KR102189985B1 - Method for manufacturing nd-fe-b group permanent magnet and nd-fe-b group permanent using thereof - Google Patents

Method for manufacturing nd-fe-b group permanent magnet and nd-fe-b group permanent using thereof Download PDF

Info

Publication number
KR102189985B1
KR102189985B1 KR1020190133794A KR20190133794A KR102189985B1 KR 102189985 B1 KR102189985 B1 KR 102189985B1 KR 1020190133794 A KR1020190133794 A KR 1020190133794A KR 20190133794 A KR20190133794 A KR 20190133794A KR 102189985 B1 KR102189985 B1 KR 102189985B1
Authority
KR
South Korea
Prior art keywords
permanent magnet
based permanent
manufacturing
powder
magnetic body
Prior art date
Application number
KR1020190133794A
Other languages
Korean (ko)
Inventor
김택수
조주영
임경묵
남선우
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020190133794A priority Critical patent/KR102189985B1/en
Application granted granted Critical
Publication of KR102189985B1 publication Critical patent/KR102189985B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

The present invention relates to a method for manufacturing an Nd-Fe-B-based group permanent magnet, and more specifically, to the method for manufacturing an Nd-Fe-B-based group permanent magnet including the steps of: a powder manufacturing step; a temporary forming step in which an Nd-Fe-B-based permanent magnet powder is temporary-formed, so that a temporary-formed magnetic body is manufactured; and a plastic processing step in which a ferromagnetic phase Nd_2Fe_14B phase of the temporary-formed magnetic body is plastically processed, so that an Nd-Fe-B-based permanent magnet is manufactured, thereby minimizing the formation of an Nd-rich phase by controlling the atomic percentage of Nd, Fe and B.

Description

Nd-Fe-B계 영구자석 제조 방법 및 이에 의하여 제조된 Nd-Fe-B계 영구자석{METHOD FOR MANUFACTURING ND-FE-B GROUP PERMANENT MAGNET AND ND-FE-B GROUP PERMANENT USING THEREOF}Manufacturing method of Nd-Fe-B permanent magnet and Nd-Fe-B permanent magnet manufactured thereby {METHOD FOR MANUFACTURING ND-FE-B GROUP PERMANENT MAGNET AND ND-FE-B GROUP PERMANENT USING THEREOF}

본 발명은 Nd-Fe-B계 영구자석 제조 방법 및 이에 의하여 제조된 Nd-Fe-B계 영구자석에 관한 것으로서, 보다 상세하게는, 원자 백분율이 Nd11-13Fe82-84B5-7(at. %)인 Nd-Fe-B계 합금 강자성 상 Nd2Fe14B 상의 소성변형을 이용한 영구자석 제조 방법 및 이에 의하여 제조된 Nd-Fe-B계 영구자석에 관한 것이다. The present invention relates to a method for manufacturing a Nd-Fe-B-based permanent magnet and an Nd-Fe-B-based permanent magnet manufactured thereby, and more particularly, the atomic percentage is Nd 11-13 Fe 82-84 B 5-7 (at. %) Nd-Fe-B-based alloy ferromagnetic phase Nd 2 Fe 14 B phase using the plastic deformation of the permanent magnet manufacturing method and the Nd-Fe-B-based permanent magnet manufactured thereby.

Nd-Fe-B계 영구자석(permanent magnet)이란, 외부로부터의 자기적 영향에 대하여 쉽게 변화하지 않는 강자성체를 말하는 것으로, 자기력이 우수한 철, 코발트, 니켈 등의 전이금속과 네오디뮴, 프라세오디뮴, 가돌리움, 디스프로슘, 터븀 등의 희토류 원소 및 붕소가 혼합되어 제조된다. 이러한 영구자석은, 잔류 자화(residual magnetism), 포화자속 밀도 및 보자력(coercive force) 등의 자기적 특성이 우수하기 때문에, 전기자동차, 수소자동차, MRI, 풍력발전, 자동화설비, 백색가전 등 다양한 산업 분야에서 주요한 소재로 사용되고 있다. Nd-Fe-B-based permanent magnet refers to a ferromagnetic material that does not change easily against external magnetic influences, transition metals such as iron, cobalt, nickel, etc., and neodymium, praseodymium, and gadolium with excellent magnetic force. , Dysprosium, terbium, and other rare earth elements and boron are mixed. These permanent magnets are excellent in magnetic properties such as residual magnetism, saturation magnetic flux density and coercive force, and thus various industries such as electric vehicles, hydrogen vehicles, MRI, wind power generation, automation facilities, and white home appliances It is used as a major material in the field.

일반적으로, 희토류 원소인 네오디뮴(Nd), 전이금속 원소인 철(Fe) 및 붕소(B)를 포함하는 Nd-Fe-B계 영구자석의 제조 방법에는, 스트립 캐스팅에 의하여 제조된 스트립을 수소 파쇄하여 제조된 분말을 자장 성형 및 소결하여 제조하는 스트립 캐스팅법 또는 멜트 스피닝에 의하여 제조된 리본을 분쇄하여 제조된 분말을 가성형 및 고온변형하여 제조하는 멜트 스피닝법이 있다. In general, in the manufacturing method of a Nd-Fe-B-based permanent magnet including neodymium (Nd) as a rare earth element, iron (Fe) and boron (B) as transition metal elements, a strip manufactured by strip casting is hydrogen crushed. There is a strip casting method in which the manufactured powder is subjected to magnetic field molding and sintering, or a melt spinning method in which the powder manufactured by pulverizing a ribbon manufactured by melt spinning is subjected to temporary molding and high temperature deformation.

한편, 자기 이방성(magnetic anisotropy)이란, 자성체(영구자석)의 자기적 성질이 결정의 방향에 따라 달라지는 것으로서, 일반적으로 자성체의 경우, 자화되기 용이한 결정 내의 특정 결정축, 즉 자화 용이축을 향하여 결정이 배열되는 경우에 우수한 자기 특성을 갖는다. 따라서 최근에는, 영구자석에 온도 및 압력을 가하여 소성 변형하여 영구자석의 결정립 배열 방향을 물리적으로 변화시켜 자기 이방성을 부여함으로써, 자기 특성이 향상된 영구자석을 제조하는 연구가 진행되고 있다. On the other hand, magnetic anisotropy means that the magnetic properties of a magnetic material (permanent magnet) vary depending on the direction of the crystal. In general, in the case of a magnetic material, a crystal is moved toward a specific crystal axis in a crystal that is easy to It has excellent magnetic properties when arranged. Therefore, in recent years, research on manufacturing a permanent magnet with improved magnetic properties by giving magnetic anisotropy by physically changing the crystal grain arrangement direction of the permanent magnet by plastic deformation by applying temperature and pressure to the permanent magnet has been conducted.

종래 스트립 캐스팅법 및 멜트스피닝법으로 제조된 분말에 이방성을 부여하기 위한 방법은 외부 자장을 걸어주는 방법 및 다이업셋을 이용하여 결정립 성장 후 결정립 회전을 통해 이방성을 부여하는 방법을 사용하였으나. 이 경우 분말의 크기가 수 나노미터~ 수 마이크론 미터로 매우 작아서 포함된 희토류 원소가 산화되기 매우 쉬우므로 공정 중 산소 농도의 제어가 필요하여 공정이 복잡해지고 비용이 증가하는 단점이 있다. Conventional methods for imparting anisotropy to powders manufactured by the strip casting method and melt spinning method include applying an external magnetic field and a method of imparting anisotropy through crystal grain rotation after grain growth using a die-up set. In this case, the size of the powder is very small, ranging from several nanometers to several microns, so that the contained rare earth elements are very easy to oxidize. Therefore, control of the oxygen concentration during the process is required, resulting in complicated processes and increased cost.

따라서 이러한 문제를 해결하기 위한 방법으로 Nd-Fe-B 분말을 가스분무에 의해 제조하고 이를 소성변형시켜 이방성을 부여하는 방법에 관한 발명이 시도되었으나 이 경우 내부에 Nd-rich 상(phase)이 생성되고, 이러한 Nd-rich 상은 650℃ 내외의 융점을 가지므로 800℃ 이상의 고온에서 수행되는 소성 변형 공정에서 Nd-rich 상이 용융됨으로써 하중을 분산시키기 때문에 소성 변형에 의한 이방성의 부여가 용이하지 않다. Therefore, as a method to solve this problem, an invention was attempted on a method of making Nd-Fe-B powder by gas spray and giving it anisotropy by plastically deforming it, but in this case, an Nd-rich phase was created inside. Since the Nd-rich phase has a melting point of around 650°C, the Nd-rich phase disperses the load by melting in a plastic deformation process performed at a high temperature of 800°C, so it is not easy to impart anisotropy by plastic deformation.

대한민국 등록특허공보 제10-0241982호(명칭: 희토류 본드 자석 및 희토류 본드 자석용 조성물)Korean Registered Patent Publication No. 10-0241982 (Name: Rare Earth Bond Magnet and Composition for Rare Earth Bond Magnet) 대한민국 등록특허공보 제10-1918975호(명칭: Nd-Fe-B계 자석 및 그 제조방법)Republic of Korea Patent Publication No. 10-1918975 (Name: Nd-Fe-B magnet and its manufacturing method) 대한민국 등록특허공보 제 10-1428672호 (명칭: 가스 분무 공정을 이용한 Nd-Fe-B 자성분말의 제조방법, 자성분말, 자성체 및 자성체의 제조방법)Republic of Korea Patent Publication No. 10-1428672 (Name: manufacturing method of Nd-Fe-B magnetic powder using a gas spraying process, magnetic powder, magnetic material and method of manufacturing magnetic material)

본 발명은 상술한 바와 같은 종래 기술에 의한 문제점을 해결하기 위한 것으로, 본 발명의 목적은, 소성 가공에 의하여 자기 이방성을 부여할 수 있도록 구성되는 Nd-Fe-B계 영구자석 제조 방법 및 이에 의하여 제조된 Nd-Fe-B계 영구자석을 제공하는 것이다.The present invention is to solve the problems caused by the prior art as described above, and an object of the present invention is a method of manufacturing a Nd-Fe-B-based permanent magnet configured to impart magnetic anisotropy by plastic processing, and thereby It is to provide a manufactured Nd-Fe-B permanent magnet.

상술한 목적을 달성하기 위한 본 발명의 실시예에 Nd-Fe-B계 영구자석 제조 방법의 일 양태는, Nd-Fe-B계 영구자석 분말이 제조되는, 분말 제조 단계; 상기 Nd-Fe-B계 영구자석 분말이 가성형되어 가성형 자성체가 제조되는, 가성형 단계; 및 상기 가성형 자성체가 소성 가공되어 Nd-Fe-B계 영구자석이 제조되는, 소성 가공 단계; 를 포함한다. One aspect of a method for manufacturing a Nd-Fe-B-based permanent magnet in an embodiment of the present invention for achieving the above object is, in which Nd-Fe-B-based permanent magnet powder is manufactured, a powder manufacturing step; A temporary molding step in which the Nd-Fe-B-based permanent magnet powder is temporary-molded to produce a false-formed magnetic body; And a plastic processing step in which the false-formed magnetic body is plastically processed to produce a Nd-Fe-B-based permanent magnet. Includes.

그리고, 상기 소성 가공 단계에서, 상기 Nd-Fe-B계 영구자석에 자기 이방성이 부여될 수 있다.Further, in the plastic working step, magnetic anisotropy may be imparted to the Nd-Fe-B-based permanent magnet.

또한, 상기 분말 제조 단계에서, 상기 Nd-Fe-B계 영구자석 분말의 원자 백분율은, Nd11-13Fe80-84B5-7(at. %)일 수 있다.In addition, in the powder manufacturing step, the atomic percentage of the Nd-Fe-B-based permanent magnet powder may be Nd 11-13 Fe 80-84 B 5-7 (at.%).

그리고, 상기 분말 제조 단계에서, 상기 Nd-Fe-B계 영구자석 분말의 크기는, 5μm 내지 100μm일 수 있다.And, in the powder manufacturing step, the size of the Nd-Fe-B-based permanent magnet powder may be 5 μm to 100 μm.

또한, 상기 소성 가공 단계에서, 상기 가성형 자성체는, 800℃ 이상의 온도에서 소성 가공될 수 있다.In addition, in the plastic working step, the false-formed magnetic body may be plastic processed at a temperature of 800°C or higher.

본 발명의 실시예에 의한 Nd-Fe-B계 영구자석 제조 방법의 다른 일 양태는, Another aspect of the method for manufacturing a Nd-Fe-B-based permanent magnet according to an embodiment of the present invention,

Nd-Fe-B계 영구자석을 제조하는 방법에 있어서:In the method of manufacturing a Nd-Fe-B-based permanent magnet:

가스 분무에 의하여 제조된 Nd-Fe-B계 영구자석 분말이 소결되어 제조된 가성형 자성체가 소성 가공되어 자기 이방성이 부여된 Nd-Fe-B계 영구자석이 제조되되, 영구 자석 분말의 원자백분율이 제어되어 상기 영구 자석 중의 Nd-rich상의 생성이 감소되는 것을 특징으로 한다.Nd-Fe-B-based permanent magnet powder produced by gas spraying is sintered to produce a pseudo-formed magnetic body produced by plastic processing to produce an Nd-Fe-B-based permanent magnet with magnetic anisotropy, but the atomic percentage of the permanent magnet powder This control is characterized in that the generation of the Nd-rich phase in the permanent magnet is reduced.

그리고, 상기 Nd-Fe-B계 영구자석 분말은, 네오디뮴(Nd), 철(Fe) 및 붕소(B) 각각의 원자 백분율이 Nd11-13Fe80-84B5-7(at. %)일 수 있다.And, the Nd-Fe-B-based permanent magnet powder, the atomic percentage of each of neodymium (Nd), iron (Fe) and boron (B) is Nd 11-13 Fe 80-84 B 5-7 (at.%) Can be

또한, 상기 Nd-Fe-B계 영구자석 분말의 크기는, 5μm 내지 100μm일 수 있다.In addition, the size of the Nd-Fe-B-based permanent magnet powder may be 5 μm to 100 μm.

그리고, 상기 가성형 자성체는, 800℃ 이상의 온도에서 소성 가공될 수 있다.In addition, the false-formed magnetic body may be plastic processed at a temperature of 800°C or higher.

또한, 상기 Nd-Fe-B계 영구자석의 결정립은, 종횡비(Aspect ratio)가 1.5 초과 4.0 이하일 수 있다.In addition, the crystal grains of the Nd-Fe-B-based permanent magnet may have an aspect ratio greater than 1.5 and less than or equal to 4.0.

본 발명의 실시예에 의한 Nd-Fe-B계 영구자석의 일 양태는, 상술한 바와 같은 Nd-Fe-B계 영구자석 제조 방법에 의하여 제조된 Nd-Fe-B계 영구자석을 포함한다.One aspect of the Nd-Fe-B-based permanent magnet according to an embodiment of the present invention includes an Nd-Fe-B-based permanent magnet manufactured by the method of manufacturing an Nd-Fe-B-based permanent magnet as described above.

그리고, 상기 Nd-Fe-B계 영구자석의 결정립의 종횡비(Aspect ratio)는 1.5 초과 4.0 이하일 수 있다. In addition, the aspect ratio of the crystal grains of the Nd-Fe-B-based permanent magnet may be greater than 1.5 and not greater than 4.0.

본 발명의 실시예에 의한 Nd-Fe-B계 영구자석 제조 방법에서는 Nd, Fe 및 B의 원자 백분율을 제어함으로써, Nd-rich상의 생성을 최소화한다. 따라서, 본 발명에 의하면, 영구자석의 소성 가공이 용이하게 수행되어 영구자석에 자기 이방성이 부여됨으로써, 자성 특성이 향상된 Nd-Fe-B계 영구자석을 제조할 수 있다. In the method of manufacturing an Nd-Fe-B-based permanent magnet according to an embodiment of the present invention, the generation of Nd-rich phase is minimized by controlling the atomic percentage of Nd, Fe and B. Accordingly, according to the present invention, plastic processing of the permanent magnet is easily performed and magnetic anisotropy is imparted to the permanent magnet, so that a Nd-Fe-B-based permanent magnet with improved magnetic properties can be manufactured.

도 1은 본 발명의 실시예에 의한 Nd-Fe-B계 영구자석 제조 방법을 보인 플로우 차트.
도 2는 본 발명의 실시예에 의하여 제조된 Nd-Fe-B계 영구자석의 종횡비를 나타낸 그래프.
도 3은 본 발명의 실시예에 의하여 제조된 Nd-Fe-B계 영구자석의 Orientation factor 변화를 나타낸 그래프.
도 4는 본 발명의 실시예에 의하여 제조된 Nd-Fe-B계 영구자석의 온도에 따른 경도를 측정한 그래프.
도 5는 본 발명의 실시예에 의하여 제조된 Nd-Fe-B계 영구자석의 주사전자현미경(SEM, Scanning Electron Microscope) 사진.
1 is a flow chart showing a method of manufacturing a Nd-Fe-B-based permanent magnet according to an embodiment of the present invention.
2 is a graph showing the aspect ratio of the Nd-Fe-B-based permanent magnet manufactured according to an embodiment of the present invention.
3 is a graph showing the change in the orientation factor of the Nd-Fe-B-based permanent magnet manufactured according to an embodiment of the present invention.
Figure 4 is a graph measuring the hardness according to the temperature of the Nd-Fe-B-based permanent magnet manufactured according to an embodiment of the present invention.
Figure 5 is a scanning electron microscope (SEM, Scanning Electron Microscope) photograph of the Nd-Fe-B-based permanent magnet manufactured according to an embodiment of the present invention.

이하에서는, 본 발명에 의한 Nd-Fe-B계 영구자석 제조 방법을 첨부된 도면을 참조하여 보다 상세하게 설명한다. Hereinafter, a method of manufacturing a Nd-Fe-B based permanent magnet according to the present invention will be described in more detail with reference to the accompanying drawings.

도 1은, 본 발명의 본 발명의 실시예에 의한 Nd-Fe-B계 영구자석 제조 방법을 보인 플로우 차트이다.1 is a flow chart showing a method of manufacturing a Nd-Fe-B-based permanent magnet according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 실시예에 의한 Nd-Fe-B계 영구자석 제조 방법은, 분말 제조 단계(S100), 가성형 단계(S200) 및 소성 가공 단계(S300)을 포함한다. 특히 본 실시예에서는, Nd-Fe-B 영구자석의 원자 백분율을 제어하여 고온에서의 소성 가공 시 용해되어 영구자석의 자화용이축으로의 결정립 배열을 제한하는 Nd-rich상의 생성을 최소함으로써, 영구자석의 소성 가공이 용이하게 수행되어 영구자석에 자기 이방성이 부여된다. Referring to FIG. 1, a method of manufacturing a Nd-Fe-B-based permanent magnet according to an embodiment of the present invention includes a powder manufacturing step (S100), a temporary molding step (S200), and a plastic processing step (S300). In particular, in this embodiment, the atomic percentage of the Nd-Fe-B permanent magnet is controlled to minimize the formation of the Nd-rich phase, which dissolves during plastic processing at high temperature and limits the crystal grain arrangement of the permanent magnet to the easy magnetization axis. Magnetic anisotropy is imparted to the permanent magnet by easily performing plastic processing of the magnet.

보다 상세하게는, 상기 분말 제조 단계(S100)에서는, Nd-Fe-B계 영구자석 분말이 제조된다. 본 실시예에서는, 상기 분말 제조 단계(S100)에서, 상술한 바와 같이 원자 백분율이 Nd11-13Fe80-84B5-7(at. %)인 Nd-Fe-B계 영구자석 분말이 제조된다. 또한, 상기 Nd-Fe-B계 영구자석 분말의 크기는, 5μm 내지 100μm일 수 있다. 이 때, 상기 Nd는 금속형태, 합금형태 및 폐자석에서 추출된 Nd을 재활용한 형태 등을 사용할 수 있다. 예를 들면, 상기 분말 제조 단계(S100)에서, 1500℃ 내외의 온도, 5x10-1torr 내지 5x10-2torr의 진공 및 40bar 내지 50bar의 분사 압력 조건 하에서 가스 분무에 의하여 원자 백분율이 Nd12Fe82B6(at. %)이고, 크기가 10μm인 Nd-Fe-B계 영구자석 분말이 제조될 수 있다. More specifically, in the powder manufacturing step (S100), a Nd-Fe-B-based permanent magnet powder is manufactured. In this embodiment, in the powder manufacturing step (S100), Nd-Fe-B-based permanent magnet powder having an atomic percentage of Nd 11-13 Fe 80-84 B 5-7 (at.%) as described above is prepared do. In addition, the size of the Nd-Fe-B-based permanent magnet powder may be 5 μm to 100 μm. In this case, the Nd may be a metal form, an alloy form, and a form obtained by recycling Nd extracted from the waste magnet. For example, in the powder manufacturing step (S100), the atomic percentage is Nd 12 Fe 82 by gas spraying under conditions of a temperature of about 1500° C., a vacuum of 5x10 -1 torr to 5x10 -2 torr and an injection pressure of 40 bar to 50 bar. B 6 (at. %) and a size of 10 μm Nd-Fe-B-based permanent magnet powder can be prepared.

그리고, 상기 가성형 단계(S200)에서는, 상기 분말 제조 단계(S100)에서 제조된 Nd-Fe-B계 영구자석 분말이 가성형되어 가성형 자성체가 제조된다. 예를 들면, 상기 가성형 단계(S200)에서, 상기 Nd-Fe-B계 영구자석 분말이 750℃의 온도, 20MPa 내지 40MPa의 압력 하에서 가압 소결에 의하여 성형되어 상기 가성형 자성체가 제조될 수 있다.And, in the temporary molding step (S200), the Nd-Fe-B-based permanent magnet powder prepared in the powder production step (S100) is temporary-molded to manufacture a false-formed magnetic body. For example, in the temporary molding step (S200), the Nd-Fe-B-based permanent magnet powder may be formed by pressure sintering at a temperature of 750° C. and a pressure of 20 MPa to 40 MPa to manufacture the pseudo-molded magnetic body. .

마지막으로, 상기 소성 가공 단계(S300)에서는, 상기 가성형 단계(S200)에서 제조된 가성형 자성체가 소성 가공되어 Nd-Fe-B계 영구자석이 제조된다. 특히 본 실시예에서는, Nd-Fe-B계 영구자석의 Nd, Fe 및 B의 원자 백분율 제어를 통하여 소성 가공 시 용해되어 영구자석 결정립의 배열을 방해하는 Nd-rich상의 생성을 최소화하였기 때문에, 상기 소성 가공 단계(S300)에서, 영구자석의 소성 변형이 용이하게 수행되어 영구자석에 자기 이방성이 부여된다. 예를 들면, 상기 소성 가공 단계(S300)에서는, 상기 가성형 자성체가 800℃ 이상의 온도, 예를 들면, 800℃ 내지 1000℃의 온도 및 60Mpa의 압력 조건 하에서 다이 업셋(die upset)에 의하여 소성 가공되어, 자기 이방성이 부여된 Nd-Fe-B계 영구자석이 제조될 수 있다. 그리고, 상기 소성 가공 단계(S300)에서, 상기 제조된 Nd-Fe-B계 영구자석의 결정립은, 종횡비(Aspect ratio)가 1.5 초과 4.0 이하일 수 있다. 이 후, 상기 제조된 Nd-Fe-B계 영구자석은, 자성특성 향상을 위해 결정립 확산, 결정립 개선 등의 후처리 공정이 수행될 수 있다.Finally, in the plastic working step (S300), the false-molded magnetic body manufactured in the temporary molding step (S200) is plastic-processed to produce a Nd-Fe-B-based permanent magnet. In particular, in this embodiment, since the generation of the Nd-rich phase, which dissolves during plastic processing through the atomic percentage control of Nd, Fe, and B of the Nd-Fe-B-based permanent magnet, and interferes with the arrangement of the permanent magnet grains, is minimized. In the plastic processing step (S300), plastic deformation of the permanent magnet is easily performed, so that magnetic anisotropy is imparted to the permanent magnet. For example, in the plastic working step (S300), the false-formed magnetic body is plasticized by die upset under a temperature of 800°C or higher, for example, 800°C to 1000°C and a pressure of 60Mpa. As a result, a Nd-Fe-B-based permanent magnet with magnetic anisotropy can be manufactured. Further, in the plastic working step (S300), the crystal grains of the manufactured Nd-Fe-B-based permanent magnet may have an aspect ratio greater than 1.5 and less than 4.0. Thereafter, the prepared Nd-Fe-B-based permanent magnet may be subjected to a post-treatment process such as grain diffusion and grain improvement in order to improve magnetic properties.

이하에서는 본 발명을 제조예에 의하여 더욱 상세하게 설명한다. 이들 제조예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 제조예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail by way of manufacturing examples. These preparation examples are only for describing the present invention in more detail, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited to these preparation examples.

실시예Example

<제조예><Production Example>

제조예에서는, 분말 제조 단계(S100)에서, 1500℃의 온도, 5x10-2torr의 진공 조건 및 40bar의 분사 압력 조건 하에서 가스 분무에 의하여 원자 백분율이 Nd12Fe82B6(at. %)이고, 크기가 10μm인 Nd-Fe-B계 영구자석 분말이 제조되었다.In the manufacturing example, in the powder manufacturing step (S100), the atomic percentage is Nd 12 Fe 82 B 6 (at.%) by gas spraying under conditions of a temperature of 1500° C., a vacuum condition of 5×10 −2 torr and an injection pressure of 40 bar. , Nd-Fe-B-based permanent magnet powder having a size of 10 μm was prepared.

다음으로, 가성형 단계(S200)에서, 상기 분말 제조 단계(S100)에서 제조된 Nd-Fe-B계 영구자석 분말이, 750℃의 온도 및 30MPa의 압력 조건 하에서 가압 소결에 의하여 성형되어 가성형 자성체가 제조되었다. Next, in the temporary molding step (S200), the Nd-Fe-B-based permanent magnet powder prepared in the powder production step (S100) is formed by pressure sintering under a temperature of 750°C and a pressure of 30 MPa, A magnetic body was produced.

마지막으로, 소성 가공 단계(S300)에서, 상기 가성형 단계(S200)에서 제조된 가성형 자성체가, 900℃의 온도 및 60Mpa의 압력 조건 하에서 다이 업셋(die upset)에 의하여 소성 가공되어, 자기 이방성이 부여된 Nd-Fe-B계 영구자석이 제조되었다. Finally, in the plastic processing step (S300), the false-formed magnetic body manufactured in the false-molding step (S200) is plasticized by a die upset under a temperature of 900°C and a pressure of 60 MPa, and magnetic anisotropy This imparted Nd-Fe-B permanent magnet was manufactured.

<비교예><Comparative Example>

비교예에서는, 제조예와 동일하게 Nd-Fe-B계 영구자석을 제조하되, 상기 분말 제조 단계(S100)에서, 원자 백분율이 Nd15.22Fe78.63B6.15(at. %)인 Nd-Fe-B계 영구자석 분말이 제조되었다. In Comparative Example, a Nd-Fe-B-based permanent magnet was prepared in the same manner as in Preparation Example, but in the powder production step (S100), Nd-Fe-B having an atomic percentage of Nd 15.22 Fe 78.63 B 6.15 (at. %) System permanent magnet powder was prepared.

실험예Experimental example

<실험예 1><Experimental Example 1>

상기 제조예에 의하여 제조된 Nd-Fe-B계 영구자석의 종횡비 및 Orientation factor 변화를 나타낸 그래프를 도 2 및 도 3에 첨부하였다. 2 and 3 are attached graphs showing changes in aspect ratio and orientation factor of the Nd-Fe-B-based permanent magnet manufactured according to the above preparation example.

도 2 및 도 3을 참조하면, 소성 가공 단계(S300)의 온도 조건인 800℃ 내지 1000℃의 온도 범위에서, Nd-Fe-B계의 종횡비(aspect ratio)는 1.25 내지 2.5의 값을 나타내었다. 또한, 자화 용이축인 C축으로의 결정의 정렬을 나타내는 지표인 Orientation factor의 경우, 소성 가공 단계(S300)의 온도 조건인 800℃ 이상의 온도에서 급격히 증가하여, 소성 변형이 용이하게 진행됨으로써 Nd-Fe-B계 영구자석 결정이 자화 용이축으로 배열되었음을 확인할 수 있다. 2 and 3, in the temperature range of 800°C to 1000°C, which is the temperature condition of the plastic working step (S300), the aspect ratio of the Nd-Fe-B system was 1.25 to 2.5. . In addition, in the case of the orientation factor, which is an index indicating the alignment of crystals to the C-axis, which is an easy magnetization axis, it increases rapidly at a temperature of 800°C or higher, which is the temperature condition of the plastic processing step (S300), and plastic deformation easily proceeds, thereby causing Nd- It can be seen that the Fe-B-based permanent magnet crystal is arranged in the axis of easy magnetization.

<실험예 2><Experimental Example 2>

상기 제조예 및 비교예에 의하여 제조된 Nd-Fe-B계 영구자석의 온도에 따른 경도를 측정한 결과를 도 4에, 제조된 Nd-Fe-B계 영구자석의 주사전자현미경(SEM, Scanning Electron Microscope) 사진을 도 5에 첨부하였다. The result of measuring the hardness according to the temperature of the Nd-Fe-B-based permanent magnet manufactured according to the Preparation Example and Comparative Example is shown in FIG. 4, and a scanning electron microscope (SEM, Scanning) of the manufactured Nd-Fe-B-based permanent magnet Electron Microscope) photo is attached to FIG.

도 4를 참조하면, 제조예의 경우, 소성 가공 단계(S300)의 온도 조건인 800℃ 내지 1000℃에서 경도가 감소되었고, 비교예의 경우 Nd-rich상의 용융 및 산화로 인해 경도 측정이 불가능하였다. 즉, 제조예의 경우 800℃ 내지 1000℃에서 낮은 경도 값을 나타내므로, 결정립 배열 방향을 물리적으로 변화시키는 소성 변형이 가능하고, 이는 고온에서 용융되어 결정립 배열 방향의 변화를 제한하는 Nd-rich상의 생성이 감소된 결과임을 유추할 수 있다.Referring to FIG. 4, in the case of the manufacturing example, the hardness was decreased at 800°C to 1000°C, which is the temperature condition of the plastic working step (S300), and in the case of the comparative example, it was impossible to measure the hardness due to melting and oxidation of the Nd-rich phase. That is, in the case of the preparation example, since the hardness value is low at 800°C to 1000°C, plastic deformation that physically changes the crystal grain arrangement direction is possible, which is melted at high temperature to create an Nd-rich phase that limits the change in the crystal grain arrangement direction. It can be inferred that this is a reduced result.

또한, 도 5를 참조하면, 제조예의 경우 Nd-Fe-B계 영자석의 결정 모양이 타원형이고, 비교예의 경우 결정립 모양이 원형에 가까운 것을 확인할 수 있다. 다시 말하면, 제조예의 경우 소성 변형이 진행되어 결정립 배열 방향의 변화가 이루어짐으로써 결정 모양이 타원형으로 변화하였고, 비교예의 경우 소성 변형이 진행되지 않아 결정립 배열 방향의 변화가 일어나지 않았으므로, 결정 모양이 분말 상태로부터 변화되지 않은 것으로 관찰되었다. In addition, referring to FIG. 5, it can be seen that in the case of the manufacturing example, the crystal shape of the Nd-Fe-B-based English magnet is oval, and in the case of the comparative example, the crystal grain shape is close to the circular shape. In other words, in the case of the preparation example, the crystal shape was changed to an elliptical shape due to the change in the crystal grain arrangement direction due to the plastic deformation proceeding, and in the case of the comparative example, the change in the crystal grain arrangement direction did not occur because the plastic deformation did not proceed. It was observed that there was no change from the state.

Claims (12)

Nd-Fe-B계 영구자석 분말이 제조되는, 분말 제조 단계(S100);
상기 Nd-Fe-B계 영구자석 분말이 가성형되어 가성형 자성체가 제조되는, 가성형 단계(S200); 및
상기 가성형 자성체의 강자성상 Nd2Fe14B 상의 변형을 통해 소성 가공되어 Nd-Fe-B계 영구자석이 제조되는, 소성 가공 단계(S300); 를 포함하고,
상기 분말 제조 단계(S100)에서,
상기 Nd-Fe-B계 영구자석 분말의 크기는, 5μm 내지 100μm이며,
상기 소성 가공 단계(S300)에서,
상기 가성형 자성체는, 800℃ 이상의 온도에서 소성 가공되는 Nd-Fe-B계 영구자석 제조 방법.
Nd-Fe-B-based permanent magnet powder is prepared, powder manufacturing step (S100);
A temporary molding step (S200) in which the Nd-Fe-B-based permanent magnet powder is temporary-molded to produce a false-formed magnetic body; And
The shaping of the magnetic substance ferromagnetic aqueous phase Nd 2 Fe 14 B is fired through deformation processing Nd-Fe-B-based, plastic working steps to manufacture permanent magnet (S300); Including,
In the powder manufacturing step (S100),
The size of the Nd-Fe-B-based permanent magnet powder is 5 μm to 100 μm,
In the plastic processing step (S300),
The pseudo-formed magnetic body is a method for producing a Nd-Fe-B-based permanent magnet that is plastically processed at a temperature of 800°C or higher.
제 1 항에 있어서,
상기 소성 가공 단계(S300)에서,
상기 Nd-Fe-B계 영구자석에 자기 이방성이 부여되는 Nd-Fe-B계 영구자석 제조방법.
The method of claim 1,
In the plastic processing step (S300),
A method of manufacturing a Nd-Fe-B-based permanent magnet in which magnetic anisotropy is imparted to the Nd-Fe-B-based permanent magnet.
제 2 항에 있어서,
상기 분말 제조 단계(S100)에서,
상기 Nd-Fe-B계 영구자석 분말의 원자 백분율은, Nd11-13Fe80-84B5-7(at. %)인 Nd-Fe-B계 영구자석 제조 방법.
The method of claim 2,
In the powder manufacturing step (S100),
The atomic percentage of the Nd-Fe-B-based permanent magnet powder is Nd 11-13 Fe 80-84 B 5-7 (at.%) Nd-Fe-B-based permanent magnet manufacturing method.
삭제delete 삭제delete Nd-Fe-B계 영구자석을 제조하는 방법에 있어서:
가스 분무에 의하여 제조된 Nd-Fe-B계 영구자석 분말이 소결되어 제조된 가성형 자성체가 소성 가공되어 자기 이방성이 부여된 Nd-Fe-B계 영구자석이 제조되되, 영구 자석 분말의 원자백분율이 제어되어 상기 영구 자석 중의 Nd-rich상의 생성이 감소됨을 소성변형에 이용하는 것을 특징으로 하고,
상기 Nd-Fe-B계 영구자석 분말의 크기는, 5μm 내지 100μm이며,
상기 가성형 자성체는, 800℃ 이상의 온도에서 소성 가공되는 Nd-Fe-B계 영구자석 제조 방법.
In the method of manufacturing a Nd-Fe-B-based permanent magnet:
Nd-Fe-B-based permanent magnet powder produced by gas spraying is sintered to produce a pseudo-formed magnetic body produced by plastic processing to produce an Nd-Fe-B-based permanent magnet with magnetic anisotropy, but the atomic percentage of the permanent magnet powder It is characterized in that it is used for plastic deformation that the generation of the Nd-rich phase in the permanent magnet is reduced by controlling this,
The size of the Nd-Fe-B-based permanent magnet powder is 5 μm to 100 μm,
The pseudo-formed magnetic body is a method for producing a Nd-Fe-B-based permanent magnet that is plastically processed at a temperature of 800°C or higher.
제 6 항에 있어서,
상기 Nd-Fe-B계 영구자석 분말은, 네오디뮴(Nd), 철(Fe) 및 붕소(B) 각각의 원자 백분율이 Nd11-13Fe80-84B5-7(at. %)인 Nd-Fe-B계 영구자석 제조 방법.
The method of claim 6,
The Nd-Fe-B-based permanent magnet powder is Nd in which the atomic percentage of each of neodymium (Nd), iron (Fe) and boron (B) is Nd 11-13 Fe 80-84 B 5-7 (at.%). -Fe-B system permanent magnet manufacturing method.
삭제delete 삭제delete 제 6 항에 있어서,
상기 Nd-Fe-B계 영구자석의 결정립은, 종횡비(Aspect ratio)가 1.5 초과 4.0 이하인 Nd-Fe-B계 영구자석 제조 방법.
The method of claim 6,
Crystal grains of the Nd-Fe-B-based permanent magnet, an aspect ratio (Aspect ratio) of more than 1.5 and 4.0 or less Nd-Fe-B-based permanent magnet manufacturing method.
제 1 항 내지 3 항, 제 6 항 내지 7항 및 제 10 항 중 어느 한 항의 Nd-Fe-B계 영구자석 제조 방법에 의하여 제조된 Nd-Fe-B계 영구자석.
A Nd-Fe-B-based permanent magnet manufactured by the method of manufacturing an Nd-Fe-B-based permanent magnet according to any one of claims 1 to 3, 6 to 7, and 10.
제 11 항에 있어서,
결정립의 종횡비(Aspect ratio)가 1.5 초과 4.0 이하인 Nd-Fe-B계 영구자석.


The method of claim 11,
Nd-Fe-B permanent magnets with a grain aspect ratio of more than 1.5 and less than 4.0.


KR1020190133794A 2019-10-25 2019-10-25 Method for manufacturing nd-fe-b group permanent magnet and nd-fe-b group permanent using thereof KR102189985B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190133794A KR102189985B1 (en) 2019-10-25 2019-10-25 Method for manufacturing nd-fe-b group permanent magnet and nd-fe-b group permanent using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190133794A KR102189985B1 (en) 2019-10-25 2019-10-25 Method for manufacturing nd-fe-b group permanent magnet and nd-fe-b group permanent using thereof

Publications (1)

Publication Number Publication Date
KR102189985B1 true KR102189985B1 (en) 2020-12-11

Family

ID=73786223

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190133794A KR102189985B1 (en) 2019-10-25 2019-10-25 Method for manufacturing nd-fe-b group permanent magnet and nd-fe-b group permanent using thereof

Country Status (1)

Country Link
KR (1) KR102189985B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920005184A (en) * 1990-08-24 1992-03-28 토시미 쿠마 Manufacturing method of element for total heat exchanger
KR100241982B1 (en) 1995-10-18 2000-02-01 야스카와 히데아키 Rare earth bonded magnet and composition therefor
KR100788330B1 (en) * 2001-12-28 2007-12-27 신에쓰 가가꾸 고교 가부시끼가이샤 Rare earth element sintered magnet and method for producing rare earth element sintered magnet
KR101428672B1 (en) 2012-12-10 2014-08-08 한국생산기술연구원 Nd-Fe-B magnet alloys and powders and the manufacturing method of the same by gas atomization
KR101534717B1 (en) * 2013-12-31 2015-07-24 현대자동차 주식회사 Process for preparing rare earth magnets
KR101918975B1 (en) 2017-08-09 2018-11-16 한국기계연구원 MAGNET of Nd-Fe-B SYSTEM AND THE MANUFACTURING METHOD THEREOF

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920005184A (en) * 1990-08-24 1992-03-28 토시미 쿠마 Manufacturing method of element for total heat exchanger
KR100241982B1 (en) 1995-10-18 2000-02-01 야스카와 히데아키 Rare earth bonded magnet and composition therefor
KR100788330B1 (en) * 2001-12-28 2007-12-27 신에쓰 가가꾸 고교 가부시끼가이샤 Rare earth element sintered magnet and method for producing rare earth element sintered magnet
KR101428672B1 (en) 2012-12-10 2014-08-08 한국생산기술연구원 Nd-Fe-B magnet alloys and powders and the manufacturing method of the same by gas atomization
KR101534717B1 (en) * 2013-12-31 2015-07-24 현대자동차 주식회사 Process for preparing rare earth magnets
KR101918975B1 (en) 2017-08-09 2018-11-16 한국기계연구원 MAGNET of Nd-Fe-B SYSTEM AND THE MANUFACTURING METHOD THEREOF

Similar Documents

Publication Publication Date Title
KR101196852B1 (en) Highly quenchable Fe-based rare earth materials for ferrite replacement
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
CN1265401C (en) High performance iron-rare earth-boron-refractory-cobalt nanocomposites
JP2011216716A (en) Permanent magnet and motor and power generator using the same
KR102189985B1 (en) Method for manufacturing nd-fe-b group permanent magnet and nd-fe-b group permanent using thereof
KR102187561B1 (en) Method for manufacturing nd-fe-b group permanent magnet containing titanium
JPS62198103A (en) Rare earth-iron permanent magnet
JPS62203302A (en) Cast rare earth element-iron system permanent magnet
US5186761A (en) Magnetic alloy and method of production
KR101837279B1 (en) Method of controlling a growth of grains in a Rare Earth Permanent Magnet
JP7309260B2 (en) Manufacturing method of sintered magnet
JP2016066675A (en) Rare earth isotropic bond magnet
KR102658773B1 (en) Manufacturing method of sintered magnet
KR102399418B1 (en) Manufacturing method of sintered magnetic and sintered magnetic manufactured by the same
KR102650623B1 (en) Manufacturing method of sintered magnet
JPH04143221A (en) Production of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
KR100285351B1 (en) Manufacturing method of ultra fine grain composite phase magnetic ribbon for resin magnets with excellent coercivity
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH023203A (en) Permanent magnet and its manufacture
JP5558596B2 (en) Permanent magnet and motor and generator using the same
JPH06244012A (en) Manufacture of permanent magnet
JPH02139908A (en) Manufacture of pole anisotropic rare earth magnet
JPH07166304A (en) Alloy for permanent magnet
JPH04134806A (en) Manufacture of permanent magnet

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant