한 방법으로 형성됨을 특징으로 하는 전도성 초발수 코팅막.A conductive super water-repellent coating film formed by the method according to any one of claims 1 to 18.
KR1020070110215A 2007-10-31 2007-10-31 Conductive and superhydrophobic coatings, and its fabrication method KR101042001B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070110215A KR101042001B1 (en) 2007-10-31 2007-10-31 Conductive and superhydrophobic coatings, and its fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070110215A KR101042001B1 (en) 2007-10-31 2007-10-31 Conductive and superhydrophobic coatings, and its fabrication method

Publications (2)

Publication Number Publication Date
KR20090044220A KR20090044220A (en) 2009-05-07
KR101042001B1 true KR101042001B1 (en) 2011-06-16

Family

ID=40854821

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070110215A KR101042001B1 (en) 2007-10-31 2007-10-31 Conductive and superhydrophobic coatings, and its fabrication method

Country Status (1)

Country Link
KR (1) KR101042001B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370680B1 (en) * 2011-11-30 2014-03-06 동의대학교 산학협력단 Method of producing graphene-carbon nanotube composite material
KR101538596B1 (en) * 2014-12-26 2015-07-22 세종대학교산학협력단 Method of manufacturing superhydrophobic carbonnanotube and carbonnanotube manufactured thereby

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101587270B1 (en) * 2009-12-24 2016-02-12 엘지이노텍 주식회사 glass frit composition with low melting temperature for adhering on Superhydrophobic Nano-Coating material and Superhydrophobic Nano-Coating substrate using the same
KR101113099B1 (en) * 2011-02-24 2012-02-24 주식회사 나노솔루션 Electroconductive coating composition for glass and preparation method thereof
KR101324707B1 (en) * 2011-03-21 2013-11-05 (주)월드튜브 Composition for radiating heat and product for radiating heat using the same
KR101177298B1 (en) * 2011-11-11 2012-08-30 (주)탑나노시스 Heat storage fabric coated with carbon nanotubes and process of preparing same
KR101403179B1 (en) 2012-12-27 2014-06-02 주식회사 포스코 Surface treated steel sheet and manufacturing method thereof
KR101994666B1 (en) * 2018-01-02 2019-09-30 한국세라믹기술원 Superhydrophobic structure using selective etching process, and method of fabricating of the same
KR102203462B1 (en) * 2018-09-07 2021-01-15 한국세라믹기술원 Super water-repellent coating method
CN111187449A (en) * 2020-01-09 2020-05-22 青岛科技大学 Carbon nanotube functional modification method suitable for composite rubber system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336341A (en) 2004-05-27 2005-12-08 Mitsubishi Rayon Co Ltd Composition containing carbon nanotube, composite material having coating film made thereof and method for producing the same
KR20060045700A (en) * 2004-04-14 2006-05-17 주식회사 엘지화학 Antireflective coating composition with excellent stain resistance
US20060113510A1 (en) * 2004-08-11 2006-06-01 Jiazhong Luo Fluoropolymer binders for carbon nanotube-based transparent conductive coatings
KR20060060144A (en) * 2004-11-30 2006-06-05 학교법인연세대학교 The fabrication method of carbon nanotube thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060045700A (en) * 2004-04-14 2006-05-17 주식회사 엘지화학 Antireflective coating composition with excellent stain resistance
JP2005336341A (en) 2004-05-27 2005-12-08 Mitsubishi Rayon Co Ltd Composition containing carbon nanotube, composite material having coating film made thereof and method for producing the same
US20060113510A1 (en) * 2004-08-11 2006-06-01 Jiazhong Luo Fluoropolymer binders for carbon nanotube-based transparent conductive coatings
KR20060060144A (en) * 2004-11-30 2006-06-05 학교법인연세대학교 The fabrication method of carbon nanotube thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370680B1 (en) * 2011-11-30 2014-03-06 동의대학교 산학협력단 Method of producing graphene-carbon nanotube composite material
KR101538596B1 (en) * 2014-12-26 2015-07-22 세종대학교산학협력단 Method of manufacturing superhydrophobic carbonnanotube and carbonnanotube manufactured thereby

Also Published As

Publication number Publication date
KR20090044220A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
KR101042001B1 (en) Conductive and superhydrophobic coatings, and its fabrication method
KR101034863B1 (en) Fabrication method of ESD films using carbon nanotubes, and the ESD films
TWI497532B (en) Conductive complex body and manufacturing method thereof
CN103947002B (en) It is incorporated with the transparent conductor of additive and the manufacture method of correlation
Giardi et al. Inkjet printed acrylic formulations based on UV-reduced graphene oxide nanocomposites
TWI519616B (en) Carbon nanotube based transparent conductive films and methods for preparing and patterning the same
US20120308771A1 (en) Nanostructure films
CN106928773B (en) Graphene composite conductive ink for ink-jet printing and preparation method thereof
TWI450823B (en) Substrate with transparent conductive film manufacturing method thereof and touch panel using the same
KR20160117396A (en) Conductive Paint Composition and the Method of Conductive Film Using Thereof
JP5413538B1 (en) Transparent conductive laminate, manufacturing method thereof, electronic paper using the same, and touch panel using the same
CN100477319C (en) Material with pattern surface for use as template and process for producing the same
TW201606805A (en) A carbon nanotube - polymer layered composite transparent flexible electrode and preparation method
JP2007116132A (en) Method of manufacturing substrate
KR101147227B1 (en) manufacturing mathod of conductive coatings with metal oxide-wrapped carbon nanotubes and the conductive coatings thereby
WO2004096470A1 (en) Method for preparing liquid colloidal dispersion of silver particles, liquid colloidal dispersion of silver particles, and silver conductive film
CN109468874B (en) Super-hydrophobic transparent conductive paper and preparation method thereof
WO2013176155A1 (en) Method for producing patterned conductive base, patterned conductive base produced by same, and touch panel
KR101311876B1 (en) Electroconductive coating composition for glass and preparation method thereof
Sawada et al. Preparation and properties of fluoroalkyl end-capped vinyltrimethoxysilane oligomeric nanoparticles—A new approach to facile creation of a completely superhydrophobic coating surface with these nanoparticles
Varea et al. Electrospray as a suitable technique for manufacturing carbon-based devices
WO2011061708A2 (en) Carbon nanotubes/su-8 nanocomposites for microfabrication applications
Bouhamed et al. Customizing hydrothermal properties of inkjet printed sensitive films by functionalization of carbon nanotubes
WO2015151489A1 (en) Composition for forming transparent conductive layer
KR20160060913A (en) Method for controlling aggregation of sol-gel nanoparticles by solvent relative permittivity, and fabrication of superhydrophobic surfaces using thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
S901 Examination by remand of revocation
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140515

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150529

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170124

Year of fee payment: 6

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20170608

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180607

Year of fee payment: 8