KR102186535B1 - 웨이퍼 프로세싱 증착 차폐 부품 - Google Patents

웨이퍼 프로세싱 증착 차폐 부품 Download PDF

Info

Publication number
KR102186535B1
KR102186535B1 KR1020197025908A KR20197025908A KR102186535B1 KR 102186535 B1 KR102186535 B1 KR 102186535B1 KR 1020197025908 A KR1020197025908 A KR 1020197025908A KR 20197025908 A KR20197025908 A KR 20197025908A KR 102186535 B1 KR102186535 B1 KR 102186535B1
Authority
KR
South Korea
Prior art keywords
collimator
shield
delete delete
openings
aspect ratio
Prior art date
Application number
KR1020197025908A
Other languages
English (en)
Other versions
KR20190105132A (ko
Inventor
마틴 엘. 리커
마우리스 이. 에워트
아난타 케이. 서브라마니
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/482,713 external-priority patent/US20090308732A1/en
Priority claimed from US12/482,846 external-priority patent/US20090308739A1/en
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Priority to KR1020207034181A priority Critical patent/KR102262978B1/ko
Publication of KR20190105132A publication Critical patent/KR20190105132A/ko
Application granted granted Critical
Publication of KR102186535B1 publication Critical patent/KR102186535B1/ko

Links

Images

Classifications

    • H01L21/203
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • C23C14/358Inductive energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3447Collimators, shutters, apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Die Bonding (AREA)

Abstract

본 명세서에 기술된 실시예들은 전체적으로 기판 상의 고 종횡비 피처의 바닥 및 측벽들로 재료들을 균일하게 스퍼터 증착하기 위한 장치 및 방법에 관련된다. 일 실시예에서는 기판 지지 페데스탈과 스퍼터링 타깃 사이에 위치한 쉴드 부재와의 기계적 및 전기적 결합을 위한 콜리메이터가 제공된다. 상기 콜리메이터는 중앙 영역과 주변 영역을 포함하며, 관통하여 연장하는 복수의 개구를 구비하며, 여기서 중앙 영역에 배치된 개구들은 주변 영역에 배치된 개구들보다 더 큰 종횡비를 가진다.

Description

웨이퍼 프로세싱 증착 차폐 부품 {WAFER PROCESSING DEPOSITION SHIELDING COMPONENTS}
본 발명의 실시예들은 대체적으로, 기판에 있는 고 종횡비 피처들의 바닥과 측벽들에 재료를 균일하게 스퍼터 증착시키기 위한 방법 및 장치에 관련된다.
스퍼터링(sputtering), 또는 물리적 기상 증착(PVD)은 집적 회로의 제조에 있어서 기판 상에 얇은 금속 층들을 증착시키기 위해 널리 사용되는 기술이다. PVD는 확산 배리어(diffusion barrier), 시드 층(seed layer), 1차 컨덕터(primary conductor), 반사 방지막(antireflection coating), 및 식각 정지층(etch stop)으로서 사용하기 위한 층들을 증착하는데 사용된다. 그러나 PVD로는, 기판 내에 형성되는 비아(via)나 트랜치(trench)와 같이, 단(step)이 발생하는 기판의 형태에 정합하는 균일한 박막을 형성하는 것이 어렵다. 특히, 스퍼터링된 원자를 넓은 각도 분포(angular distribution)로 증착하는 것은, 비아와 트랜치 같은, 고 종횡비(high aspect ratio) 피처의 바닥과 측벽에 빈약한 커버리지(poor coverage)를 초래하게 된다.
PVD를 고 종횡비 피처(feature)의 바닥에 박막을 증착하는데 사용할 수 있게 개발된 한가지 기술은 콜리메이터 스퍼터링(collimator sputtering) 기술이다. 콜리메이터란 기판과 스퍼터링 소스(source) 사이에 위치하는 필터링 플레이트이다. 콜리메이터는 일반적으로 두께가 균일하며, 이러한 두께를 통해 형성되는 다수의 통로를 구비한다. 스퍼터링된 재료는 스퍼터링 소스로부터 기판으로 이어지는 그 경로 상에서 반드시 콜리메이터를 통과해야만 한다. 콜리메이터는 요구되는 각도를 넘는 예각(acute angle)으로 소재에 충돌할 수 있었던 재료를 필터링한다.
주어진 콜리메이터에 의해 이루어지는 필터링의 실제 양은 콜리메이터를 통한 통로의 종횡비에 따른다. 이와 같이 하여, 기판에 수직하게 접근하는 경로로 이동하는 입자들은 콜리메이터를 통과하여 기판상에 증착된다. 이로써 고 종횡비 피처에서 바닥의 커버리지를 향상시킬 수 있다.
그러나, 종래 기술의 콜리메이터를 소형 자석의 마그네트론(small magnet magnetron)과 함께 사용하는데 있어서는 어떤 문제점들이 존재한다. 소형 자석의 마그네트론을 사용하게 되면 이온화도가 높은(highly ionized) 금속 플럭스(metal flux)를 생성할 수 있는데, 이는 고 종횡비의 피처를 채우는데 유리할 수 있다. 그러나 불행히도, 소형 자석의 마그네트론과 함께 종래 기술의 콜리메이터를 사용하는 PVD는 기판 전역에 불균일한 증착을 제공하게 된다. 기판의 일 영역에는 기판의 다른 영역에서보다 더 두꺼운 소스 재료 층들이 증착될 수 있다. 예를 들어, 소형 자석의 방사상 위치에 따라서, 기판의 중심이나 에지 부근에 더 두꺼운 층들이 증착될 수 있다. 이러한 현상은 기판 전역에서의 비 균일한 증착을 초래할 뿐만 아니라, 기판의 어떤 영역들에 있는 고 종횡비 피처 측벽들에 걸쳐 비균일한 증착도 초래한다. 예를 들어, 기판의 둘레 부근의 영역에 최적의 필드 균일성(field uniformity)을 제공하기 위해 소형 자석이 방사상으로 배치된 경우에는, 기판의 둘레를 향하는 피처 측벽들보다 기판의 중심을 향하는 피처 측벽들에 소스 재료가 더 많이 증착되게 된다.
따라서, PVD 기술로 기판에 소스 재료를 증착하는데 있어 균일성을 향상시킬 필요가 있다.
본 명세서에 기술된 일 실시예에서는 증착 장치가 전기적으로 접지된 챔버, 상기 챔버에 의해 지지되며 상기 챔버로부터 전기적으로 절연된 스퍼터링 타깃, 상기 스퍼터링 타깃의 아래에 위치하며 상기 스퍼터링 타깃의 스퍼터링 표면과 실질적으로 평행한 기판 지지 표면을 가지는 기판 지지 페데스탈(pedestal), 상기 챔버에 의해 지지되며 상기 챔버에 전기적으로 결합되는 쉴드 부재(shield member), 상기 쉴드 부재에 기계적 및 전기적으로 결합되며 상기 스퍼터링 타깃과 상기 기판 지지 페데스탈 사이에 위치되는 콜리메이터(collimator)를 포함한다. 일 실시예에서, 상기 콜리메이터는 관통하는 복수의 개구를 가진다. 일 실시예에서, 중앙 영역에 배치된 개구들은 주변 영역(peripheral region)에 배치된 개구들보다 더 큰 종횡비를 가진다.
다른 실시예에서, 증착 장치는 전기적으로 접지된 챔버, 상기 챔버에 의해 지지되며 상기 챔버로부터 전기적으로 절연된 스퍼터링 타깃, 상기 스퍼터링 타깃의 아래에 위치하며 상기 스퍼터링 타깃의 스퍼터링 표면과 실질적으로 평행한 기판 지지 표면을 가지는 기판 지지 페데스탈, 상기 챔버에 의해 지지되며 상기 챔버에 전기적으로 결합되는 쉴드 부재, 상기 쉴드 부재에 기계적 및 전기적으로 결합되며 상기 스퍼터링 타깃과 상기 기판 지지 페데스탈 사이에 위치되는 콜리메이터, 가스 소스, 및 제어기를 포함한다. 일 실시예에서, 스퍼터링 타깃은 DC 파워 소스에 전기적으로 결합된다. 일 실시예에서, 기판 지지 페데스탈은 RF 파워 소스에 전기적으로 결합한다. 일 실시예에서, 제어기는 가스 소스, DC 파워 소스, 및 RF 파워 소스를 제어하기 위한 신호들을 제공하도록 프로그래밍된다. 일 실시예에서, 콜리메이터는 관통하여 연장하는 복수의 개구를 가진다. 일 실시예에서, 콜리메이터의 중앙 영역에 배치된 개구들은 콜리메이터의 주변 영역에 배치된 개구들보다 더 큰 종횡비를 가진다. 일 실시예에서, 제어기는 기판 지지 페데스탈에 높은 바이어스를 제공하도록 프로그래밍된다.
또 다른 실시예에서는, 기판 상으로 재료를 증착하기 위한 방법이 기판 지지 페데스탈과 스퍼터링 타깃 사이에 위치한 콜리메이터를 가지는 챔버 내의 스퍼터링 타깃에 DC 바이어스를 인가하는 단계, 상기 챔버 내부의 스퍼터링 타깃에 인접한 영역에 프로세싱 가스를 제공하는 단계, 상기 기판 지지 페데스탈에 바이어스를 인가하는 단계, 및 상기 기판 지지 페데스탈에 인가된 바이어스를 높은 바이어스와 낮은 바이어스 사이에서 펄싱(pulsing)하는 단계를 포함한다. 일 실시예에서, 콜리메이터는 관통하여 연장하는 복수의 개구를 가진다. 일 실시예에서, 콜리메이터의 중앙 영역에 배치된 개구들은 콜리메이터의 주변 영역에 배치된 개구들보다 더 큰 종횡비를 가진다.
또 다른 실시예에서, 기판 지지 페데스탈과 스퍼터링 타깃 사이에 위치한 쉴드 부재와의 기계적 및 전기적 결합을 위한 콜리메이터가 제공된다. 상기 콜리메이터는 중앙 영역과 주변 영역을 포함하며, 관통하여 연장하는 복수의 개구를 구비하며, 여기서 중앙 영역에 배치된 개구들은 주변 영역에 배치된 개구들보다 더 큰 종횡비를 가진다.
또 다른 실시예에서, 기판 프로세싱 챔버 내의 타깃을 향하는 기판 지지 페데스탈을 둘러싸기 위한 하부 쉴드가 제공된다. 상기 하부 쉴드는 상기 기판 지지 페데스탈과 상기 스퍼터링 타깃의 스퍼터링 표면을 둘러싸기 위한 치수의 제1 지름을 가지는 원통형 외부 밴드를 포함하며, 상기 원통형 외부 밴드는 상기 스퍼터링 타깃의 스퍼터링 표면을 둘러싸는 상부 부분, 중간 부분, 및 상기 기판 지지 페데스탈을 둘러싸는 하부 부분을 포함하며, 상기 하부 쉴드는 또한 상기 원통형 외부 밴드로부터 방사상(radially) 바깥쪽으로 연장하며 지지 표면(resting surface)을 가지는 지지 플랜지(support flange), 상기 원통형 외부 밴드의 하부 부분으로부터 방사상 안쪽으로 연장하는 기부 플레이트(base plate), 및 상기 기부 플레이트와 결합되며 상기 기판 지지 페데스탈의 주변 에지를 부분적으로 둘러싸는 원통형 내부 밴드를 포함한다.
또 다른 실시예에서는, 기판 프로세싱 챔버 내의 지지 페데스탈을 향하는 스퍼터링 타깃을 둘러싸기 위한 상부 쉴드가 제공된다. 상기 상부 쉴드는 쉴드 부분 및 지향성 스퍼터링(directional sputtering)을 위한 일체식 플럭스 최적화기(integrated flux optimizer)를 포함한다.
본 발명의 전술한 특징들이 상세하게 이해될 수 있도록 하기 위하여, 위에서 간략하게 요약된 본 발명의 더욱 상세한 설명이 실시예들을 참조하여 이루어질 수 있으며, 이들 실시예 중 일부는 첨부된 도면들에 도시되어 있다. 그러나, 첨부된 도면은 단지 본 발명의 전형적인 실시예들을 설명하는 것일 뿐, 본 발명의 범위를 한정하고자 하는 것은 아니며, 본 발명은 균등하게 효과적인 다른 실시예들도 포함할 수 있을 것이다.
도 1은 본 명세서에 기술된 프로세스 키트의 일 실시예를 가지는 반도체 프로세싱 시스템의 개략적인 단면도를 도시하며;
도 2는 본 명세서에 기술된 일 실시예에 따른 콜리메이터의 평면도를 도시하며;
도 3은 본 명세서에 기술된 일 실시예에 따른 콜리메이터의 개략적인 횡단면도를 도시하며;
도 4는 본 명세서에 기술된 일 실시예에 따른 콜리메이터의 개략적인 횡단면도를 도시하며;
도 5는 본 명세서에 기술된 일 실시예에 따른 콜리메이터의 개략적인 횡단면도를 도시하며;
도 6은 본 명세서에 기술된 일 실시예에 따른 PVD 챔버의 상부 쉴드에 콜리메이터를 부착시키기 위한 브래킷의 확대된 부분적 횡단면도를 도시하며;
도 7은 본 명세서에 기술된 일 실시예에 따른 PVD 챔버의 상부 쉴드에 콜리메이터를 부착시키기 위한 브래킷의 부분적 횡단면도를 도시하며;
도 8은 본 명세서에 기술된 프로세스 키트의 다른 실시예를 가지는 반도체 프로세싱 시스템의 개략적인 단면도를 도시하며;
도 9a는 본 명세서에 기술된 일 실시예에 따른 단일체 상부 쉴드의 부분적인 횡단면도를 도시하며,
도 9b는 본 명세서에 기술된 일 실시예에 따른 도 9a의 단일체 상부 쉴드의 평면도를 도시하며,
도 10a는 본 명세서에 기술된 일 실시예에 따른 하부 쉴드의 횡단면도를 도시하며,
도 10c는 도 10a의 하부 쉴드의 일 실시예에 대한 평면도를 도시한다.
본 명세서에서 설명되는 실시예들은 기판상에 집적 회로를 제조하는 동안 기판의 고 종횡비 피처들에 걸쳐 스퍼터링된 재료를 균일하게 증착시키기 위한 장치 및 방법을 제공한다.
도 1은 기판(154)을 프로세싱할 수 있는, 일 실시예의 프로세스 키트(140)를 구비하는 프로세싱 챔버(100)의 예시적인 실시예를 도시한다. 프로세스 키트(140)는 원피스(one-piece)의 하부 쉴드(lower shield)(180), 원피스의 상부 쉴드(186), 및 콜리메이터(110)를 구비한다. 도시된 실시예에서 프로세싱 챔버(100)는, 예를 들어 티타늄, 산화 알루미늄, 알루미늄, 구리, 탄탈, 탄탈 질화물, 텅스텐, 또는 텅스텐 질화물을 기판에 증착할 수 있는, 물리 기상 증착(PVD) 챔버라고도 불리는, 스퍼터링 챔버를 포함한다. 적당한 PVD 챔버의 예로는 ALPS® Plus 및 SIP ENCORE® PVD 프로세싱 챔버가 있으며, 이들 모두는 캘리포니아의 산타 클라라에 있는 Applied Materials, Inc. 에서 구입가능하다. 본 명세서에 기술되는 실시예들을 실행하는데 있어서, 다른 제조업체들로부터 구입할 수 있는 프로세싱 챔버들도 사용될 수 있을 것이다.
챔버(100)는, 스퍼터링 표면(145)을 가지는 타깃(142)과 같은, 스퍼터링 소스와, 주변 에지(153)를 가지는, 반도체 기판(154)을 그 위에 수용하기 위한 기판 지지 페데스탈(152)을 포함한다. 기판 지지 페데스탈은 접지된 챔버 벽(150) 내에 배치될 수도 있다.
일 실시예에서, 챔버(100)는 유전성 절연체(dielectric isolator)(146)를 통해서 접지된 전도성 어댑터(144)에 의해 지지되는 타깃(142)을 포함한다. 타깃(142)은 스퍼터링 중에 기판(154) 표면 상에 증착될 재료를 포함하며, 기판(154) 내에 형성된 고 종횡비 피처에 시드 층으로서 증착할 구리를 포함할 수 있다. 일 실시예에서 타깃(142)은, 알루미늄과 같은 구조적 재료의 지지층(backing layer)과, 구리와 같이, 스퍼터링 가능한 재료의 금속성 표면 층이 접합된 복합재(bonded composite)도 포함할 수 있다.
일 실시예에서, 페데스탈(152)은 스퍼터 코팅될 고 종횡비 피처들을 가지는 기판(154)을 지지하며, 이러한 고 종횡비 피처들의 바닥은 타깃(142)의 주 표면에 평면적으로 대향한다(in planar opposition to). 기판 지지 페데스탈(152)은 타깃(142)의 스퍼터링 표면에 대체로 평행하게 배치되는 평평한 기판 수용 표면을 가진다. 페데스탈(152)은 바닥 챔버 벽(160)에 연결된 벨로우즈(158)를 통해 수직적으로 이동가능할 수 있어서, 기판(154)이 챔버(100)의 하부 부분에 있는 로드 록 밸브(도시되지 않음)를 통해서 페데스탈(152) 상에 운반될 수 있게 한다. 이후 페데스탈(152)은 도시된 바와 같이 증착 위치로 상승될 수 있다.
일 실시예에서, 프로세싱 가스는 가스 소스(162)로부터 질량 유량 제어기(164)를 통해서 챔버(100)의 하부 부분으로 공급될 수 있다. 일 실시예에서, 챔버(100)에 결합된, 제어가능한 직류 전류(DC) 파워 소스(148)가 타깃(142)에 바이어스나 부전압(negative voltage)을 인가하는데 사용될 수 있다. 기판(154)에 대해 DC 셀프 바이어스(self-bias)를 유도하기 위하여 페데스탈(152)에 무선 주파수(RF) 파워 소스(156)가 결합될 수 있다. 일 실시예에서, 페데스탈(152)은 접지된다. 일 실시예에서, 페데스탈(152)은 전기적으로 부유된다(electrically floated).
일 실시예에서, 마그네트론(170)은 타깃(142) 위에 위치한다. 마그네트론(170)은 샤프트(176)에 연결된 기부 플레이트(174)에 의해 지지되는 복수의 자석(172)을 포함할 수 있으며, 여기서 상기 샤프트는 기판(154)과 챔버(100)의 중심 축과 축방향으로 정렬될 수 있다. 일 실시예에서, 자석들은 신장 모양 패턴(kidney-shaped pattern)으로 정렬된다. 자석(172)은, 상당한(significant) 이온 플럭스가 타깃(142)을 가격(strike)하여 타깃 재료의 스퍼터 방출을 야기하도록 플라스마를 발생시키기 위하여 타깃(142)의 전방 면 부근에서 챔버(100) 내에 자기장을 생성한다. 자석(172)은 타깃(142) 표면에 걸쳐 자기장의 균일성을 증가시키기 위하여 샤프트(176) 주위로 회전될 수 있다. 일 실시예에서, 마그네트론(170)은 소형 자석의 마그네트론이다. 일 실시예에서, 자석(172)들은 나선형 운동을 생성하기 위하여 타깃(142)의 면에 실질적으로 평행한 선형 방향을 따라 왕복식으로 이동하고 또한 회전될 수 있다. 일 실시예에서, 자석(172)들은 그 방사상 및 각 위치(angular position)들 모두를 제어하기 위하여 중심 축 및 독립적으로 제어되는 제2 축 모두를 중심으로 회전될 수 있다.
일 실시예에서, 챔버(100)는 챔버 측벽(150)에 전기적으로 결합되고 이에 의해 지지되는 지지 플랜지(182)를 가지는 접지된 하부 쉴드(180)를 포함한다. 상부 쉴드(186)는 어댑터(144)의 플랜지(184)에 전기적으로 결합되고 이에 의해 지지된다. 상부 쉴드(186) 및 하부 쉴드(180)는 챔버 벽(150)과 어댑터(144)가 그러하듯이 전기적으로 결합된다. 일 실시예에서, 상부 쉴드(186) 및 하부 쉴드(180) 모두는 스테인리스 스틸로 구성된다. 일 실시예에서, 챔버(100)는 상부 쉴드(186)에 결합되는 중간 쉴드(도시되지 않음)를 포함한다. 일 실시예에서, 상부 쉴드(186) 및 하부 쉴드(180)는 챔버(100) 내에서 전기적으로 부유된다. 일 실시예에서, 상부 쉴드(186) 및 하부 쉴드(180)는 전기 파워 소스에 결합될 수 있다.
일 실시예에서 상부 쉴드(186)는, 타깃(142)과 상부 쉴드(186) 사이에 좁은 갭(188)을 두고 타깃(142)의 환형 측면 요부(annular side recess)와 밀접하게(closely) 조립되는 상부 부분을 가지며, 이러한 갭은 플라스마가 통과하여 유전성 절연체(146)를 스퍼터 코팅하는 것을 방지하기에 충분히 좁다. 상부 쉴드(186)는 또한 하향 돌출 팁(190)도 포함할 수 있는데, 이는 상부 쉴드(186)와 하부 쉴드(180) 사이의 인터페이스를 커버하여, 상부 및 하부 쉴드가 스퍼터 증착된 재료에 의하여 접합되는 것을 방지한다.
일 실시예에서, 하부 쉴드(180)는 대체로 챔버 벽(150)을 따라 페데스탈(152)의 상부 표면 아래까지 연장하는, 원통형 외부 밴드(196)로 아래로 연장한다. 하부 쉴드(180)는 이러한 원통형 외부 밴드(196)로부터 방사상 안쪽으로 연장하는 기부 플레이트(198)를 구비할 수 있다. 기부 플레이트(198)는 페데스탈(152)의 둘레를 둘러싸는, 상향 연장하는 원통형 내부 밴드(103)를 포함할 수 있다. 일 실시예에서는, 페데스탈(152)을 스퍼터 증착으로부터 보호하기 위하여, 커버링(102)이, 페데스탈(152)이 하부의 로딩 위치(loading position)에 있을 때는 원통형 내부 밴드(103)의 상부에 놓이고, 페데스탈이 상부의 증착 위치에 있을 때에는 페데스탈(152)의 외부 둘레 상에 놓인다.
하부 쉴드(180)는 지지 페데스탈(152)을 향하는 스퍼터링 타깃(142)의 스퍼터링 표면(145)을 둘러싸며, 또한 지지 페데스탈(152)의 둘레 벽도 둘러싼다. 하부 쉴드(180)는 스퍼터링 타깃(142)의 스퍼터링 표면(145)으로부터 발생된 스퍼터링 증착물들이 하부 쉴드(180) 뒤의 표면들 및 부품들 상에 증착되는 것을 감소시키기 위하여 챔버(100)의 챔버 벽(150)을 커버하고 가린다(shadow). 예를 들어, 하부 쉴드(180)는 챔버(100)의 바닥 벽(160), 챔버 벽(150), 기판(154)의 부분들, 및 지지 페데스탈(152)의 표면들을 보호할 수 있다.
일 실시예에서, 기판 지지 페데스탈(152)과 타깃(142) 사이에 콜리메이터(110)를 배치함으로써 지향성 스퍼터링(directional sputtering)이 이루어질 수 있다. 콜리메이터(110)는 상부 쉴드(186)에 기계적으로 그리고 전기적으로 결합될 수 있다. 일 실시예에서, 콜리메이터(110)는 챔버(100)의 하부에 위치하는 중간 쉴드(도시되지 않음)에 결합될 수 있다. 일 실시예에서, 콜리메이터(110)는 도 8에 도시된 바와 같이 상부 쉴드(186)와 일체를 이룬다. 일 실시예에서, 콜리메이터(110)는 상부 쉴드(186)에 용접된다. 일 실시예에서, 콜리메이터(110)는 챔버(100) 내에서 전기적으로 부유할 수 있다. 일 실시예에서, 콜리메이터(110)는 전기 파워 소스에 결합될 수 있다. 콜리메이터(110)는 가스 및/또는 재료 플럭스를 챔버 내부로 지향시키기 위하여 복수의 개구(도 1에는 생략됨)를 포함한다.
도 2는 콜리메이터(110)의 일 실시예에 대한 평면도를 도시한다. 콜리메이터(110)는 대체로 조밀 팩킹 배열(close-packed arrangement)로 육각형 개구(128)를 분리시키는 육각형 벽(126)을 가지는 허니컴 구조(honeycomb structure)이다. 육각형 개구(128)들의 종횡비는 개구(128)의 깊이(콜리메이터의 두께와 동일)를 개구(128)의 폭(129)으로 나눈 값으로서 정의될 수 있다. 일 실시예에서, 벽(126)의 두께는 약 0.06 인치 내지 약 0.18 인치 사이이다. 일 실시예에서, 벽(126)의 두께는 약 0.12 인치 내지 약 0.15 인치 사이이다. 일 실시예에서, 콜리메이터(110)는 알루미늄, 구리, 및 스테인리스 스틸로부터 선택된 재료로 구성된다.
도 3은 본 명세서에 설명된 일 실시예에 따른 콜리메이터(310)의 개략적인 횡단면도이다. 콜리메이터(310)는 약 1.5:1 내지 약 3:1과 같은 고 종횡비를 가지는 중앙 영역을 포함한다. 일 실시예에서, 중앙 영역(320)의 종횡비는 약 2.5:1이다. 콜리메이터(310)의 종횡비는 중앙 영역(320)으로부터 외측의 주변 영역(340)으로 방사상 거리를 따라 감소한다. 일 실시예에서, 콜리메이터(310)의 종횡비는 약 2.5:1의 중앙 영역(320) 종횡비로부터 약 1:1의 주변 영역(340) 종횡비까지 감소한다. 다른 실시예에서는, 콜리메이터(310)의 종횡비가 약 3:1의 중앙 영역(320) 종횡비로부터 약 1:1의 주변 영역(340) 종횡비까지 감소한다. 일 실시예에서는, 콜리메이터(310)의 종횡비가 약 1.5:1의 중앙 영역(320) 종횡비로부터 약 1:1의 주변 영역(340) 종횡비까지 감소한다.
일 실시예에서, 콜리메이터(310)의 방사상 개구 감소는 콜리메이터(310)의 두께를 변화시킴으로써 달성된다. 일 실시예에서, 콜리메이터(310)의 중앙 영역(320)은 약 3 인치 내지 약 6 인치와 같이 증가된 두께를 가진다. 일 실시예에서, 콜리메이터(310)의 중앙 영역(320)의 두께는 약 5 인치이다. 일 실시예에서, 콜리메이터(310)의 두께는 중앙 영역(320)으로부터 외측 주변 영역(320)으로 감소한다. 일 실시예에서, 콜리메이터(310)의 두께는 약 5 인치의 중앙 영역(320) 두께로부터 약 2 인치의 주변 영역(340) 두께까지 방사상으로 감소한다. 일 실시예에서, 콜리메이터(310)의 두께는 약 6 인치의 중앙 영역(320) 두께로부터 약 2 인치의 주변 영역(340) 두께까지 방사상으로 감소한다. 일 실시예에서, 콜리메이터(310)의 두께는 약 2.5 인치의 중앙 영역(320) 두께로부터 약 2 인치로 방사상으로 감소한다.
도 3에 도시된 콜리메이터(310) 실시예의 종횡비 변화가 방사상으로 감소하는 두께를 보여주고 있지만, 종횡비는 중앙 영역(320)으로부터 주변 영역(340)으로 콜리메이터(310)의 개구들의 폭을 증가시킴에 의해서도 감소될 수 있다. 다른 실시예에서는, 중앙 영역(320)으로부터 주변 영역(340)으로 콜리메이터(310)의 개구들의 폭이 증가하고 콜리메이터(310)의 두께는 감소한다.
대체로, 도 3의 실시예는 선형적으로 방사상으로 감소하는 종횡비를 도시하고 있어서, 뒤집힌 원뿔 형태가 나타나고 있다. 본 발명의 다른 실시예들은 종횡비에서의 비-선형적인 감소형태들을 포함할 수 있다.
도 4는 본 발명의 일 실시예에 따른 콜리메이터(410)의 개략적인 횡단면도를 도시한다. 콜리메이터(410)는 볼록한 형태가 되도록 중앙 영역(420)으로부터 주변 영역(440)까지 비-선형적으로 감소하는 두께를 가진다.
도 5는 본 발명의 일 실시예에 따른 콜리메이터(510)의 개략적인 횡단면도를 도시한다. 콜리메이터(510)는 오목한 형태가 되도록 중앙 영역(520)으로부터 주변 영역(540)까지 비-선형적으로 감소하는 두께를 가진다.
일부 실시예들에 있어서는, 중앙 영역(320, 420, 520)이 콜리메이터(310, 410, 510)의 바닥에 있는 점으로 보이도록, 중앙 영역(320, 420, 520)의 면적이 0에 가까워진다.
다시 도 1을 참조하면, 방사상으로 감소하는 콜리메이터(110) 종횡비의 정확한 형태와 관계없이 PVD 프로세스 챔버(100)의 작동과 콜리메이터(110)의 기능은 동일하다. 시스템 제어기(101)가 챔버(100)의 외부에 제공되어 전체 시스템의 제어 및 자동화를 전반적으로 가능하게 한다. 시스템 제어기(101)는 중앙 프로세싱 유닛(CPU)(도시되지 않음), 메모리(도시되지 않음), 및 지원 회로들(도시되지 않음)을 포함할 수 있다. CPU는 여러 시스템 기능 및 챔버 프로세스들을 제어하기 위한 것으로서, 산업 현장에서 사용되는 모든 컴퓨터 프로세서 중 하나일 수 있다.
일 실시예에서, 시스템 제어기(101)는 기판(154)을 기판 지지 페데스탈(152) 상에 위치시키고 챔버(100) 내에 플라스마를 생성하기 위한 신호들을 제공한다. 시스템 제어기(101)는, 아르곤과 같은, 프로세싱 가스를 플라스마로 여기시키고 타깃(142)을 바이어스시키도록 DC 파워 소스(148)를 통해 전압을 인가하기 위한 신호들을 전송한다. 시스템 제어기(101)는 RF 파워 소스(156)가 페데스탈(152)을 DC 셀프 바이어스시키도록 하는 신호들을 더 제공할 수 있다. DC 셀프 바이어스는 플라스마에 생성된 양 대전 이온들(positively charged ions)을 기판의 표면상에 있는 고 종횡비의 비아들 및 트랜치들 내부로 깊숙이 끌어당기는 것을 돕는다.
콜리메이터(110)는 기판(154)에 거의 수직한, 선택된 각도를 넘는 각도로 타깃(142)으로부터 방출되는 이온들 및 뉴트럴(neutral)들을 포획하기 위한 필터로서 작용한다. 콜리메이터(110)는 각각 도 3, 4, 또는 5에 도시된 콜리메이터(310, 410, 또는 510) 중 하나일 수 있다. 중앙으로부터 방사상으로 감소하는 종횡비를 가지는 콜리메이터(110)의 특성은 타깃(142)의 주변 영역으로부터 방출된 이온들의 더 많은 비율이 콜리메이터(110)를 통과할 수 있게 한다. 결과적으로, 기판(154)의 둘레 영역 상에 증착된 이온들의 도달 각도 및 이온들의 개수 모두가 증가된다. 따라서, 본 발명의 실시예들에 따르면, 기판(154)의 표면에 걸쳐서 재료가 보다 균일하게 스퍼터 증착될 수 있다. 또한, 고 종횡비 피처들, 특히 기판(154)의 둘레 부근에 위치한 고 종횡비 비아들 및 트랜치들의 바닥 및 측벽들 상에 재료가 더욱 균일하게 증착될 수 있다.
또한, 고 종횡비 피처들의 바닥 및 측벽들 상에 스퍼터 증착된 재료의 커버리지를 더욱 증가시키기 위하여, 피처들의 필드(field) 및 바닥 영역 상으로 스퍼터 증착된 재료가 스퍼터 식각될 수 있다. 일 실시예에서, 시스템 제어기(101)는 타깃 이온들(142)이 기판(154) 상에 이미 증착된 막을 식각하도록 페데스탈(152)에 높은 바이어스를 인가한다. 결과적으로 기판(154) 상으로의 필드 증착율은 감소하며, 스퍼터링된 재료가 고 종횡비 피처들의 바닥 또는 측벽에 재증착한다. 일 실시예에서, 시스템 제어기(101)는, 프로세스가 펄스 증착(pulsing deposit)/식각 프로세스가 되도록, 펄스 방식이나 교번 방식(alternating fashion)으로 페데스탈(152)에 높고 낮은 바이어스를 인가한다. 일 실시예에서, 특히 자석들(172) 아래에 위치한 콜리메이터(110) 셀(cell)들은 증착 재료의 대부분을 기판(154)을 향하여 지향시킨다. 따라서, 어느 특정 시점에서도, 기판(154)의 일 영역에서 재료가 증착될 수 있는 반면, 기판(154)의 다른 영역에 이미 증착된 재료는 식각될 수 있다.
일 실시예에서는, 고 종횡비 피처들의 측벽들 상으로 스퍼터 증착된 재료의 커버리지를 더욱 증가시키기 위하여, 기판(154) 부근의 챔버(100) 영역에서 생성된, 아르곤 플라스마와 같은, 2차 플라스마를 이용하여 피처들의 바닥 상으로 스퍼터 증착된 재료를 스퍼터 식각할 수 있다. 일 실시예에서, 챔버(100)는 복수의 코일 스탠드오프(coil standoff)(143)에 의하여 하부 쉴드(180)에 부착되는 RF 코일(141)을 포함하며, 여기서 상기 코일 스탠드오프는 코일(141)을 하부 쉴드(180)로부터 전기적으로 절연시킨다. 시스템 제어기(101)는 피드스루 스탠드오프들(도시되지 않음)에 의하여, 쉴드(180)를 통해 코일(141)로 RF 파워를 인가하기 위한 신호들을 전송한다. 일 실시예에서는, 기판(154) 부근의 2차 플라스마를 유지시키도록, 아르곤과 같은 전구체 가스를 이온화시키기 위하여, RF 코일이 RF 에너지를 챔버(100)의 내부로 유도적으로(inductively) 결합시킨다. 2차 플라스마는 고 종횡비 피처의 바닥으로부터 증착층을 재스퍼터링하고 이러한 재료를 피처의 측벽들 상으로 재증착시킨다.
계속 도 1을 참조하면, 콜리메이터(110)는 복수의 방사상 브래킷(111)에 의하여 상부 쉴드(186)에 부착될 수 있다.
도 6은 본 발명의 일 실시예에 따라 상부 쉴드(186)에 콜리메이터(110)를 부착시키기 위한 브래킷(611)의 확대된 횡단면도를 도시한다. 브래킷(611)은 콜리메이터(110)에 용접되어 이로부터 방사상 바깥방향으로 연장하는 내부 나사식 튜브(internally threaded tube)(613)를 포함한다. 스크루와 같은 체결 부재(615)가 상부 쉴드(186)의 개구를 통해 삽입되고 튜브(613) 내부로 나사결합되어, 체결 부재(615)나 튜브(613)의 나사 부분 상으로 재료가 증착될 가능성을 최소화시키면서 콜리메이터(110)를 상부 쉴드(186)에 부착시킬 수 있게 된다.
도 7은 본 발명의 다른 실시예에 따라 상부 쉴드(186)에 콜리메이터(110)를 부착시키기 위한 브래킷(711)의 확대된 횡단면도를 도시한다. 브래킷(711)은 콜리메이터(110)에 용접되어 이로부터 방사상 바깥방향으로 연장하는 스터드(stud)(713)를 포함한다. 내부 나사식 체결 부재(715)가 상부 쉴드(186)의 개구를 통해 삽입되고 스터드(713) 상으로 나사결합되어, 체결 부재(715)나 스터드(713)의 나사 부분 상으로 재료가 증착될 가능성을 최소화시키면서 콜리메이터(110)를 상부 쉴드(186)에 부착시킬 수 있게 된다.
도 8은 본 명세서에 기술된 다른 실시예의 프로세스 키트(840)를 가지는 반도체 프로세싱 시스템(800)의 개략적인 단면도이다. 프로세스 키트(140)와 유사하게, 프로세스 키트(840)는 원피스 하부 쉴드(180)를 포함한다. 그러나, 방사상 브래킷(111)에 의해 상부 쉴드(186)에 결합되는 별도의 콜리메이터(110)를 포함하는 프로세스 키트(140)와는 달리, 프로세스 키트(840)는 쉴드부(892)와 일체식 플럭스 최적화부(integrated flux optimizer portion)(810)을 포함하는 단일체(monolithic) 상부 쉴드(886)를 포함한다. 단일체 상부 쉴드(886)의 일체식 구조는 냉각 효율의 극대화를 가능하게 한다. 일체식 플럭스 최적화부(810)는 위에서 논의한 바와 같이 가스 및/또는 재료 플럭스를 챔버 내부로 지향시키기 위한 복수의 개구(도 8에는 생략되어 있음)를 포함한다.
도 9a는 본 명세서에 기술된 일 실시예에 따른 단일체 상부 쉴드(886)의 부분적인 횡단면도를 도시한다. 도 9b는 본 명세서에 기술된 일 실시예에 따른 도 9a의 단일체 상부 쉴드(886)에 대한 평면도를 도시한다. 단일체 상부 쉴드(886)는 지지 페데스탈(152)을 향하는 스퍼터링 타깃(142)의 스퍼터링 표면(145)을 둘러싸는 크기를 가진다. 단일체 상부 쉴드(886)는 챔버(100)의 어댑터(144)를 가려서 스퍼터링 타깃(142)의 스퍼터링 표면(145)에서 발생하는 스퍼터링 증착물들의 증착을 감소시킨다.
도 8, 9a, 및 9b에 도시된 바와 같이, 단일체 상부 쉴드(886)는 단일 구조이며, 쉴드 부분(892)과 일체식 플럭스 최적화부(810)를 포함한다. 예를 들어, 쉴드 부분(892) 및 일체식 플럭스 최적화부(810)는 한 덩어리의 재료(single mass of material)로부터 제조될 수 있다. 쉴드 부분(892)은 원통형 밴드(902)를 포함한다. 원통형 밴드(902)는 상부 벽(904) 및 하부 벽(906)을 포함한다. 원통형 밴드(902)의 상부 벽(904)으로부터 방사상 바깥쪽으로 지지 플랜지(908)가 연장한다. 지지 플랜지(908)는 챔버(800)의 어댑터(144) 상에 놓이기 위한 지지 표면(910)을 포함한다. 일 실시예에서는, 지지 표면(910)이 하부 벽(906)과 90도 각도를 형성하도록 교차한다. 일 실시예에서 지지 플랜지(908)는, 상부 쉴드(892)를 어댑터(144)와 정렬시키기 위하여 핀을 수용하도록 형성되는 복수의 슬롯을 가진다. 일 실시예에서 지지 플랜지(908)는, 원통형 밴드(902) 주변에 일정한 간격으로(periodically) 배치되는 하나 또는 복수의 노치(notch)(940)를 가진다.
도 9a에 도시된 바와 같이, 상부 벽(904)은 상부 표면(925), 내부 둘레(926), 및 외부 둘레(928)를 더 포함한다. 상부 벽(904)의 외부 둘레(928)는 계단형 부분(932)을 형성하도록 지지 플랜지(908)와 교차한다.
일 실시예에서는, 도 8에 도시된 바와 같이, 원통형 밴드(902)의 하부 벽(906)이, 어댑터(144) 내에 조립되고 하부 쉴드(180)의 계단형 부분(1032)(도 10b에 도시됨) 상에 지지되도록 하는 치수를 가지는, 화살표 "A"로 도시된 외부 지름을 가진다. 일 실시예에서, 하부 벽(906)의 외부 지름 "A"은 약 18 인치(45.7 cm) 내지 약 18.5 인치(47 cm)이다. 다른 실시예에서, 하부 벽(906)의 외부 지름 "A"은 약 18.1 인치(46 cm) 내지 약 18.2 인치(46.2 cm)이다. 일 실시예에서, 원통형 밴드(902)는 화살표 "B"로 도시된 내부 지름을 가진다. 일 실시예에서, 원통형 밴드(902)의 내부 지름 "B"는 약 17.2 인치(43.7 cm) 내지 약 17.9 인치(45.5 cm)이다. 다른 실시예에서, 원통형 밴드(902)의 내부 지름 "B"는 약 17.5 인치(44.5 cm) 내지 약 17.7 인치(45 cm)이다. 일 실시예에서, 상부 벽(904)은 화살표 "C"로 도시된 외부 지름을 가진다. 일 실시예에서, 상부 벽(904)과 하부 벽(906)은 동일한 내부 지름 "B"를 가진다.
일 실시예에서, 상부 벽(904)의 외부 지름 "C"는 약 18 인치(45.7 cm) 내지 약 18.5 인치(47 cm)이다. 다른 실시예에서, 상부 벽(904)의 외부 지름 "C"는 약 18.3 인치(46.5 cm) 내지 약 18.4 인치(46.7 cm)이다. 일 실시예에서, 상부 벽(904)의 외부 지름 "C"은 하부 벽(906)의 외부 지름 "A"보다 더 크다.
일체식 플럭스 최적화부(810)는 도 3, 4, 및 5에 각각 도시된 콜리메이터(310, 410, 510) 중 하나와 유사하게 설계될 수 있다. 도 9b에 도시된 바와 같이, 일체식 플럭스 최적화부(810)는 대체로 조밀 팩킹 배열(close-packed arrangement)로 육각형 개구(944)를 분리시키는 육각형 벽(942)을 가지는 허니컴 구조이다. 육각형 개구(944)의 종횡비는 개구(944)의 깊이(일체식 플럭스 최적화부(810)의 두께와 동일)를 개구의 폭(946)으로 나눈 값으로서 정의될 수 있다. 일 실시예에서, 쉴드 부분(892)에 인접한 육각형 벽(942)은 챔퍼(chamfer)(950) 및 반경을 가진다.
일 실시예에서, 단일체 상부 쉴드(886)는 한 덩어리의 알루미늄으로부터 기계가공될 수 있다. 단일체 상부 쉴드(886)는 선택적으로 코팅 또는 양극산화처리(anodized)될 수 있다. 대안적으로, 단일체 상부 쉴드(886)는 처리 환경에 적합한 다른 재료들로부터 제조될 수도 있으며, 하나 또는 복수의 구역(section)으로 구성될 수도 있다. 대안적으로, 상부 쉴드의 일체식 플럭스 최적화부(810) 및 쉴드 부분(892)은 별도의 부품으로 형성되어, 용접과 같은 적절한 부착 방법을 이용하여 함께 결합될 수 있다.
도 10a 및 10b는 본 명세서에 기술된 실시예들에 따른 하부 쉴드의 부분적인 단면도를 도시한다. 도 10c는 도 10a에 도시된 하부 쉴드의 일 실시예에 대한 평면도이다. 도 1 및 도 10a-c에 도시된 바와 같이, 하부 쉴드(180)는 단일 구조이며, 원통형 외부 밴드(196), 기부 플레이트(198), 및 내부 원통형 밴드(103)를 포함한다. 원통형 외부 밴드(196)는 페데스탈(152)의 주변 에지(153) 및 스퍼터링 타깃(142)의 스퍼터링 표면(145)을 둘러싸도록 하는 크기의 지름을 가진다. 원통형 외부 밴드(196)는 상부 부분(1012), 중간 부분(1014), 및 하부 부분(1016)을 포함한다. 상부 부분(1012)은 스퍼터링 타깃(142)의 스퍼터링 표면(145)을 둘러싸도록 하는 크기를 가진다. 원통형 외부 밴드(196)의 상부 부분(1012)으로부터 방사상 바깥쪽으로 지지 플랜지(182)가 연장한다. 지지 플랜지(182)는 챔버(100)의 챔버 벽들(150) 상에 놓이기 위한 지지 표면(1024)을 포함한다. 지지 표면(1024)은 하부 쉴드(180)를 챔버 벽들(150) 또는 챔버 벽들(150)과 하부 쉴드(180) 사이에 위치한 어떠한 어댑터들과도 정렬시키기 위하여 핀을 수용하도록 형성된 복수의 슬롯을 가질 수 있다. 일 실시예에서, 지지 표면(1024)은 약 10 내지 약 80 마이크로인치 사이의, 또는 약 16 내지 약 63 마이크로인치 사이의 표면 조도를 가지거나, 또는 일 실시예에서는 약 32 마이크로인치의 평균 표면 조도를 가진다.
도 10b에 도시된 바와 같이, 상부 부분(1012)은 상부 표면(1025), 내부 둘레(1026), 외부 둘레(1028)를 포함한다. 외부 둘레(1028)는 상부 표면(1025)보다 높이 위쪽으로 연장하여 환형 립(1030)을 형성한다. 환형 립(1030)은 상부 표면(1025)과 함께 계단형 부분(1032)을 형성한다. 일 실시예에서, 환형 립(1030)은 상부 표면(1025)에 대해 수직으로 배치되어 계단형 부분(1032)을 형성한다. 계단형 부분(1032)은 상부 쉴드(186)와의 접속(interfacing)을 위한 지지 표면을 제공한다.
일 실시예에서, 환형 립(1030)은 화살표 "D"로 도시된 외부 지름을 가진다. 일 실시예에서, 환형 립(1030)의 외부 지름 "D"은 약 18.4 인치 (46.7 cm) 내지 약 18.7 인치 (47.5 cm)이다. 다른 실시예에서, 환형 립(1030)의 외부 지름 "D"은 약 18.5 인치 (47 cm) 내지 약 18.6 인치 (47.2 cm)이다. 일 실시예에서, 환형 립(1030)은 화살표 "E"로 도시된 내부 지름을 가진다. 일 실시예에서, 환형 립(1030)의 내부 지름 "E"은 약 18.2 인치 (46.2 cm) 내지 약 18.5 인치 (47 cm)이다. 다른 실시예에서, 환형 립(1030)의 내부 지름 "E"은 약 18.3 인치 (46.5 cm) 내지 약 18.4 인치 (46.7 cm)이다.
일 실시예에서, 상부 표면(1025)의 외부 지름은 환형 립(1030)의 내부 지름 "E"와 동일하다. 일 실시예에서, 상부 표면은 화살표 "F"로 도시된 내부 지름을 가진다. 일 실시예에서, 상부 표면(1025)의 내부 지름 "F"는 약 17.2 인치 (43.7 cm) 내지 약 18 인치 (45.7 cm)이다. 다른 실시예에서, 상부 표면(1025)의 내부 지름 "F"는 약 17.5 인치 (44.5 cm) 내지 약 17.6 인치 (44.7 cm)이다.
일 실시예에서, 상부 부분(1012)의 내부 둘레(1026)는 수직으로부터 각도 α로 방사상 바깥쪽으로 경사진다. 일 실시예에서 각도 α는 수직으로부터 약 2도 내지 약 10도이다. 일 실시예에서, 각도 α는 수직으로부터 약 4도이다.
하부 부분(1016)은 페데스탈(152)을 둘러싸는 크기를 가진다. 기부 플레이트(198)는 원통형 외부 밴드(196)의 하부 부분(1016)으로부터 방사상 안쪽으로 연장한다. 원통형 내부 밴드(103)는 기부 플레이트(198)와 결합하며, 페데스탈(152)을 둘러싸는 크기를 가진다. 원통형 내부 밴드(103, 기부 플레이트(198), 및 원통형 외부 밴드(196)는 U-자형 채널을 형성한다. 원통형 내부 밴드(103)는 원통형 외부 밴드(196)의 높이보다 낮은 높이를 가진다. 일 실시예에서, 내부 원통형 밴드(103)의 높이는 원통형 외부 밴드(196) 높이의 약 1/5이다. 일 실시예에서, 중간 부분(1014)은 노치(1040)를 가진다. 일 실시예에서, 원통형 외부 밴드(196)는 복수의 가스 구멍(1042)을 가진다.
일 실시예에서, 기부 플레이트(198)는 화살표 "G"로 도시된 외부 지름을 가진다. 일 실시예에서, 기부 플레이트(198)의 외부 지름 "G"는 약 17 인치 (43.2 cm) 내지 약 17.4 인치 (44.2 cm)이다. 다른 실시예에서, 기부 플레이트(198)의 외부 지름 "G"는 약 17.1 인치 (43.4 cm) 내지 약 17.2 인치 (43.7 cm)이다. 일 실시예에서, 기부 플레이트(198)는 화살표 "I"로 도시된 내부 지름을 가진다. 일 실시예에서, 기부 플레이트(198)의 내부 지름 "I"는 약 13.9 인치 (35.3 cm) 내지 약 14.4 인치 (36.6 cm)이다. 다른 실시예에서, 기부 플레이트(198)의 내부 지름 "I"는 약 14 인치 (35.6 cm) 내지 약 14.1 인치 (35.8 cm)이다.
일 실시예에서, 내부 원통형 밴드(103)는 화살표 "H"로 표시된 외부 지름을 가진다. 일 실시예에서, 내부 원통형 밴드의 외부 지름 "H"은 약 14.0 인치 (35.6 cm) 내지 약 14.3 인치 (36.3 cm)이다. 다른 실시예에서, 내부 원통형 밴드(103)의 외부 지름 "H"은 약 14.2 인치 (36.1 cm) 내지 약 14.3 인치 (36.3 cm)이다.
일 실시예에서, 원통형 외부 밴드(196), 기부 플레이트(198), 내부 원통형 밴드(103)는 단일 구조로 이루어진다. 단일한(unitary) 하부 쉴드(180)는 전체 하부 쉴드를 형성하기 위하여 다수의 부품, 종종 2개 또는 3개의 분리된 부분을 포함하였던 종래의 쉴드들에 비해 장점을 가진다. 예를 들어, 단벌(single piece) 쉴드는 다중-부품 쉴드보다 열적으로 더 균일하다. 예를 들어, 단벌 하부 쉴드(180)는 챔버 벽(150)에 대해 단지 하나의 열적 접속부(interface)를 가져서, 쉴드(180)와 챔버 벽(150) 사이의 열 교환에 대한 더 나은 제어를 가능하게 한다. 다수의 부품을 가지는 쉴드(180)는 세척을 위해 쉴드를 제거하는데 있어서 더 어렵고 수고스럽다. 단벌 쉴드(180)는 세척해내기 더 어려운 접속부들이나 코너들이 없이, 스퍼터링 증착물들에 노출되는 연속적인 표면을 가진다. 또한 단벌 쉴드(180)는 프로세스 사이클 중에 스퍼터 증착으로부터 챔버 벽(150)을 더 효과적으로 차폐시킨다.
일 실시예에서, 상부 쉴드(186, 886) 및/또는 하부 쉴드(180)는 300 시리즈 스테인리스 스틸로 제조될 수 있거나, 또는 다른 실시예에서는, 알루미늄으로 제조될 수 있다. 일 실시예에서, 상부 쉴드(186, 886) 및/또는 하부 쉴드(180)의 노출 표면은 CLEANCOATTM으로 처리되는데, 이는 캘리포니아의 산타 클라라에 있는 Applied Materials, Inc. 에서 구입가능하다. CLEANCOATTM은 쉴드들에 대한 증착물들의 입자 쉐딩(shedding)을 감소시키기 위하여, 상부 쉴드(186, 886) 및/또는 하부 쉴드(180)와 같은 기판 프로세싱 챔버 부품들에 도포되어 챔버 내에서의 기판의 오염을 방지하는 트윈-와이어 알루미늄 아크 스프레이 코팅(twin-wire aluminum arc spray coating)이다. 일 실시예에서, 상부 쉴드(186, 886) 및/또는 하부 쉴드(180) 상의 트윈-와이어 알루미늄 아크 스프레이 코팅은 약 600 내지 약 2300 마이크로인치의 표면 조도를 가진다.
상부 쉴드(186, 886) 및/또는 하부 쉴드(180)는 챔버(100, 800) 내의 내부 용적을 향하는 노출 표면들을 가진다. 일 실시예에서, 노출 표면들은 175±75 마이크로인치의 표면 조도를 가지도록 비드 블라스트(bead blast) 처리된다. 텍스쳐링된(texturized) 비드 블라스트 처리 표면들은 입자 쉐딩을 감소시키고 챔버(100, 800) 내의 오염을 방지하는 역할을 한다. 표면 조도 평균은 노출 표면을 따른 조도 피처들(roughness features)의 마루(peak)들과 골(valley)들의 평균 라인으로부터의 변위(displacement)들의 절대값들에 대한 평균이다. 조도 평균, 왜도(skewness), 또는 다른 특성들은, 노출 표면 위로 바늘(needle)을 통과시켜 표면 상의 꺼칠꺼칠한 부분(asperity)들의 높이의 변동(fluctuation)들의 궤적(trace)을 생성하는 조면계(profilometer)에 의해, 또는 표면의 이미지를 생성하기 위하여 표면으로부터 반사된 전자 빔을 이용하는 주사 전자 현미경에 의해 결정될 수 있다.
전술한 내용들이 본 발명의 실시예들에 관한 것이기는 하나, 본 발명의 다른 실시예들 및 추가의 실시예들도 본 발명의 기본적인 범위 내에서 고안될 수 있을 것이며, 본 발명의 범위는 이하의 청구범위들에 의해 결정된다.

Claims (15)

  1. PVD 챔버를 위한 상부 쉴드; 및
    기판 프로세싱 챔버 내의 스퍼터링 타깃을 향하는 기판 지지 페데스탈을 둘러싸기 위한 하부 쉴드;를 포함하는 프로세스 키트로서,
    상기 상부 쉴드는
    콜리메이터; 및
    쉴드 부분;을 포함하고, 상기 콜리메이터는
    제 1 표면 및 상기 제 1 표면을 등지는 상대되는(opposed) 제 2 표면으로서, 상기 제 2 표면은 상기 제 1 표면으로부터 제 1 거리에 제 1 부분, 상기 제 1 표면으로부터 제 2 거리에 제 2 부분, 및 상기 제 1 부분과 상기 제 2 부분 사이에서 연장하는 제 3 부분을 갖는, 상기 제 1 표면 및 상기 제 2 표면;
    상기 제 1 표면에서부터 상기 제 2 표면까지 연장하는 개개의 개구들을 규정하고 격리시키는 벽들을 갖는 허니컴 구조(honeycomb structure);를 포함하고,
    상기 개개의 개구들은:
    제 1 종횡비를 갖고 상기 제 1 표면에서부터 상기 제 2 표면의 상기 제 1 부분까지 연장하는, 중앙 영역에 있는 제 1 개구;
    상기 제 1 종횡비보다 작은 제 2 종횡비를 갖고 상기 제 1 표면에서부터 상기 제 2 표면의 제 2 부분까지 연장하는, 주변 영역에 있는 복수의 제 2 개구들로서, 상기 주변 영역에 있는 상기 복수의 제 2 개구들의 서로 접하는 개구들은 동일한 크기가 아닌, 상기 복수의 제 2 개구들; 및
    상기 주변 영역에서부터 상기 중앙 영역까지 배치되는 이행 영역(transitional region)에 있고 상기 제 1 표면에서부터 상기 제 3 부분까지 연장하는 복수의 제 3 개구들로서, 상기 복수의 제 3 개구들의 종횡비는 상기 이행 영역을 따라 상기 중앙 영역에서부터 상기 주변 영역까지 방사상으로 선형적으로 감소하는, 상기 복수의 제 3 개구들;을 포함하고,
    상기 하부 쉴드는,
    상기 기판 지지 페데스탈과 상기 스퍼터링 타깃의 스퍼터링 표면을 둘러싸기 위한 치수의 제1 지름을 가지는 원통형 외부 밴드로서,
    상기 스퍼터링 타깃의 스퍼터링 표면을 둘러싸는 상부 부분으로서,
    상부 표면;
    내부 둘레(inner periphery); 및
    외부 둘레(outer periphery);를 포함하고,
    상기 외부 둘레가 상기 상부 표면보다 높이 위로 연장하여 환형 립을 형성하고, 상기 환형 립은, 상기 상부 표면과 함께, 상부 쉴드와의 접속을 위한 계단형 부분을 형성하는,
    상기 상부 부분;
    중간 부분; 및
    상기 기판 지지 페데스탈을 둘러싸는 하부 부분;을 포함하는, 상기 원통형 외부 밴드;
    상기 원통형 외부 밴드로부터 방사상 바깥쪽으로 연장하며 지지 표면을 가지는 지지 레지(support ledge);
    상기 원통형 외부 밴드의 하부 부분으로부터 방사상 안쪽으로 연장하는 기부 플레이트(base plate); 및
    상기 기판 지지 페데스탈의 주변 에지를 부분적으로 둘러싸기 위해 상기 기부 플레이트와 결합되는 원통형 내부 밴드;를 포함하는,
    프로세스 키트.
  2. 제1항에 있어서,
    상기 원통형 내부 밴드, 상기 기부 플레이트, 및 상기 원통형 외부 밴드는 U-형상 채널을 형성하는,
    프로세스 키트.
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
KR1020197025908A 2009-04-24 2010-04-06 웨이퍼 프로세싱 증착 차폐 부품 KR102186535B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020207034181A KR102262978B1 (ko) 2009-04-24 2010-04-06 웨이퍼 프로세싱 증착 차폐 부품

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US17262709P 2009-04-24 2009-04-24
US61/172,627 2009-04-24
US12/482,713 US20090308732A1 (en) 2008-06-17 2009-06-11 Apparatus and method for uniform deposition
US12/482,846 2009-06-11
US12/482,846 US20090308739A1 (en) 2008-06-17 2009-06-11 Wafer processing deposition shielding components
US12/482,713 2009-06-11
PCT/US2010/030116 WO2010123680A2 (en) 2009-04-24 2010-04-06 Wafer processing deposition shielding components

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020187035627A Division KR102020010B1 (ko) 2009-04-24 2010-04-06 웨이퍼 프로세싱 증착 차폐 부품

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020207034181A Division KR102262978B1 (ko) 2009-04-24 2010-04-06 웨이퍼 프로세싱 증착 차폐 부품

Publications (2)

Publication Number Publication Date
KR20190105132A KR20190105132A (ko) 2019-09-11
KR102186535B1 true KR102186535B1 (ko) 2020-12-03

Family

ID=43011685

Family Applications (6)

Application Number Title Priority Date Filing Date
KR1020117028097A KR101782355B1 (ko) 2009-04-24 2010-04-06 웨이퍼 프로세싱 증착 차폐 부품
KR1020217013278A KR102374073B1 (ko) 2009-04-24 2010-04-06 웨이퍼 프로세싱 증착 차폐 부품
KR1020197025908A KR102186535B1 (ko) 2009-04-24 2010-04-06 웨이퍼 프로세싱 증착 차폐 부품
KR1020187035627A KR102020010B1 (ko) 2009-04-24 2010-04-06 웨이퍼 프로세싱 증착 차폐 부품
KR1020207034181A KR102262978B1 (ko) 2009-04-24 2010-04-06 웨이퍼 프로세싱 증착 차폐 부품
KR1020177017742A KR101929971B1 (ko) 2009-04-24 2010-04-06 웨이퍼 프로세싱 증착 차폐 부품

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020117028097A KR101782355B1 (ko) 2009-04-24 2010-04-06 웨이퍼 프로세싱 증착 차폐 부품
KR1020217013278A KR102374073B1 (ko) 2009-04-24 2010-04-06 웨이퍼 프로세싱 증착 차폐 부품

Family Applications After (3)

Application Number Title Priority Date Filing Date
KR1020187035627A KR102020010B1 (ko) 2009-04-24 2010-04-06 웨이퍼 프로세싱 증착 차폐 부품
KR1020207034181A KR102262978B1 (ko) 2009-04-24 2010-04-06 웨이퍼 프로세싱 증착 차폐 부품
KR1020177017742A KR101929971B1 (ko) 2009-04-24 2010-04-06 웨이퍼 프로세싱 증착 차폐 부품

Country Status (4)

Country Link
KR (6) KR101782355B1 (ko)
CN (2) CN102301451A (ko)
TW (7) TWI741750B (ko)
WO (1) WO2010123680A2 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8702918B2 (en) * 2011-12-15 2014-04-22 Applied Materials, Inc. Apparatus for enabling concentricity of plasma dark space
KR20160002543A (ko) * 2014-06-30 2016-01-08 세메스 주식회사 기판 처리 장치
US9543126B2 (en) * 2014-11-26 2017-01-10 Applied Materials, Inc. Collimator for use in substrate processing chambers
US9887073B2 (en) 2015-02-13 2018-02-06 Taiwan Semiconductor Manufacturing Co., Ltd. Physical vapor deposition system and physical vapor depositing method using the same
KR20180063347A (ko) 2015-10-27 2018-06-11 어플라이드 머티어리얼스, 인코포레이티드 Pvd 스퍼터 챔버를 위한 바이어스가능 플럭스 최적화기/콜리메이터
JP6088083B1 (ja) * 2016-03-14 2017-03-01 株式会社東芝 処理装置及びコリメータ
US11424112B2 (en) * 2017-11-03 2022-08-23 Varian Semiconductor Equipment Associates, Inc. Transparent halo assembly for reduced particle generation
DE112022000077T5 (de) 2021-06-11 2023-04-13 Schott Japan Corporation Hermetischer anschluss und herstellungsverfahren dafür
US20220406583A1 (en) * 2021-06-18 2022-12-22 Taiwan Semiconductor Manufacturing Co., Ltd. Deposition system and method
KR102594388B1 (ko) * 2021-08-24 2023-10-27 전주대학교 산학협력단 Mec 환경에서 긴급 데이터 전송을 위한 sdn 기반 패킷 스케줄링 방법
CN115449762A (zh) * 2022-08-22 2022-12-09 无锡尚积半导体科技有限公司 一种用于磁控溅射设备的准直器及磁控溅射设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273490A (ja) * 2004-03-30 2007-10-18 Renesas Technology Corp 半導体集積回路装置の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415753A (en) * 1993-07-22 1995-05-16 Materials Research Corporation Stationary aperture plate for reactive sputter deposition
JPH093639A (ja) * 1995-06-23 1997-01-07 Applied Materials Inc Pvd装置
JPH11200029A (ja) * 1998-01-13 1999-07-27 Victor Co Of Japan Ltd スパッタリング装置
US20030015421A1 (en) 2001-07-20 2003-01-23 Applied Materials, Inc. Collimated sputtering of cobalt
US6780294B1 (en) * 2002-08-19 2004-08-24 Set, Tosoh Shield assembly for substrate processing chamber
JP2004083984A (ja) * 2002-08-26 2004-03-18 Fujitsu Ltd スパッタリング装置
US9127362B2 (en) * 2005-10-31 2015-09-08 Applied Materials, Inc. Process kit and target for substrate processing chamber
TW200746268A (en) * 2006-04-11 2007-12-16 Applied Materials Inc Process for forming cobalt-containing materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273490A (ja) * 2004-03-30 2007-10-18 Renesas Technology Corp 半導体集積回路装置の製造方法

Also Published As

Publication number Publication date
TW202102703A (zh) 2021-01-16
KR102374073B1 (ko) 2022-03-11
WO2010123680A2 (en) 2010-10-28
TW202000961A (zh) 2020-01-01
KR20190105132A (ko) 2019-09-11
TW201634719A (zh) 2016-10-01
TW201920726A (zh) 2019-06-01
TWI741750B (zh) 2021-10-01
WO2010123680A3 (en) 2011-01-13
KR20210052600A (ko) 2021-05-10
KR20180133566A (ko) 2018-12-14
TW201100571A (en) 2011-01-01
KR20200136061A (ko) 2020-12-04
KR101929971B1 (ko) 2018-12-18
TWI695078B (zh) 2020-06-01
TW202136549A (zh) 2021-10-01
KR20170076824A (ko) 2017-07-04
TWI654329B (zh) 2019-03-21
TW201814075A (zh) 2018-04-16
TWI715279B (zh) 2021-01-01
TWI605144B (zh) 2017-11-11
CN107039230A (zh) 2017-08-11
TW202307237A (zh) 2023-02-16
TWI789790B (zh) 2023-01-11
TWI527921B (zh) 2016-04-01
KR101782355B1 (ko) 2017-09-27
KR102020010B1 (ko) 2019-09-09
KR102262978B1 (ko) 2021-06-08
CN102301451A (zh) 2011-12-28
KR20140014378A (ko) 2014-02-06

Similar Documents

Publication Publication Date Title
KR102186535B1 (ko) 웨이퍼 프로세싱 증착 차폐 부품
US20090308739A1 (en) Wafer processing deposition shielding components
US10347474B2 (en) Biasable flux optimizer / collimator for PVD sputter chamber
US20090308732A1 (en) Apparatus and method for uniform deposition
TWI839710B (zh) 用於pvd濺射腔室的可偏壓通量優化器/準直器
CN118127470A (zh) 用于pvd溅射腔室的可偏压式通量优化器/准直器
CN118127471A (zh) 用于pvd溅射腔室的可偏压式通量优化器/准直器

Legal Events

Date Code Title Description
A107 Divisional application of patent
AMND Amendment
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)