KR102187931B1 - 급속 균열 셀프실링 특성을 가진 양이온성 고흡수율 폴리머를 포함한 자기치유 개선용 시멘트 결합재 조성물 및 양이온성 고흡수율 폴리머의 제조방법 - Google Patents

급속 균열 셀프실링 특성을 가진 양이온성 고흡수율 폴리머를 포함한 자기치유 개선용 시멘트 결합재 조성물 및 양이온성 고흡수율 폴리머의 제조방법 Download PDF

Info

Publication number
KR102187931B1
KR102187931B1 KR1020180140190A KR20180140190A KR102187931B1 KR 102187931 B1 KR102187931 B1 KR 102187931B1 KR 1020180140190 A KR1020180140190 A KR 1020180140190A KR 20180140190 A KR20180140190 A KR 20180140190A KR 102187931 B1 KR102187931 B1 KR 102187931B1
Authority
KR
South Korea
Prior art keywords
cationic
sap
self
polymer
cement
Prior art date
Application number
KR1020180140190A
Other languages
English (en)
Other versions
KR20200056185A (ko
Inventor
최성철
이종휘
이광명
홍근태
이서린
심예원
Original Assignee
중앙대학교 산학협력단
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단, 성균관대학교산학협력단 filed Critical 중앙대학교 산학협력단
Priority to KR1020180140190A priority Critical patent/KR102187931B1/ko
Publication of KR20200056185A publication Critical patent/KR20200056185A/ko
Application granted granted Critical
Publication of KR102187931B1 publication Critical patent/KR102187931B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/06Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients
    • C04B40/0675Mortars activated by rain, percolating or sucked-up water; Self-healing mortars or concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • C04B24/121Amines, polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0049Water-swellable polymers
    • C04B2103/005Alkali-swellable polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Sealing Material Composition (AREA)

Abstract

본 발명은 급속 균열 셀프실링 특성을 가진 양이온성 고흡수율 폴리머를 포함한 자기치유 개선용 시멘트 결합재 조성물 및 양이온성 고흡수율 폴리머의 제조방법에 관한 것이다.
본 발명은 타설 직후 시멘트계 내 환경조건에서의 팽윤이 억제되어 초기 팽창에 의해 생성되는 공극크기를 최소화하여 압축강도 손실을 저감할 수 있고, 동시에 pH 중성 또는 산성의 용액이 균열로 침투될 때 우수한 셀프실링(self-sealing) 효과가 발현되어 궁극적으로 균열 자기치유(self-healing) 능력을 높일 수 있는, 양이온성 고흡수율 폴리머를 제조하고, 이를 포함한 시멘트 결합재 조성물의 자기치유 능력과 압축강도 개선효과를 제공할 수 있다.

Description

급속 균열 셀프실링 특성을 가진 양이온성 고흡수율 폴리머를 포함한 자기치유 개선용 시멘트 결합재 조성물 및 양이온성 고흡수율 폴리머의 제조방법{CEMENT BINDER COMPOSITION CONTAINING CATIONIC SUPERABSORBENT POLYMER HAVING RAPID CRACK SELF-SEALING EFFECT AND MANUFACTURING METHOD OF CATIONIC SUPERABSORBENT POLYMER}
본 발명은 급속 균열 셀프실링 특성을 가진 양이온성 고흡수율 폴리머를 포함한 자기치유 개선용 시멘트 결합재 조성물 및 양이온성 고흡수율 폴리머의 제조방법에 관한 것으로서, 더욱 상세하게는 타설 직후 시멘트계 내 환경조건에서의 팽윤이 억제되어 초기 팽창에 의해 생성되는 공극크기를 최소화하여 압축강도 손실을 저감할 수 있고, 동시에 pH 중성 또는 산성의 용액이 균열로 침투될 때 우수한 셀프실링(self-sealing) 효과가 발현되어 궁극적으로 균열 자기치유(self-healing) 능력을 높일 수 있는, 양이온성 고흡수율 폴리머를 포함한 자기치유 개선용 시멘트 결합재 조성물 에 관한 것이다.
콘크리트는 다른 재료에 비해 높은 압축강도, 상당히 낮은 원가 및 우수한 내구성 등의 장점으로 인해 전세계적으로 널리 사용되는 건설재료이다.
그러나 콘크리트는 낮은 인장강도로 인하여 균열 발생에 매우 취약한 단점이 있다. 따라서 콘크리트에 발생한 균열은 외부로부터 내부 시멘트 매트릭스로 액체 및 기체인자 등의 유해물질 침투를 가능하게 하고, 이로 인해 콘크리트 구조물의 내구성이 점차 저하되며, 궁극적으로 사용수명이 단축되는 문제가 발생한다.
통상 콘크리트는 자체적으로 균열을 치유할 수 있는 성질(autogenous crack self-healing)을 가지나, 약 0.1mm 이하의 매우 작은 균열에 대해서만 치유 성능이 발현되는 한계가 있다.
따라서 최근에는 좀더 큰 균열에 대해서도 자기치유 성능이 발현될 수 있도록 시멘트계 재료에 무기계 소재, 박테리아, 마이크로캡슐 등의 다양한 소재를 적용하는 연구가 활발하다.
그러나 이러한 기술은 균열이 치유되기까지 상당한 시간이 소요된다는 한계가 있어, 균열 치유 속도를 향상시킬 수 있는 소재로서 고흡수율 폴리머(superabsorbent polymer, 이하, "SAP"라 함) 사용이 적용되고 있다[특허문헌 1].
도 1은 SAP 입자를 이용한 급속 균열 셀프실링(self-sealing) 메커니즘을 단계별로 도시한 것으로서, SAP 입자들이 시멘트계 재료에 혼입되면, 타설 직후 배합수(cement pore solution)를 흡수하여 팽윤하나, 재령에 따라 시멘트 매트릭스(cement matrix)가 수화반응과 함께 점차 건조되면서 SAP 입자들 또한 흡수했던 물을 배출하며 건조하게 된다.
이후, 균열 발생에 따라 일부 SAP 입자들이 균열면에 노출되며, 균열면에 노출된 건조상태의 SAP 입자들은 균열을 통해 유입되는 물을 흡수하여 다시 팽윤하게 된다. 즉, 균열 내 SAP 입자들이 유입수에 의해 팽윤함에 따라 균열 체적을 감소시켜 급속 균열 셀프실링(rapid crack self-sealing) 효과를 발현하게 되는 것이다.
최근의 연구 결과에 따르면, 상용 SAP가 시멘트계 재료에 혼입되어 균열을 통한 유출수량을 급격히 감소시킬 수 있음을 보고하고 있다[비특허문헌 1].
그러나 상기 SAP는 균열 셀프실링 측면에서는 우수하나, 시멘트계 재료의 강도를 상당히 저하시키는 문제점을 나타내고 있다. 이는 SAP 입자들이 최초 배합수에 의해 팽윤한 이후 건조됨에 따라 시멘트 매트릭스에 다수의 공극(void)을 형성하기 때문으로 판단된다. 즉, 시멘트계 재료의 균열 자기치유 성능 향상을 목적으로 SAP를 적용하는 경우, 자율적 균열 치유(autonomous crack healing) 효과는 발현되나, SAP가 포함되지 않은 시멘트계 재료에 비해 오히려 역학적 성능이 저하되는 상황이 발생하는 것이다.
일반적으로 콘크리트를 주된 건설재료로 사용하고 있는 이유가 높은 강도를 나타내는 것임을 고려할 때, 균열 자기치유를 위한 소재로서 SAP를 적용하기 위해서는 셀프실링 효과를 발현함과 동시에 강도 손실을 최소화해야 한다.
통상적으로 사용되는 SAP은 폴리아크릴 아마이드, 폴리아크릴산, 폴리에틸렌옥사이드, 폴리비닐계 수지, 셀룰로오스계 수지로 이루어지며, 특히 소듐 아크릴레이트계와 전분/아크릴산계는 그 흡수력이 1000g/g에 달한다[특허문헌 2].
또한, CMC계나 PVA계는 100∼400g/g정도이다. 따라서 물을 흡수하여 건조 상태의 부피의 수십 또는 수백 배까지 팽윤하는 특성으로 인해 SAP은 주로 유아용 기저귀, 여성 위생용품 등 위생용품 용도로 상용되어 왔다.
이러한 SAP는 고분자 전해질이기 때문에 pH의 영향에 의해 그 흡수력이 저하된다. 예를 들면 순수한 물에서보다 식염수에서는 흡수력이 20배 이상 감소하는 결과가 있다. 또한 특히 이러한 친수성 그룹이 전하를 가지게 되면 흡수성은 수백 배 또는 수천 배 이상으로 증가하게 된다.
도 2는 상용 SAP의 pH에 따른 팽윤 속도를 도시한 것으로서, 현재 국내외에서 자기치유 재료로서 활용하고 있는 상용 SAP는 제조사에 관계없이 대부분 음이온성 폴리머 하이드로젤(anionic polymer hydrogel)로 구성된 상용 제품으로서, 동일한 이온 농도 조건에서 pH가 높아질수록 팽윤 속도(swelling ratio)가 커지는 특성을 가진다.
본질적으로 유체인 물분자에 대한 흡수성은 SAP에 도입된 친수성 그룹 카르복실기(-COOH)과의 반응에 의한 것으로서, 화학적 메커니즘을 살피면, 카르복실 그룹(carboxyl group)이 물에 대한 강한 친화력을 가지고, 특히 이들 그룹이 수산화나트륨(NaOH)와 같은 염기에 의해 중화되어 전하를 가지게 되면 정전기력을 통해서 이온들과 직접적인 접촉을 일으키며 동시에 이온들은 많은 양의 물분자들을 동반하게 된다. 같은 전하를 가진 카르복실 이온들은 반발력에 의해서 일정한 공간을 차지하려는 성질 때문에 주변에 충분한 물분자들의 공급은 이러한 반발력을 크게 하는 원인이 된다.
따라서, SAP의 팽윤 특성은 흡수 용액의 pH, 이온 농도를 포함한 특성에 따라 달라지는데, 흡수 용액의 이온 농도가 높을수록 팽윤 속도는 작아진다. 타설 직후 시멘트계 재료 내 배합수에는 다수의 이온들이 용해되어 있기 때문에 SAP의 팽윤 속도가 저감되기는 하나, 높은 pH가 형성되어 있어 상용 SAP의 경우 건조 상태 입자 크기(지름) 대비 약 3배 이상 팽창하여 다수의 공극(void)을 형성하게 된다.
도 3은 실제 상용 SAP 혼입에 따른 시멘트계 재료 내 생성된 다수의 공극 이미지가 보고된 바 있다[비특허문헌 1].
따라서 상기 다수의 공극으로 인한 강도 저하의 문제는 실제 실용화를 위한 재료로 활용하기에 문제점으로 지적되고 있으나, 종래 다수의 연구는 단순 균열 셀프실링 효과 측면에만 초점을 맞추어 SAP를 시멘트계 재료에 적용하고 있는 상황이다.
이에, 본 발명자들은 종래 상용 SAP에 도입된 친수성 그룹 카르복실기(-COOH)이 물과의 친화력은 유지하면서 수산화나트륨(NaOH)와 같은 염기에 의해 중화되어 전하를 가질 때, 같은 전하를 가진 카르복실 이온들이 반발력에 의해서 일정한 공극을 형성한다는 점으로부터 안출하여, 양이온성 SAP를 시멘트 결합재 조성물에 급속 균열 셀프실링을 구현할 수 있는 자기치유 재료로서 포함함으로써, 타설 직후 시멘트계 내 환경조건에서의 팽윤이 억제되어 초기 팽창에 의해 생성되는 공극크기를 최소화하여 압축강도 손실을 저감할 수 있고, pH 중성 또는 산성의 용액이 균열로 침투될 때 우수한 셀프실링(self-sealing) 효과가 발현됨을 확인함으로써, 본 발명을 완성하였다.
대한민국특허 제1741136호 (2017.06.16. 공고) 대한민국특허 제1642497호 (2016.07.25. 공고)
Rapid self-sealing of cracks in cementitious materials incorporating superabsorbent polymers, Geuntae Hong, Seongcheol Choi, Construction and Building Materials, 2017, 143 366-375.
본 발명의 목적은 급속 균열 셀프실링 특성을 가진 양이온성 SAP를 포함한 자기치유 개선용 시멘트 결합재 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기 급속 균열 셀프실링 특성을 가진 SAP의 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 급속 균열 셀프실링 특성을 가진 양이온성 SAP를 포함한 자기치유 개선용 시멘트 결합재 조성물을 제공한다.
본 발명의 양이온성 SAP는 재령 초기 알칼리 특성을 나타내는 아민 계열의 SAP이며, 상기 양이온성 SAP가 염기성 조건, 중성 조건 및 산성 조건 순으로 팽윤도가 상승하는 pH 의존형 팽윤거동 특성을 나타낸다.
이때, 상기 양이온성 SAP가 재령 초기 배합수를 흡수하여 팽윤된 흡수율이 상용 음이온성 SAP 대비 20 내지 25% 감소되며, 상기 특성은 타설 직후 시멘트계 내 환경조건에서의 팽윤이 억제되어 시멘트계 재료 내 초기 팽창에 의해 생성되는 공극크기를 감소시킬 수 있다.
본 발명은 1) 양이온성 모노머(METAC)에 가교제 및 반응개시제를 혼합하되, 상기 양이온성 모노머가 10 내지 20중량% 함유되도록 조절하여 혼합 교반하고,
2) 상기 교반 후 디아민류 화합물을 혼합하여 가교 반응하고,
3) 상기 가교가 완료된 양이온성 폴리머(PMETAC) 하이드로젤을 증류수로 팽윤시키고,
4) 상기 팽윤된 양이온성 폴리머(PMETAC) 하이드로젤을 건조시키고,
5) 상기 건조된 양이온성 폴리머를 입자형으로 분쇄하는 단계로 이루어진, 급속 균열 셀프실링용 양이온성 SAP의 제조방법을 제공한다.
본 발명에 따라, 양이온성 SAP를 포함한 자기치유 개선용 시멘트 결합재 조성물은 pH에 따라 팽창 특성을 제어함으로써, 타설시 배합수에 의한 팽창률을 최소화하고, 시멘트계 재료 내에 형성되는 공극의 크기를 최소화할 뿐만 아니라, 균열을 통해 유입되는 유입수에 의한 팽창률을 극대화할 수 있다.
이에 따라, 본 발명의 아민 계열의 SAP는 시멘트계 재료에서 급속 균열 셀프실링링(self-sealing) 효과를 높이고, 강도 저하문제를 개선함으로써, 궁극적으로 자가 치유(self-healing) 능력을 향상시킬 수 있다.
도 1은 SAP 입자를 이용한 급속 균열 셀프실링(self-sealing) 메커니즘을 단계별로 도시한 것이고,
도 2는 상용 SAP의 pH에 따른 팽윤 속도를 도시한 것이고,
도 3은 상용 SAP 혼입에 따른 시멘트계 재료 내 생성된 다수의 공극 이미지이고,
도 4는 본 발명에서 제조된 양이온성 SAP의 pH에 따른 팽윤 속도를 도시한 것이고,
도 5는 본 발명에서 제조된 양이온성 SAP(PMETAC)와 상용 SAP 팽윤 특성의 비교 결과이고,
도 6은 본 발명의 제조과정 중 증류수에서 24 시간 동안 팽윤된 양이온성 SAP 하이드로젤 사진이고,
도 7은 본 발명의 제조방법에 따라 분쇄된 300∼350㎛ 입도를 가지는 SAP의 광학 현미경 사진이고,
도 8은 본 발명의 제조 SAP 및 상용 SAP간의 노출 용액별 흡수율을 나타낸 것이다.
이하, 본 발명을 상세히 설명하고자 한다.
본 발명은 급속 균열 셀프실링 특성을 가진 양이온성 SAP를 포함한 자기치유 개선용 시멘트 결합재 조성물을 제공한다.
본 발명의 양이온성 SAP는 아민 계열의 SAP로서, 재령 초기 pH 13수준의 알칼리 특성을 나타낸다.
도 4는 본 발명에서 제조된 양이온성 SAP의 pH에 따른 팽윤 속도를 도시한 것으로서, 염기성 조건, 중성 조건 및 산성 조건 순으로 팽윤도가 상승하는 pH 의존형 팽윤거동 특성을 확인할 수 있다.
도 5는 본 발명에서 제조된 양이온성 SAP(PMETAC)(이하 '제조 SAP'라 함)와 상용 음이온성 SAP 팽윤 특성의 비교 결과로서, 시멘트 재료 배합시 입자크기별 빈도분포를 통해 단계별 팽윤특성을 판단할 수 있다. 즉, 건조 상태의 SAP 입자 크기는 제조 SAP와 상용 SAP와 동일하나, 시멘트계 재료 내 배합수를 흡수하여 팽윤된 경우, 본 발명의 제조 SAP의 흡수율은 상용 SAP인 음이온성 SAP 대비 20 내지 25% 감소된다. 이후, 균열을 통해 유입되는 중성 또는 산성 용액의 pH 특성에 의해서는 팽창 정도는 본 발명의 제조 SAP와 상용 SAP와 대등한 결과를 보인다.
이상의 결과로부터, 본 발명의 제조 SAP는 시멘트계 재료 내 배합수의 pH 특성에서는 건조 상태의 SAP 입자 크기에 비해 매우 적게 팽창하여, 초기 팽창에 의해 생성되는 공극크기를 최소화하고, 균열을 통해 유입되는 중성 또는 산성 용액의 pH 특성에 의해서는 팽창을 극대화하는 특징을 확인할 수 있다.
따라서, 대략 pH 13의 시멘트 포어 솔루션(filtered cement pore solution, FCPS) 조건에서 본 발명의 양이온성 SAP는 팽윤 속도를 최소화함에 따라, 시멘트계 재료 내에서 초기 팽창에 의해 생성되는 공극 크기를 감소시킴으로써, 종래 시멘트계 재료에 SAP 혼입시 가장 큰 문제점으로 대두되었던 압축강도 손실을 저감할 수 있다.
동시에 pH 중성 또는 산성의 용액이 균열로 침투시 우수한 셀프실링(self-sealing) 효과가 발현되어 궁극적으로 균열 자기치유(self-healing) 능력을 높일 수 있다.
본 발명은 1) 양이온성 모노머(METAC)에 가교제 및 반응개시제를 혼합하되, 상기 양이온성 모노머가 10 내지 20중량% 함유되도록 조절하여 혼합 교반하고,
2) 상기 교반 후 디아민류 화합물을 혼합하여 가교 반응하고,
3) 상기 가교가 완료된 양이온성 폴리머(PMETAC) 하이드로젤을 증류수로 팽윤시키고,
4) 상기 팽윤된 양이온성 폴리머(PMETAC) 하이드로젤을 건조시키고,
5) 상기 건조된 양이온성 폴리머를 입자형으로 분쇄하는 단계로 이루어진, 급속 균열 셀프실링용 양이온성 SAP의 제조방법을 제공한다.
종래 음이온성을 가지는 상용 SAP와는 달리, 본 발명은 양이온성 SAP의 제조방법을 통해, 반복적인 단위에서 양전하를 띈 암모늄 그룹(고정 전하)과 음으로 하전된 염소 이온(이동 이온)을 포함하는 팽윤된 양이온성 SAP 하이드로젤을 얻을 수 있다[도 6]. 이때, 고정 전하 사이의 정전기적 반발력은 폴리머 네트워크를 팽창시키고 폴리머에 초흡수성의 특성을 부여한다.
또한, 폴리머 네트워크 내부와 팽창 매질 외부의 이동 이온의 농도 차이는 삼투압 차이를 유발하여, 많은 양의 물이 삼투압의 균형을 맞추기 위해 고분자 네트워크로 유입되어 하전된 가교 네트워크에 초흡수성 특성을 부여하게 된다. 이때, 염기성 용액으로 SAP를 팽윤시키게 되면, 증류수에 비해 SAP와 염기성 용액 사이의 삼투압이 감소하여 SAP가 보다 낮은 정도로 팽창하게 된다. 따라서 이 발명에서 제시한 양이온성 SAP(PMETAC 하이드로젤)는 pH 의존성의 팽윤도를 가지게 되는 것이다.
본 발명의 양이온성 SAP의 제조방법은 제조된 아민 계열의 SAP인 PMETAC 하이드로젤이 수만 퍼센트의 높은 팽윤도를 가질 수 있도록 유도하기 위해서는 모노머의 농도와 가교제의 양을 현저히 줄여 진행한다. 일반적으로 METAC 80중량% 용액을 사용하나, 본 제조방법에서는 모노머의 농도를 줄이기 위해 10중량% 용액으로 낮추고, 가교제의 양 역시 통상의 사용량보다 2/5배로 줄여 제조하였다. 따라서 유입수에 의해 팽창될 수 있는 네트워크 공간이 커짐에 따라 수만 퍼센트 이상의 높은 팽윤도를 가질 수 있다.
결론적으로, 본 발명의 양이온성 SAP(PMETAC 하이드로젤)는 양이온성 특성과 모노머와 가교제의 양 조절 과정을 통해 pH 의존성의 높은 팽윤도를 제공할 수 있다.
상기 팽윤된 양이온성 SAP 하이드로젤을 건조 후 양이온성 폴리머를 입자형으로 분쇄하는데, 상용 SAP의 입자크기와 대응하게 준비하고 물성 평가를 수행하기 위하여 바람직하게는 300∼350㎛ 입도를 가지는 SAP를 제조할 수 있으나 입자크기는 이에 한정되지 아니할 것이다.
도 7은 본 발명의 제조방법에 따라 분쇄된 300∼350㎛ 입도를 가지는 SAP의 광학 현미경 사진이다.
도 8은 본 발명의 제조 SAP 및 상용 SAP간의 노출 용액별 흡수율을 나타낸 것이다. 상기 결과, 본 발명의 제조 SAP는 시멘트계 재료에 적용할 경우, 상용 SAP에 비해 배합 초기 시멘트 포어 솔루션(FCPS) 조건에서의 1차 팽윤이 작게 결과를 확인할 수 있다.
이러한 결과로부터, 시멘트 매트릭스 내 형성하는 공극(void) 크기를 감소시켜, 궁극적으로 SAP 혼입에 따른 압축강도 손실률을 저감시킬 수 있을 것이다.
또한, 균열 발생 이후 강우수(중성 또는 약산성)가 유입되는 경우에는 상용 SAP와 대등한 우수한 급속 균열 셀프실링 효과 발현을 확인할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다.
본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
<실시예 1> 양이온성 SAP 제조
양이온성 SAP은 하기 반응식 1에 의해, PMETAC 수지(poly(2-methacrylolyloxyethyltrimethylammonium chloride)를 제조하였으며, 하기에서 n은 0.01 내지 0.02이다.
반응식 1
Figure 112018113392888-pat00001
100㎖ 바이알에 METAC(수용액기준 10중량%용액) 45.28㎖와 가교제 MBA 용액(2중량% 용액) 3.4l㎖, 개시제 APS 0.0275g을 넣어 100rpm으로 6 시간 동안 교반하였다.
상기 교반된 용액에 TEMED (5중량% 용액) 2.8㎖를 넣고 10 분간 교반시킨 후, 200㎖ 유리 샬레에 부어 상온에서 24 시간 동안 가교반응을 진행하였다.
상기 가교가 완료된 Poly-METAC 하이드로젤을 증류수에서 24 시간 동안 팽윤시켜 양이온성 SAP 하이드로젤을 제조하였다. 이때, 4번 이상 증류수를 교체하였다.
상기 팽윤된 양이온성 SAP 하이드로젤을 80℃ 오븐에서 30 시간 동안 건조하였다[도 6].
상기 건조 완료된 SAP을 폴리머 분쇄기를 이용하여 분쇄시킨 후, 체(sieve)를 이용하여 300∼350 ㎛ 입도를 가지는 분말 형태의 SAP를 제조하였다[도 7].
<실험예 1> 양이온성 SAP의 팽윤 특성평가
본 발명에서 제조한 양이온성 SAP(이하 제조 SAP)와 상용 SAP 대비 팽윤 특성을 확인하기 위하여 티-백 방법(tea-bag method)을 통해 흡수율을 측정하였다. 이때, 상용 SAP는 아크릴산 나트륨 공중합체(CAS NO. 25085-02-3)를 사용하였다.
SAP의 흡수율은 하기 수학식 1에 따라 산정되며 SAP 입자들의 초기 건조중량과 용액을 흡수한 후 팽윤된 상태에서의 중량 차이를 계산한다.
수학식 1
Figure 112018113392888-pat00002
균열 셀프실링을 목적으로 시멘트계 재료에 혼입된 SAP 입자들은 도 1에 도시된 바와 같이, 시멘트 포어 솔루션(cement pore solution)에 의해 최초 팽윤-건조 이후, 균열을 통한 유입수에 의해 2차적으로 팽윤된다.
따라서 SAP가 실제 콘크리트 구조물에 적용된 경우의 노출 환경조건을 모사하기 위하여, 흡수율 측정 시 최초 흡수 용액으로 여과된 시멘트 포어 솔루션(filtered cement pore solution, FCPS)을 사용하였고, 2차 흡수 용액으로 중성의 증류수(distilled water, DW)를 사용하였다.
흡수율 측정 시에는 본 발명의 SAP 및 상용 SAP 모두 300∼350㎛의 동일한 입도범위를 가지는 입자들을 사용하였으며, 용액에 노출되는 시간은 60분으로 하였다.
1차 팽윤 및 측정이 완료된 SAP 입자들은 티-백(tea-bag)에서 꺼내어지지 않은 상태로 온도 40±1℃, 상대습도 2±1%의 조건으로 24시간 동안 건조된 후에 2차 팽윤을 측정하였다.
도 8은 본 발명의 SAP 및 상용 SAP의 노출 용액별 흡수율을 나타낸 것으로서, 시멘트 포어 솔루션(FCPS)에 의한 1차 팽윤 단계에서 본 발명의 SAP의 흡수율은 상용 SAP의 흡수율의 약 71.5% 수준으로 나타났다.
또한, 증류수(DW)에 의한 2차 팽윤 단계에서 본 발명의 SAP의 흡수율은 상용 SAP의 흡수율에 거의 근접한 수치로 확인되었다.
따라서 본 발명의 SAP를 시멘트계 재료에 적용할 경우, 상용 SAP에 비해 배합 초기 시멘트 포어 솔루션(FCPS)에 의한 팽윤이 작게 발생함에 따라 시멘트 매트릭스 내 형성하는 공극(void) 크기를 감소시켜, 궁극적으로 SAP 혼입에 따른 압축강도 손실률을 저감시킬 수 있을 것으로 기대된다.
더불어 균열 발생 이후 강우수(중성 또는 약산성)가 유입되는 경우에는 상용 SAP와 대등한 우수한 급속 균열 셀프실링 효과를 발현할 수 있음을 확인하였다.
이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.

Claims (5)

  1. 급속 균열 셀프실링 특성을 가진 양이온성 고흡수율 폴리머를 포함하되,
    상기 양이온성 고흡수율 폴리머가
    양이온성 모노머(METAC)에 가교제 및 반응개시제를 혼합하되, 상기 양이온성 모노머가 10 내지 20중량% 함유되도록 조절하여 혼합 교반하고, 상기 교반 후 디아민류 화합물을 혼합하여 가교 반응하고, 상기 가교가 완료된 양이온성 폴리머(PMETAC) 하이드로젤을 증류수로 팽윤시키고, 상기 팽윤된 양이온성 폴리머(PMETAC) 하이드로젤을 건조시키고, 상기 건조된 양이온성 폴리머를 입자형으로 분쇄된 것을 특징으로 하는 자기치유 개선용 시멘트 결합재 조성물.
  2. 제1항에 있어서, 상기 양이온성 고흡수율 폴리머가 재령 초기 알칼리 특성을 나타내는 아민 계열의 고흡수율 폴리머인 것을 특징으로 하는 자기치유 개선용 시멘트 결합재 조성물.
  3. 제1항에 있어서, 상기 양이온성 고흡수율 폴리머가 염기성 조건, 중성 조건 및 산성 조건 순으로 팽윤도가 상승하는 pH 의존형 팽윤거동 특성을 나타내는 것을 특징으로 하는 자기치유 개선용 시멘트 결합재 조성물.
  4. 제1항에 있어서, 상기 양이온성 고흡수율 폴리머가 재령 초기 배합수를 흡수하여 팽윤된 흡수율이 상용 음이온성 고흡수율 폴리머 대비 20 내지 25% 감소된 것을 특징으로 하는 자기치유 개선용 시멘트 결합재 조성물.
  5. 1) 양이온성 모노머(METAC)에 가교제 및 반응개시제를 혼합하되, 상기 양이온성 모노머가 10 내지 20중량% 함유되도록 조절하여 혼합 교반하고,
    2) 상기 교반 후 디아민류 화합물을 혼합하여 가교 반응하고,
    3) 상기 가교가 완료된 양이온성 폴리머(PMETAC) 하이드로젤을 증류수로 팽윤시키고,
    4) 상기 팽윤된 양이온성 폴리머(PMETAC) 하이드로젤을 건조시키고,
    5) 상기 건조된 양이온성 폴리머를 입자형으로 분쇄하는 것으로 이루어진, 양이온성 고흡수율 폴리머의 제조방법.
KR1020180140190A 2018-11-14 2018-11-14 급속 균열 셀프실링 특성을 가진 양이온성 고흡수율 폴리머를 포함한 자기치유 개선용 시멘트 결합재 조성물 및 양이온성 고흡수율 폴리머의 제조방법 KR102187931B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180140190A KR102187931B1 (ko) 2018-11-14 2018-11-14 급속 균열 셀프실링 특성을 가진 양이온성 고흡수율 폴리머를 포함한 자기치유 개선용 시멘트 결합재 조성물 및 양이온성 고흡수율 폴리머의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180140190A KR102187931B1 (ko) 2018-11-14 2018-11-14 급속 균열 셀프실링 특성을 가진 양이온성 고흡수율 폴리머를 포함한 자기치유 개선용 시멘트 결합재 조성물 및 양이온성 고흡수율 폴리머의 제조방법

Publications (2)

Publication Number Publication Date
KR20200056185A KR20200056185A (ko) 2020-05-22
KR102187931B1 true KR102187931B1 (ko) 2020-12-07

Family

ID=70914085

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180140190A KR102187931B1 (ko) 2018-11-14 2018-11-14 급속 균열 셀프실링 특성을 가진 양이온성 고흡수율 폴리머를 포함한 자기치유 개선용 시멘트 결합재 조성물 및 양이온성 고흡수율 폴리머의 제조방법

Country Status (1)

Country Link
KR (1) KR102187931B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525556A (ja) * 2008-06-27 2011-09-22 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー 遅延性超吸収性ポリマー
KR101741136B1 (ko) * 2016-03-07 2017-06-16 중앙대학교 산학협력단 시멘트 균열 치유를 위한 pH 응답형 팽창 특성 제어 가능한 고흡수율 폴리머 및 이의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1205525A1 (en) * 1999-07-15 2002-05-15 Nippon Kayaku Kabushiki Kaisha Water leakage preventive agent, water leakage preventive material made with the same, and method of preventing water leakage
CN106232689B (zh) * 2014-04-25 2019-08-23 松原产业株式会社 吸水性聚合物颗粒生产中的多段式研磨
KR101642497B1 (ko) 2014-12-31 2016-07-25 한국기술교육대학교 산학협력단 아크릴계 고흡수성 수지의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525556A (ja) * 2008-06-27 2011-09-22 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー 遅延性超吸収性ポリマー
KR101741136B1 (ko) * 2016-03-07 2017-06-16 중앙대학교 산학협력단 시멘트 균열 치유를 위한 pH 응답형 팽창 특성 제어 가능한 고흡수율 폴리머 및 이의 제조방법

Also Published As

Publication number Publication date
KR20200056185A (ko) 2020-05-22

Similar Documents

Publication Publication Date Title
Chen et al. Synthesis and properties of thermo-and pH-sensitive poly (diallyldimethylammonium chloride)/poly (N, N-diethylacrylamide) semi-IPN hydrogel
Xu et al. Interconnected porous polymers with tunable pore throat size prepared via Pickering high internal phase emulsions
Snoeck Self-healing and microstructure of cementitious materials with microfibres and superabsorbent polymers
US10081573B2 (en) Cementitious mixtures, compositions for use in cementitious mixtures, and methods of producing cementitious mixtures
JP2005095759A (ja) 吸収剤とこれを用いてなる吸収性物品
CN1252731A (zh) 弹性超吸水性组合物
Zhang et al. Preparation and swelling behavior of fast‐swelling superabsorbent hydrogels based on starch‐g‐poly (acrylic acid‐co‐sodium acrylate)
Mignon et al. Combinatory approach of methacrylated alginate and acid monomers for concrete applications
CZ20001786A3 (cs) Vícesložkové vysoce absorbující gelové částice
WO2007037454A1 (en) Water-absorbing agent having water-absorbent resin as a main component and production method of the water-absorbing agent
CN113105578B (zh) 一种耐盐碱缓释吸水树脂及应用
CN113272347A (zh) 单分散性水凝胶颗粒
KR102187931B1 (ko) 급속 균열 셀프실링 특성을 가진 양이온성 고흡수율 폴리머를 포함한 자기치유 개선용 시멘트 결합재 조성물 및 양이온성 고흡수율 폴리머의 제조방법
KR101642497B1 (ko) 아크릴계 고흡수성 수지의 제조방법
Hopa et al. Fabrication of carboxyalkylated lignin derived microgels for adsorbing heavy metals
CN112961284A (zh) 一种半互穿网络结构的耐盐碱缓释吸水树脂及应用
KR20010050265A (ko) 수팽윤성 가교중합체, 그 조성물과 이들의 제조방법 및 용도
CN107325221A (zh) 一种聚羧酸减水剂用复合粘度调节剂
EP3885396A1 (en) Super absorbent polymer and preparation method for same
Chen et al. Stimulus-responsive hydrogels reinforced by cellulose nanowhisker for controlled drug release
Zhang et al. A thermo-responsive dual-crosslinked hydrogel with ultrahigh mechanical strength
JP2004121400A (ja) 吸収剤とこれを用いてなる吸収性物品
KR102259135B1 (ko) 팩용 분말 조성물 및 이를 제조하는 방법, 분말 조성물을 이용한 셔벗 형태의 미용팩용 마이크로겔, 및 그의 제조방법
US20050080389A1 (en) Absorbent articles having increased absorbency of complex fluids
CN108905650B (zh) 一种聚四氟乙烯基阳离子交换膜的制备方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant