KR102187625B1 - 원자로 내의 장비 부품을 안내하기 위한 레일을 교체하기 위한 방법 - Google Patents

원자로 내의 장비 부품을 안내하기 위한 레일을 교체하기 위한 방법 Download PDF

Info

Publication number
KR102187625B1
KR102187625B1 KR1020157007497A KR20157007497A KR102187625B1 KR 102187625 B1 KR102187625 B1 KR 102187625B1 KR 1020157007497 A KR1020157007497 A KR 1020157007497A KR 20157007497 A KR20157007497 A KR 20157007497A KR 102187625 B1 KR102187625 B1 KR 102187625B1
Authority
KR
South Korea
Prior art keywords
rail
positioning
replacement
fixed
guideway
Prior art date
Application number
KR1020157007497A
Other languages
English (en)
Other versions
KR20150054856A (ko
Inventor
로랑 카우에
드니스 폴리에
다니엘 그라이피카젠스키
Original Assignee
아레바 엔피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아레바 엔피 filed Critical 아레바 엔피
Publication of KR20150054856A publication Critical patent/KR20150054856A/ko
Application granted granted Critical
Publication of KR102187625B1 publication Critical patent/KR102187625B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/20Arrangements for introducing objects into the pressure vessel; Arrangements for handling objects within the pressure vessel; Arrangements for removing objects from the pressure vessel
    • G21C19/207Assembling, maintenance or repair of reactor components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

본 방법은 이하의 단계들:
- 고정된 참조(68)를 생성하는 단계;
- 고정된 참조(68)에 대해 원 레일(26)의 온전한 표면들(60, 62, 64)의 원 원주 위치를 결정하는 단계;
- 온전한 표면들(60, 62, 64)의 원 원주 위치를 이용하여, 교체 레일(90)을 원주방향으로 포지셔닝하는 단계를 포함한다.

Description

원자로 내의 장비 부품을 안내하기 위한 레일을 교체하기 위한 방법{Method for replacing a rail for guiding a piece of equipment inside a nuclear reactor}
본 발명은 원자로들 내부의 장비의 유지보수에 관한 것이다.
더욱 상세하게는, 본 발명은 원자로 내에서 장비의 부품(piece)을 안내하는 레일을 교체하기 위한 방법으로서,
- 원자로는 내부 장비의 부품이 배치되는, 중심 축선을 갖는 압력 용기를 가지며, 원(original) 레일은 압력 용기 안에 위치된 참조 요소에 대해 내부 장비의 안내를 제공하기 위해 가이드웨이와 협력하고;
- 원 레일은 장비의 내부 부품 및 참조 요소 중 하나에 고정되고, 가이드웨이는 장비의 내부 부품 및 참조 요소 중 다른 하나에 고정된다.
원자로의 노심은 원자로들의 하측 내부 장비의 부품들 내에 위치된, 대략 각주형을 갖는 핵연료 조립체들을 포함한다.
하측 내부 장비의 이들 부품들은 특히 압력 용기에 대해 실질적으로 동축 배열로 압력 용기의 내부에 고정되는, 실질적으로 원통형의 노심 인클로저, 및 노심 인클로저의 하단부에 고정되는 노심 지지 플레이트를 포함한다.
압력 용기는 또한 스프링들에 의해 핵연료 조립체들의 상측 부분 상에 놓이는, 특히 상측 노심 플레이트를 갖는 상측 내부 장비를 포함한다.
상측 및 하측 내부 장비의 부품들은 압력 용기 내부에 매달린다. 이들은 압력 용기 덮개의 연결 평면 약간 아래에서 압력 용기의 슈라우드(shroud)에 고정된다. 더욱이, 하측 내부 장비의 부품들은 노심 지지 플레이트 주위에 분포되고 거기에 고정되는 수개의 가이드 레일들에 의해 하측 부분 내에서 안내된다. 각각의 레일은 압력 용기에 고정된 가이드웨이와 협력한다. 레일들 및 가이드웨이들은 부수적 조건들 하에서 중심 축선 주위에서의 하측 내부 장비의 부품들의 원주 운동들을 제한하고, 노심 지지 플레이트의 반경방향 운동들을 제한하기 위해 협력한다. 그러나, 그것은 예를 들어 차등 팽창(differential expansion)의 영향 하에서, 압력 용기에 대해 축방향에서 노심 지지 플레이트 및 노심 인클로저의 운동들을 허용한다.
가이드웨이들에 대한 레일들의 러빙(rubbing)으로 인해, 레일들의 표면들이 마모되고, 시간이 지남에 따라, 내부 장비의 이동이 허가된 표준들을 초과할 수 있는 위험이 있다.
이러한 상항에서, 본 발명의 목적은 상기 문제를 해결하기 위해, 가이드 레일들을 교체하는 것을 가능하게 하는 방법을 제안하는 것이다.
그러한 목적을 위해, 본 발명은 원자로 내에서 장비의 부품(piece)을 안내하는 레일을 교체하기 위한 방법으로서,
- 원자로는 내부 장비의 부품이 배치되는, 중심 축선을 갖는 압력 용기를 가지며, 원(original) 레일은 압력 용기 안에 위치된 참조 요소에 대해 내부 장비의 부품을 안내하기 위해 가이드웨이와 협력하고;
- 원 레일은 장비의 내부 부품 및 참조 요소 중 하나에 고정되고, 가이드웨이는 장비의 내부 부품 및 참조 요소 중 다른 하나에 고정되고;
- 원 레일은 가이드웨이와 마찰하여 변경되는 표면들을 갖는 실질적으로 반경방향의 측면들, 및 가이드웨이와 마찰하여 변경되지 않는 온전한 표면들을 가지며;
상기 방법은 이하의 단계들:
- 고정된 참조(fixed reference)를 생성하는 단계;
- 고정된 참조에 대해 중심 축선 주위에서 원 레일의 온전한 표면들의 원 원주 위치를 결정하는 단계;
- 원 레일을 분해하는 단계;
- 결정 단계에서 얻어진 온전한 표면들의 원 원주 위치를 이용하여, 내부 장비의 부품 또는 참조 요소에 대해 중심 축선 주위에서 교체 레일을 원주방향으로 포지셔닝하는 단계;
- 내부 장비의 부품 또는 참조 요소에 교체 레일을 고정하는 단계를 포함하는, 레일 교체 방법에 관한 것이다.
따라서, 원 레일의 측면들의 온전한 표면들은 교체 레일을 포지셔닝하기 위해 원주 위치 기준을 규정하는 것을 가능하게 한다. 이것은 교체 레일의 포지셔닝을 상당히 단순화하는 것을 가능하게 한다.
원 레일의 측면들의 온전한 표면들은 가이드웨이의 작동 안내 표면들 정면에 위치되지 않는 표면들이다. 그러므로, 이들 표면들은 가이드웨이의 작동 안내 표면들과 마찰하지 않고 손상되지 않는다. 표면들은 측면들의 양 축방향 단부들에 위치된다. 측면들은 실제로 가이드웨이의 작동 안내 표면들보다 더 길다.
더욱이, 레일은 2개의 측면들을 규정하는 안내 부분, 및 내부 장비 또는 참조 요소에 대한 고정 부분을 포함한다. 안내 부분만이 가이드웨이에 결합된다. 고정 부분을 따라 위치된 각각의 옆면 영역은 온전한 표면을 구성하는데, 그 이유는 그것이 가이드웨이에 결합되지 않기 때문이다.
가이드웨이의 형상 및 레일의 측면들의 형상에 의존하여, 다른 온전한 표면들은 측면들 상에 존재할 수 있다.
위에 나타낸 것과 같이, 레일은 압력 용기에 대해 하측 내부 장비의 부품들을 안내하도록 설계될 수 있다. 그 경우에, 레일은 하측 내부 장비의 부품들에, 더욱 상세하게는 노심 지지 플레이트에 고정된다. 가이드웨이는 예를 들어 압력 용기의 내면 상에 용접되는 요소에 기계가공되는 평행 6면체 형상을 갖는 오목부에 수용된다. 이 경우에 압력 용기는 참조 요소를 구성한다.
레일은 전형적으로 노심 지지 플레이트에 고정된다(두문자어 CPY를 이용하여 언급되는 900 MWe급의 원자로들의 경우). 대안으로, 레일은 노심 지지 플레이트 상에 용접된 중간 부분에 의해 노심 지지 플레이트에 고정된다(CPO 타입의, 900 MWe급의 원자로들의 경우).
상기 방법은 다른 급의 원자로들에 적용 가능하다.
하나의 대안에 따르면, 레일은 압력 용기에 고정된 지지 부분 상에 장착되고, 가이드웨이는 직접 또는 간접적으로든 노심 지지 플레이트 상에 있지 않다.
다른 실시예에 있어서, 레일은 하측 내부 장비의 부품들에 대해 압력 용기의 상측 내부 장비의 부품들을 안내하기 위해 제공된다. 그 경우에, 레일은 상측 내부 장비 및 하측 내부 장비의 부품들 중 하나에 고정된다. 가이드웨이는 하측 내부 장비 및 상측 내부 장비의 부품들 중 다른 하나에 고정된다. 하측 내부 장비의 부품들은 여기서 참조 요소를 구성한다.
위에 나타낸 것과 같이, 용어 "센터링 레일(centering rail)"은 여기서 레일이 압력 용기의 중심 축선의 원주방향 주위에서 내부 장비의 운동을 방지하고 반경방향 운동들을 제한하기 위해 제공되는 것을 의미한다. 레일의 측면들은 내부 장비의 부품들이 압력 용기 내에 위치되어 있을 때, 각각의 측면이 중심 축선을 포함하는 적어도 하나의 반경방향 평면에 대해 5°보다 작은 각도를 형성하는 한, 압력 용기의 중심 축선에 대해 실질적으로 반경방향에 있다.
상기 방법은 전형적으로 수조(pool)에서, 더욱 상세하게는 원자로의 압력 용기에 인접한 수조에서 수행된다. 상기 방법을 수행하기 전에, 내부 장비의 부품들은 원자로의 압력 용기로부터 제거되고, 수조 바닥에 위치된 기존의 스토리지 구조(storage structure) 상에 위치된다.
원 레일의 온전한 표면들의 원 원주 위치를 결정하는 것은 고정된 참조에 대해, 원 레일의 측면들이 끼워맞춰지는(fit) 2개의 평면들의 위치를 계산하는 것을 가능하게 한다. 포지셔닝 단계에서, 교체 레일은 이들 측면들이 고정된 참조에 대해 상기 원래의 평면들에 위치되도록 한 위치에서 고정된 참조에 대해 배치된다.
교체 레일의 측면들의 원주 위치는 특히 정확해야 하는데, 그 이유는 교체 레일의 측면들과 가이드웨이 사이의 원방향 유극이 극히 감소되기 때문이다. 교체 레일과 가이드웨이 사이의 원주 방향 기능 유극(circumferential functional play)은 대략 0.5 mm이다.
상기 방법은 또한 개별적으로 또는 임의의 기술적으로 가능한 조합들에 따라 고려되는, 이하의 하나 이상의 특징들을 가질 수 있다.
본 발명의 일 양상에 따르면, 좌표 결정 단계는 다축 로봇 상에 장착된 필러를 이용하여 행해진다. 로봇은 예를 들어 수조 바닥에 위치된, 6개의 축을 갖는 로봇이다. 이와 같은 로봇들은 알려져 있다. 필러는 장비의 알려진 부품이다. 대안으로 좌표 결정 단계는 레이저를 이용하여 또는 토포메트리(topometry)에 의해 행해진다.
다축 로봇 상에 장착된 필러를 이용하는 것이 특히 유리한데, 그 이유는 상기 방법을 구현하기 위한 다양한 동작들, 특히 교체 레일의 포지셔닝을 수행하는 툴들(tools)을 다루기 위해 동일한 로봇을 사용하는 것이 가능하기 때문이다. 따라서, 새로운 레일의 끼워맞춤을 위한 좌표 결정 단계로부터 위치 정보를 이용하는 것이 더 용이해 진다. 교체 레일의 포지셔닝은 더 정밀하다.
본 발명의 일 양상에 따르면, 참조는 고정 구조물이이고 그 위에는 위치 결정 및 포지셔닝 단계들을 위해 구현되는 장비의 적어도 하나의 부품이 장착된다. 환언하면, 고정 구조물은 위치 결정 단계 및 포지셔닝 단계에 사용되는 장비의 반복되는, 극 정밀한 조립을 허용하기 위해 제공되는, 수조 바닥에 배치되는 지지체이다. 이러한 장비는 교체 레일의 원주 포지셔닝을 위해 우수한 정밀도를 보장하기 위해, 양 단계들을 위해 동일하다. 이러한 장비는 전형적으로 다축 로봇이다. 이러한 로봇에는 위치 결정 및 포지셔닝 단계들을 위해 필요한, 상이한 툴들이 장비된다. 하나의 바람직하지 않은 대안에 있어서, 위치 결정 및 포지셔닝 단계들은 동일한 고정 구조물 상에 장착되는, 장비의 2개의 상이한 부품들의 장비에 의해 행해진다.
본 발명의 일 양상에 따르면, 포지셔닝 단계는:
- 내부 장비의 부품 또는 참조 요소에 적어도 하나의 포지셔닝 보어를 드릴링하기 위한 부-단계;
- 교체 레일을 통해 포지셔닝 보어에 적어도 하나의 포지셔닝 핀을 결합하기 위한 부-단계
를 포함한다.
전형적으로, 드릴링하는 부-단계 동안, 2개의 포지셔닝 보어들, 또는 2개 이상의 포지셔닝 보어들이 드릴링되고, 결합하는 부-단계에서, 2개의 포지셔닝 핀들이 포지셔닝 보어들, 또는 2개 이상의 포지셔닝 핀들에 결합된다.
교체 레일의 최종 위치가 포지셔닝 보어들의 위치에 의해 주로 결정된다. 교체 레일에 대한 이와 같은 포지셔닝 방법은 단순하고 정밀하다.
그 경우에, 내부 장비의 부품 또는 참조 요소에 대한 포지셔닝 보어의 위치는 유리하게는 온전한 표면들의 원 원주 위치로부터 결정된다. 그 위치는 계산에 의해 얻어진다.
본 발명의 일 양상에 따르면, 드릴링하는 부-단계는 원 레일을 분해하기 위한 단계 전에 행해진다. 이것이 특히 유리한데, 그 이유는 기록된 위치 데이터에 대해서가 아닌, 측면들의 온전한 표면들의 위치에 대해 직접 보어들의 포지셔닝을 제어하는 것이 가능하기 때문이다.
그러한 목적을 위해, 통로가 고정 부분 아래에 위치된 참조 요소 또는 내부 요소를 액세스하도록 원 레일의 고정 부분을 통해 드릴링된다.
대안으로, 드릴링하는 부-단계는 원 레일을 분해하기 위한 단계 후 행해진다.
드릴링하는 부-단계가 원 레일을 분해하기 위한 단계 전에 행해질 때, 드릴링은 방전가공에 의해 또는 다른 기계가공 기술을 이용하여, 원 레일의 고정 부분에서 조잡하게 행해진다.
본 발명의 일 양상에 따르면, 보어는 방전가공에 의해 드릴링된다.
방전가공은 마이크로-전기 방전들이 전극과 기계가공될 부분 사이에서 생성되는 기계가공 기술이다. 동작은 절연유(insulating oil) 또는 탈염 수조(demineralized water bath)에서 행해진다. 싱크 방전가공으로서 알려진 기술에 있어서, 전극은 기계가공될 보어의 형상을 보완하는 형상을 가진다.
방전가공은 보어의 치수에 양호한 정밀도를 허용하는 이점을 가진다. 더욱이, 기계적 가공 기술들과 달리, 방전가공 헤드를 포함하는 핸들러(handler)는 기계가공 단계 동안 큰 반력들을 받지 않는다. 그 결과, 핸들러는 동작 정밀도에 영향을 주지 않고, 경량 구조를 가질 수 있다.
본 발명의 다른 양상에 따르면, 보어는 절단 원뿔형 저부를 가진다. 실제로, 비록 방전가공이 큰 정밀도로 보어를 기계가공하는 것을 가능하게 하지만, 그럼에도 불구하고 이러한 정밀도는 최상의 기계가공 기술들에 의해 작업장에서 얻어질 수 있는 것만큼 좋지 않다. 절단된 원뿔이 되도록 보어의 저부를 구성하는 것은 보어의 직경에의 어떠한 부정확을 보상하는 것을 가능하게 한다. 포지셔닝 핀은 보어에 강제로 결합된다. 핀의 단부는 기계가공의 정밀도의 함수로서 더 크거나 작은 깊이에서 절단된 원뿔형 부분과 결합한다.
본 발명의 다른 양상에 따르면, 상기 방법은 중심 축선에 실질적으로 수직인 원 레일의 기준 표면의 축방향 위치를 결정하기 위한 단계를 포함하고, 내부 장비의 부품 또는 참조 요소에 대해 교체 레일을 포지셔닝하기 위한 단계는 또한 축방향 위치를 이용하여 행해진다.
그 결정은 측면들의 온전한 표면들에 대해, 다축 로봇에 의해 이동되는 필러로 행해진다. 기준 표면은 전형적으로 압력 용기의 하측 바닥 또는 상측 바닥을 향해 회전된, 레일의 안내 부분의 표면에 대응한다. 표면들은 온전한데, 그 이유는 이들이 결코 가이드웨이와 마찰하지 않기 때문이다. 좌표 결정 단계 동안 획득된 정보는 원 레일의 기준 표면이 들어 맞는(fit) 평면의 위치를 결정하는 것을 가능하게 한다. 포지셔닝 단계에서, 교체 레일의 대응하는 기준 표면은 상기 평면에 위치된다.
교체 레일의 포지셔닝을 위해 축방향에서 요구되는 정밀도는 원주방향에서 요구되는 정밀도보다 상당히 낮다는 것이 주목되어야 한다.
본 발명의 다른 특징들 및 이점들은 첨부 도면들을 참조하여, 하지만 거기에 제한되지는 않고, 이하에 제공되는 본 발명의 상세한 설명으로부터 나올 것이다.
- 도 1은 원자로의 압력 용기의, 축방향 단면의 단순화된 도해이고;
- 도 2 및 3은 도 1의 원자로의 하측 내부 장비의 부품들을 위한 센터링 레일(centering rail)의 반경방향 및 전방 횡단면도들이고;
- 도 4는 레일의 측면들의 위치를 개략적으로 도시하고;
- 도 5는 레일의 온전한 표면들(sound surfaces)을 나타내는 도 1의 상세의 확대도이고;
- 도 6은 본 발명에 따른 방법을 설명하는 단계들의 도면이고;
- 도 7은 수조 바닥에 위치된 하측 내부 장비의 부품들 및 결정 단계에 사용되는 다축 로봇의 단순화된 개략도이고;
- 도 8은 결정 단계에 사용되는 필러의 헤드의 단순화된 개략도이고;
- 도 9 및 10은 도 2 및 3의 것들과 유사한 뷰들이고, 원 레일을 통해 기계 가공된 보어들의 위치들을 나타내고;
- 도 11, 12 및 13은 교체 레일에 대한 고정 단계 및 포지셔닝 단계의 상이한 부단계들을 도시하고;
- 도 14 및 15는 다른 유형의 원자로에 대한, 도 2 및 3의 것들과 유사한 뷰들이다.
도 1에 나타낸 원자로(1)는 CPY 타입의, 900 MWe급의 가압수형 원자로(pressurized water reactor: PWR) 타입이다. 그것은 압력 용기(2)를 포함하고, 그 안에는 노심(3)이 위치된다. 노심(3)은 대략 각주형의 복수의 핵연료 조립체들을 포함한다. 압력 용기는 실질적으로 수직인 중심 축선(X)을 가진다. 압력 용기는 실질적으로 원통형의 슈라우드(shroud: 4), 슈라우드(4)의 하단부를 폐쇄하는 반구형 하측 저부(hemispherical lower bottom: 6), 및 슈라우드(4)의 상측 단부를 폐쇄하는 제거 가능 덮개(8)를 가진다.
원자로(1)는 또한 압력 용기(2) 내부에 위치되는 하측 내부 장비(10)(IIE)의 부품들 및 상측 내부 장비(12)의 부품들을 포함한다. 하측 내부 장비(10)의 부품들은 대략 원통형의 노심 인클로저(14), 및 노심 인클로저(14)의 하단부에 고정되는 노심 지지 플레이트(16)를 포함한다. 노심 인클로저(14)는 압력 용기에 대해 동축 배열로 되어 있다. 연료 조립체는 노심 인클로저 내부에 위치되고, 노심 지지 플레이트(16) 위에 가압된다. 노심 인클로저(14)는 노심(3)의 둘레로 연장하고 핵연료 조립체들을 제 위치에 유지하도록 설계된 격벽(18)을 둘러싸고 있다.
상측 내부 장비(12)의 부품들은 스프링들에 의해 노심(3)의 조립체들의 상측 부분 위에 놓이는 상측 노심 플레이트(20)를 포함한다. 하측 및 상측 내부 장비(10, 12)의 부품들은 슈라우드(4) 위의 덮개(8)의 연결 평면 약간 아래에서, 슈라우드(4)의 상측 에지 위에 고정되어 있는 상측 부분(22)에 의해 압력 용기(2) 내부에 매달려 있다.
도시된 예에 있어서, 4개의 안내 장치들(24)은 하측 내부 장비(10)의 부품들을 축선(X) 주위의 원주방향으로 및 축선(X)에 대해 반경방향으로 제 위치에 유지하기 위해 노심 지지 플레이트(16) 주위에 분포된다. 그러나, 안내 장치들(24)은 예를 들어 차등 팽창들(differential expansions)의 영향 하에서, 압력 용기에 대해 하측 내부 장비(10)의 부품들의 축방향 운동들을 허가한다.
각각의 안내 장치(24)는 노심 지지 플레이트(16)의 외측 주변 에지 위에 고정되는 레일(26), 및 레일(26)에 대향하여 압력 용기의 슈라우드(4)의 내면 상에 견고하게 고정되는 피메일 부분(female part; 28)을 포함한다.
레일(26)은 안내 부분(32)에 의해 반경방향 외향으로 연장하는, 노심 지지 플레이트(16)에 고정하기 위한 부분(30)을 포함한다. 부분들(30, 32)(도 2 및 3)은 축방향으로 대략 동일 높이를 가진다. 그러나, 고정 부분(30)은 원주방향으로 안내 부분(32)보다 훨씬 큰 폭을 가진다. 안내 부분(32)은 외면(36)에 의해 반경방향 외측을 향하고 상 및 하면들(38, 40)에 의해 상부 및 저부를 수평으로 향하는, 원주방향에서 서로 대향하는 2개의 측면들(34)에 의해 범위가 정해진다. 면들(34)은 도 4에 나타낸 것과 같이, 축선(X)에 대해 실질적으로 반경방향에 있는 평면들에서 연장한다.
고정 부분(30)은 실질적으로 평행 6면체이다. 그것은 노심 지지 플레이트(16)의 외측 주변 에지에 기계 가공되는 오목부(42)에 견고하게 고정된다.
더욱 상세하게는, 고정 부분(30)은 오목부(42)에 장착되어 브레이싱된다(mounted braced). 브레이싱은 오목부(42)의 수평 매립 플랭크들(horizontal embedding flanks; 43) 상에 위치된다. 더욱이, 둘레 용접선(peripheral weld line; 44)은 고정 부분(30)을 노심 지지 플레이트(16)에 고정한다. 끝으로, 6개의 나사들(46)은 노심 지지 플레이트(16)에 대한 부분(30)의 고정을 완료한다. 나사들(46)의 나삿니가 있는 단부들(threaded ends)은 노심 지지 플레이트(16)의 나사 구멍들(47)에 나사고정된다.
도 5에 도시된 것과 같이, 피메일 부분(28)은 압력 용기의 슈라우드(4)에 견고하게 고정되는, M 지지체(M support)라고 불리는 거대 지지체(massive support; 50) 및 가이드웨이(48)를 포함한다. 가이드웨이(48)는 축선(X)에 수직이고, 반경방향으로 압력 용기 내부를 향해 개방된 U자형 섹션을 가진다. 원주방향으로, U의 2개의 브랜치들(branches)의 내면들(51) 사이의 거리(separation)는 레일의 2개의 측면들(34) 사이의 거리보다 약간 더 크다.
도 5에 나타낸 것과 같이, 가이드웨이(48)는 확대된(flared) 상측 부분(52)을 가진다.
더욱 상세하게는, 내면들(51)은 각각 하측 영역(54) 및 상측 영역(56)을 가진다. 2개의 브랜치들의 영역들(54)은 서로 평행하고, 축선(X)에 대해 실질적으로 방사형이다(radial). 영역(56)은 영역(54)에 대해 경사져 있고, 2개의 브랜치들의 영역들(56)은 서로 분리되어 있는데, 그 이유는 이들이 대응하는 영역(54)으로부터 축방향 상향으로 추종되기 때문이다. 영역들(54)은 가이드웨이의 작동 안내 표면들(working guide surfaces)을 구성한다.
영역들(56)은 가이드웨이의 축방향 높이의 대략 20%를 커버한다.
레일의 안내 부분(32)은 보통은 각각의 면(34)과 대응하는 내면(51) 사이에 0.25 내지 0.3 mm의 유극(play)을 갖고, 가이드웨이(48)에 결합된다.
측면들(34)의 영역들(58)은 가이드웨이의 하측 영역들(54) 맞은 편에 배치된다. 영역들(58) 위에 위치된, 면들(34)의 영역들(60)은 가이드웨이의 영역들(56) 맞은 편에 있다. 영역들(58) 아래에 위치된, 면들(34)의 영역들(62)은 가이드웨이 아래에서 가이드웨이 밖에 위치된다. 더욱이, 레일의 고정 부분(30)과 면(34)의 접한선(junction line)을 따라, 면(34)의 축방향 전체 높이에 걸쳐 연장하는, 각각의 면(34)의 스트립(strip; 64)은 가이드웨이 외부에 위치된다. 레일의 외면(36)은 가이드웨이(48)의 저부에 대해 대략 18 mm의 거리를 갖고 가이드웨이(48)에 결합된다.
원자로의 수명에 걸쳐, 면들(34)의 영역들(58)은 압력 용기에 대해 하측 내부 장비의 부품들의 이동으로 인해 가이드웨이의 영역들(54)과 마찰한다. 영역들(58)은 원자로의 수년의 운전 후 마모되어 손상된다. 그러나, 면들(34)의 영역들(60, 62, 64)은 가이드웨이와 결코 마찰하지 않는다. 영역들(62, 64)은 가이드웨이 밖에 위치되므로, 가이드웨이와 마찰하지 않는다. 영역들(60)이 가이드웨이의 외향 돌출 부분들(52)에 위치되어, 이들은 영역들(56)과 접촉하지 않는다.
그러므로, 영역들(60, 62, 64)은 원자로의 수년의 운전 후조차도 온전하고, 즉 손상되지 않은 채로 있다.
레일들(26)의 교체 방법이 설명될 것이다. 이러한 방법의 주요 단계들은 도 6에 도시된다. 도 7에 나타낸 것과 같이, 상이한 단계들이 수중에서, 원자로의 수조(pool; 66)에서 일어난다.
이 방법은 다음의 단계들을 포함한다:
- 하측 내부 장비(10)의 부품들을 수용하기 위해 제공된 지지 구조(70) 근방의 수조 바닥에서 고정된 참조(fixed reference; 68)를 결정하는 단계;
- 원자로의 압력 용기로부터 지지 구조(70)로 하측 내부 장비(10)의 부품들을 전달하는 단계;
- 고정된 참조(68)에 대해, 원 레일(26)의 온전한 표면들의 원주 위치들 및 원 레일(26)의 축방향 위치를 결정하는 단계;
- 노심 지지 플레이트(16)에서, 교체 레일을 위한 포지셔닝 보어들을 드릴링하는 단계;
- 원 레일(26)을 분해하는 단계;
- 교체 레일을 끼워맞추는 단계(fitting);
- 포지셔닝 보어들에 결합되는 포지셔닝 핀들을 이용하여, 노심 지지 플레이트(16) 상에 교체 레일을 고정하는 단계;
- 노심 지지 플레이트(16)에 교체 레일의 고정 나사들을 조이는 단계(tightening);
- 교체 레일의 위치를 확인하는 단계(verifying);
- 나사들 및 핀들을 로킹하는 단계.
이들 상이한 단계들이 약술될 것이다.
고정된 참조(68)는 도 7에 나타낸 것과 같이 다축 로봇(multi-axis robot; 72)을 수용하도록 설계된 지지체이다. 고정된 참조(68)는 큰 포지셔닝 정밀도로 로봇(72)의 반복 조립을 허용한다. 로봇(72)은 상기 방법의 대다수의 동작들을 수행할 수 있게 허용하는 툴박스(toolbox)를 가진다.
고정된 참조(68)는 예를 들어 위치들이 조심스럽게 결정되는 복수의 하우징들(housings; 73)을 포함한다. 로봇(72)에는 하우징들(72)에 결합하고 고정된 참조(68)에 대해 로봇(72)의 정밀한 포지셔닝을 보장하도록 제공되는 핀들(74)이 장비된다.
지지 구조(70)는 하측 내부 장비(10)의 부품들을 수용하도록 제공되는 장비의 부품이다. 그것은 통상 원자로 수조들을 갖추고 있다.
하측 내부 장비의 부품들은 원자로의 폴러 브리지(polar bridge)에 의해 지지 구조(70) 쪽으로 전달된다.
레일의 온전한 표면들의 원주 위치들은 로봇(72)에 의해 이동되는, 필러(75)를 이용하여 결정된다. 전형적으로, 필러는 예를 들어 각각의 면(34)의 2개의 상이한 레벨들에 위치된, 최소 2개의 지점들에서 레일의 온전한 영역들의 원주 위치들을 결정한다. 예를 들어, 필러는 표면(60)의 영역의 원주 위치, 및 레일의 저부를 향해 위치된 표면(64)의 영역의 원주 위치를 결정할 것이다.
도 8에 나타낸 것과 같이, 필러(75)는 제 1 실린더(78)에 비해 작은 직경을 갖는 제 2 실린더(80)에 의해 연장되는, 로봇(72)과 인터페이스를 형성하는 제 1 실린더(78)를 갖는 헤드(76)를 포함한다. 좌표 결정 동작을 수행하기 위해, 로봇(72)은 먼저 영역에 대해 실린더(80)의 실질적으로 수직인 방위로, 영역에 대한 실린더(80)의 자유단이 결정되게 행한다. 이후, 로봇은 실린더(80)의 모점(generatrix)이 식별될 영역에 가압될 때까지 영역에 대해 실린더(80)를 피봇시킨다. 이후 결정될 영역이 들어맞는 평면의 직선이 결정된다. 동작은 온전한 표면들의 다른 영역으로 반복되어, 상기 평면의 부분인 제 2 직선을 식별하는 것을 가능하게 한다. 따라서, 2개의 직선들을 알아 참조(68)에 대해 온전한 표면들을 포함하는 평면의 정확한 위치를 결정하는 것이 가능하다.
동일한 동작이 레일의 하측 표면(40)의, 축방향 위치, 즉 수직 위치를 결정하기 위해 행해진다. 그 표면은 온전한데, 그 이유는 그것이 가이드웨이와 마찰하지 않기 때문이다. 필러(75)는, 위에 기재된 것과 같이, 고정된 참조(68)에 대해 면(40)의 수직 레벨을 결정한다.
이들 데이터는 로봇(72)을 제어하는 컴퓨터의 메모리에 저장된다.
다음의 단계에서, 보어들(82)은 도 9에 도시된 것과 같이, 노심 지지 플레이트(16)에 드릴링된다. 이들 보어들(82)은 로봇(72)에 의해 이동되는 방전가공 공구(electro-erosion tool)를 이용하여 드릴링된다. 2개의 보어들(82)은 레일의 안내 부분(32)의 동일한 원주측 상에 드릴링되어 위치된다(도 10).
보어들(82)은 원 레일을 분해하기 전에 드릴링된다. 그러한 목적을 위해, 보어들(82)에서, 레일의 고정 부분(30)을 통해 통로들(84)을 생성할 필요가 있다.
보어들(82)의 원주 위치는 선행 단계에서 미리 결정된, 2개의 면들(34)의 평면들의 원주 위치에 기초하여 참조(68)에 대해 계산된다. 보어들(82)의 수직 위치는 선행 단계에 식별된, 원 레일의 표면(40)의 수직 위치에 기초하여 결정된다.
도 9에 나타낸 것과 같이, 통로들(84)은 보어들(82)의 직경보다 훨씬 큰 직경을 가진다. 이들은 예를 들어 로봇(72)에 의해 보유되는 기계적 머시닝 툴(mechanical machining tool)에 의해 만들어진다. 통로(84)의 직경에 대해 양호한 정밀도를 가지는 것은 중요하지 않다.
일단 통로들(84)이 만들어지면, 보어들(82)은 방전가공 공구를 이용하여 기계가공된다. 보어들(82)은 각각 절단된 원뿔형을 갖는 바닥 부분(86)을 가진다.
원 레일(26)의 분해를 위해, 주변 용접부(44)가 로봇(72)에 의해 보유되는 방전가공 공구로 먼저 제거된다. 용접 스팟들(도시하지 않음)은 또한 나사들(46)의 정지 레일들(stop rails)로부터 제거된다.
이후, 붐(boom)은 예를 들어 레일의 상면(38)에 존재하는 나사 구멍(88)에 의해 레일(26)에 결합된다.
나사들(46)은 다음에 예를 들어 로봇(72)에 의해 보유되는 적합한 공구를 이용하여 해제 및 풀린다. 끝으로, 원 레일은 오목부(42)로부터 자유롭고 그것은 오리피스(orifice; 88)에 결합된 붐에 의해 제거된다.
다음 단계에서, 교체 레일(90)은 예를 들어 붐을 이용하여 또는 로봇(72)을 이용하여 오목부(42)에 더 가까워져서(도 11), 상기 오목부(42)에 배치된다. 교체 레일(90)은 실질적으로 원 레일(26)과 동일한 일반적인 형상 및 동일한 치수를 가진다. 이후, 도 12에 도시된 것과 같이, 나사들(91)은 노심 지지 플레이트에 이미 존재하는 오리피스들(47)에서, 회전력을 주기 위해 조임 없이 나사결합된다. 나사들(91)은 로봇(72)에 의해 나사결합된다.
이후, 핀들(92)은 교체 레일(90)을 매우 정밀하게 위치시키기 위해 보어들(82)에, 잘 규정된 힘값으로 강제로 결합된다.
그러한 목적을 위해, 교체 레일(88)은 나사들(90)을 위한 통로 구멍들(passage holes; 94), 및 핀들(92)을 위한 통로 구멍들(96)을 포함한다. 통로 구멍들(94, 96)은 원 레일 상의 결정된 원주 및 축방향 위치들의 함수로서 계산된 소정 위치들에 작업장(workshop)에서 기계가공된다. 통로 구멍들(96)은 큰 정밀도로 기계가공될 수 있고, 내경은 핀들(92)의 외경에 대응한다. 위에 기재된 것과 같이, 보어들(82)은 직경의 면에서 낮은 정밀도로 기계가공된다. 이것은 이들이 원뿔형이고 기계가공은 원뿔의 매우 양호한 정밀도를 보장한다는 사실에 의해 상쇄된다(offset). 따라서, 보어들(82)의 공칭 직경이 약간 너무 클때조차도, 핀들(92)의 단부는 원뿔형 부분(86) 상에 위치된다.
다음에 교체 레일의 측면들의 위치는 고정된 참조(68)에 대해 확인된다. 이들 위치들은 원 레일에 대해 결정된 위치들에 정확하게 대응해야 한다. 이러한 동작은 필러(75)에 의해 행해진다.
이러한 단계 동안, 이론상 위치들에 대한 보어들(82)의 위치들이 또한 확인된다.
만약 결정된 위치가 원하는 위치와 다르면,
- 교체 레일의 측면들과 가이드웨이 사이의 거리가 명세들(specifications)에 따른 것을 보장하기 위해 대응하는 가이드웨이를 재가공하는 것;
- 또는 백업 레일(backup rail)을 기계가공하여 다시 시작한 다음, 교체 레일을 분해하고 교체 레일 대신에 백업 레일을 장착하는 것
이 가능하다.
추가 최종 확인은 고정된 참조(68)에 대해 새로운 레일의 위치의 경우에 수직으로 및 원주방향으로 행해진다.
나사들(91) 및 핀들(92)은 끝으로 제 위치에 크리핑된다(crimped).
2개의 핀들(92)의 추가로 인해, 교체 레일(90)과 노심 지지 플레이트(16) 사이에 더 이상 연결 용접부(connecting weld)를 제공할 필요가 없다는 점이 주목되어야 한다. 6개의 나사들(91) 및 2개의 핀들(92)을 이용하여 얻어진, 연결부의 기계적 강도는 충분하다.
이 방법은 또한 CPO 타입의, 900 MWe급의 원자로들에 적용된다. 이들 원자로들은 도 1에 참조하여 기재된 것들과 유사하다. 그러나, 이들에는 도 14 및 도 15에 도시된 약간 상이한 안내 장치들(24)이 갖추어진다. 이러한 타입의 원자로를 위해, 레일들(26)은 중간 부분(98)을 통해 노심 지지 플레이트(16)에 고정된다. 부분(98)은 노심 지지 플레이트(16)의 반경방향 외측 표면 상에 용접된다. 도 14에서와 같이, 반경방향 평면의 횡단면에서 고려되는 것과 같이, 중간 부분(98)은 두께가 저부로부터 상부로 갈수록 감소하는 모서리 형상(corner shape)을 가진다.
부분(98)은 레일의 고정 부분(30)이 수용되는 오목부(100)를 가진다. 부분(30)은 오목부(100)에 장착되어 브레이싱된다. 브레이싱은 오목부(100)의 수직 매립 플랭크들(102) 상에 위치된다.
더욱이, 레일(26)은 10개의 나사들(104) 및 6개의 핀들(106)에 의해 노심 지지 플레이트(16)에 고정된다. 나사들(104)은 중간 부분(98)을 완전히 통과하고 노심 지지 플레이트(16)에 배열된 나사 구멍들(108)에 나사고정된다. 핀들(106)은 레일(26)의 부분(30)과 플랭크들(102) 사이의 공극(interstice)에 장착된다.
도 14 및 15의 레일에 대한 교체 방법은 이하에 설명된 수개의 상세들을 제외하고 위에 기재된 것과 완전히 유사하다. 분해 단계에서, 고정 나사들(104)을 분해하는 것뿐만 아니라 핀들(106)을 제거하는 것은 필요치 않다. 핀들(106)은 예를 들어 방전가공(electro-erosion)에 의해 기계가공된다. 교체 레일(90)은 나사들(104)과 유사한 10개의 나사들, 및 중간 부분(98) 및 바닥 지지 플레이트(16) 모두를 통과하는 포지셔닝 보어들에 결합된 2개의 포지셔닝 핀들에 의해 노심 지지 플레이트에 고정된다.
고정 부분(30)과 매립 플랭크들(102) 사이에 장착되는 핀은 더 이상 없다.

Claims (10)

  1. 원자로 내에서 장비(10)의 부품(piece)을 안내하는 레일(26)을 교체하기 위한 방법으로서,
    - 상기 원자로(1)는 내부 장비(10, 12)의 상기 부품이 배치되는, 중심 축선(X)을 갖는 압력 용기(2)를 가지며, 원(original) 레일(26)은 상기 압력 용기(2) 안에 위치된 참조 요소(reference element)에 대해 내부 장비(10, 12)의 상기 부품을 안내하기 위해 가이드웨이(48)와 협력하고;
    - 상기 원 레일(26)은 장비(10, 12)의 내부 부품 및 상기 참조 요소 중 하나에 고정되고, 상기 가이드웨이(48)는 장비(10, 12)의 상기 내부 부품 및 상기 참조 요소 중 다른 하나에 고정되고;
    - 상기 원 레일(26)은 상기 가이드웨이(48)와 마찰하여 변하는 표면들(58)을 갖는 실질적으로 반경방향의 측면들(34), 및 상기 가이드웨이(48)와 마찰하여 변하지 않는 온전한 표면들(sound surfaces; 60, 62, 64)을 가지며;
    상기 방법은 이하의 단계들:
    - 고정된 참조(fixed reference; 68)를 생성하는 단계;
    - 상기 고정된 참조(68)에 대해 상기 중심 축선(X) 주위에서 상기 원 레일(26)의 상기 온전한 표면들(60, 62, 64)의 원 원주 위치를 결정하는 단계;
    - 상기 원 레일(26)을 분해하는 단계;
    - 상기 결정 단계에서 얻어진 상기 온전한 표면들(60, 62, 64)의 상기 원 원주 위치를 이용하여, 내부 장비(10, 12)의 상기 부품 또는 상기 참조 요소에 대해 상기 중심 축선(X) 주위에서 교체 레일(90)을 원주방향으로 포지셔닝하는 단계;
    - 내부 장비(10, 12)의 상기 부품 또는 상기 참조 요소에 상기 교체 레일(90)을 고정하는 단계를 포함하는, 레일 교체 방법.
  2. 제 1 항에 있어서,
    상기 원 원주 위치를 결정하는 단계는 다축 로봇(72) 상에 장착되는 필러(feeler; 75)를 이용하여 행해지는 것을 특징으로 하는, 레일 교체 방법.
  3. 제 1 항에 있어서,
    상기 참조(68)는 고정 구조물(fixed structure)이고, 상기 고정 구조물 위에는 상기 위치 결정 및 포지셔닝 단계들을 위해 구현되는 장비의 적어도 하나의 부품이 장착되는 것을 특징으로 하는, 레일 교체 방법.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 포지셔닝 단계는:
    - 내부 장비(10, 12)의 상기 부품 또는 상기 참조 요소에 적어도 하나의 포지셔닝 보어(positioning bore; 82)를 드릴링하기 위한 부-단계;
    - 상기 교체 레일(90)을 통해 상기 포지셔닝 보어(82)에 적어도 하나의 포지셔닝 핀(92)을 결합하기 위한 부-단계를 포함하는 것을 특징으로 하는, 레일 교체 방법.
  5. 제 4 항에 있어서,
    내부 장비(10, 12)의 상기 부품 또는 상기 참조 요소에 대한 상기 포지셔닝 보어(82)의 위치는 상기 온전한 표면들(60, 62, 64)의 상기 원 원주 위치로부터 결정되는 것을 특징으로 하는, 레일 교체 방법.
  6. 제 4 항에 있어서,
    상기 드릴링하는 부-단계는 상기 원 레일(26)을 분해하기 위한 상기 단계 전에 행해지는 것을 특징으로 하는, 레일 교체 방법.
  7. 제 4 항에 있어서,
    상기 드릴링은 방전가공(electro-erosion)에 의해 행해지는 것을 특징으로 하는, 레일 교체 방법.
  8. 제 4 항에 있어서,
    상기 포지셔닝 보어(82)는 절단 원뿔형 저부(frustoconical bottom; 86)를 가지는 것을 특징으로 하는, 레일 교체 방법.
  9. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 중심 축선(X)에 실질적으로 수직인 상기 원 레일(26)의 기준 표면(40)의 축방향 위치를 결정하기 위한 단계를 더 포함하고, 내부 장비(10, 12)의 상기 부품 또는 상기 참조 요소에 대해 교체 레일(90)을 포지셔닝하기 위한 상기 단계는 또한 상기 축방향 위치를 이용하여 행해지는 것을 특징으로 하는, 레일 교체 방법.
  10. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 레일(26)은 상기 원자로(1)의 노심(3)의 지지 플레이트(16)에 고정되고, 상기 가이드웨이(48)는 상기 압력 용기(2)에 고정된 지지 요소(50)에 고정되는 것을 특징으로 하는, 레일 교체 방법.
KR1020157007497A 2012-09-13 2013-09-09 원자로 내의 장비 부품을 안내하기 위한 레일을 교체하기 위한 방법 KR102187625B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1258614 2012-09-13
FR1258614A FR2995438B1 (fr) 2012-09-13 2012-09-13 Procede de remplacement d'une clavette de guidage d'un equipement interne de reacteur nucleaire
PCT/EP2013/068573 WO2014040942A1 (fr) 2012-09-13 2013-09-09 Procede de remplacement d'une clavette de guidage d'un equipement interne de reacteur nucleaire

Publications (2)

Publication Number Publication Date
KR20150054856A KR20150054856A (ko) 2015-05-20
KR102187625B1 true KR102187625B1 (ko) 2020-12-07

Family

ID=47594891

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157007497A KR102187625B1 (ko) 2012-09-13 2013-09-09 원자로 내의 장비 부품을 안내하기 위한 레일을 교체하기 위한 방법

Country Status (8)

Country Link
EP (1) EP2896048B1 (ko)
KR (1) KR102187625B1 (ko)
CN (1) CN104704576B (ko)
ES (1) ES2611348T3 (ko)
FR (1) FR2995438B1 (ko)
SI (1) SI2896048T1 (ko)
WO (1) WO2014040942A1 (ko)
ZA (1) ZA201501726B (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3053152B1 (fr) 2016-06-22 2018-08-10 Areva Np Procede et dispositif d'inspection d'une piece de reacteur nucleaire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2763169A1 (fr) 1997-05-12 1998-11-13 Framatome Sa Procede et dispositif de mise en place d'un composant d'une centrale nucleaire a l'interieur d'une piscine de la centrale nucleaire
KR100360572B1 (ko) 1994-03-15 2003-01-24 프라마 톰 하부의내장물을유지하는수단을포함하는원자로의용기와,상기유지수단을조정하는방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE561182A (ko) * 1956-09-27
US4031407A (en) * 1970-12-18 1977-06-21 Westinghouse Electric Corporation System and method employing a digital computer with improved programmed operation for automatically synchronizing a gas turbine or other electric power plant generator with a power system
FR2278136A1 (fr) * 1974-07-11 1976-02-06 Commissariat Energie Atomique Chargement et dechargement du coeur d'un reacteur nucleaire
US4069098A (en) * 1976-02-23 1978-01-17 Westinghouse Electric Corporation Ex-vessel nuclear fuel transfer system
DE4236005C2 (de) * 1992-10-24 1994-08-25 Bbc Reaktor Gmbh Verfahren zum Austausch eines einen Deckel eines Kernreaktordruckbehälters durchsetzenden Stutzens
FR2717943B1 (fr) * 1994-03-24 1996-06-14 Framatome Sa Procédé de remplacement d'une broche de centrage d'un assemblage combustible et broche de centrage.
FR2883096B1 (fr) * 2005-03-14 2007-06-01 Framatome Anp Sas Procede et ensemble de remplacement d'au moins une colonne de thermocouples des equipements internes superieurs d'un reacteur nucleaire
FR2891655B1 (fr) * 2005-10-04 2007-12-21 Framatome Anp Sas Procede et reparation des glissieres d'un ensemble de maintien radial d'une plaque de support de coeur d'un reacteur nucleaire a eau pressurisee.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360572B1 (ko) 1994-03-15 2003-01-24 프라마 톰 하부의내장물을유지하는수단을포함하는원자로의용기와,상기유지수단을조정하는방법
FR2763169A1 (fr) 1997-05-12 1998-11-13 Framatome Sa Procede et dispositif de mise en place d'un composant d'une centrale nucleaire a l'interieur d'une piscine de la centrale nucleaire

Also Published As

Publication number Publication date
EP2896048B1 (fr) 2016-11-09
FR2995438A1 (fr) 2014-03-14
FR2995438B1 (fr) 2014-10-10
CN104704576A (zh) 2015-06-10
CN104704576B (zh) 2017-03-22
ZA201501726B (en) 2016-08-31
EP2896048A1 (fr) 2015-07-22
SI2896048T1 (sl) 2017-04-26
WO2014040942A1 (fr) 2014-03-20
ES2611348T3 (es) 2017-05-08
KR20150054856A (ko) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5675119B2 (ja) 管台取付構造
US4847038A (en) Procedure for complete replacement of a steam generator of a pressurized water nuclear reactor
JP6332871B2 (ja) 原子炉底部取付け型計装ノズルの補修方法
JPH02187697A (ja) 水冷式原子炉の炉心
US9180557B1 (en) Two-piece replacement nozzle
US6888912B2 (en) Device for positioning and axially aligning a fuel assembly and process and apparatus for restoring a positioning element
KR102187625B1 (ko) 원자로 내의 장비 부품을 안내하기 위한 레일을 교체하기 위한 방법
JP5188679B2 (ja) 原子炉におけるジェットポンプ昇水管ブレースの原子炉容器パッドへの取付け部を補修するための方法及び装置
JP5852143B2 (ja) 原子炉容器蓋のwjp施工方法および治具
JPH1082885A (ja) 下部炉内構造物アセンブリの交換方法及び炉心槽の位置整列装置
US4842815A (en) Device for locking a guide ring on a plate having an orifice and its use for a guide tube of a nuclear reactor
US6240156B1 (en) Top guide grid attachment for a boiling water reactor
JP5165574B2 (ja) 加圧水型原子炉の炉心において支持板を半径方向に維持する組立体のスライダを修理する方法
JP2009510466A5 (ko)
CN109243626A (zh) Acp1000核电压力容器筒体保温层安装方法
US11557402B2 (en) Nuclear reactor, guide tube support, and corresponding maintenance method
JPH052280B2 (ko)
JP2007248186A (ja) キャスクの固定構造
CN116135414A (zh) 一种乏燃料贮存格架组装工艺方法
EP3970164B1 (en) Nuclear reactor core shroud securing device
KR101064857B1 (ko) 중량 구조물 위치결정 툴
KR101557359B1 (ko) 원자로 헤드에 삽입된 노즐의 보수방법
CN115846808A (zh) 一种控制棒驱动机构上下组件密封焊缝修复方法
US20240087763A1 (en) Method for maintaining a nuclear reactor
JP2010127753A (ja) 沸騰水型原子炉

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant