KR102182119B1 - Metal complex and electron transport material using the same - Google Patents

Metal complex and electron transport material using the same Download PDF

Info

Publication number
KR102182119B1
KR102182119B1 KR1020197002967A KR20197002967A KR102182119B1 KR 102182119 B1 KR102182119 B1 KR 102182119B1 KR 1020197002967 A KR1020197002967 A KR 1020197002967A KR 20197002967 A KR20197002967 A KR 20197002967A KR 102182119 B1 KR102182119 B1 KR 102182119B1
Authority
KR
South Korea
Prior art keywords
synthesis
mmol
complex
pyridin
group
Prior art date
Application number
KR1020197002967A
Other languages
Korean (ko)
Other versions
KR20190024992A (en
Inventor
마사타카 와타나베
마사노부 코츠보
유미 사카이
켄타로 야마토
츠요시 하야시다
미츠하루 노토
Original Assignee
다이덴 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다이덴 가부시키가이샤 filed Critical 다이덴 가부시키가이샤
Priority to KR1020207026855A priority Critical patent/KR102305222B1/en
Publication of KR20190024992A publication Critical patent/KR20190024992A/en
Application granted granted Critical
Publication of KR102182119B1 publication Critical patent/KR102182119B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/02Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic System without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/04Sodium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/06Potassium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic System
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic System without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • H01L51/0077
    • H01L51/5072
    • H01L51/56
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Abstract

신규 금속 착체 및 이러한 금속 착체를 사용한 다층 구조를 갖는 유기 전계발광 소자의 제조에서 습식법에 의해 형성이 가능한 전자 수송 재료를 제공한다. 적어도 4개 이상의 탄소환 및/또는 복소환을 포함하는 하기 일반식 (1) 내지 (7)로 표시되는 금속 착체.

Figure 112019010503878-pct00233

식 (1) 내지 (7)에서, R1, R3, R5 및 R7은 각각 독립적으로 2가의 페닐기, 나프틸기, 피리딜기 또는 피리미딘기로부터 선택되는 접속기이며, R2, R4, R6 및 R8은 각각 독립적으로 수소 원자 또는 복소환식 화합물 잔기를 나타낸다. 또한, M은 알칼리 금속 또는 알칼리 토류 금속을 나타내고, n1 내지 n4는 각각 독립적으로 0∼2의 정수이며, l은 1 또는 2의 정수이다.An electron transport material capable of being formed by a wet method in manufacturing a novel metal complex and an organic electroluminescent device having a multilayer structure using such a metal complex is provided. A metal complex represented by the following general formulas (1) to (7) containing at least four or more carbocyclic rings and/or heterocycles.
Figure 112019010503878-pct00233

In formulas (1) to (7), R 1 , R 3 , R 5 and R 7 are each independently a connecting group selected from a divalent phenyl group, a naphthyl group, a pyridyl group or a pyrimidine group, and R 2 , R 4 , R 6 and R 8 each independently represent a hydrogen atom or a heterocyclic compound residue. Further, M represents an alkali metal or an alkaline earth metal, n 1 to n 4 are each independently an integer of 0 to 2, and l is an integer of 1 or 2.

Description

금속 착체 및 그것을 사용한 전자 수송 재료Metal complex and electron transport material using the same

본 발명은 신규한 알칼리 금속 착체 및 알칼리 토류 금속 착체에 관한 것이다. 또한, 본 발명은 이러한 신규한 금속 착체를 사용한 유기 전계발광 소자용의 전자 수송 재료에 관한 것이다. 보다 구체적으로는, 다층 구조를 갖는 유기 전계발광 소자의 제조에 있어서 습식법에 의해 형성이 가능하며, 또한 전자 주입 특성, 전자 수송 특성, 내구성이 우수한 전자 수송 재료에 관한 것이다.The present invention relates to novel alkali metal complexes and alkaline earth metal complexes. Further, the present invention relates to an electron transport material for an organic electroluminescent device using such a novel metal complex. More specifically, it relates to an electron transport material that can be formed by a wet method in the manufacture of an organic electroluminescent device having a multilayer structure and has excellent electron injection properties, electron transport properties, and durability.

양극과 음극 사이에 발광성 유기층(유기 일렉트로루미네슨스층)이 설치된 유기 전계발광 소자(이하, 「유기 EL 소자」라고 하는 경우가 있다.)는 무기 EL 소자에 비해, 직류 저전압에서의 구동이 가능하며, 휘도 및 발광 효율이 높다고 하는 이점을 가지고 있어, 차세대의 표시 장치로서 주목을 모으고 있다. 최근에 들어 풀컬러 표시 패널이 시판되게 되어, 표시면의 대형화, 내구성의 향상 등을 위해 왕성하게 연구 개발이 행해지고 있다.An organic electroluminescent device (hereinafter sometimes referred to as “organic EL device”) provided with a light-emitting organic layer (organic electroluminescence layer) between the anode and the cathode can be driven at a low direct current voltage compared to an inorganic EL device. , It has an advantage of high luminance and luminous efficiency, and is attracting attention as a next-generation display device. In recent years, full-color display panels have become commercially available, and research and development are being actively conducted in order to increase the size of the display surface and improve durability.

유기 EL 소자는 주입한 전자와 홀(정공)의 재결합에 의해 유기 화합물을 전기적으로 여기하여 발광시키는 전기발광 소자이다. 유기 EL 소자의 연구는 유기 적층 박막 소자가 고휘도로 발광하는 것을 나타낸 코닥사의 Tang 등의 보고(비특허문헌 1 참조) 이래, 많은 기업 및 연구 기관에 의해 이루어졌다. 코닥사에 의한 유기 EL 소자의 대표적인 구성은 투명 양극인 ITO(산화인듐주석) 유리 기판 위에 홀 수송 재료인 다이아민 화합물, 발광 재료인 트리스(8-퀴놀리놀레이트)알루미늄(III), 음극인 Mg:Ag를 차례로 적층한 것으로, 10V 정도의 구동 전압에서 약 1000cd/cm2의 녹색 발광이 관측되었다. 현재 연구 및 실용화가 이루어지고 있는 적층형 유기 EL 소자는 기본적으로는 이 코닥사의 구성을 답습하고 있다.The organic EL device is an electroluminescent device that electrically excites an organic compound to emit light by recombination of injected electrons and holes (holes). Research on organic EL devices has been conducted by many companies and research institutes since the report of Kodak's Tang et al. (see Non-Patent Document 1) showing that the organic laminated thin film device emits light with high luminance. The representative configuration of the organic EL device by Kodak is a diamine compound as a hole transport material, tris(8-quinolinolate) aluminum (III) as a light emitting material, and a negative electrode on an ITO (indium tin oxide) glass substrate as a transparent anode. Mg:Ag was sequentially stacked, and green light emission of about 1000 cd/cm 2 was observed at a driving voltage of about 10 V. The stacked organic EL devices, which are currently being researched and put into practical use, basically follow the construction of Kodak Corporation.

유기 EL 소자는, 그 구성 재료에 의해, 고분자계 유기 EL 소자와 저분자계 유기 EL 소자로 대별되고, 전자는 습식법에 의해, 후자는 증착법 및 습식법 중 어느 하나에 의해 제조된다. 고분자계 유기 EL 소자는 소자의 제작에 사용되는 도전성 고분자 재료에 있어서의 정공 수송 특성과 전자 수송 특성의 밸런스를 취하는 것이 곤란하기 때문에, 최근에는, 전자 수송, 정공 수송 및 발광의 기능을 분리한 적층형 저분자계 유기 EL 소자가 주류가 되고 있다.Organic EL devices are roughly classified into high molecular organic EL devices and low molecular organic EL devices according to their constituent materials, and the former is manufactured by a wet method, and the latter is manufactured by either a vapor deposition method or a wet method. Since it is difficult to balance the hole transport characteristics and electron transport characteristics of the conductive polymer material used in the fabrication of the polymer-based organic EL device, in recent years, it is a stack type that separates the functions of electron transport, hole transport, and light emission. Low molecular weight organic EL devices are becoming mainstream.

적층형 저분자계 유기 EL 소자에 있어서, 발광성 유기층과 전극 사이에 설치되는 전자 수송층, 전자 주입층 및 정공 수송층의 성능은 디바이스 특성을 크게 좌우하기 때문에, 그것들의 성능 향상을 위한 연구 개발이 왕성하게 이루어지고 있고, 전자 수송층 및 전자 주입층에 관해서도, 많은 개량 연구가 보고되고 있다.In the stacked low molecular weight organic EL device, the performance of the electron transport layer, the electron injection layer and the hole transport layer provided between the light-emitting organic layer and the electrode greatly influences the device characteristics, so research and development for improving their performance is actively conducted. In addition, many improved studies have been reported for the electron transport layer and the electron injection layer.

예를 들면, 특허문헌 1에서는, 전자 수송성의 유기 화합물과, 일함수(전기음성도)가 낮은 금속인 알칼리 금속을 포함하는 금속 화합물을 공증착함으로써 전자 주입층 중에 금속 화합물을 혼입시켜, 전자 주입층의 특성의 개선을 도모하는 구성이 제안되어 있다.For example, in Patent Document 1, a metal compound is mixed in the electron injection layer by co-depositing a metal compound containing an organic compound having an electron transport property and an alkali metal, which is a metal having a low work function (electronegativity), and electron injection. A configuration has been proposed to improve the properties of the layer.

또한 특허문헌 2에서는, 포스핀옥사이드 화합물을 전자 수송 재료로서 사용하는 것이 제안되어 있다. 또한, 특허문헌 3에서는, 전자 수송층의 구성으로서 배위 부위를 갖는 유기 화합물에 알칼리 금속을 도핑하는 방법이 제안되어 있다.Further, in Patent Document 2, it is proposed to use a phosphine oxide compound as an electron transport material. In addition, in Patent Document 3, a method of doping an alkali metal to an organic compound having a coordination site as a constitution of the electron transport layer is proposed.

그러나, 특허문헌 1 내지 3에 기재된 전자 주입층, 전자 수송 재료 및 전자 수송층은 모두 동작 전압의 저하나 발광 효율의 향상을 도모하는 것이 목적으로, 습식법에 의한 다층 구조의 형성이나 내구성의 향상이 도모되어 있다고는 말하기 어렵다. 또한 이들 발명에서는, 전자 수송층 및 전자 주입층을 진공 증착법에 의해 성막하기 위하여, 대규모의 설비를 필요로 함과 아울러, 2종 이상의 재료를 동시에 증착할 때는 증착 속도의 정밀한 조정이 곤란하여, 생산성이 뒤떨어진다고 하는 문제도 있다.However, the electron injection layer, the electron transport material, and the electron transport layer described in Patent Documents 1 to 3 are all aimed at reducing the operating voltage and improving the luminous efficiency, and the formation of a multilayer structure by the wet method and improvement of durability are achieved. It is difficult to say that it is done. Further, in these inventions, in order to deposit the electron transport layer and the electron injection layer by a vacuum evaporation method, a large-scale facility is required, and when two or more types of materials are simultaneously evaporated, precise adjustment of the evaporation rate is difficult, resulting in increased productivity. There is also a problem of being inferior.

습식법에 의한 적층형 저분자계 유기 EL 소자의 제조법에는 크게 나누어 2종류 있고, 하나는 하층을 성막 후, 열이나 광에 의해 가교나 중합을 행하여 불용화하여 상층을 성막하는 방법, 다른 하나는 하층과 상층에서 용해성이 크게 다른 재료를 사용하는 방법이다. 전자의 방법은, 재료의 선택의 폭이 넓은 반면, 가교 또는 중합 반응의 종료 후에 반응개시제나 미반응물을 제거하기 곤란하여, 내구성에 문제가 있다. 한편, 후자의 방법은 재료의 선택이 어려운 반면, 가교나 중합 등의 화학 반응을 수반하지 않기 때문에, 전자의 방법과 비교하여 고순도이며 내구성이 높은 소자의 구축이 가능하게 된다. 이상에서 설명한 바와 같이, 습식법에 의한 적층형 저분자계 유기 EL 소자의 제조는 재료의 선택이 곤란하다고 하는 문제가 있음에도 불구하고, 각 층의 구성 재료의 용해성의 차이를 이용한 후자의 방법이 적합하다고 생각된다. 그러나, 각 층의 구성 재료의 용해성의 차이를 이용한 적층을 어렵게 하고 있는 요인 중 하나로, 도전성 고분자나 스핀 코팅 가능한 유기 반도체의 대부분이 톨루엔, 클로로폼, 테트라하이드로퓨란 등의 비교적 용매능이 높은 용매에밖에 녹지 않아, P형의 도전성 고분자로 홀 수송층을 성막한 후, 동일한 용매로 N형의 도전성 고분자를 스핀 코팅하면 하지의 홀 수송성 고분자를 침식하게 되어, 평탄하고 결함이 적은 PN 계면을 갖는 적층 구조를 형성할 수 없다고 하는 문제가 있다. 특히 잉크젯법을 사용하는 경우에는, 용매가 자연 건조로 제거되기 때문에 용매의 체류 시간이 길어지므로, 홀 수송층이나 발광층의 침식이 심하게 되어, 실용상 문제가 없는 디바이스 특성을 얻는 것이 현저하게 곤란해질 우려가 있다.There are two types of manufacturing methods of a laminated low molecular weight organic EL device by a wet method, one is a method of forming an upper layer by forming a lower layer, then crosslinking or polymerization by heat or light to insolubilize the upper layer, and the other is a lower layer and an upper layer. This is a method of using materials with significantly different solubility. In the former method, while the selection of materials is wide, it is difficult to remove the reaction initiator or unreacted product after completion of the crosslinking or polymerization reaction, and there is a problem in durability. On the other hand, while the latter method makes it difficult to select a material, since it does not involve a chemical reaction such as crosslinking or polymerization, it is possible to construct a device with high purity and high durability compared to the former method. As described above, although there is a problem that it is difficult to select a material in the manufacture of a laminated low molecular weight organic EL device by the wet method, the latter method using the difference in solubility of the constituent materials of each layer is considered to be suitable. . However, as one of the factors that makes it difficult to stack by using the difference in solubility of the constituent materials of each layer, most of the conductive polymers and spin-coated organic semiconductors are only in solvents with relatively high solvent power such as toluene, chloroform, and tetrahydrofuran. Insoluble, after forming a hole transport layer with a P-type conductive polymer, spin-coating the N-type conductive polymer with the same solvent will erode the hole-transporting polymer on the base, resulting in a flat, low-defect PN interface. There is a problem that it cannot be formed. In particular, in the case of using the ink jet method, since the solvent is removed by natural drying, the residence time of the solvent is prolonged, so the hole transport layer and the light emitting layer are severely eroded, and it is feared that it becomes remarkably difficult to obtain device characteristics without problems in practical use. There is.

그래서, 본 발명자들은 비교적 고분자량임에도 불구하고 알코올에 양용성이며, 일반적으로 알코올에 난용인 도전성 고분자 위에 스핀 코팅할 수 있는 전자 수송성을 갖는 포스핀옥사이드 올리고머를 개발하고, 이 포스핀옥사이드 올리고머를 사용함으로써, 용액법에 의한 홀 주입층/발광층/전자 수송층의 헤테로 구조를 실현했다(특허문헌 4).Therefore, the inventors of the present invention developed a phosphine oxide oligomer having electron transport properties that can be spin-coated on a conductive polymer that is poorly soluble in alcohol and is generally soluble in alcohol despite its relatively high molecular weight, and uses this phosphine oxide oligomer. Thus, a heterostructure of the hole injection layer/light emitting layer/electron transport layer by the solution method was realized (Patent Document 4).

그러나, 포스핀옥사이드 유도체는 유기 EL 소자에 사용했을 때 양호한 전자 수송성을 나타내지만, 비특허문헌 2에 기재된 바와 같이 음이온 상태의 P-C 결합해리 에너지가 낮아 내구성에 과제를 남기고 있었다.However, the phosphine oxide derivative exhibits good electron transport properties when used in an organic EL device, but as described in Non-Patent Document 2, the P-C bond dissociation energy in an anionic state is low, leaving a problem in durability.

일본 특개 2005-63910호 공보Japanese Unexamined Patent Application Publication No. 2005-63910 일본 특개 2002-63989호 공보Japanese Unexamined Patent Publication No. 2002-63989 일본 특개 2002-352961호 공보Japanese Patent Application Publication No. 2002-352961 국제공개 제2011/021385호International Publication No. 2011/021385

C. W. Tang, S. A. VanSlyke저, 「Organic electroluminescent diodes」, Applied Physics Letters(미국), 미국 물리학회(The AmericanInstitute of Physics), 1987년 9월 21일, 제51권, 제12호, p.913-915C. W. Tang, S. A. VanSlyke, 「Organic electroluminescent diodes」, Applied Physics Letters (USA), The American Institute of Physics, September 21, 1987, Vol. 51, No. 12, p.913-915 Na Lin, Juan Qiao, Lian Duan, Haifang Li, Liduo Wang, and Yong Qiu저, 「Achilles Heels of Phosphine Oxide Materials for OLEDs: Chemical Stability and Degradation Mechanismof a Bipolar Phosphine Oxide/Carbazole Hybrid Host Material」, J. Phys. Chem. C, 2012, 116(36), pp 19451-19457Na Lin, Juan Qiao, Lian Duan, Haifang Li, Liduo Wang, and Yong Qiu, 「Achilles Heels of Phosphine Oxide Materials for OLEDs: Chemical Stability and Degradation Mechanism of a Bipolar Phosphine Oxide/Carbazole Hybrid Host Material」, J. Phys. Chem. C, 2012, 116(36), pp 19451-19457

본 발명은 상기 사정을 고려하여 이루어진 것으로, 전자 수송성과 알코올 가용성 양쪽을 갖는 알칼리 금속 착체 또는 알칼리 토류 금속 착체(이하, 합쳐서 단지 「금속 착체」라고 한다.), 및 이러한 금속 착체를 사용한 다층 구조를 갖는 유기 전계발광 소자의 제조에 있어서 습식법에 의해 형성이 가능하며 또한 전자 주입 특성, 전자 수송 특성, 내구성이 우수한 전자 수송 재료, 및 그 전자 수송 재료를 사용한 유기 전계발광 소자를 제공하는 것을 목적으로 한다.The present invention has been made in consideration of the above circumstances, and an alkali metal complex or alkaline earth metal complex having both electron transport and alcohol solubility (hereinafter, collectively referred to only as "metal complex"), and a multilayer structure using such metal complexes are described. It is an object of the present invention to provide an electron transport material that can be formed by a wet method in the manufacture of an organic electroluminescent device having an electron injection property, an electron transport property, and has excellent durability, and an organic electroluminescent device using the electron transport material. .

본 발명의 신규한 배위자를 갖는 금속 착체는 포스핀옥사이드 유도체와 같이 전자 수송성과 알코올 가용성 양쪽을 갖지만, 포스핀옥사이드 유도체와 같이 음이온 상태에서 불안정한 P-C 결합을 가지고 있지 않고, 내구성과 높은 전자 수송성을 양립할 수 있으며, 유기 전계발광 소자용의 전자 수송 재료로서 적합하게 사용할 수 있다.The metal complex having the novel ligand of the present invention has both electron transport and alcohol solubility like a phosphine oxide derivative, but does not have an unstable PC bond in an anionic state like a phosphine oxide derivative, and has both durability and high electron transport properties. And it can be suitably used as an electron transport material for organic electroluminescent devices.

상기 목적에 따르는 본 발명의 제1 태양은 후에 기술하는 제3 태양인 전자 수송 재료에 적합한, 전자 수송성과 알코올 가용성 양쪽을 갖는 다음의 신규한 금속 착체에 관한 것이다.The first aspect of the present invention according to the above object relates to the following novel metal complex having both electron transport and alcohol solubility, suitable for an electron transport material, which is a third aspect to be described later.

<1> 적어도 4개 이상의 탄소환 및/또는 복소환을 포함하는 하기 일반식 (1) 내지 (7)로 표시되는 것을 특징으로 하는 금속 착체.<1> A metal complex represented by the following general formulas (1) to (7) containing at least 4 or more carbocyclic rings and/or heterocycles.

Figure 112019010503878-pct00001
Figure 112019010503878-pct00001

식 (1) 내지 (7)에서, R1, R3, R5 및 R7은 각각 독립적으로 2가의 페닐기, 나프틸기, 피리딜기 또는 피리미딘기로부터 선택되는 접속기이며, R2, R4, R6 및 R8은 각각 독립적으로 수소 원자 또는 복소환식 화합물 잔기를 나타낸다. 또한, M은 알칼리 금속 또는 알칼리 토류 금속을 나타내고, n1 내지 n4는 각각 독립적으로 0∼2의 정수이며, l은 1 또는 2의 정수이다.In formulas (1) to (7), R 1 , R 3 , R 5 and R 7 are each independently a connecting group selected from a divalent phenyl group, a naphthyl group, a pyridyl group or a pyrimidine group, and R 2 , R 4 , R 6 and R 8 each independently represent a hydrogen atom or a heterocyclic compound residue. Further, M represents an alkali metal or an alkaline earth metal, n 1 to n 4 are each independently an integer of 0 to 2, and l is an integer of 1 or 2.

<2> 상기 R2, R4, R6 및 R8이 함질소환식 화합물 잔기인 상기 <1>에 기재된 금속 착체.<2> The metal complex according to <1>, wherein R 2 , R 4 , R 6 and R 8 are nitrogen-containing cyclic compound residues.

<3> 상기 R2, R4, R6 및 R8이 다음 일반식 (8a) 내지 (8c)로 표시되는 함질소환식 화합물 잔기인 상기 <2>에 기재된 금속 착체.<3> The metal complex according to the above <2>, wherein R 2 , R 4 , R 6 and R 8 are nitrogen-containing cyclic compound residues represented by the following general formulas (8a) to (8c).

Figure 112019010503878-pct00002
Figure 112019010503878-pct00002

식 (8a) 내지 (8c)에서, R10은 탄소수 1∼4의 알킬기, 페닐기, 바이페닐기, 나프틸기, 피리딜기, 바이피리딜기 또는 펜안트롤일기를 나타내고, m1은 0∼4의 정수이다.In formulas (8a) to (8c), R 10 represents an alkyl group having 1 to 4 carbon atoms, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group, or a phenanthrolyl group, and m 1 is an integer of 0 to 4 .

<4> 상기 R2, R4, R6 및 R8이 다음 일반식 (9a) 내지 (9d)로 표시되는 함질소환식 화합물 잔기인 상기 <2>에 기재된 금속 착체.<4> The metal complex according to <2>, wherein R 2 , R 4 , R 6 and R 8 are nitrogen-containing cyclic compound residues represented by the following general formulas (9a) to (9d).

Figure 112019010503878-pct00003
Figure 112019010503878-pct00003

식 (9a) 내지 (9d)에서, R10은 탄소수 1∼4의 알킬기, 페닐기, 바이페닐기, 나프틸기, 피리딜기, 바이피리딜기 또는 펜안트롤일기를 나타내고, m1은 0∼3의 정수이다.In formulas (9a) to (9d), R 10 represents an alkyl group having 1 to 4 carbon atoms, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group or a phenanthrolyl group, and m 1 is an integer of 0 to 3 .

<5> 상기 R2, R4, R6 및 R8이 다음 일반식 (10a) 내지 (10d)로 표시되는 함질소환식 화합물 잔기인 상기 <2>에 기재된 금속 착체.<5> The metal complex according to <2> above, wherein R 2 , R 4 , R 6 and R 8 are nitrogen-containing cyclic compound residues represented by the following general formulas (10a) to (10d).

Figure 112019010503878-pct00004
Figure 112019010503878-pct00004

식 (10a) 내지 (10d)에서, R10 내지 R12는, 각각 독립적으로 탄소수 1∼4의 알킬기, 페닐기, 바이페닐기, 나프틸기, 피리딜기, 바이피리딜기 또는 펜안트롤일기를 나타내고, m1 내지 m3은 각각 독립적으로 0∼3의 정수이다.In formulas (10a) to (10d), R 10 to R 12 each independently represent an alkyl group having 1 to 4 carbon atoms, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group, or a phenanthrolyl group, and m 1 To m 3 are each independently an integer of 0 to 3.

<6> 상기 R2, R4, R6 및 R8이 다음 일반식 (11a) 내지 (11d)로 표시되는 함질소환식 화합물 잔기인 상기 <2>에 기재된 금속 착체.<6> The metal complex according to <2>, wherein R 2 , R 4 , R 6 and R 8 are nitrogen-containing cyclic compound residues represented by the following general formulas (11a) to (11d).

Figure 112019010503878-pct00005
Figure 112019010503878-pct00005

식 (11a) 내지 (11d)에서, R10, R11은 각각 독립적으로 탄소수 1∼4의 알킬기, 페닐기, 바이페닐기, 나프틸기, 피리딜기, 바이피리딜기 또는 펜안트롤일기를 나타내고, m1은 0∼3의 정수이며, m2는 0∼4의 정수이다.In formulas (11a) to (11d), R 10 and R 11 each independently represent an alkyl group having 1 to 4 carbon atoms, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group, or a phenanthrolyl group, and m 1 is It is an integer of 0-3, and m 2 is an integer of 0-4.

<7> 상기 M이 알칼리 금속인 상기 <1> 내지 <6> 중 어느 하나에 기재된 금속 착체.<7> The metal complex according to any one of <1> to <6>, wherein M is an alkali metal.

<8> 상기 알칼리 금속이 Rb 또는 Cs인 상기 <7>에 기재된 금속 착체.<8> The metal complex according to <7>, wherein the alkali metal is Rb or Cs.

또한, 본원발명의 제2 태양은 상기 금속 착체의 배위자인, 금속 착체에 사용하는 배위성 화합물에 관한 것이다.Further, a second aspect of the present invention relates to a coordinating compound used for a metal complex, which is a ligand for the metal complex.

<9> 상기 <1> 내지 <8> 중 어느 1항에 기재된 금속 착체에 사용하는 배위성 화합물.<9> The coordination compound used for the metal complex in any one of said <1>-<8>.

다음에 상기 목적에 따르는 본 발명의 제3 태양은 상기 금속 착체를 사용하는, 다층 구조를 갖는 유기 전계발광 소자의 제조에 있어서 습식법에 의해 형성이 가능하며 또한 전자 주입 특성, 전자 수송 특성, 내구성이 우수한 다음의 전자 수송 재료에 관한 것이다.Next, according to the above object, the third aspect of the present invention can be formed by a wet method in the manufacture of an organic electroluminescent device having a multilayer structure using the metal complex, and also has electron injection properties, electron transport properties, and durability. The following electron transport materials are excellent.

<10> 상기 <1> 내지 <8> 중 어느 하나에 기재된 알칼리 금속 착체로 이루어지는 것을 특징으로 하는 유기 전계발광 소자용의 전자 수송 재료.<10> An electron transport material for an organic electroluminescent device, comprising the alkali metal complex according to any one of <1> to <8>.

<11> 상기 전자 수송 재료가 금속 알콕사이드를 함유하는 상기 <10>에 기재된 전자 수송 재료.<11> The electron transport material according to <10>, wherein the electron transport material contains a metal alkoxide.

<12> 상기 금속 알콕사이드가 하기 일반식 (A) 또는 (B)로 표시되는 상기 <11>에 기재된 전자 수송 재료.<12> The electron transport material according to <11>, wherein the metal alkoxide is represented by the following general formula (A) or (B).

R20-M (A)R 20 -M (A)

R20-M- R21 (B)R 20 -M- R 21 (B)

식 (A) 또는 (B)에서, R20, R21은 각각 독립적으로 임의의 알킬알콕시기를 나타내고, 또한 M은 알칼리 금속 또는 알칼리 토류 금속을 나타낸다.In the formula (A) or (B), R 20 and R 21 each independently represent an arbitrary alkylalkoxy group, and M represents an alkali metal or alkaline earth metal.

<13> 상기 전자 수송 재료가 알칼리 금속 이온 및 알칼리 토류 금속 이온 중 적어도 1종의 금속 이온의 할로젠염, 탄산염, 탄산수소염, 수산화물, 또는, 탄소수 1 내지 9의 유기산염을 더 함유하는 상기 <10> 내지 <12> 중 어느 하나에 기재된 전자 수송 재료.<13> The <13> wherein the electron transport material further contains a halogen salt, carbonate, hydrogen carbonate, hydroxide, or an organic acid salt having 1 to 9 carbon atoms of at least one metal ion among alkali metal ions and alkaline earth metal ions. The electron transport material according to any one of 10> to <12>.

다음에 상기 목적에 따르는 본 발명의 제4 태양은 상기 전자 수송 재료를 용매에 용해한, 다음의 유기 전계발광 소자의 전자 수송층을 구축하기 위한 액상 재료에 관한 것이다.Next, a fourth aspect of the present invention according to the above object relates to a liquid material for constructing an electron transport layer of the next organic electroluminescent device by dissolving the electron transport material in a solvent.

<14> 상기 <10> 내지 <13> 중 어느 하나에 기재된 전자 수송 재료를 프로톤성 극성 용매에 용해하여 이루어지는 유기 전계발광 소자의 전자 수송층을 구축하기 위한 액상 재료.<14> Liquid material for constructing an electron transport layer of an organic electroluminescent device obtained by dissolving the electron transport material according to any one of the above <10> to <13> in a protic polar solvent.

<15> 상기 프로톤성 극성 용매가 탄소수 1∼10의 알코올계 용매인 상기 <14>에 기재된 액상 재료.<15> The liquid material according to <14>, wherein the protic polar solvent is an alcohol-based solvent having 1 to 10 carbon atoms.

<16> 상기 탄소수 1∼10의 알코올계 용매가 1가 또는 2가의 알코올인 상기 <15>에 기재된 액상 재료.<16> The liquid material according to <15>, wherein the alcohol-based solvent having 1 to 10 carbon atoms is a monohydric or dihydric alcohol.

<17> 상기 액상 재료가 상기 <1> 내지 <8> 중 어느 하나에 기재된 알칼리 금속 착체를 0.01 내지 10중량% 함유하는 상기 <14>에 기재된 액상 재료.<17> The liquid material according to <14>, wherein the liquid material contains 0.01 to 10% by weight of the alkali metal complex according to any one of <1> to <8>.

또한, 상기 목적에 따르는 본 발명의 다른 태양은 다음 발명에 관한 것이다.Further, another aspect of the present invention according to the above object relates to the following invention.

<18> 상기 <10> 내지 <13> 중 어느 하나에 기재된 전자 수송 재료를 사용하여 이루어지는 것을 특징으로 하는 유기 전계발광 소자.<18> An organic electroluminescent device comprising the electron transport material according to any one of <10> to <13>.

<19> 상기 <14> 내지 <17> 중 어느 하나에 기재된 액상 재료를 사용하고, 유기 전계발광 소자의 전자 수송층을 습식으로 구축하는 것을 특징으로 하는 유기 전계발광 소자의 제조 방법.<19> A method for producing an organic electroluminescent device, wherein the liquid material according to any one of <14> to <17> is used, and an electron transport layer of the organic electroluminescent device is wet-formed.

본 발명에 의하면, 전자 수송성과 알코올 가용성 양쪽을 갖는 신규한 알칼리 금속 착체 또는 알칼리 토류 금속 착체, 및 이러한 금속 착체를 사용한, 다층 구조를 갖는 유기 전계발광 소자의 제조에 있어서 습식법에 의해 형성이 가능하며 또한 전자 주입 특성, 전자 수송 특성, 내구성이 우수한 전자 수송 재료, 및 그 전자 수송 재료를 사용한 유기 전계발광 소자가 제공된다.According to the present invention, in the production of a novel alkali metal complex or alkaline earth metal complex having both electron transport and alcohol solubility, and an organic electroluminescent device having a multilayer structure using such a metal complex, it can be formed by a wet method. Further, an electron transport material excellent in electron injection characteristics, electron transport characteristics, and durability, and an organic electroluminescent device using the electron transport material are provided.

본 발명의 금속 착체로 이루어지는 전자 수송 재료는 높은 전자 수송성과 높은 내구성을 양립할 수 있고, 유기 전계발광 소자용의 전자 수송 재료로서 적합하게 사용할 수 있다.The electron transport material made of the metal complex of the present invention can achieve both high electron transport and high durability, and can be suitably used as an electron transport material for organic electroluminescent devices.

본 발명을 적용함으로써, 높은 생산성 또한 저비용으로 제조할 수 있고, 발광 효율이 우수하여, 높은 내구성을 갖는 유기 전계발광 소자가 제공된다.By applying the present invention, there is provided an organic electroluminescent device having high productivity and low cost, excellent luminous efficiency, and high durability.

도 1은 유기 전계발광 소자의 종단면을 모식적으로 도시하는 도면이다.
도 2는 본 발명의 제1 실시형태에 따른 금속 착체 (L101-M)의 NMR 차트를 도시하는 도면이다.
도 3은 본 발명의 제1 실시형태에 따른 금속 착체 (L102-M)의 NMR 차트를 도시하는 도면이다.
도 4는 본 발명의 제1 실시형태에 따른 금속 착체 (L103-M)의 NMR 차트를 도시하는 도면이다.
도 5는 본 발명의 제1 실시형태에 따른 금속 착체 (L104-M)의 NMR 차트를 도시하는 도면이다.
도 6은 본 발명의 제1 실시형태에 따른 금속 착체 (L105-M)의 NMR 차트를 도시하는 도면이다.
도 7은 본 발명의 제1 실시형태에 따른 금속 착체 (L106-M)의 NMR 차트를 도시하는 도면이다.
도 8은 본 발명의 제1 실시형태에 따른 금속 착체 (L107-M)의 NMR 차트를 도시하는 도면이다.
도 9는 본 발명의 제1 실시형태에 따른 금속 착체 (L108-M)의 NMR 차트를 도시하는 도면이다.
도 10은 본 발명의 제1 실시형태에 따른 금속 착체 (L109-M)의 NMR 차트를 도시하는 도면이다.
도 11은 본 발명의 제1 실시형태에 따른 금속 착체 (L110-M)의 NMR 차트를 도시하는 도면이다.
도 12는 본 발명의 제1 실시형태에 따른 금속 착체 (L111-M)의 NMR 차트를 도시하는 도면이다.
도 13은 본 발명의 제1 실시형태에 따른 금속 착체 (L112-M)의 NMR 차트를 도시하는 도면이다.
도 14는 본 발명의 제1 실시형태에 따른 금속 착체 (L113-M)의 NMR 차트를 도시하는 도면이다.
도 15는 본 발명의 제1 실시형태에 따른 금속 착체 (L114-M)의 NMR 차트를 도시하는 도면이다.
도 16은 본 발명의 제1 실시형태에 따른 금속 착체 (L115-M)의 NMR 차트를 도시하는 도면이다.
도 17은 본 발명의 제1 실시형태에 따른 금속 착체 (L116-M)의 NMR 차트를 도시하는 도면이다.
도 18은 본 발명의 제1 실시형태에 따른 금속 착체 (L117-M)의 NMR 차트를 도시하는 도면이다.
도 19는 본 발명의 제1 실시형태에 따른 금속 착체 (L118-M)의 NMR 차트를 도시하는 도면이다.
도 20은 본 발명의 제1 실시형태에 따른 금속 착체 (L119-M)의 NMR 차트를 도시하는 도면이다.
도 21은 본 발명의 제1 실시형태에 따른 금속 착체 (L120-M)의 NMR 차트를 도시하는 도면이다.
도 22는 본 발명의 제1 실시형태에 따른 금속 착체 (L201-M)의 NMR 차트를 도시하는 도면이다.
도 23은 본 발명의 제1 실시형태에 따른 금속 착체 (L202-M)의 NMR 차트를 도시하는 도면이다.
도 24는 본 발명의 제1 실시형태에 따른 금속 착체 (L203-M)의 NMR 차트를 도시하는 도면이다.
도 25는 본 발명의 제1 실시형태에 따른 금속 착체 (L204-M)의 NMR 차트를 도시하는 도면이다.
도 26은 본 발명의 제1 실시형태에 따른 금속 착체 (L205-M)의 NMR 차트를 도시하는 도면이다.
도 27은 본 발명의 제1 실시형태에 따른 금속 착체 (L206-M)의 NMR 차트를 도시하는 도면이다.
도 28은 본 발명의 제1 실시형태에 따른 금속 착체 (L207-M)의 NMR 차트를 도시하는 도면이다.
도 29는 본 발명의 제1 실시형태에 따른 금속 착체 (L301-M)의 NMR 차트를 도시하는 도면이다.
도 30은 본 발명의 제1 실시형태에 따른 금속 착체 (L401-M)의 NMR 차트를 도시하는 도면이다.
도 31은 본 발명의 제1 실시형태에 따른 금속 착체 (L402-M)의 NMR 차트를 도시하는 도면이다.
도 32는 본 발명의 제1 실시형태에 따른 금속 착체 (L403-M)의 NMR 차트를 도시하는 도면이다.
도 33은 본 발명의 제1 실시형태에 따른 금속 착체 (L501-M)의 NMR 차트를 도시하는 도면이다.
도 34는 본 발명의 제1 실시형태에 따른 금속 착체 (L601-M)의 NMR 차트를 도시하는 도면이다.
도 35는 본 발명의 제1 실시형태에 따른 금속 착체 (L121-M)의 NMR 차트를 도시하는 도면이다.
도 36은 본 발명의 제1 실시형태에 따른 금속 착체 (L209-M)의 NMR 차트를 도시하는 도면이다.
도 37은 본 발명의 제1 실시형태에 따른 금속 착체 (L210-M)의 NMR 차트를 도시하는 도면이다.
도 38은 본 발명의 제1 실시형태에 따른 금속 착체 (L701-M)의 NMR 차트를 도시하는 도면이다.
1 is a diagram schematically showing a longitudinal section of an organic electroluminescent device.
Fig. 2 is a diagram showing an NMR chart of a metal complex (L101-M) according to the first embodiment of the present invention.
3 is a diagram showing an NMR chart of a metal complex (L102-M) according to the first embodiment of the present invention.
4 is a diagram showing an NMR chart of a metal complex (L103-M) according to the first embodiment of the present invention.
5 is a diagram showing an NMR chart of a metal complex (L104-M) according to the first embodiment of the present invention.
6 is a diagram showing an NMR chart of a metal complex (L105-M) according to the first embodiment of the present invention.
7 is a diagram showing an NMR chart of a metal complex (L106-M) according to the first embodiment of the present invention.
Fig. 8 is a diagram showing an NMR chart of a metal complex (L107-M) according to the first embodiment of the present invention.
9 is a diagram showing an NMR chart of a metal complex (L108-M) according to the first embodiment of the present invention.
Fig. 10 is a diagram showing an NMR chart of a metal complex (L109-M) according to the first embodiment of the present invention.
11 is a diagram showing an NMR chart of a metal complex (L110-M) according to the first embodiment of the present invention.
12 is a diagram showing an NMR chart of a metal complex (L111-M) according to the first embodiment of the present invention.
13 is a diagram showing an NMR chart of a metal complex (L112-M) according to the first embodiment of the present invention.
14 is a diagram showing an NMR chart of a metal complex (L113-M) according to the first embodiment of the present invention.
15 is a diagram showing an NMR chart of a metal complex (L114-M) according to the first embodiment of the present invention.
16 is a diagram showing an NMR chart of a metal complex (L115-M) according to the first embodiment of the present invention.
Fig. 17 is a diagram showing an NMR chart of a metal complex (L116-M) according to the first embodiment of the present invention.
18 is a diagram showing an NMR chart of a metal complex (L117-M) according to the first embodiment of the present invention.
19 is a diagram showing an NMR chart of a metal complex (L118-M) according to the first embodiment of the present invention.
20 is a diagram showing an NMR chart of a metal complex (L119-M) according to the first embodiment of the present invention.
21 is a diagram showing an NMR chart of a metal complex (L120-M) according to the first embodiment of the present invention.
22 is a diagram showing an NMR chart of a metal complex (L201-M) according to the first embodiment of the present invention.
23 is a diagram showing an NMR chart of a metal complex (L202-M) according to the first embodiment of the present invention.
24 is a diagram showing an NMR chart of a metal complex (L203-M) according to the first embodiment of the present invention.
Fig. 25 is a diagram showing an NMR chart of a metal complex (L204-M) according to the first embodiment of the present invention.
26 is a diagram showing an NMR chart of a metal complex (L205-M) according to the first embodiment of the present invention.
27 is a diagram showing an NMR chart of a metal complex (L206-M) according to the first embodiment of the present invention.
28 is a diagram showing an NMR chart of a metal complex (L207-M) according to the first embodiment of the present invention.
29 is a diagram showing an NMR chart of a metal complex (L301-M) according to the first embodiment of the present invention.
Fig. 30 is a diagram showing an NMR chart of a metal complex (L401-M) according to the first embodiment of the present invention.
Fig. 31 is a diagram showing an NMR chart of a metal complex (L402-M) according to the first embodiment of the present invention.
32 is a diagram showing an NMR chart of a metal complex (L403-M) according to the first embodiment of the present invention.
33 is a diagram showing an NMR chart of a metal complex (L501-M) according to the first embodiment of the present invention.
Fig. 34 is a diagram showing an NMR chart of a metal complex (L601-M) according to the first embodiment of the present invention.
35 is a diagram showing an NMR chart of a metal complex (L121-M) according to the first embodiment of the present invention.
Fig. 36 is a diagram showing an NMR chart of a metal complex (L209-M) according to the first embodiment of the present invention.
37 is a diagram showing an NMR chart of a metal complex (L210-M) according to the first embodiment of the present invention.
38 is a diagram showing an NMR chart of a metal complex (L701-M) according to the first embodiment of the present invention.

(발명을 실시하기 위한 형태)(Form for carrying out the invention)

계속해서, 본 발명을 구체화한 실시형태에 대하여 설명하고, 본 발명의 이해에 제공한다.Subsequently, an embodiment in which the present invention is embodied will be described and provided for understanding of the present invention.

[1] 금속 착체[1] metal complexes

본 발명의 제1 실시형태에 따른 금속 착체는 적어도 4개 이상의 탄소환 및/또는 복소환을 포함하는 하기 일반식 (1) 내지 (7)로 표시되는 금속 착체이다.The metal complex according to the first embodiment of the present invention is a metal complex represented by the following general formulas (1) to (7) containing at least four or more carbocyclic rings and/or heterocycles.

Figure 112019010503878-pct00006
Figure 112019010503878-pct00006

여기에, 상기 식 (1) 내지 (7)에서, R1, R3, R5 및 R7은 각각 독립적으로 2가의 페닐기, 나프틸기, 피리딜기 또는 피리미딘기로부터 선택되는 접속기이며, R2, R4, R6 및 R8은 각각 독립적으로 수소 원자 또는 복소환식 화합물 잔기를 나타내고, R2, R4, R6 및 R8 중 어느 1개는 복소환식 화합물 잔기인 것이 바람직하다. 또한 M은 알칼리 금속 또는 알칼리 토류 금속을 나타내고, n1 내지 n4는 각각 독립적으로 0∼2의 정수이며, l은 1 또는 2의 정수이다.Here, in the formulas (1) to (7), R 1 , R 3 , R 5 and R 7 are each independently a connecting group selected from a divalent phenyl group, a naphthyl group, a pyridyl group or a pyrimidine group, and R 2 , R 4 , R 6 and R 8 each independently represent a hydrogen atom or a heterocyclic compound residue, and any one of R 2 , R 4 , R 6 and R 8 is preferably a heterocyclic compound residue. Further, M represents an alkali metal or an alkaline earth metal, n 1 to n 4 are each independently an integer of 0 to 2, and l is an integer of 1 or 2.

본 발명의 금속 착체는 적어도 4개 이상의 탄소환 및/또는 복소환을 포함하는 것이다. 본 발명에 있어서, 적어도 4개 이상의 탄소환 및/또는 복소환을 포함한다는 것은 탄소환과 복소환의 어느 한쪽 또는 양쪽을 합계로 4 이상 포함하는 것을 말하고, 다환계 골격의 축환(축합환)의 경우에는, 축환을 구성하는 탄소환 또는 복소환을 각각 1개로 카운트한다. 예를 들면, 상기 식 (1)을 구성하는 기본 골격의 페닐피리딘은 탄소환과 복소환을 각각 1개, 합계 2개 갖고, 상기 식 (2)를 구성하는 기본골격의 퀴놀린은 축환으로서 탄소환과 복소환을 각각 1개, 합계 2개 갖고, 또한 상기 식 (3)을 구성하는 기본 골격의 벤조퀴놀린은 축환으로서 탄소환을 2개와 복소환을 1개, 합계 3개 가지고 있다고 카운트한다. 또한, 이후, 탄소환 또는 복소환을 합쳐서 단지 「방향환」이라고 하는 경우가 있다.The metal complex of the present invention contains at least 4 or more carbocyclic rings and/or heterocycles. In the present invention, to include at least four or more carbocyclic rings and/or heterocycles means containing four or more in total of either or both of a carbocyclic ring and a heterocycle, and in the case of a condensed ring (condensed ring) of a polycyclic skeleton In E, the carbocyclic ring or heterocycle constituting the condensed ring is counted as one each. For example, the phenylpyridine of the basic skeleton constituting the above formula (1) has one carbocycle and two heterocycles, respectively, and the quinoline of the basic skeleton constituting the above formula (2) is a condensed ring with a carbocyclic ring and a heterocyclic ring. It is counted that the benzoquinoline of the basic skeleton constituting the above formula (3) has 2 carbocyclic rings and 1 heterocycle, a total of 3 as condensed rings. In addition, hereinafter, a combination of a carbocyclic ring or a heterocycle may be simply referred to as "aromatic ring".

본 발명의 금속 착체는 상기 식 (1) 내지 (7)로 표시되는 금속 착체이며, 식 (1)은 기본골격이 피리딘페놀레이트 착체, 식 (2)는 기본골격이 퀴놀레이트 착체, 식 (3)은 기본골격이 벤조퀴놀레이트 착체, 식 (4)는 기본골격이 벤조옥사졸일페놀레이트 착체, 식 (5)는 기본골격이 벤조싸이아졸일페놀레이트 착체, 또한 식 (6)은 기본골격이 펜안트롤일페놀레이트 착체, 식 (7)은 기본골격이 벤조이미다졸일페놀레이트 착체에 관한 것이다.The metal complex of the present invention is a metal complex represented by the above formulas (1) to (7), formula (1) is a pyridinephenolate complex as a basic skeleton, and formula (2) is a quinolate complex as a basic skeleton, and formula (3) ) Is the basic skeleton is a benzoquinolate complex, equation (4) is the basic skeleton is a benzoxazolylphenolate complex, equation (5) is the basic skeleton is a benzothiazolylphenolate complex, and equation (6) is the basic skeleton The phenanthrolylphenolate complex, formula (7) relates to a benzoimidazolylphenolate complex whose basic skeleton is.

상기 식 (1) 내지 (7)로 표시되는 금속 착체에 있어서, M은 알칼리 금속 또는 알칼리 토류 금속을 나타낸다. 알칼리 금속으로서는 Li, Na, K, Rb 또는 Cs로부터 선택되는 금속을 들 수 있고, 알칼리 토류 금속으로서는 Be, Mg, Ca, Sr 또는 Ba로부터 선택되는 금속을 들 수 있다.In the metal complex represented by the above formulas (1) to (7), M represents an alkali metal or an alkaline earth metal. Examples of the alkali metal include a metal selected from Li, Na, K, Rb or Cs, and examples of the alkaline earth metal include a metal selected from Be, Mg, Ca, Sr, or Ba.

후술하는 전자 수송 재료용의 금속 착체로서는 알칼리 금속이 보다 바람직하고, 그중에서도 전자 주입성 및 알코올 용해성 양쪽의 관점에서, Li<Na<K<Rb<Cs의 순으로, Rb 또는 Cs가 적합하게 사용된다. 또한 알칼리 토류 금속으로서는 Ba가 적합하게 사용된다.Alkali metal is more preferable as a metal complex for an electron transport material to be described later, and among them, from the viewpoint of both electron injection properties and alcohol solubility, Rb or Cs is suitably used in the order of Li<Na<K<Rb<Cs. . Moreover, Ba is suitably used as an alkaline earth metal.

또한, 상기 식 (1) 내지 (7)로 표시되는 금속 착체에 있어서, l(영문자의 엘)은 1 또는 2의 정수를 나타낸다. 즉 M이 알칼리 금속인 경우에는, l은 1이며, M이 알칼리 토류 금속인 경우에는, l은 2가 된다.In addition, in the metal complex represented by the above formulas (1) to (7), l (L in English) represents an integer of 1 or 2. That is, when M is an alkali metal, l is 1, and when M is an alkaline earth metal, l is 2.

그리고, 상기 식 (1) 내지 (7)로 표시되는 금속 착체는 기본골격에 접속하는 접속기인 R1, R3, R5, R7(이하, 「R1 등」이라고 한다.), 및 수소 원자 또는 복소환식 화합물 잔기인 R2, R4, R6, R8(이하, 「R2 등」이라고 한다.)을 갖는다. 여기에, R1 등은 2가의 페닐기, 나프틸기, 피리딜기 또는 피리미딘기로부터 선택되는 접속기이며, 각 골격에 따라 0∼2개 치환이 가능하다. 즉 상기 식 (1) 내지 (7)에서, 접속기의 n1 내지 n4는 각각 독립적으로 0∼2의 정수이다. 덧붙여서, n1 등이 0인 경우에는, 복소환식 화합물 잔기인 R2 등이 기본골격에 직접 치환하고 있는 것을 의미한다.In addition, the metal complex represented by the above formulas (1) to (7) is R 1 , R 3 , R 5 , R 7 (hereinafter referred to as “R 1, etc.”), which are connectors connected to the basic skeleton, and hydrogen. It has an atom or heterocyclic compound residue, R 2 , R 4 , R 6 , R 8 (hereinafter referred to as "R 2 etc."). Here, R 1 and the like are a connecting group selected from a divalent phenyl group, a naphthyl group, a pyridyl group, or a pyrimidine group, and 0 to 2 substitutions are possible depending on each skeleton. That is, in the formulas (1) to (7), n 1 to n 4 of the connecting groups are each independently an integer of 0 to 2. In addition, when n 1 or the like is 0, it means that R 2 or the like, which is a heterocyclic compound residue, is directly substituted on the basic skeleton.

다음에 R2 등에 대하여 상세하게 설명한다. R2 등은 수소 원자 또는 복소환식 화합물 잔기이며, R2, R4, R6 및 R8 중 어느 1개는 복소환식 화합물 잔기인 것이 바람직하다. 또한 복소환식 화합물 잔기로서는 함질소환식 화합물 잔기인 것이 바람직하다. 함질소환식 화합물 잔기의 예로서는 다음의 것을 들 수 있다.Next, R 2 and the like will be described in detail. R 2 or the like is a hydrogen atom or a heterocyclic compound residue, and any one of R 2 , R 4 , R 6 and R 8 is preferably a heterocyclic compound residue. Moreover, it is preferable that it is a nitrogen-containing compound residue as a heterocyclic compound residue. Examples of the nitrogen-containing cyclic compound residue include the following.

(a) 다음 일반식 (8a) 내지 (8c)로 표시되는 함질소환식 화합물 잔기(a) a nitrogen-containing cyclic compound residue represented by the following general formulas (8a) to (8c)

Figure 112019010503878-pct00007
Figure 112019010503878-pct00007

여기에, 상기 식 (8a) 내지 (8c)에서, R10은 탄소수 1∼4의 알킬기, 페닐기, 바이페닐기, 나프틸기, 피리딜기, 바이피리딜기 또는 펜안트롤일기를 나타내고, m1은 0∼4의 정수이다.Here, in the formulas (8a) to (8c), R 10 represents an alkyl group having 1 to 4 carbon atoms, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group or a phenanthrolyl group, and m 1 is 0 to It is an integer of 4.

즉 함질소환식 화합물 잔기의 R2 등이 피리딘 골격으로 이루어지는 것이며, 치환기 R10을 가지고 있어도 된다. R10으로서는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-뷰틸기, tert-뷰틸기 등의 탄소수 1∼4의 직쇄 또는 분지 알킬기, 페닐기, 바이페닐기, 나프틸기, 피리딜기, 바이피리딜기 또는 펜안트롤일기를 들 수 있다. 또한, 치환기 R10의 수를 나타내는 m1은 0∼4의 정수이다.That is, R 2 or the like of the nitrogen-containing cyclic compound residue consists of a pyridine skeleton, and may have a substituent R 10 . As R 10 , a straight or branched alkyl group having 1 to 4 carbon atoms such as a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, and tert-butyl group, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bi A pyridyl group or a phenanthrolyl group. In addition, m 1 representing the number of substituents R 10 is an integer of 0 to 4.

(b) 다음 일반식 (9a) 내지 (9d)로 표시되는 함질소환식 화합물 잔기(b) a nitrogen-containing cyclic compound residue represented by the following general formulas (9a) to (9d)

Figure 112019010503878-pct00008
Figure 112019010503878-pct00008

여기에, 상기 식 (9a) 내지 (9d)에서, R10은 탄소수 1∼4의 알킬기, 페닐기, 바이페닐기, 나프틸기, 피리딜기, 바이피리딜기 또는 펜안트롤일기를 나타내고, m1은 0∼3의 정수이다.Here, in the formulas (9a) to (9d), R 10 represents an alkyl group having 1 to 4 carbon atoms, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group or a phenanthrolyl group, and m 1 is 0 to It is an integer of 3.

즉 함질소환식 화합물 잔기의 R2 등이 피리미딘 골격 또는 트라이아진 골격으로 이루어지는 것이며, 치환기 R10을 가지고 있어도 된다. R10으로서는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-뷰틸기, tert-뷰틸기 등의 탄소수 1∼4의 직쇄 또는 분지 알킬기, 페닐기, 바이페닐기, 나프틸기, 피리딜기, 바이피리딜기 또는 펜안트롤일기를 들 수 있다. 이것들 중에서도, 페닐기, 바이페닐기, 나프틸기, 피리딜기, 바이피리딜기 또는 펜안트롤일기가 바람직하다. 또한, 치환기 R10의 수를 나타내는 m1은 0∼3의 정수이다.That is, R 2 or the like of the nitrogen-containing cyclic compound residue consists of a pyrimidine skeleton or a triazine skeleton, and may have a substituent R 10 . As R 10 , a straight or branched alkyl group having 1 to 4 carbon atoms such as a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group and tert-butyl group, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bi A pyridyl group or a phenanthrolyl group. Among these, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group, or a phenanthrolyl group is preferable. In addition, m 1 representing the number of substituents R 10 is an integer of 0 to 3.

(c) 다음 일반식 (10a) 내지 (10d)로 표시되는 함질소환식 화합물 잔기(c) a nitrogen-containing cyclic compound residue represented by the following general formulas (10a) to (10d)

Figure 112019010503878-pct00009
Figure 112019010503878-pct00009

여기에, 상기 식 (10a) 내지 (10d)에서, R10 내지 R12(이하, 「R10 등」이라고 한다.)는 각각 독립적으로 탄소수 1∼4의 알킬기, 페닐기, 바이페닐기, 나프틸기, 피리딜기, 바이피리딜기 또는 펜안트롤일기를 나타내고, m1 내지 m3은 각각 독립적으로 0∼3의 정수이다. 즉 함질소환식 화합물 잔기의 R2 등이 펜안트롤린 골격으로 이루어지는 것이며, 치환기를 가지고 있어도 된다. R10 등으로서는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-뷰틸기, tert-뷰틸기 등의 탄소수 1∼4의 직쇄 또는 분지 알킬기, 페닐기, 바이페닐기, 나프틸기, 피리딜기, 바이피리딜기 또는 펜안트롤일기를 들 수 있다. 이것들 중에서도, 페닐기, 바이페닐기, 나프틸기, 피리딜기, 바이피리딜기 또는 펜안트롤일기가 바람직하다. 또한, 치환기 R10 등의 수를 나타내는 m1 내지 m3은 각각 독립적으로 0∼3의 정수이다.Here, in the formulas (10a) to (10d), R 10 to R 12 (hereinafter referred to as "R 10 etc.") are each independently an alkyl group having 1 to 4 carbon atoms, a phenyl group, a biphenyl group, a naphthyl group, It represents a pyridyl group, a bipyridyl group, or a phenanthrolyl group, and m 1 to m 3 are each independently an integer of 0 to 3. That is, R 2 or the like of the nitrogen-containing cyclic compound residue comprises a phenanthroline skeleton, and may have a substituent. Examples of R 10 and the like include a linear or branched alkyl group having 1 to 4 carbon atoms such as a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, and tert-butyl group, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, A bipyridyl group or a phenanthrolyl group. Among these, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group, or a phenanthrolyl group is preferable. In addition, m 1 to m 3 representing the number of substituents R 10 and the like are each independently an integer of 0 to 3.

(d) 다음 일반식 (11a) 내지 (11d)로 표시되는 함질소환식 화합물 잔기(d) a nitrogen-containing cyclic compound residue represented by the following general formulas (11a) to (11d)

Figure 112019010503878-pct00010
Figure 112019010503878-pct00010

여기에, 상기 식 (11a) 내지 (11d)에서, R10, R11(이하, 「R10 등」이라고 한다.)은, 각각 독립적으로, 탄소수 1∼4의 알킬기, 페닐기, 바이페닐기, 나프틸기, 피리딜기, 바이피리딜기 또는 펜안트롤일기를 나타내고, m1은 0∼3의 정수이며, m2는 0∼4의 정수이다. 즉 함질소환식 화합물 잔기의 R2가 카볼라인 골격으로 이루어지는 것이며, 치환기 R10 등을 가지고 있어도 된다. R10 등으로서는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-뷰틸기, tert-뷰틸기 등의 탄소수 1∼4의 직쇄 또는 분지 알킬기, 페닐기, 바이페닐기, 나프틸기, 피리딜기, 바이피리딜기 또는 펜안트롤일기를 들 수 있다. 이것들 중에서도, 페닐기, 바이페닐기, 나프틸기, 피리딜기, 바이피리딜기 또는 펜안트롤일기가 바람직하다. 또한 치환기 R10 등의 수를 나타내는 m1은 0∼3의 정수이며, m2는 0∼4의 정수이다.Here, in the above formulas (11a) to (11d), R 10 and R 11 (hereinafter referred to as "R 10 etc.") are each independently an alkyl group having 1 to 4 carbon atoms, a phenyl group, a biphenyl group, and a naphe. Represents a tyl group, a pyridyl group, a bipyridyl group or a phenanthrolyl group, m 1 is an integer of 0 to 3, and m 2 is an integer of 0 to 4. That is, R 2 of the nitrogen-containing cyclic compound residue consists of a carboline skeleton, and may have a substituent R 10 or the like. Examples of R 10 and the like include a linear or branched alkyl group having 1 to 4 carbon atoms such as a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, and tert-butyl group, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, A bipyridyl group or a phenanthrolyl group. Among these, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group, or a phenanthrolyl group is preferable. Moreover, m 1 representing the number of substituents R 10 and the like is an integer of 0 to 3, and m 2 is an integer of 0 to 4.

다음에 본 발명의 일반식 (1) 내지 (7)로 표시되는 금속 착체의 구체예에 대하여 설명한다. 이하의 화합물은 어디까지나 예시이며 본 발명의 금속 착체는 이것들에 한정되는 것은 아니다.Next, specific examples of the metal complex represented by the general formulas (1) to (7) of the present invention will be described. The following compounds are examples only, and the metal complex of the present invention is not limited to these.

(A) 일반식 (1)로 표시되는 금속 착체(A) Metal complex represented by general formula (1)

본 발명의 일반식 (1)로 표시되는 금속 착체로서는 다음 화합물이 예시된다. 또한, M은 알칼리 금속 또는 알칼리 토류 금속을 나타낸다. 단, M이 알칼리 토류 금속인 경우에는, 각 배위자가 M에 2개 배위한 구조가 된다.The following compounds are illustrated as the metal complex represented by the general formula (1) of the present invention. In addition, M represents an alkali metal or alkaline earth metal. However, when M is an alkaline earth metal, each ligand has a structure in which M is multiplied by two.

Figure 112019010503878-pct00011
Figure 112019010503878-pct00011

Figure 112019010503878-pct00012
Figure 112019010503878-pct00012

Figure 112019010503878-pct00013
Figure 112019010503878-pct00013

(B) 일반식 (2)로 표시되는 금속 착체(B) Metal complex represented by general formula (2)

본 발명의 일반식 (2)로 표시되는 금속 착체로서는 다음 화합물이 예시된다. 또한, M은 알칼리 금속 또는 알칼리 토류 금속을 나타낸다. 단, M이 알칼리 토류 금속인 경우에는, 각 배위자가 M에 2개 배위한 구조가 된다.The following compounds are exemplified as the metal complex represented by the general formula (2) of the present invention. In addition, M represents an alkali metal or alkaline earth metal. However, when M is an alkaline earth metal, each ligand has a structure in which M is multiplied by two.

Figure 112019010503878-pct00014
Figure 112019010503878-pct00014

Figure 112019010503878-pct00015
Figure 112019010503878-pct00015

(C) 일반식 (3)으로 표시되는 금속 착체(C) Metal complex represented by general formula (3)

본 발명의 일반식 (3)으로 표시되는 금속 착체로서는 다음 화합물이 예시된다. 또한, M은 알칼리 금속 또는 알칼리 토류 금속을 나타낸다. 단, M이 알칼리 토류 금속인 경우에는, 각 배위자가 M에 2개 배위한 구조가 된다.The following compounds are exemplified as the metal complex represented by the general formula (3) of the present invention. In addition, M represents an alkali metal or alkaline earth metal. However, when M is an alkaline earth metal, each ligand has a structure in which M is multiplied by two.

Figure 112019010503878-pct00016
Figure 112019010503878-pct00016

Figure 112019010503878-pct00017
Figure 112019010503878-pct00017

Figure 112019010503878-pct00018
Figure 112019010503878-pct00018

(D) 일반식 (4)로 표시되는 금속 착체(D) Metal complex represented by general formula (4)

본 발명의 일반식 (4)로 표시되는 금속 착체로서는 다음 화합물이 예시된다. 또한, M은 알칼리 금속 또는 알칼리 토류 금속을 나타낸다. 단, M이 알칼리 토류 금속인 경우에는, 각 배위자가 M에 2개 배위한 구조가 된다.The following compounds are exemplified as the metal complex represented by the general formula (4) of the present invention. In addition, M represents an alkali metal or alkaline earth metal. However, when M is an alkaline earth metal, each ligand has a structure in which M is multiplied by two.

Figure 112019010503878-pct00019
Figure 112019010503878-pct00019

Figure 112019010503878-pct00020
Figure 112019010503878-pct00020

(E) 일반식 (5)로 표시되는 금속 착체(E) Metal complex represented by general formula (5)

본 발명의 일반식 (5)로 표시되는 금속 착체로서는 다음 화합물이 예시된다. 또한, M은 알칼리 금속 또는 알칼리 토류 금속을 나타낸다. 단, M이 알칼리 토류 금속인 경우에는, 각 배위자가 M에 2개 배위한 구조가 된다.The following compounds are illustrated as the metal complex represented by the general formula (5) of the present invention. In addition, M represents an alkali metal or alkaline earth metal. However, when M is an alkaline earth metal, each ligand has a structure in which M is multiplied by two.

Figure 112019010503878-pct00021
Figure 112019010503878-pct00021

Figure 112019010503878-pct00022
Figure 112019010503878-pct00022

(F) 일반식 (6)으로 표시되는 금속 착체(F) Metal complex represented by general formula (6)

본 발명의 일반식 (6)으로 표시되는 금속 착체로서는 다음 화합물을 들 수 있다. 또한, M은 알칼리 금속 또는 알칼리 토류 금속을 나타낸다. 단, M이 알칼리 토류 금속인 경우에는, 각 배위자가 M에 2개 배위한 구조가 된다.The following compounds are mentioned as a metal complex represented by general formula (6) of this invention. In addition, M represents an alkali metal or alkaline earth metal. However, when M is an alkaline earth metal, each ligand has a structure in which M is multiplied by two.

Figure 112019010503878-pct00023
Figure 112019010503878-pct00023

(G) 일반식 (7)로 표시되는 금속 착체(G) Metal complex represented by general formula (7)

본 발명의 일반식 (7)로 표시되는 금속 착체로서는 다음 화합물을 들 수 있다. 또한, M은 알칼리 금속 또는 알칼리 토류 금속을 나타낸다. 단, M이 알칼리 토류 금속인 경우에는, 각 배위자가 M에 2개 배위한 구조가 된다.The following compounds are mentioned as a metal complex represented by general formula (7) of this invention. In addition, M represents an alkali metal or alkaline earth metal. However, when M is an alkaline earth metal, each ligand has a structure in which M is multiplied by two.

Figure 112019010503878-pct00024
Figure 112019010503878-pct00024

본 발명의 상기 일반식 (1) 내지 (7)로 표시되는 구조를 갖는 금속 착체는, 예를 들면, 다음 반응식에 의해 합성할 수 있다.The metal complex having a structure represented by the general formulas (1) to (7) of the present invention can be synthesized, for example, by the following reaction formula.

(1) 일반식 (1)로 표시되는 구조를 갖는 금속 착체(1) Metal complex having a structure represented by general formula (1)

1) 일반식 (1)의 구조를 갖는 배위자는 다음과 같이 하여 합성할 수 있다.1) A ligand having the structure of the general formula (1) can be synthesized as follows.

또한, 식 중, X는 불소 원자, 염소 원자, 브로민 원자, 아이오딘 원자, 트라이플레이트기, 토실레이트기, 메실레이트기, 다이아조니오기 등의 탈리기를 나타낸다.In addition, in the formula, X represents a leaving group such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a triflate group, a tosylate group, a mesylate group, and a diazonio group.

Figure 112019010503878-pct00025
Figure 112019010503878-pct00025

Figure 112019010503878-pct00026
Figure 112019010503878-pct00026

Figure 112019010503878-pct00027
Figure 112019010503878-pct00027

Figure 112019010503878-pct00028
Figure 112019010503878-pct00028

Figure 112019010503878-pct00029
Figure 112019010503878-pct00029

2) 일반식 (1)로 표시되는 구조를 갖는 착체는 상기 배위자와 수산화물의 반응에 의해 다음과 같이 하여 합성할 수 있다.2) The complex having the structure represented by the general formula (1) can be synthesized as follows by the reaction of the ligand and the hydroxide.

Figure 112019010503878-pct00030
Figure 112019010503878-pct00030

(2) 일반식 (2)로 표시되는 구조를 갖는 금속 착체(2) Metal complex having a structure represented by the general formula (2)

1) 일반식 (2)의 구조를 갖는 배위자는 다음과 같이 하여 합성할 수 있다.1) A ligand having the structure of the general formula (2) can be synthesized as follows.

또한, 식 중, X는 불소 원자, 염소 원자, 브로민 원자, 아이오딘 원자, 트라이플레이트기, 토실레이트기, 메실레이트기, 다이아조니오기 등의 탈리기를 나타낸다.In addition, in the formula, X represents a leaving group such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a triflate group, a tosylate group, a mesylate group, and a diazonio group.

Figure 112019010503878-pct00031
Figure 112019010503878-pct00031

Figure 112019010503878-pct00032
Figure 112019010503878-pct00032

2) 일반식 (2)로 표시되는 구조를 갖는 착체는 상기 배위자와 수산화물의 반응에 의해 다음과 같이 하여 합성할 수 있다.2) A complex having a structure represented by the general formula (2) can be synthesized as follows by reaction of the ligand and hydroxide.

Figure 112019010503878-pct00033
Figure 112019010503878-pct00033

(3) 일반식 (3)으로 표시되는 구조를 갖는 금속 착체(3) Metal complex having a structure represented by the general formula (3)

1) 일반식 (3)의 구조를 갖는 배위자는 다음과 같이 하여 합성할 수 있다.1) A ligand having the structure of the general formula (3) can be synthesized as follows.

또한, 식 중, X는 불소 원자, 염소 원자, 브로민 원자, 아이오딘 원자, 트라이플레이트기, 토실레이트기, 메실레이트기, 다이아조니오기 등의 탈리기를 나타낸다.In addition, in the formula, X represents a leaving group such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a triflate group, a tosylate group, a mesylate group, and a diazonio group.

Figure 112019010503878-pct00034
Figure 112019010503878-pct00034

Figure 112019010503878-pct00035
Figure 112019010503878-pct00035

2) 일반식 (3)으로 표시되는 구조를 갖는 착체는 상기 배위자와 수산화물의 반응에 의해 다음과 같이 하여 합성할 수 있다.2) The complex having the structure represented by the general formula (3) can be synthesized as follows by reaction of the ligand and the hydroxide.

Figure 112019010503878-pct00036
Figure 112019010503878-pct00036

(4) 일반식 (4)로 표시되는 구조를 갖는 금속 착체(4) Metal complex having a structure represented by general formula (4)

1) 일반식 (4)의 구조를 갖는 배위자는 다음과 같이 하여 합성할 수 있다.1) A ligand having the structure of the general formula (4) can be synthesized as follows.

또한, 식 중, X는 불소 원자, 염소 원자, 브로민 원자, 아이오딘 원자, 트라이플레이트기, 토실레이트기, 메실레이트기, 다이아조니오기 등의 탈리기를 나타낸다.In addition, in the formula, X represents a leaving group such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a triflate group, a tosylate group, a mesylate group, and a diazonio group.

Figure 112019010503878-pct00037
Figure 112019010503878-pct00037

Figure 112019010503878-pct00038
Figure 112019010503878-pct00038

2) 일반식 (4)로 표시되는 구조를 갖는 착체는 상기 배위자와 수산화물의 반응에 의해 다음과 같이 하여 합성할 수 있다.2) The complex having the structure represented by the general formula (4) can be synthesized as follows by reaction of the ligand and the hydroxide.

Figure 112019010503878-pct00039
Figure 112019010503878-pct00039

(5) 일반식 (5)로 표시되는 구조를 갖는 금속 착체(5) Metal complex having a structure represented by general formula (5)

1) 일반식 (5)의 구조를 갖는 배위자는 다음과 같이 하여 합성할 수 있다.1) A ligand having the structure of the general formula (5) can be synthesized as follows.

Figure 112019010503878-pct00040
Figure 112019010503878-pct00040

Figure 112019010503878-pct00041
Figure 112019010503878-pct00041

2) 일반식 (5)로 표시되는 구조를 갖는 착체는 상기 배위자와 수산화물의 반응에 의해 다음과 같이 하여 합성할 수 있다.2) A complex having a structure represented by the general formula (5) can be synthesized as follows by reaction of the ligand and hydroxide.

Figure 112019010503878-pct00042
Figure 112019010503878-pct00042

(6) 일반식 (6)으로 표시되는 구조를 갖는 금속 착체(6) Metal complex having a structure represented by the general formula (6)

1) 일반식 (6)의 구조를 갖는 배위자는 다음과 같이 하여 합성할 수 있다.1) A ligand having the structure of the general formula (6) can be synthesized as follows.

Figure 112019010503878-pct00043
Figure 112019010503878-pct00043

Figure 112019010503878-pct00044
Figure 112019010503878-pct00044

2) 일반식 (6)으로 표시되는 구조를 갖는 착체는 상기 배위자와 수산화물의 반응에 의해 다음과 같이 하여 합성할 수 있다.2) A complex having a structure represented by the general formula (6) can be synthesized as follows by reaction of the ligand and hydroxide.

Figure 112019010503878-pct00045
Figure 112019010503878-pct00045

(7) 일반식 (7)로 표시되는 구조를 갖는 금속 착체(7) Metal complex having a structure represented by general formula (7)

1) 일반식 (7)의 구조를 갖는 배위자는 다음과 같이 하여 합성할 수 있다.1) A ligand having the structure of the general formula (7) can be synthesized as follows.

Figure 112019010503878-pct00046
Figure 112019010503878-pct00046

Figure 112019010503878-pct00047
Figure 112019010503878-pct00047

2) 일반식 (7)로 표시되는 구조를 갖는 착체는 상기 배위자와 수산화물의 반응에 의해 다음과 같이 하여 합성할 수 있다.2) A complex having a structure represented by the general formula (7) can be synthesized as follows by reaction of the ligand and hydroxide.

Figure 112019010503878-pct00048
Figure 112019010503878-pct00048

[2] 배위성 화합물[2] coordination compounds

본 발명의 제2 실시형태에 따른 배위성 화합물은 상기 금속 착체를 구성하는 배위자이다. 즉 본 발명의 제1 실시형태에 따른, 적어도 4개 이상의 탄소환 및/또는 복소환을 포함하는 일반식 (1) 내지 (7)로 표시되는 금속 착체를 구성하는 화합물이다.The coordination compound according to the second embodiment of the present invention is a ligand constituting the metal complex. That is, it is a compound constituting the metal complex represented by the general formulas (1) to (7) containing at least four or more carbocyclic rings and/or heterocycles according to the first embodiment of the present invention.

[3] 전자 수송 재료[3] electron transport materials

본 발명의 제3 실시형태에 따른 전자 수송 재료는 상기 제1 실시형태에서 상세히 설명한 일반식 (1) 내지 (7)로 표시되는 금속 착체, 특히, 알칼리 금속 착체 또는 알칼리 토류 금속 착체로 이루어지는 것이다.The electron transport material according to the third embodiment of the present invention is made of a metal complex represented by the general formulas (1) to (7) described in detail in the first embodiment, in particular, an alkali metal complex or an alkaline earth metal complex.

본 발명의 금속 착체는 모두 기본골격에 「-O-M…N≡」의 킬레이트 결합을 갖는 환을 가지고 있고, 또한 2가의 페닐기, 나프틸기, 피리딜기 또는 피리미딘기로부터 선택되는 접속기 R1 등, 및 수소 원자 또는 복소환식 화합물 잔기 R2 등을 구성요소로 하는 것이다.All of the metal complexes of the present invention have "-OM... N≡” has a ring having a chelate bond, and a connecting group R 1 etc. selected from a divalent phenyl group, a naphthyl group, a pyridyl group or a pyrimidine group, and a hydrogen atom or a heterocyclic compound residue R 2 as constituent elements Is to do.

본 발명의 금속 착체의 상기 기본골격의 구조는 전자 수송 재료로서 사용한 경우에, 후술의 알코올 등의 프로톤성 극성 용매에의 용해성 부여에 기여하고, 또 전자 주입성 향상에 기여하는 것으로 생각되며, 또한 상기 접속기 및 복소환식 화합물 잔기는 전자 수송성이나 성막성 향상에 기여하는 것으로 생각된다. 그리고, 본 발명의 금속 착체는 포스핀옥사이드 화합물에 비해 결합해리 에너지가 높아, 보다 내구성, 고수명이 우수한 전자 수송 재료가 얻어진다.The structure of the basic skeleton of the metal complex of the present invention, when used as an electron transport material, contributes to imparting solubility in protic polar solvents such as alcohols, which will be described later, and is considered to contribute to improvement of electron injection properties. It is thought that the said connecting group and the heterocyclic compound residue contribute to the improvement of electron transport property and film formation property. In addition, the metal complex of the present invention has higher bond dissociation energy than the phosphine oxide compound, and thus an electron transport material having excellent durability and high life can be obtained.

본 발명의 금속 착체는 적어도 4개 이상의 탄소환 또는 복소환을 포함하는 것이 필요하다. 탄소환 또는 복소환이 3개 이하에서는, 본원이 목적으로 하는 전자 주입 특성, 전자 수송 특성, 내구성이 우수한 전자 수송 재료를 얻기 어렵다.The metal complex of the present invention needs to contain at least 4 or more carbocyclic or heterocycles. When there are 3 or less carbocyclic rings or heterocycles, it is difficult to obtain an electron transport material excellent in electron injection characteristics, electron transport characteristics, and durability for the purpose of the present application.

상기 식 (1) 내지 (7)로 표시되는 금속 착체에 있어서, M은 금속, 특히, 알칼리 금속 또는 알칼리 토류 금속을 나타낸다. 알칼리 금속으로서는 Li, Na, K, Rb 또는 Cs로부터 선택되는 금속을 들 수 있고, 알칼리 토류 금속으로서는 Be, Mg, Ca, Sr 또는 Ba로부터 선택되는 금속을 들 수 있다.In the metal complex represented by the above formulas (1) to (7), M represents a metal, particularly an alkali metal or alkaline earth metal. Examples of the alkali metal include a metal selected from Li, Na, K, Rb or Cs, and examples of the alkaline earth metal include a metal selected from Be, Mg, Ca, Sr, or Ba.

전자 수송 재료용의 금속 착체로서는 알칼리 금속이 보다 바람직하고, 그중에서도 전자 주입성 및 알코올 용해성 양쪽의 관점에서, Li<Na<K<Rb<Cs의 순으로, Rb 또는 Cs가 적합하게 사용된다. 또한 알칼리 토류 금속으로서는 Ba가 적합하게 사용된다.As the metal complex for the electron transport material, an alkali metal is more preferable, and among them, from the viewpoint of both electron injection properties and alcohol solubility, Rb or Cs is suitably used in the order of Li<Na<K<Rb<Cs. Moreover, Ba is suitably used as an alkaline earth metal.

상기 식 (1) 내지 (7)로 표시되는 금속 착체 중에서도, 전자 수송 재료용의 금속 착체로서는 식 (1) 또는 식 (2)로 표시되는 금속 착체가 바람직하다. 식 (1) 중에서도, 하기 L101-M, L102-M, L106-M 및 L115-M의 착체가 사용된 소자의 구동전압(V), 전류효율(ηc) 및 상대수명 등의 물성값에서 우수했다.Among the metal complexes represented by the above formulas (1) to (7), as the metal complex for an electron transport material, a metal complex represented by formula (1) or (2) is preferable. Among Equation (1), the following complexes of L101-M, L102-M, L106-M and L115-M were excellent in physical property values such as driving voltage (V), current efficiency (ηc), and relative life of the device.

Figure 112019010503878-pct00049
Figure 112019010503878-pct00049

Figure 112019010503878-pct00050
Figure 112019010503878-pct00050

Figure 112019010503878-pct00051
Figure 112019010503878-pct00051

Figure 112019010503878-pct00052
Figure 112019010503878-pct00052

특히, L115-M의 착체가 적합하며, 그중에서도 M이 Rb 또는 Cs, 특히 Cs인 경우가 우수했다.In particular, the complex of L115-M is suitable, and among them, the case where M is Rb or Cs, especially Cs was excellent.

식 (2) 중에서는, 하기 L201-M 및 L203-M의 착체가 사용된 소자의 구동 전압(V), 전류효율(ηc) 및 상대수명 등의 물성값에서 우수했다.In Equation (2), the following complexes of L201-M and L203-M were excellent in physical property values such as driving voltage (V), current efficiency (ηc), and relative life of a device.

Figure 112019010503878-pct00053
Figure 112019010503878-pct00053

Figure 112019010503878-pct00054
Figure 112019010503878-pct00054

그중에서도, L201-M의 착체가 적합하며, 그중에서도 M이 Rb 또는 Cs, 특히 Cs인 경우가 우수했다. 또한, L203-M 착체의 경우에는, M이 Ba인 경우가 우수했다.Among them, the complex of L201-M is suitable, and among them, the case where M is Rb or Cs, especially Cs was excellent. Moreover, in the case of the L203-M complex, the case where M was Ba was excellent.

본 발명의 전자 수송 재료는 전자 주입성 및 전자 수송성을 높이기 위하여, 금속 알콕사이드를 함유하는 것이 바람직하다.The electron transport material of the present invention preferably contains a metal alkoxide in order to improve electron injection and electron transport properties.

금속 알콕사이드는 조정한 것을 사용하는 것도 가능하지만, 임의의 알코올에 알칼리 금속 또는 알칼리 토류 금속을 첨가하고, 용매와 반응시킴으로써 금속 알콕사이드를 조정하는 것도 가능하다.Although it is possible to use the adjusted metal alkoxide, it is also possible to adjust the metal alkoxide by adding an alkali metal or alkaline earth metal to an arbitrary alcohol and reacting with a solvent.

조정한 금속 알콕사이드를 사용하는 경우에는, 하기 일반식 (A) 또는 (B)로 표시되는 화합물이 보다 적합하게 사용된다.When using the adjusted metal alkoxide, a compound represented by the following general formula (A) or (B) is more suitably used.

R20-M (A)R 20 -M (A)

R20-M-R21 (B)R 20 -MR 21 (B)

식 (A) 또는 (B)에서, R20, R21은 각각 독립적으로 임의의 알킬알콕시기를 나타내고, 또한 M은 알칼리 금속 또는 알칼리 토류 금속을 나타낸다.In the formula (A) or (B), R 20 and R 21 each independently represent an arbitrary alkylalkoxy group, and M represents an alkali metal or alkaline earth metal.

알킬알콕시기로서는 탄소수가 1∼10, 바람직하게는 탄소수가 1∼7의 직쇄 또는 분지 알킬알콕시기를 들 수 있다. 구체적으로는, 메톡시기, 에톡시기, 1-프로폭시기, 2-프로폭시기, 1-뷰톡시기, 2-뷰톡시기, 아이소뷰톡시기, tert-뷰톡시기, 1-펜톡시기, 2-펜톡시기, 3-펜톡시기, 2-메틸-1-뷰톡시기, 아이소펜톡시기, tert-펜톡시기, 3-메틸-2-뷰톡시기, 네오펜톡시기, 1-헥속시기, 2-메틸-1-펜톡시기, 4-메틸-2-펜톡시기, 2-에틸-1-뷰톡시기, 1-헵톡시기, 2-헵톡시기, 3 -헵톡시기, 1-옥톡시기, 2-옥톡시기, 2-에틸-1-헥속시기, 1-노나녹시기, 3,5,5-트라이메틸-1-헥속시기, 1-데카녹시기가 예시된다. 그중에서도 메톡시기, 에톡시기, 1-프로폭시기, 2-프로폭시기, 1-뷰톡시기, 2-뷰톡시기, 아이소뷰톡시기, tert-뷰톡시기, 1-펜톡시기, 1-헥속시기가 적합하게 사용된다. 이것들은 단독으로 사용해도 되고, 임의의 2 이상을 임의의 비율로 혼합하여 사용해도 된다.Examples of the alkylalkoxy group include a C1-C10, preferably a C1-C7 linear or branched alkylalkoxy group. Specifically, methoxy group, ethoxy group, 1-propoxy group, 2-propoxy group, 1-butoxy group, 2-butoxy group, isobutoxy group, tert-butoxy group, 1-pentoxy group, 2-pentoxy group , 3-pentoxy group, 2-methyl-1-butoxy group, isopentoxy group, tert-pentoxy group, 3-methyl-2-butoxy group, neopentoxy group, 1-hexoxy group, 2-methyl-1-pentoxy group , 4-methyl-2-pentoxy group, 2-ethyl-1-butoxy group, 1-heptoxy group, 2-heptoxy group, 3-heptoxy group, 1-octoxy group, 2-octoxy group, 2-ethyl-1- Hexoxy group, 1-nonanooxy group, 3,5,5-trimethyl-1-hexoxy group, and 1-decanoxy group are illustrated. Among them, methoxy group, ethoxy group, 1-propoxy group, 2-propoxy group, 1-butoxy group, 2-butoxy group, isobutoxy group, tert-butoxy group, 1-pentoxy group, 1-hexoxy group are suitably used. Used. These may be used alone, or two or more of them may be mixed and used in an arbitrary ratio.

M의 구체예로서는 Li, Na, K, Rb 또는 Cs의 알칼리 금속, Be, Mg, Ca, Sr 또는 Ba의 알칼리 토류 금속을 들 수 있다. 이것들 중에서도, Li가 성막성, 전자 수송성의 관점에서 적합하게 사용된다.Specific examples of M include an alkali metal of Li, Na, K, Rb or Cs, and an alkaline earth metal of Be, Mg, Ca, Sr or Ba. Among these, Li is suitably used from the viewpoint of film-forming properties and electron transport properties.

또한, 알코올 용매에 알칼리 금속 또는 알칼리 토류 금속을 첨가하는 경우에는, 불활성 가스 분위기하에서 소정의 농도가 되도록 용매에 알칼리 금속을 첨가하고 교반하여 용해시킨다. 용해 시에는, 필요에 따라 냉각, 가열을 실시한다. 이때, 이하의 반응이 진행되어 금속 알콕사이드가 용해된 용액이 조정된다.In addition, when an alkali metal or alkaline earth metal is added to the alcohol solvent, the alkali metal is added to the solvent so as to have a predetermined concentration under an inert gas atmosphere, followed by stirring to dissolve. When dissolving, cooling and heating are performed as necessary. At this time, the following reaction proceeds to prepare a solution in which the metal alkoxide is dissolved.

하기 반응식 (C) 또는 (D)에서, R은 대응하는 용매의 치환기에 대응하고, 또한 M은 알칼리 금속 또는 알칼리 토류 금속을 나타낸다. 또한, 반응에 사용하는 용매로서는 후술하는 액상 재료에서 사용되는 용매를 동일하게 사용할 수 있다. 그중에서도, 1가의 알코올이 바람직하다.In the following reaction formula (C) or (D), R corresponds to a substituent of the corresponding solvent, and M represents an alkali metal or alkaline earth metal. In addition, as the solvent used for the reaction, the solvent used for the liquid material described later can be used in the same manner. Among them, monohydric alcohols are preferred.

Figure 112019010503878-pct00055
Figure 112019010503878-pct00055

금속 알콕사이드의 구체예로서는 소듐메톡사이드, 소듐에톡사이드, 소듐-tert-뷰톡사이드, 포타슘에톡사이드, 포타슘-tert-뷰톡사이드, 리튬-n-뷰톡사이드, 리튬-tert-뷰톡사이드, 세슘-n-헵톡사이드 등을 들 수 있다.Specific examples of the metal alkoxide include sodium methoxide, sodium ethoxide, sodium-tert-butoxide, potassium ethoxide, potassium-tert-butoxide, lithium-n-butoxide, lithium-tert-butoxide, cesium-n. -Hepoxide, etc. are mentioned.

이것들은 알칼리 금속 착체 또는 알칼리 토류 금속 착체에 대하여 0.1중량% 내지 50중량%, 보다 바람직하게는 1중량% 내지 40중량%의 범위에서 적당하게 사용된다.These are suitably used in the range of 0.1% to 50% by weight, more preferably 1% to 40% by weight based on the alkali metal complex or alkaline earth metal complex.

상기 전자 수송 재료에는, 또한 알칼리 금속 이온 및 알칼리 토류 금속 이온 중 적어도 1종의 금속 이온의 할로젠염, 탄산염, 탄산수소염, 수산화물 또는 탄소수 1∼9의 유기산염을 함유하는 것이 바람직하다.It is preferable that the electron transport material further contains a halogen salt, carbonate, hydrogen carbonate, hydroxide, or organic acid salt having 1 to 9 carbon atoms of at least one metal ion among alkali metal ions and alkaline earth metal ions.

이들 무기 또는 유기산염을 포함함으로써, 전자 수송성을 향상시켜, 내구성을 향상시킬 수 있다.By including these inorganic or organic acid salts, electron transport properties can be improved and durability can be improved.

이들 무기 또는 유기산염의 구체예로서는 염화리튬, 염화소듐, 염화포타슘, 염화루비듐, 염화세슘, 염화베릴륨, 염화마그네슘, 염화칼슘, 염화스트론튬, 염화바륨, 브로민화리튬, 브로민화소듐, 브로민화포타슘, 브로민화루비듐, 브로민화세슘,,브로민화베릴륨, 브로민화마그네슘, 브로민화칼슘, 브로민화스트론튬, 브로민화바륨, 아이오딘화리튬, 아이오딘화소듐, 아이오딘화포타슘, 아이오딘화루비듐, 아이오딘화세슘, 아이오딘화베릴륨, 아이오딘화마그네슘, 아이오딘화칼슘, 아이오딘화스트론튬, 아이오딘화바륨, 탄산리튬, 탄산소듐, 탄산포타슘, 탄산루비듐, 탄산세슘, 탄산수소리튬, 탄산수소소듐, 탄산수소포타슘, 탄산수소루비듐, 탄산수소세슘, 아세트산 리튬, 아세트산 소듐, 아세트산 포타슘, 아세트산 루비듐, 아세트산 세슘, 폼산 리튬, 폼산 소듐, 폼산 포타슘, 폼산 루비듐, 폼산 세슘 등을 들 수 있다. 수산화물로서는 수산화리튬, 수산화소듐, 수산화포타슘, 수산화루비듐, 수산화세슘, 수산화베릴륨, 수산화마그네슘, 수산화칼슘, 수산화스트론튬, 수산화바륨 등을 들 수 있다.Specific examples of these inorganic or organic acid salts include lithium chloride, sodium chloride, potassium chloride, rubidium chloride, cesium chloride, beryllium chloride, magnesium chloride, calcium chloride, strontium chloride, barium chloride, lithium bromide, sodium bromide, potassium bromide, bromide. Rubidium, cesium bromide,, beryllium bromide, magnesium bromide, calcium bromide, strontium bromide, barium bromide, lithium iodide, sodium iodide, potassium iodide, rubidium iodide, iodide Cesium, beryllium iodide, magnesium iodide, calcium iodide, strontium iodide, barium iodide, lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate, sodium hydrogen carbonate, sodium hydrogen carbonate, Potassium hydrogen carbonate, rubidium hydrogen carbonate, cesium hydrogen carbonate, lithium acetate, sodium acetate, potassium acetate, rubidium acetate, cesium acetate, lithium formate, sodium formate, potassium formate, rubidium formate, cesium formate, and the like. Examples of the hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, beryllium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, and the like.

이것들은 알칼리 금속 착체 또는 알칼리 토류 금속 착체에 대하여 0.1 내지 50중량%, 보다 바람직하게는 1중량% 내지 40중량%의 범위에서 적당히 사용된다.These are suitably used in the range of 0.1 to 50% by weight, more preferably 1% to 40% by weight based on the alkali metal complex or alkaline earth metal complex.

[4] 액상 재료[4] liquid materials

본 발명의 제4 실시형태에 따른 발명은 상기 일반식 (1) 내지 (7)로 표시되는 구조를 갖는 금속 착체로 이루어지는 전자 수송 재료를 용매에 용해한 액상 재료에 관한 것이다.The invention according to the fourth embodiment of the present invention relates to a liquid material in which an electron transport material composed of a metal complex having a structure represented by the general formulas (1) to (7) is dissolved in a solvent.

본 발명의 액상 재료에서는, 용매는 유기 발광층을 팽윤 또는 용해하기 어려운 것이 바람직하다. 이것에 의해, 유기 전계발광 소자에 사용하는 경우에, 유기 발광층 박막의 변질·열화나 막 두께가 극단적으로 얇아지는 것을 방지할 수 있고, 그 결과, 더한층 높은 효율 및 내구성이 우수하고, 또한 더한층 생산성이 우수한 유기 전계발광 소자 제조용의 액상 재료가 얻어진다.In the liquid material of the present invention, it is preferable that the solvent is difficult to swell or dissolve the organic light emitting layer. Thereby, when used in an organic electroluminescent device, it is possible to prevent the deterioration and deterioration of the organic light-emitting layer thin film or the film thickness from becoming extremely thin, and as a result, further high efficiency and durability are excellent, and further productivity This excellent liquid material for manufacturing an organic electroluminescent device is obtained.

본 발명의 액상 재료에서는, 상기 용매가 프로톤성 극성 용매인 것이 바람직하다. 프로톤성 극성 용매를 사용함으로써, 효율의 저하를 방지할 수 있고, 그 결과, 더한층 높은 효율 및 내구성이 우수한 유기 전계발광 소자의 제조에 사용하는, 더한층 생산성이 우수한 액상 재료가 얻어진다. 본 발명의 액상 재료에서는, 상기 용매는 알코올계 용매를 주성분으로 하는 것이 바람직하다.In the liquid material of the present invention, it is preferable that the solvent is a protic polar solvent. By using a protic polar solvent, a decrease in efficiency can be prevented, and as a result, a liquid material having higher productivity can be obtained, which is used in the manufacture of an organic electroluminescent device having higher efficiency and superior durability. In the liquid material of the present invention, the solvent is preferably an alcohol-based solvent as a main component.

알코올계 용매로서는 탄소수가 1∼10의 알코올, 바람직하게는 탄소수 1∼7, 보다 바람직하게는 탄소수 1∼4의 1가 또는 2가의 알코올이 사용된다. 그중에서도 1가의 알코올이 적합하게 사용된다.As the alcohol-based solvent, an alcohol having 1 to 10 carbon atoms, preferably an alcohol having 1 to 7 carbon atoms, and more preferably a monohydric or dihydric alcohol having 1 to 4 carbon atoms is used. Among them, monohydric alcohols are suitably used.

이러한 알코올계 용매의 구체예로서는 메탄올, 에탄올, 1-프로판올, 2-프로판올, 1-뷰탄올, 2-뷰탄올, 아이소뷰틸알코올, tert-뷰틸알코올, 1-펜탄올, 2-펜탄올, 3-펜탄올, 2-메틸-1-뷰탄올, 아이소펜틸알코올, tert-펜틸알코올, 3-메틸-2-뷰탄올, 네오펜틸알코올, 1-헥산올, 2-메틸-1-펜탄올, 4-메틸-2-펜탄올, 2-에틸-1-뷰탄올, 1-헵탄올, 2-헵탄올, 3-헵탄올, 1-옥탄올, 2-옥탄올, 2-에틸-1-헥산올, 1-노난올, 3,5,5-트라이메틸-1-헥산올, 1-데칸올, 1-운데칸올, 1-도데칸올, 알릴알코올, 프로파길알코올, 벤질알코올, 사이클로헥산올, 1-메틸사이클로헥산올, 2-메틸사이클로헥산올, 3-메틸사이클로헥산올, 4-메틸사이클로헥산올, α-터피네올, 아비에틴올, 퓨젤유, 1,2-에테인다이올, 1,2-프로페인다이올, 1,3-프로페인다이올, 1,2-뷰테인다이올, 1,3-뷰테인다이올, 1,4-뷰테인다이올, 2,3-뷰테인다이올, 1,5-펜테인다이올, 2-뷰텐-1,4-다이올, 2-메틸-2,4-펜테인다이올, 2-에틸-1,3-헥세인다이올, 글라이세린, 2-에틸-2-(히드록시메틸)-1,3-프로페인다이올, 1,2,6-헥세인트라이올, 및 Specific examples of such alcohol-based solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3- Pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 4- Methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, 1-nonanol, 3,5,5-trimethyl-1-hexanol, 1-decanol, 1-undecanol, 1-dodecanol, allyl alcohol, propargyl alcohol, benzyl alcohol, cyclohexanol, 1- Methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 4-methylcyclohexanol, α-terpineol, abietinol, fusel oil, 1,2-ethanidiol, 1,2- Propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-butene-1,4-diol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, glycerin, 2-ethyl-2-(hydroxymethyl)-1,3-propanediol, 1,2,6-hexanetriol, and

2-메톡시에탄올, 2-에톡시에탄올, 2-(메톡시에톡시)에탄올, 2-아이소프로폭시 에탄올, 2-뷰톡시에탄올, 2-(아이소펜틸옥시)에탄올, 2-(헥실옥시)에탄올, 2-펜옥시 에탄올, 2-(벤질옥시)에탄올, 퓨퓨릴알코올, 테트라하이드로퓨퓨릴알코올, 다이에틸렌글라이콜, 다이에틸렌글라이콜모노메틸에터, 다이에틸렌글라이콜모노에틸에터, 다이에틸렌글라이콜모노뷰틸에터, 트라이에틸렌글라이콜, 트라이에틸렌글라이콜모노메틸에터, 테트라에틸렌글라이콜, 폴리에틸렌글라이콜, 1-메톡시-2-프로판올, 1-에톡시-2-프로판올, 다이프로필렌글라이콜, 다이프로필렌글라이콜모노메틸에터, 트라이프로필렌글라이콜모노메틸에터, 다이아세톤알코올, 2-클로로에탄올, 1-클로로-2-프로판올, 3-클로로-1,2-프로페인다이올, 1,3-다이클로로-2-프로판올, 2,2,2-트라이플루오로에탄올, 3-하이드록시프로피오노나이트릴, 아세톤사이아노하이드린, 2-아미노에탄올, 2-(다이메틸아미노)에탄올, 2-(다이에틸아미노)에탄올, 다이에탄올아민, N-뷰틸다이에탄올아민, 트라이에탄올아민, 트라이아이소프로판올아민, 2,2'-싸이오다이에탄올, 또한2-methoxyethanol, 2-ethoxyethanol, 2-(methoxyethoxy)ethanol, 2-isopropoxy ethanol, 2-butoxyethanol, 2-(isopentyloxy)ethanol, 2-(hexyloxy ) Ethanol, 2-phenoxy ethanol, 2-(benzyloxy) ethanol, furfuryl alcohol, tetrahydrofuryl alcohol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl Ether, diethylene glycol monobutyl ether, triethylene glycol, triethylene glycol monomethyl ether, tetraethylene glycol, polyethylene glycol, 1-methoxy-2-propanol, 1 -Ethoxy-2-propanol, dipropylene glycol, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diacetone alcohol, 2-chloroethanol, 1-chloro-2-propanol , 3-chloro-1,2-propanediol, 1,3-dichloro-2-propanol, 2,2,2-trifluoroethanol, 3-hydroxypropiononitrile, acetone cyanohydrin , 2-aminoethanol, 2-(dimethylamino)ethanol, 2-(diethylamino)ethanol, diethanolamine, N-butyldiethanolamine, triethanolamine, triisopropanolamine, 2,2'-thio Odaiethanol, also

테트라플루오로프로판올, 펜타플루오로프로판올, 2,2,2-트라이플루오로에탄올, 2-(퍼플루오로뷰틸)에탄올, 3,3,4,4,5,5,6,6,6-노나플루오로-1-헥산올, 2-(퍼플루오로뷰틸)에탄올, 3,3,4,4,5,5,6,6,6-노나플루오로헥산올, 1,1,2,2-테트라하이드로퍼플루오로헥실알코올, 1H,1H,2H,2H-노나플루오로-1-헥산올, 1H,1H,2H,2H-노나플루오로-n-헥산올, 1H,1H,2H,2H-노나플루오로헥산올, 1H,1H,2H,2H-퍼플루오로헥산-1-올, 1H,1H,2H,2H-퍼플루오로헥산올 3,3,4,4,5,5,6,6,6-노나플루오로-1-헥산올, 2-(퍼플루오로헥실)에탄올, 3,3,4,4,5,5,6,6,7,7,8,8,8-트라이데카플루오로-1-옥탄올, 2-(퍼플루오로헥실)에탄올, 3,3,4,4,5,5,6,6,7,7,8,8,8-트라이데카플루오로옥탄올, 1,1,2,2-테트라하이드로퍼플루오로옥탄올, 1,1,2,2-테트라하이드로트라이데카플루오로옥탄올, 1H,1H,2H,2H-퍼플루오로-1-옥탄올, 1H,1H,2H,2H-퍼플루오로옥탄-1-올, 1H,1H,2H,2H-퍼플루오로옥탄올, 1H,1H,2H,2H-트라이데카플루오로-n-옥탄올, 1H,1H,2H,2H-트라이데카플루오로옥탄올, 2-(트라이데카플루오로헥실)에탄올, 3,3,4,4,5,5,6,6,7,7,8,8,8-트라이데카플루오로-1-옥탄올, 퍼플루오로헥실에탄올 등을 들 수 있다.Tetrafluoropropanol, pentafluoropropanol, 2,2,2-trifluoroethanol, 2-(perfluorobutyl)ethanol, 3,3,4,4,5,5,6,6,6-nona Fluoro-1-hexanol, 2-(perfluorobutyl)ethanol, 3,3,4,4,5,5,6,6,6-nonafluorohexanol, 1,1,2,2- Tetrahydroperfluorohexyl alcohol, 1H,1H,2H,2H-nonafluoro-1-hexanol, 1H,1H,2H,2H-nonafluoro-n-hexanol, 1H,1H,2H,2H- Nonafluorohexanol, 1H,1H,2H,2H-perfluorohexan-ol, 1H,1H,2H,2H-perfluorohexanol 3,3,4,4,5,5,6, 6,6-nonafluoro-1-hexanol, 2-(perfluorohexyl)ethanol, 3,3,4,4,5,5,6,6,7,7,8,8,8-tri Decafluoro-1-octanol, 2-(perfluorohexyl)ethanol, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctane Ol, 1,1,2,2-tetrahydroperfluorooctanol, 1,1,2,2-tetrahydrotridecafluorooctanol, 1H,1H,2H,2H-perfluoro-1-octane Ol, 1H,1H,2H,2H-perfluorooctan-1-ol, 1H,1H,2H,2H-perfluorooctanol, 1H,1H,2H,2H-tridecafluoro-n-octanol , 1H,1H,2H,2H-tridecafluorooctanol, 2-(tridecafluorohexyl)ethanol, 3,3,4,4,5,5,6,6,7,7,8,8 , 8-tridecafluoro-1-octanol, perfluorohexylethanol, and the like.

이 중에서도 1-프로판올, 1-뷰탄올, 2-뷰탄올, 1-펜탄올, 2-메틸-1-뷰탄올, 1-헥산올, 1-헵탄올, 1-옥탄올, 2-에틸-1-헥산올, 사이클로헥산올, 1-메틸사이클로헥산올, 2-메틸사이클로헥산올, 1,2-뷰테인다이올, 1,3-뷰테인다이올, 1,4-뷰테인다이올, 2,3-뷰테인다이올, 2-메톡시에탄올, 2-에톡시에탄올, 2-(메톡시에톡시)에탄올을 보다 적합하게 사용할 수 있다. 이것들은 단독으로 사용해도 되고, 임의의 2 이상을 임의의 비율로 혼합하여 사용해도 된다.Among these, 1-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-methyl-1-butanol, 1-hexanol, 1-heptanol, 1-octanol, and 2-ethyl-1 -Hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2 ,3-butanediol, 2-methoxyethanol, 2-ethoxyethanol, and 2-(methoxyethoxy)ethanol can be used more suitably. These may be used alone, or two or more of them may be mixed and used in an arbitrary ratio.

이러한 탄소수의 알코올은 금속 화합물의 용해성이 높고, 그 결과, 더한층 높은 효율 및 내구성이 우수하고, 또한 더한층 생산성이 우수한 유기 전계발광 소자 제조용의 액상 재료가 얻어진다.Such an alcohol having a carbon number has high solubility in a metal compound, and as a result, a liquid material for manufacturing an organic electroluminescent device having further high efficiency and durability, and further excellent in productivity is obtained.

본 발명의 액상 재료에는, 상기 일반식 (1) 내지 (7)로 표시되는 구조를 갖는 금속 착체를 0.01 내지 10중량%, 바람직하게는 0.1 내지 5중량% 함유하는 것이 요망된다. 금속 착체의 함유량이 0.01중량% 미만에서는, 유기 전계발광 소자에 필요한 막 두께를 형성할 수 없을 우려가 있고, 한편, 금속 착체의 함유량이 10중량%를 초과하면 용매에의 용해가 어렵게 된다.In the liquid material of the present invention, it is desired to contain 0.01 to 10% by weight, preferably 0.1 to 5% by weight, of a metal complex having a structure represented by the general formulas (1) to (7). When the content of the metal complex is less than 0.01% by weight, there is a fear that the film thickness required for the organic electroluminescent device cannot be formed, while when the content of the metal complex exceeds 10% by weight, dissolution in a solvent becomes difficult.

본 발명의 액상 재료에서는, 상기 금속 착체에, 또한 전술의 금속 알콕사이드나 알칼리 금속 이온 및 알칼리 토류 금속 이온 중 적어도 1종의 금속 이온의 할로젠염, 탄산염, 탄산수소염, 수산화물 또는 탄소수 1 내지 9의 유기산염의 도판트를 함유하는 것이 바람직하다. 이들 금속 화합물은 금속 이온을 해리하기 쉬우므로, 그 결과, 더한층 높은 효율 및 내구성이 우수하고, 또한 더한층 생산성이 우수한 유기 전계발광 소자 제조용의 액상 재료가 얻어진다.In the liquid material of the present invention, in the metal complex, a halogen salt, carbonate, hydrogen carbonate, hydroxide, or carbon number of 1 to 9 It is preferred to contain a dopant of an organic acid salt. Since these metal compounds are liable to dissociate metal ions, as a result, a liquid material for manufacturing an organic electroluminescent device having higher efficiency and durability and higher productivity is obtained.

본 발명의 액상 재료는 상기 일반식 (1) 내지 (7)로 표시되는 금속 착체 및 상기 금속 알콕사이드나 금속 이온의 염 등을 일괄 혼합하여 조제할 수 있지만, 상기 일반식 (1) 내지 (7)로 표시되는 금속 착체를 포함하는 제1 용액과, 상기 금속 알콕사이드나 금속 이온의 염 등을 포함하는 제2 용액을 혼합하고, 상기 액상 재료를 조제하는 것이 바람직하다.The liquid material of the present invention can be prepared by collectively mixing the metal complex represented by the general formulas (1) to (7) and the metal alkoxide or salt of metal ions, but the general formulas (1) to (7) It is preferable to prepare the liquid material by mixing the first solution containing the metal complex represented by and the second solution containing the metal alkoxide or salt of metal ions.

[5] 유기 전계발광 소자[5] organic electroluminescent devices

다음에 본원발명의 전자 수송 재료(제3 실시예)를 사용하여 이루어지는, 제5 실시형태인 유기 전계발광 소자에 대하여 설명한다.Next, an organic electroluminescent device according to a fifth embodiment, which is made of the electron transport material of the present invention (third embodiment), will be described.

도 1에 도시하는 바와 같이, 본 발명의 유기 전계발광 소자(1)는 양극(3)과 음극(8) 사이에 끼워지도록 적층된 복수의 유기 화합물층(양극(3)측으로부터 차례로, 정공 주입층(4), 정공 수송층(5), 발광층(6), 전자 수송층(7))을 갖는 유기 전계발광 소자이다. 양극(3)은 투명한 기판(2) 위에 설치되어 있고, 전체가 밀봉 부재(9)로 밀봉되어 있다. 정공 수송층(5), 발광층(6)은 알코올계 용매에 불용인 유기 화합물로 이루어져 있다. 발광층(6)이 음극(8)과 대향하고 있는 측의 면에서 발광층(6)에 접하도록 습식법으로 형성된 전자 수송층(7)은 알코올계 용매에 가용인 하나 또는 복수의 상기 전자 수송 재료를 포함하고 있다.As shown in Fig. 1, the organic electroluminescent device 1 of the present invention has a plurality of organic compound layers stacked so as to be sandwiched between the anode 3 and the cathode 8 (from the side of the anode 3, a hole injection layer) (4), a hole transport layer (5), a light emitting layer (6), an organic electroluminescent device having an electron transport layer (7). The anode 3 is provided on the transparent substrate 2 and the whole is sealed with a sealing member 9. The hole transport layer 5 and the light emitting layer 6 are made of an organic compound insoluble in an alcohol-based solvent. The electron transport layer 7 formed by a wet method so that the light-emitting layer 6 contacts the light-emitting layer 6 on the side opposite to the cathode 8 includes one or more electron transport materials soluble in an alcohol-based solvent, have.

기판(2)은 유기 전계발광 소자(1)의 지지체가 되는 것이다. 본 실시형태에 따른 유기 전계발광 소자(1)는 기판(2)측으로부터 광을 취출하는 구성(보톰 에미션형)이기 때문에, 기판(2) 및 양극(3)은, 각각, 실질적으로 투명(무색 투명, 착색 투명 또는 반투명)한 재료로 구성되어 있다. 기판(2)의 구성 재료로서는, 예를 들면, 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리프로필렌, 사이클로올레핀 폴리머, 폴리아마이드, 폴리에터설폰, 폴리메틸메타크릴레이트, 폴리카보네이트, 폴리아릴레이트와 같은 수지 재료나, 석영 유리, 소다 유리와 같은 유리 재료 등을 들 수 있고, 이들 중의 1종 또는 2종 이상을 조합하여 사용할 수 있다.The substrate 2 serves as a support for the organic electroluminescent device 1. Since the organic electroluminescent element 1 according to the present embodiment is configured to extract light from the substrate 2 side (bottom emission type), the substrate 2 and the anode 3 are each substantially transparent (colorless It is composed of a transparent, colored transparent or translucent) material. As a constituent material of the substrate 2, for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, cycloolefin polymer, polyamide, polyethersulfone, polymethyl methacrylate, polycarbonate, polyarylate, etc. A resin material, a glass material such as quartz glass and soda glass may be mentioned, and one or two or more of them may be used in combination.

기판(2)의 평균 두께는 특별히 한정되지 않지만, 0.1∼30mm 정도인 것이 바람직하고, 0.1∼10mm 정도인 것이 보다 바람직하다. 또한, 유기 전계발광 소자(1)가 기판(2)과 반대측으로부터 광을 취출하는 구성(탑 에미션형)의 경우, 기판(2)에는, 투명 기판 및 불투명 기판의 어느 것이나 사용할 수 있다. 불투명 기판의 예로서는 알루미나 등의 세라믹스 재료로 구성된 기판, 스테인리스강 등의 금속 기판의 표면에 산화막(절연막)을 형성한 것, 수지 재료로 구성된 기판 등을 들 수 있다.Although the average thickness of the substrate 2 is not particularly limited, it is preferably about 0.1 to 30 mm, more preferably about 0.1 to 10 mm. In addition, in the case of a configuration in which the organic electroluminescent element 1 extracts light from the side opposite to the substrate 2 (top emission type), either a transparent substrate or an opaque substrate can be used for the substrate 2. Examples of the opaque substrate include a substrate made of a ceramic material such as alumina, an oxide film (insulating film) formed on the surface of a metal substrate such as stainless steel, and a substrate made of a resin material.

양극(3)은 후술하는 정공 주입층(4)에 정공을 주입하는 전극이다. 이 양극(3)의 구성 재료로서는 일함수가 크고, 도전성이 우수한 재료를 사용하는 것이 바람직하다. 양극(3)의 구성 재료로서는, 예를 들면, ITO(산화인듐주석), IZO(산화인듐지르코늄), In3O3, SnO2, Sb 함유 SnO2, Al 함유 ZnO 등의 산화물, Au, Pt, Ag, Cu 또는 이것들을 포함하는 합금 등을 들 수 있고, 이들 중의 1종 또는 2종 이상을 조합하여 사용할 수 있다. 양극(3)의 평균 두께는 특별히 한정되지 않지만, 10∼200nm 정도인 것이 바람직하고, 50∼150nm 정도인 것이 보다 바람직하다.The anode 3 is an electrode for injecting holes into the hole injection layer 4 to be described later. As a constituent material of this anode 3, it is preferable to use a material having a large work function and excellent conductivity. As a constituent material of the anode 3, for example, oxides such as ITO (indium tin oxide), IZO (indium zirconium oxide), In 3 O 3 , SnO 2 , Sb-containing SnO 2 , Al-containing ZnO, Au, Pt , Ag, Cu, or an alloy containing these, and one or two or more of them may be used in combination. Although the average thickness of the anode 3 is not particularly limited, it is preferably about 10 to 200 nm, more preferably about 50 to 150 nm.

한편, 음극(8)은 전자 수송층(7)에 전자를 주입하는 전극이며, 전자 수송층(7)과 접하는 발광층(6)과 반대측에 설치되어 있다. 이 음극(8)의 구성 재료로서는 일함수가 작은 재료를 사용하는 것이 바람직하다. 음극(8)의 구성 재료로서는, 예를 들면, Li, Mg, Ca, Sr, La, Ce, Er, Eu, Sc, Y, Yb, Ag, Cu, Al, Cs, Rb 또는 이것들을 포함하는 합금 등을 들 수 있고, 이들 중의 1종 또는 임의의 2종 이상을 조합하여(예를 들면, 복수층의 적층체 등) 사용할 수 있다.On the other hand, the cathode 8 is an electrode for injecting electrons into the electron transport layer 7 and is provided on the opposite side to the light emitting layer 6 in contact with the electron transport layer 7. It is preferable to use a material having a small work function as a constituent material of this cathode 8. As a constituent material of the cathode 8, for example, Li, Mg, Ca, Sr, La, Ce, Er, Eu, Sc, Y, Yb, Ag, Cu, Al, Cs, Rb, or alloys containing these And the like, and any one of these or two or more of them can be used in combination (eg, a multilayered product).

특히, 음극(8)의 구성 재료로서 합금을 사용하는 경우에는, Ag, Al, Cu 등의 안정한 금속 원소를 포함하는 합금, 구체적으로는, MgAg, AlLi, CuLi 등의 합금을 사용하는 것이 바람직하다. 이러한 합금을 음극(8)의 구성 재료로서 사용함으로써, 음극(8)의 전자 주입 효율 및 안정성의 향상을 도모할 수 있다. 음극(8)의 평균 두께는 특별히 한정되지 않지만, 50∼10000nm 정도인 것이 바람직하고, 80∼500nm 정도인 것이 보다 바람직하다.In particular, in the case of using an alloy as a constituent material of the cathode 8, it is preferable to use an alloy containing a stable metal element such as Ag, Al, and Cu, specifically an alloy such as MgAg, AlLi, and CuLi. . By using such an alloy as a constituent material of the cathode 8, it is possible to improve the electron injection efficiency and stability of the cathode 8. Although the average thickness of the cathode 8 is not particularly limited, it is preferably about 50 to 10000 nm, more preferably about 80 to 500 nm.

탑 에미션형의 경우, 일함수가 작은 재료, 또는 이것들을 포함하는 합금을 5∼20nm 정도로 하여, 투과성을 갖게 하고, 또한 그 상면에 ITO 등의 투과성이 높은 도전 재료를 100∼500nm 정도의 두께로 형성한다. 또한, 본 실시형태에 따른 유기 전계발광 소자(1)는 보톰 에미션형이기 때문에, 음극(8)의 광 투과성은 특별히 요구되지 않는다.In the case of the top emission type, a material having a small work function, or an alloy containing these, is made to be about 5 to 20 nm to provide transmittance, and a conductive material with high transmittance such as ITO has a thickness of about 100 to 500 nm. To form. Further, since the organic electroluminescent device 1 according to the present embodiment is of a bottom emission type, the light transmittance of the cathode 8 is not particularly required.

양극(3) 위에는, 정공 주입층(4) 및 정공 수송층(5)이 설치되어 있다. 정공 주입층(4)은 양극(3)으로부터 주입된 정공을 받아들여, 정공 수송층(5)까지 수송하는 기능을 갖고, 정공 수송층(5)은 정공 주입층(4)으로부터 주입된 정공을 발광층(6)까지 수송하는 기능을 갖는 것이다. 정공 주입층(4) 및 정공 수송층(5)의 구성 재료로서는, 예를 들면, 프탈로사이아닌, 구리 프탈로사이아닌(CuPc), 철 프탈로사이아닌과 같은 금속 또는 무금속의 프탈로사이아닌계 화합물, 폴리아릴아민, 플루오렌-아릴아민 공중합체, 플루오렌-바이싸이오펜 공중합체, 폴리(N-바이닐카바졸), 폴리바이닐피렌, 폴리바이닐안트라센, 폴리싸이오펜, 폴리알킬싸이오펜, 폴리헥실싸이오펜, 폴리(p-페닐렌바이닐렌), 폴리싸이엔일렌바이닐렌, 피렌폼알데하이드 수지, 에틸카바졸폼알데하이드 수지 또는 그 유도체 등을 들 수 있고, 이들 중의 1종 또는 2종 이상을 조합하여 사용할 수 있다. 단, 정공 수송층(5)의 구성 재료는 알코올계 용매에 불용일 필요가 있다.On the anode 3, a hole injection layer 4 and a hole transport layer 5 are provided. The hole injection layer 4 has a function of receiving holes injected from the anode 3 and transporting them to the hole transport layer 5, and the hole transport layer 5 transfers holes injected from the hole injection layer 4 to the light emitting layer ( It has the function of transporting up to 6). As a constituent material of the hole injection layer 4 and the hole transport layer 5, for example, a metal such as phthalocyanine, copper phthalocyanine (CuPc), or iron phthalocyanine, or a metal-free phthalocyanine Amino compounds, polyarylamine, fluorene-arylamine copolymer, fluorene-bithiophene copolymer, poly(N-vinylcarbazole), polyvinylpyrene, polyvinylanthracene, polythiophene, polyalkylthiophene , Polyhexylthiophene, poly(p-phenylenevinylene), polythienylenevinylene, pyreneformaldehyde resin, ethylcarbazole formaldehyde resin, or derivatives thereof, and the like, and one or two or more of them Can be used in combination. However, the material constituting the hole transport layer 5 needs to be insoluble in an alcohol-based solvent.

또한, 상기 화합물은 다른 화합물과의 혼합물로서 사용할 수도 있다. 일례로서, 폴리싸이오펜을 함유하는 혼합물로서는 폴리(3,4-에틸렌다이옥시싸이오펜/스타이렌설폰산)(PEDOT/PSS) 등을 들 수 있다. 정공 주입층(4) 및 정공 수송층(5)에는, 양극(3) 및 발광층(6)에 사용되는 재료의 종류에 따라, 정공의 주입 효율 및 수송 효율의 최적화, 발광층(6)으로부터의 방사광의 재흡수의 방지, 내열성 등의 관점에서 적당한 하나 또는 복수의 재료를 적당히 선택하거나, 또는 조합하여 사용할 수 있다.Further, the compound may be used as a mixture with other compounds. As an example, poly(3,4-ethylenedioxythiophene/styrene sulfonic acid) (PEDOT/PSS) etc. are mentioned as a mixture containing polythiophene. In the hole injection layer 4 and the hole transport layer 5, depending on the type of material used for the anode 3 and the light emitting layer 6, optimization of hole injection efficiency and transport efficiency, and emission of light from the light emitting layer 6 From the viewpoint of prevention of re-absorption, heat resistance, and the like, one or a plurality of suitable materials may be appropriately selected or used in combination.

예를 들면, 정공 주입층(4)에는, 정공 전도 준위(Ev)와 양극(3)에 사용되는 재료의 일함수와의 차가 작고, 방사광의 재흡수를 막기 위해 가시광 영역에 흡수대가 없는 재료가 바람직하게 사용된다. 또한 정공 수송층(5)에는, 발광층(6)의 구성 재료와의 사이에서 여기 착체(엑시플렉스)나 전하 이동 착체를 형성하지 않고, 발광층(6)에서 생성한 여기자의 에너지의 이동이나 발광층(6)으로부터의 전자 주입을 막기 위하여, 발광층(6)의 여기자 에너지보다도 일중항 여기 에너지가 크고, 밴드갭 에너지가 크고, 전자 전도 전위(Ec)가 얕은 재료가 바람직하게 사용된다. 양극(3)에 ITO가 사용되는 경우, 정공 주입층(4) 및 정공 수송층(5)에 적합하게 사용할 수 있는 재료의 예로서는, 각각, 폴리(3,4-에틸렌다이옥시싸이오펜/스타이렌설폰산)(PEDOT/PSS) 및 폴리(N-바이닐카바졸)(PVK)을 들 수 있다.For example, in the hole injection layer 4, the difference between the hole conduction level (Ev) and the work function of the material used for the anode 3 is small, and a material without an absorption band in the visible light region is used to prevent reabsorption of the emitted light. It is preferably used. Further, in the hole transport layer 5, an excitation complex (exiplex) or a charge transfer complex is not formed between the constituent materials of the light emitting layer 6, and energy transfer of excitons generated in the light emitting layer 6 or the light emitting layer 6 In order to prevent electron injection from ), a material having a singlet excitation energy higher than the exciton energy of the light emitting layer 6, a larger band gap energy, and a shallow electron conduction potential Ec is preferably used. When ITO is used for the anode 3, examples of materials that can be suitably used for the hole injection layer 4 and the hole transport layer 5 are poly(3,4-ethylenedioxythiophene/styrenesulfonic acid), respectively. ) (PEDOT/PSS) and poly(N-vinylcarbazole) (PVK).

또한, 본 실시형태에서는, 양극(3)과 발광층(6) 사이에 정공 주입층(4) 및 정공 수송층(5)이 별개의 2개의 층으로서 형성되어 있지만, 필요에 따라, 양극(3)으로부터의 정공의 주입 및 발광층(6)으로의 정공의 수송을 행하는 단일의 정공 수송층으로 해도 되고, 동일 조성 또는 조성이 서로 상이한 3개 이상의 층을 적층한 구조로 해도 된다.Further, in this embodiment, the hole injection layer 4 and the hole transport layer 5 are formed as two separate layers between the anode 3 and the light emitting layer 6, but if necessary, from the anode 3 A single hole transport layer for injecting and transporting holes to the light emitting layer 6 may be used, or a structure in which three or more layers having the same composition or composition different from each other may be stacked.

정공 주입층(4)의 평균 두께는 특별히 한정되지 않지만, 10∼150nm 정도인 것이 바람직하고, 20∼100nm 정도인 것이 보다 바람직하다. 또한 정공 수송층(5)의 평균 두께는 특별히 한정되지 않지만, 10∼150nm 정도인 것이 바람직하고, 15∼50nm 정도인 것이 보다 바람직하다.Although the average thickness of the hole injection layer 4 is not particularly limited, it is preferably about 10 to 150 nm, and more preferably about 20 to 100 nm. Further, the average thickness of the hole transport layer 5 is not particularly limited, but it is preferably about 10 to 150 nm, and more preferably about 15 to 50 nm.

정공 수송층(5) 위, 즉, 양극(3)과 반대측의 면과 인접하여, 발광층(6)이 설치되어 있다. 이 발광층(6)에는, 음극(8)으로부터 전자 수송층(7)을 통하여 전자가, 또한 정공 수송층(5)으로부터 정공이 각각 공급(주입)된다. 그리고, 발광층(6)의 내부에서는, 정공과 전자가 재결합하고, 이 재결합 시에 방출된 에너지에 의해 여기자(엑시톤)가 생성되고, 여기자가 기저 상태로 되돌아올 때 에너지(형광이나 인광)가 방출(발광)된다.On the hole transport layer 5, that is, adjacent to the surface opposite to the anode 3, a light emitting layer 6 is provided. Electrons are supplied (injected) to the light emitting layer 6 from the cathode 8 through the electron transport layer 7 and from the hole transport layer 5, respectively. And, inside the light-emitting layer 6, holes and electrons recombine, excitons (excitons) are generated by the energy released during this recombination, and energy (fluorescence or phosphorescence) is emitted when the excitons return to the ground state. (Luminescence) becomes.

발광층(6)의 구성 재료로서는 1,3,5-트리스[(3-페닐-6-트라이-플루오로메틸)퀸옥살린-2-일]벤젠(TPQ1), 1,3,5-트리스[{3-(4-tert-뷰틸페닐)-6-트리스플루오로메틸}퀸옥살린-2-일]벤젠(TPQ2)과 같은 벤젠계 화합물, 트리스(8-퀴놀리놀레이트)알루미늄(III)(Alq3), fac-트리스(2-페닐피리딘)이리듐(Ir(ppy)3)과 같은 저분자계의 것이나, 옥사다이아졸계 고분자, 트라이아졸계 고분자, 카바졸계 고분자, 폴리플루오렌계 고분자, 폴리파라페닐렌바이닐렌계 고분자와 같은 고분자계의 것을 들 수 있고, 이것들의 1종 또는 2종 이상을 조합하여 사용할 수 있다. 이러한 발광층(6)의 평균 두께는 특별히 한정되지 않지만, 10∼150nm 정도인 것이 바람직하고, 20∼100nm 정도인 것이 보다 바람직하다.As a constituent material of the light emitting layer 6, 1,3,5-tris[(3-phenyl-6-tri-fluoromethyl)quinoxalin-2-yl]benzene (TPQ1), 1,3,5-tris[{ Benzene compounds such as 3-(4-tert-butylphenyl)-6-trisfluoromethyl}quinoxalin-2-yl]benzene (TPQ2), tris(8-quinolinolate) aluminum (III) (Alq 3 ), low molecular weight such as fac-tris (2-phenylpyridine) iridium (Ir (ppy) 3 ), oxadiazole polymer, triazole polymer, carbazole polymer, polyfluorene polymer, polyparaphenyl Polymeric materials such as lenvinylene-based polymers are mentioned, and these can be used alone or in combination of two or more. The average thickness of the light-emitting layer 6 is not particularly limited, but is preferably about 10 to 150 nm, more preferably about 20 to 100 nm.

발광층(6)과 음극(8) 사이에는, 전자 수송층(7)이 설치되어 있다. 이 전자 수송층(7)은 음극(8)으로부터 주입된 전자를 발광층(6)까지 수송하는 기능을 갖는 것이다. 전자 수송층(7)의 구성 재료로서는 본 발명의 제3 실시형태에 따른 전자 수송 재료가 사용된다. 또한 전자 수송층(7)의 전자 수송 재료에는, 알칼리 금속 알콕사이드, 알칼리 금속 이온 및 알칼리 토류 금속 이온 중 적어도 1종의 금속 이온의 할로젠염, 탄산염, 탄산수소염, 수산화물 또는 탄소수 1 내지 9의 유기산염 등의 도판트를 더 함유하는 것이 바람직하다.An electron transport layer 7 is provided between the light emitting layer 6 and the cathode 8. This electron transport layer 7 has a function of transporting electrons injected from the cathode 8 to the light emitting layer 6. As a constituent material of the electron transport layer 7, the electron transport material according to the third embodiment of the present invention is used. In addition, the electron transport material of the electron transport layer 7 includes halogen salts, carbonates, hydrogen carbonates, hydroxides or organic acid salts of 1 to 9 carbon atoms of at least one metal ion among alkali metal alkoxides, alkali metal ions and alkaline earth metal ions. It is preferable to further contain a dopant such as.

전자 수송층의 평균 두께는 특별히 한정되지 않지만, 1∼100nm 정도인 것이 바람직하고, 10∼50nm 정도인 것이 보다 바람직하다.The average thickness of the electron transport layer is not particularly limited, but it is preferably about 1 to 100 nm, more preferably about 10 to 50 nm.

음극(8)과 전자 수송층(7) 사이에는, 통상, NaF나 LiF 등으로 이루어지는 전하 주입층이 설치되어 있다. 본 발명의 전자 수송 재료를 사용한 전자 수송층에서는, NaF나 LiF 등의 불안정한 화합물을 사용하는 전하 주입층을 형성하지 않고, 발광층의 발광 효율을 향상할 수 있어, 광학 설계 자유도를 향상시킬 수 있다.A charge injection layer made of NaF, LiF, or the like is usually provided between the cathode 8 and the electron transport layer 7. In the electron transport layer using the electron transport material of the present invention, the luminous efficiency of the light emitting layer can be improved without forming a charge injection layer using an unstable compound such as NaF or LiF, and the degree of freedom in optical design can be improved.

다음에 밀봉 부재(9)는 유기 전계발광 소자(1)(양극(3), 정공 주입층(4), 정공 수송층(5), 발광층(6), 전자 수송층(7) 및 음극(8))를 덮도록 설치되고, 이것들을 기밀적으로 밀봉하여, 산소나 수분을 차단하는 기능을 갖는다. 밀봉 부재(9)를 설치함으로써, 유기 전계발광 소자(1)의 신뢰성의 향상이나, 변질 및 열화의 방지(내구성 향상) 등의 효과가 얻어진다.Next, the sealing member 9 is an organic electroluminescent element 1 (anode 3, hole injection layer 4, hole transport layer 5, light emitting layer 6, electron transport layer 7 and cathode 8) It is installed so as to cover, and has a function of sealing these airtightly to block oxygen and moisture. By providing the sealing member 9, effects such as improvement of the reliability of the organic electroluminescent element 1 and prevention of deterioration and deterioration (improving durability) can be obtained.

밀봉 부재(9)의 구성 재료로서는, 예를 들면, Al, Au, Cr, Nb, Ta, Ti 또는 이것들을 포함하는 합금, 산화실리콘, 각종 수지 재료 등을 들 수 있다. 또한, 밀봉 부재(9)의 구성 재료로서 도전성을 갖는 재료를 사용하는 경우에는, 단락을 방지하기 위해, 밀봉 부재(9)와 유기 전계발광 소자(1) 사이에는, 필요에 따라, 절연막을 설치하는 것이 바람직하다. 또한, 밀봉 부재(9)는 평판 형상으로서 기판(2)과 대향시켜, 이것들의 사이를, 예를 들면, 열경화성 수지 등의 실링재로 밀봉하도록 해도 된다.As a constituent material of the sealing member 9, for example, Al, Au, Cr, Nb, Ta, Ti, or an alloy containing these, silicon oxide, various resin materials, and the like can be mentioned. In addition, in the case of using a conductive material as the constituent material of the sealing member 9, an insulating film is provided between the sealing member 9 and the organic electroluminescent element 1 as necessary in order to prevent a short circuit. It is desirable to do. In addition, the sealing member 9 may be made to face the substrate 2 in a flat plate shape, and the space between them may be sealed with a sealing material such as a thermosetting resin.

유기 전계발광 소자(1)는, 예를 들면, 다음과 같이 하여 제조할 수 있다. 우선, 기판(2)을 준비하고, 이 기판(2) 위에 양극(3)을 형성한다. 양극(3)은, 예를 들면, 플라즈마 CVD, 열 CVD, 레이저 CVD와 같은 화학증착법(CVD), 진공 증착, 스퍼터링, 이온도금 등의 건식 도금법, 전계 도금, 침지 도금, 무전계 도금 등의 습식 도금법, 용사법, 졸·겔법, MOD법, 금속박의 접합 등을 사용하여 형성할 수 있다.The organic electroluminescent device 1 can be manufactured as follows, for example. First, a substrate 2 is prepared, and an anode 3 is formed on the substrate 2. The anode 3 is, for example, a chemical vapor deposition (CVD) method such as plasma CVD, thermal CVD, and laser CVD, a dry plating method such as vacuum deposition, sputtering, ion plating, etc., a wet type such as electric field plating, immersion plating, and electroless plating. It can be formed using a plating method, a thermal spraying method, a sol-gel method, a MOD method, and bonding of metal foils.

다음에, 양극(3) 위에 정공 주입층(4) 및 정공 수송층(5)을 차례로 형성한다.Next, a hole injection layer 4 and a hole transport layer 5 are sequentially formed on the anode 3.

정공 주입층(4) 및 정공 수송층(5)은, 예를 들면, 정공 주입 재료를 용매가 용해 또는 분산매에 분산하여 이루어지는 정공 주입층 형성용 재료를 양극(3) 위에 공급한 후, 건조(탈용매 또는 탈분산매)하고, 이어서 정공 수송 재료를 용매가 용해 또는 분산매에 분산하여 이루어지는 정공 수송층 형성용 재료를 정공 주입층(4) 위에 공급한 후, 건조함으로써 형성할 수 있다. 정공 주입층 형성용 재료 및 정공 수송층 형성용 재료의 공급 방법으로서는, 예를 들면, 스핀 코팅법, 캐스팅법, 마이크로 그라비어 코팅법, 그라비어 코팅법, 바 코팅법, 롤 코팅법, 와이어바 코팅법, 딥 코팅법, 스프레이 코팅법, 스크린 인쇄법, 플렉소 인쇄법, 옵셋 인쇄법, 잉크젯 인쇄법 등의 각종 도포법을 사용할 수 있다. 이러한 도포법을 사용함으로써, 정공 주입층(4) 및 정공 수송층(5)을 비교적 용이하게 형성할 수 있다.For the hole injection layer 4 and the hole transport layer 5, for example, a hole injection layer forming material obtained by dissolving a hole injection material in a solvent or dispersing it in a dispersion medium is supplied onto the anode 3 and then dried (de Solvent or de-dispersing medium), followed by dissolving or dispersing a hole-transport material in a dispersion medium by dissolving or dispersing the hole-transport material onto the hole injection layer 4, followed by drying. As a method of supplying a material for forming a hole injection layer and a material for forming a hole transport layer, for example, a spin coating method, a casting method, a microgravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, Various coating methods such as dip coating, spray coating, screen printing, flexo printing, offset printing, and inkjet printing can be used. By using such a coating method, the hole injection layer 4 and the hole transport layer 5 can be formed relatively easily.

정공 주입층 형성용 재료 및 정공 수송층 형성용 재료의 조제에 사용하는 용매 또는 분산매로서는, 예를 들면, 질산, 황산, 암모니아, 과산화수소, 물, 이황화탄소 등의 무기 용매나, 메틸에틸케톤(MEK), 아세톤, 다이에틸케톤, 메틸아이소뷰틸케톤(MIBK), 메틸아이소프로필케톤(MIPK), 사이클로헥산온, 에틸렌카보네이트 등의 케톤계 용매, 메탄올, 에탄올, 아이소프로판올, 에틸렌글라이콜, 다이에틸렌글라이콜(DEG), 글라이세린 등의 알코올계 용매(단, 정공 주입 재료 및 정공 수송 재료가 불용인 경우에는, 분산매로서만 사용할 수 있음), 다이에틸에터, 다이아이소프로필 에터, 1,2-다이메톡시에테인(DME), 1,4-다이옥세인, 테트라하이드로퓨란(THF), 테트라하이드로피란(THP), 아니솔, 다이에틸렌글라이콜다이메틸에터(디글림), 다이에틸렌글라이콜에틸에터(다이에틸카비톨) 등의 에터계 용매, 메틸셀로솔브, 에틸셀로솔브, 페닐셀로솔브 등의 셀로솔브계 용매, 헥세인, 펜테인, 헵테인, 사이클로헥세인 등의 지방족 탄화수소계 용매, 톨루엔, 자일렌, 벤젠 등의 방향족 탄화수소계 용매, 피리딘, 피라진, 퓨란, 피롤, 싸이오펜, 메틸피롤리돈 등의 방향족 복소환 화합물계 용매, N,N-다이메틸폼아마이드(DMF), N,N-다이메틸아세트아마이드(DMA) 등의 아마이드계 용매, 사염화탄소, 클로로벤젠, 다이클로로메테인, 클로로폼, 1,2-다이클로로에테인 등의 할로젠 화합물계 용매, 아세트산 에틸, 아세트산 메틸, 폼산 에틸 등의 에스터계 용매, 다이메틸설폭사이드(DMSO), 설포레인 등의 유황 화합물계 용매, 아세토나이트릴, 프로피오나이트릴, 아크릴로나이트릴 등의 나이트릴계 용매, 폼산, 아세트산, 트라이클로로아세트산, 트라이플루오로아세트산 등의 유기산계 용매와 같은 각종 유기 용매, 또는, 이것들을 포함하는 혼합 용매 등을 들 수 있다.Examples of the solvent or dispersion medium used in the preparation of the material for forming the hole injection layer and the material for forming the hole transport layer include inorganic solvents such as nitric acid, sulfuric acid, ammonia, hydrogen peroxide, water, carbon disulfide, and methyl ethyl ketone (MEK). , Acetone, diethyl ketone, methyl isobutyl ketone (MIBK), methyl isopropyl ketone (MIPK), cyclohexanone, ketone solvents such as ethylene carbonate, methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol Alcohol solvents such as lycol (DEG) and glycerin (however, if the hole injection material and hole transport material are insoluble, it can be used only as a dispersion medium), diethyl ether, diisopropyl ether, 1, 2-Dimethoxyethane (DME), 1,4-dioxane, tetrahydrofuran (THF), tetrahydropyran (THP), anisole, diethylene glycol dimethyl ether (diglyme), diethylene Ether solvents such as glycol ethyl ether (diethyl carbitol), cellosolve solvents such as methyl cellosolve, ethyl cellosolve, and phenyl cellosolve, hexane, pentane, heptane, cyclohex Aliphatic hydrocarbon solvents such as seine, aromatic hydrocarbon solvents such as toluene, xylene, benzene, aromatic heterocyclic compound solvents such as pyridine, pyrazine, furan, pyrrole, thiophene, methylpyrrolidone, and N,N-die Amide solvents such as methylformamide (DMF), N,N-dimethylacetamide (DMA), halogen compounds such as carbon tetrachloride, chlorobenzene, dichloromethane, chloroform, and 1,2-dichloroethane Solvents, ester solvents such as ethyl acetate, methyl acetate, and ethyl formate, sulfur compound solvents such as dimethyl sulfoxide (DMSO) and sulfolane, nitrile such as acetonitrile, propionitrile, and acrylonitrile Solvents, various organic solvents such as organic acid-based solvents such as formic acid, acetic acid, trichloroacetic acid, and trifluoroacetic acid, or mixed solvents containing these.

또한, 건조는, 예를 들면, 대기압 또는 감압 분위기 중에서의 방치, 가열 처리, 불활성 가스의 분사 등에 의해 행할 수 있다.In addition, drying can be performed, for example, by standing in an atmospheric pressure or reduced pressure atmosphere, heat treatment, injection of an inert gas, or the like.

또한, 본공정에 앞서, 양극(3)의 상면에는 산소 플라즈마 처리를 시행하도록 해도 된다. 이것에 의해, 양극(3)의 상면에 친액성을 부여하는 것, 양극(3)의 상면에 부착되는 유기물을 제거(세정)하는 것, 양극(3)의 상면 부근의 일함수를 조정하는 것 등을 행할 수 있다.Further, prior to the main step, an oxygen plasma treatment may be performed on the upper surface of the anode 3. Thereby, imparting lyophilicity to the upper surface of the anode 3, removing (washing) organic matter adhering to the upper surface of the anode 3, and adjusting the work function near the upper surface of the anode 3 Etc. can be done.

여기에서, 산소 플라즈마 처리의 조건으로서는, 예를 들면, 플라즈마 파워 100∼800W 정도, 산소 가스 유량 50∼100mL/min 정도, 피처리 부재(양극 3)의 반송 속도 0.5∼10mm/sec 정도, 기판(2)의 온도 70∼90℃ 정도로 하는 것이 바람직하다.Here, the oxygen plasma treatment conditions include, for example, about 100 to 800 W of plasma power, about 50 to 100 mL/min of oxygen gas flow rate, about 0.5 to 10 mm/sec of transport speed of the member to be treated (anode 3), and the substrate ( The temperature of 2) is preferably about 70 to 90°C.

다음에 정공 수송층(5) 위(양극(3)의 일방의 면측)에, 발광층(6)을 형성한다.Next, on the hole transport layer 5 (one side of the anode 3), a light emitting layer 6 is formed.

발광층(6)은, 예를 들면, 발광 재료를 용매에 용해 또는 분산매에 분산하여 이루어지는 발광층 형성용 재료를 정공 수송층(5) 위에 공급한 후, 건조(탈용매 또는 탈분산매)함으로써 형성할 수 있다. 발광층 형성용 재료의 공급 방법 및 건조의 방법은 정공 주입층(4)의 형성에서 설명한 것과 동일하다.The light-emitting layer 6 can be formed, for example, by dissolving a light-emitting material in a solvent or dispersing it in a dispersion medium, supplying a material for forming a light-emitting layer onto the hole transport layer 5, and then drying (solvent or de-dispersing medium). . The method of supplying the material for forming the light emitting layer and the method of drying are the same as those described for the formation of the hole injection layer 4.

다음에 발광층(6) 위에, 전자 수송층(7)을, 예를 들면, 다음 공정에서 형성한다.Next, on the light emitting layer 6, an electron transport layer 7 is formed, for example, in a next step.

(a) 제1 공정(a) the first step

우선, 전술한 일반식 (1) 내지 (7)로 표시되는 금속 착체, 및 필요에 따라 금속 알콕사이드 등의 도판트를 포함하는 액상 재료를 조제한다.First, a liquid material containing a metal complex represented by the aforementioned general formulas (1) to (7) and a dopant such as a metal alkoxide is prepared as needed.

액상 재료의 조제에 사용하는 용매로서는 발광층(6)이 유기 발광층인 경우, 팽윤 또는 용해하기 어려운 것이 바람직하다. 이것에 의해, 발광 재료의 변질·열화나, 유기 발광층(6)이 용해되어, 막 두께가 극단적으로 감소하는 것을 방지할 수 있다. 그 결과, 유기 전계발광 소자(1)의 발광 효율의 저하를 방지할 수 있다. 용매에는, 전술한 알코올계 용매, 바람직하게는 탄소수 1∼10의 알코올을 사용하는 것이 적합하다. 이것에 의해, 발광 효율의 저하를 방지할 수 있어, 유기 전계발광 소자(1)를 생산성 좋게 제조할 수 있다.As the solvent used for preparing the liquid material, when the light-emitting layer 6 is an organic light-emitting layer, it is preferable that it is difficult to swell or dissolve. Thereby, it is possible to prevent the deterioration and deterioration of the light-emitting material, or the dissolution of the organic light-emitting layer 6, and an extremely decrease in the film thickness. As a result, it is possible to prevent a decrease in the luminous efficiency of the organic electroluminescent device 1. As the solvent, it is preferable to use the above-described alcohol solvent, preferably an alcohol having 1 to 10 carbon atoms. Thereby, a decrease in luminous efficiency can be prevented, and the organic electroluminescent element 1 can be manufactured with high productivity.

(b) 제2 공정(b) the second step

다음에 조제한 액상 재료를 발광층(6) 위에 공급한 후, 건조(탈용매)한다. 이것에 의해, 일반식 (1) 내지 (7)로 표시되는 금속 착체를 함유하는 전자 수송층(7)이 얻어진다. 액상 재료의 공급 방법 및 건조의 방법은 상기 정공 주입층(4) 및 정공 수송층(5)의 형성에서 설명한 것과 동일하다.Next, the prepared liquid material is supplied onto the light-emitting layer 6 and then dried (solvented). Thereby, an electron transport layer 7 containing a metal complex represented by the general formulas (1) to (7) is obtained. The method of supplying and drying the liquid material is the same as that described for the formation of the hole injection layer 4 and the hole transport layer 5 above.

다음에 전자 수송층(7) 위에, 음극(8)을 형성한다.Next, a cathode 8 is formed on the electron transport layer 7.

음극(8)은, 예를 들면, 진공 증착법, 스퍼터링법, 금속박의 접합, 금속 미립자 잉크의 도포 및 소성 등을 사용하여 형성할 수 있다.The cathode 8 can be formed using, for example, a vacuum evaporation method, a sputtering method, bonding of metal foils, coating and firing of metal particulate ink, and the like.

최후에, 얻어진 유기 전계발광 소자(1)를 덮도록 밀봉 부재(9)를 씌우고, 기판(2)에 접합한다. 이상과 같은 공정을 거쳐, 유기 전계발광 소자(1)가 얻어진다.Finally, the sealing member 9 is covered so that the obtained organic electroluminescent element 1 may be covered, and the board|substrate 2 is bonded. Through the above process, the organic electroluminescent device 1 is obtained.

상기 제조 방법에 의하면, 유기층(정공 주입층(4), 정공 수송층(5), 발광층(6), 전자 수송층(7))의 형성이나, 금속 미립자 잉크를 사용하는 경우에는 음극(8)의 형성에서도, 진공 장치 등의 대규모의 설비를 요하지 않기 때문에, 유기 전계발광 소자(1)의 제조 시간 및 제조 비용의 삭감을 도모할 수 있다. 또한 잉크젯법(액적 토출법)을 적용함으로써 대면적의 소자의 제작이나 다색의 분할 도포가 용이하게 된다.According to the above manufacturing method, formation of an organic layer (hole injection layer 4, hole transport layer 5, light emitting layer 6, electron transport layer 7), or formation of a cathode 8 when using metal particulate ink In addition, since large-scale equipment such as a vacuum device is not required, the manufacturing time and manufacturing cost of the organic electroluminescent element 1 can be reduced. In addition, by applying the ink jet method (drop ejection method), it becomes easy to manufacture a large-area device or to apply multiple colors divided.

또한, 본 실시형태에서는, 정공 주입층(4) 및 정공 수송층(5)을 액상 프로세스에 의해 제조하는 것으로서 설명했지만, 사용하는 정공 주입 재료 및 정공 수송 재료의 종류에 따라, 이들 층을 진공증착법 등의 기상 프로세스에 의해 형성하도록 해도 된다.In addition, in the present embodiment, the hole injection layer 4 and the hole transport layer 5 have been described as being manufactured by a liquid phase process, but depending on the type of the hole injection material and the hole transport material to be used, these layers are formed by vacuum deposition or the like. It may be formed by a gas phase process of.

이러한 유기 전계발광 소자(1)는, 예를 들면, 광원 등으로서 사용할 수 있다. 또한 복수의 유기 전계발광 소자(1)를 매트릭스 형상으로 배치함으로써, 디스플레이 장치를 구성할 수 있다.Such an organic electroluminescent element 1 can be used, for example, as a light source or the like. In addition, by arranging a plurality of organic electroluminescent elements 1 in a matrix shape, a display device can be configured.

또한, 디스플레이 장치의 구동 방식으로서는, 특별히 한정되지 않고, 액티브 매트릭스 방식, 패시브 매트릭스 방식의 어느 것이어도 된다.In addition, the driving method of the display device is not particularly limited, and any of an active matrix system and a passive matrix system may be used.

유기 전계발광 소자(1)에 공급되는 전기 에너지원인으로서는 주로 직류 전류이지만, 펄스 전류나 교류 전류를 사용하는 것도 가능하다. 전류값 및 전압값은 특별히 제한은 없지만, 소자의 소비전력, 수명을 고려하면 가능한 한 낮은 에너지로 최대의 휘도가 얻어지도록 해야 한다.The source of electrical energy supplied to the organic electroluminescent element 1 is mainly direct current, but it is also possible to use pulsed current or alternating current. The current and voltage values are not particularly limited, but considering the power consumption and life of the device, the maximum luminance must be obtained with as low energy as possible.

디스플레이 장치를 구성하는 「매트릭스」란 표시를 위한 화소(픽셀)가 격자 형상으로 배치된 것을 말하며, 화소의 집합으로 문자나 화상을 표시한다. 화소의 형상, 사이즈는 용도에 따라 결정된다. 예를 들면, pc, 모니터, 텔레비전의 화상 및 문자 표시에는, 통상 1변이 300㎛ 이하의 사각형의 화소가 사용되고, 표시 패널과 같은 대형 디스플레이의 경우에는, 1변이 mm 수준의 화소를 사용하게 된다. 모노크롬 표시의 경우에는, 동일한 색의 화소를 배열하면 되지만, 컬러 표시의 경우에는, 적, 녹, 청의 화소를 나열하여 표시되게 한다. 이 경우, 전형적으로는 델타 타입과 스트라이프 타입이 있다. 그리고, 이 매트릭스의 구동 방법으로서는 패시브 매트릭스 방식 및 액티브 매트릭스 방식의 어느 쪽이어도 된다. 전자에는, 구조가 간단하다고 하는 이점이 있지만, 동작 특성을 고려한 경우, 후자의 액티브 매트릭스 쪽이 우수한 경우가 있으므로, 이것도 용도에 따라 구별하여 사용하는 것이 필요하다.The "matrix" constituting the display device means that pixels (pixels) for display are arranged in a grid shape, and a character or image is displayed as a set of pixels. The shape and size of the pixels are determined according to the application. For example, in the display of images and characters on PCs, monitors, and televisions, pixels having a square of 300 mu m or less on one side are generally used, and in the case of a large display such as a display panel, pixels of a mm level are used on one side. In the case of monochrome display, pixels of the same color may be arranged, but in the case of color display, red, green, and blue pixels are arranged to be displayed. In this case, there are typically a delta type and a stripe type. In addition, as a driving method of this matrix, either a passive matrix system or an active matrix system may be used. The former has the advantage that the structure is simple, but when the operation characteristics are taken into consideration, the latter active matrix may be superior. Therefore, it is necessary to use them separately depending on the application.

유기 전계발광 소자(1)는 세그먼트 타입의 표시 장치이어도 된다. 「세그먼트 타입」이란 미리 정해진 정보를 표시하도록 소정 형상의 패턴을 형성하고, 정해진 영역을 발광시키게 된다. 예를 들면, 디지털 시계나 온도계에 있어서의 시각이나 온도 표시, 오디오 기기나 전자 조리기 등의 동작 상태 표시, 자동차의 패널 표시 등을 들 수 있다. 그리고, 상기 매트릭스 표시와 세그먼트 표시는 동일한 패널 속에 공존하고 있어도 된다.The organic electroluminescent element 1 may be a segment type display device. With the "segment type", a pattern of a predetermined shape is formed so as to display predetermined information, and a predetermined area is emitted. For example, display of time and temperature on a digital clock or thermometer, display of operating states of audio equipment and electric cookers, and panel display of automobiles are exemplified. In addition, the matrix display and segment display may coexist in the same panel.

유기 전계발광 소자(1)는 자발광하지 않는 표시 장치의 시인성을 향상시킬 목적에 사용되어, 액정 표시 장치, 시계, 오디오 기기, 자동차 패널, 표시판, 표지 등에 사용되는 백라이트이어도 된다. 특히 액정 표시 장치, 그중에서도 박형화가 과제로 되어 있는 pc 용도의 백라이트로서는 형광등과 도광판으로 이루어지는 종래의 것에 비해, 박형화, 경량화가 가능하게 된다.The organic electroluminescent element 1 is used for the purpose of improving the visibility of a display device that does not emit light, and may be a backlight used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a cover, and the like. In particular, as a backlight for a liquid crystal display device, particularly for a PC, which has a problem of reducing the thickness, it is possible to reduce the thickness and weight compared to the conventional one comprising a fluorescent lamp and a light guide plate.

실시예Example

이하, 본 발명의 효과를 확인하기 위해 행한 실시예에 대하여 설명한다.Hereinafter, examples performed to confirm the effects of the present invention will be described.

화합물의 확인은 박층 크로마토그래피와 APCI MS에 의해 행했다. 또한 착체는 NMR[(60MHz)은 니혼덴시제 JNM-MY60FT, 고분해 가능 NMR(500MHz)은 니혼덴시사제JNM-ECX-500을 사용하여 측정했다. APCI MS는 Waters사제 LCTPremire XE를 사용하여 측정했다.Confirmation of the compound was performed by thin layer chromatography and APCI MS. In addition, as for the complex, NMR [(60 MHz) was measured using JNM-MY60FT manufactured by Nippon Denshi, and high resolution NMR (500 MHz) was measured using JNM-ECX-500 manufactured by Nippon Denshi Corporation. APCI MS was measured using LCTPremire XE manufactured by Waters.

또한, 컬럼 크로마토그래피에 사용한 실리카겔 C300, NH, PEI는 각각 와코쥰야쿠사제 와코실 C300, 후지시리시아가카구사제 Chromatorex NH2, Chromatorex PEI를 사용했다.In addition, the silica gel C300, NH, and PEI used for column chromatography were Wakosil C300 manufactured by Wako Pure Chemical Industries, respectively, Chromatorex NH 2 manufactured by Fuji Shiri Chemical Co., Ltd., and Chromatorex PEI were used.

[I] 금속 착체의 합성[I] Synthesis of metal complexes

[A] 일반식 (1)로 표시되는 금속 착체[A] Metal complex represented by general formula (1)

[A-1] 2-(피리딘-2-일)-4-(4-(4,6-다이페닐피리미딘-2-일)페닐)페놀레이트 착체(L101-M)의 합성[A-1] Synthesis of 2-(pyridin-2-yl)-4-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)phenolate complex (L101-M)

[A-1-1] 리튬2-(피리딘-2-일)-4-(4-(4,6-다이페닐피리미딘-2-일)페닐)페놀레이트 착체(L101-Li)의 합성[A-1-1] Synthesis of lithium 2-(pyridin-2-yl)-4-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)phenolate complex (L101-Li)

(1-1-1) 중간 원료의 합성: (1-1-1) Synthesis of intermediate raw materials:

(1) 2-(4-브로모페닐)-4,6-다이페닐피리미딘(CAS No. 457613-56-8, M001)은 Mujica-Fernoud 등의 방법(WO2013091762A1)을 사용하여 합성했다.(1) 2-(4-bromophenyl)-4,6-diphenylpyrimidine (CAS No. 457613-56-8, M001) was synthesized using the method of Mujica-Fernoud et al. (WO2013091762A1).

(2) 4-벤질옥시-3-피리딘-2-일페닐보론산피나콜에스터(M024)의 합성(2) Synthesis of 4-benzyloxy-3-pyridin-2-ylphenylboronic acid pinacol ester (M024)

1) 2-(2-아세톡시-5-브로모페닐)피리딘의 합성1) Synthesis of 2-(2-acetoxy-5-bromophenyl)pyridine

2-(2-아세톡시-5-브로모페닐)피리딘(CAS No. 862742-97-0, M008)은 Kalyani 등의 방법(Org. Lett., 7(19), 4149-4152, 2015)을 사용하여 합성했다.2-(2-acetoxy-5-bromophenyl)pyridine (CAS No. 862742-97-0, M008) is prepared by Kalyani et al. (Org. Lett., 7(19), 4149-4152, 2015). Synthesized using.

2) 2-(2-하이드록시-5-브로모페닐)피리딘의 합성2) Synthesis of 2-(2-hydroxy-5-bromophenyl)pyridine

Figure 112019010503878-pct00056
Figure 112019010503878-pct00056

2-(2-아세톡시-5-브로모페닐)피리딘(M008) 23.4g(80mmol), 수산화포타슘 18g(320mmol), 에탄올 280mL를 가하고, 30분간 환류했다. 반응 종료 후, 실온까지 냉각, 아세트산, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 IPA, 계속해서 사이클로헥세인으로 재결정을 행하여, 2-(2-하이드록시-5-브로모페닐)피리딘 16.8g(84%)을 얻었다.2-(2-acetoxy-5-bromophenyl)pyridine (M008) 23.4 g (80 mmol), potassium hydroxide 18 g (320 mmol), and ethanol 280 mL were added, followed by refluxing for 30 minutes. After completion of the reaction, the mixture was cooled to room temperature, acetic acid and water were added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was recrystallized from IPA and then cyclohexane to obtain 16.8 g (84%) of 2-(2-hydroxy-5-bromophenyl)pyridine.

3) 2-(2-벤질옥시-5-브로모페닐)피리딘(M023)의 합성3) Synthesis of 2-(2-benzyloxy-5-bromophenyl)pyridine (M023)

Figure 112019010503878-pct00057
Figure 112019010503878-pct00057

2-(2-하이드록시-5-브로모페닐)피리딘 16.8g(67mmol), 탄산포타슘 27.8g(201mmol), 18-크라운-6 177mg(0.67mmol), 브로민화벤질 12.6g(73.7mmol)을 아세톤 134mL에 가하고, 1시간 환류했다. 반응 종료 후, 물을 가하고, 톨루엔으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축하여, 2-(2-벤질옥시-5-브로모페닐)피리딘(M023) 21.0g(92%)을 얻었다.2-(2-hydroxy-5-bromophenyl)pyridine 16.8g (67mmol), potassium carbonate 27.8g (201mmol), 18-crown-6 177mg (0.67mmol), benzyl bromide 12.6g (73.7mmol) It was added to 134 mL of acetone and refluxed for 1 hour. After completion of the reaction, water was added and extraction was performed with toluene. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure to obtain 21.0 g (92%) of 2-(2-benzyloxy-5-bromophenyl)pyridine (M023).

4) 4-벤질옥시-3-피리딘-2-일페닐보론산피나콜에스터(M024)의 합성4) Synthesis of 4-benzyloxy-3-pyridin-2-ylphenylboronic acid pinacol ester (M024)

Figure 112019010503878-pct00058
Figure 112019010503878-pct00058

2-(2-벤질옥시-5-브로모페닐)피리딘(M023) 21.0g(61.7mmol), 비스(피나콜레이토)다이보론 18.8g(74mmol), PdCl2(dppf)-CH2Cl2 부가체 759mg(0.93mmol), 아세트산 포타슘 4.91g(50mmol)을 DMF 120mL에 가하고, 120℃에서 2시간 교반했다. 반응 종료 후, 물에 붓고, 톨루엔으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(C300, 메탄올: 다이클로로메테인)로 정제하고, 얻어진 고체를 메탄올로 재결정을 행하여, 4-벤질옥시-3-피리딘-2-일페닐보론산피나콜에스터(M024) 15.7g(66%)을 얻었다.2- (2-benzyloxy-5-bromophenyl) pyridine (M023) 21.0 g (61.7 mmol), bis (pinacollato) diboron 18.8 g (74 mmol), PdCl 2 (dppf) -CH 2 Cl 2 added 759 mg (0.93 mmol) of a sieve and 4.91 g (50 mmol) of potassium acetate were added to 120 mL of DMF, followed by stirring at 120°C for 2 hours. After completion of the reaction, it was poured into water and extracted with toluene. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (C300, methanol: dichloromethane), and the obtained solid was recrystallized with methanol, and 4-benzyloxy-3-pyridin-2-ylphenylboronic acid pinacol ester (M024) 15.7g (66%) was obtained.

(1-1-2) 배위자의 합성: 2-(4-(4-하이드록시-3-피리딘-2-일페닐)페닐-4,6-다이페닐피리미딘(L101)의 합성(1-1-2) Synthesis of ligand: Synthesis of 2-(4-(4-hydroxy-3-pyridin-2-ylphenyl)phenyl-4,6-diphenylpyrimidine (L101)

(1) L101 중간체의 합성(1) Synthesis of L101 intermediate

Figure 112019010503878-pct00059
Figure 112019010503878-pct00059

4-벤질옥시-3-피리딘-2-일페닐보론산피나콜에스터(M024) 3.87g(10mmol), 2-(4-브로모페닐)-4,6-다이페닐피리미딘(M001) 3.87g(10mmol), PdCl2(dppf)-CH2Cl2 부가체 0.15g(0.2mmol), 3M 탄산포타슘 수용액 10mL(30mmol)를 다이옥세인 60mL에 가하고, 100℃에서 16시간 교반했다. 반응 종료 후, 냉각하고, 불용물을 여과 분리했다. 여과액은 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 아세트산 에틸로 재결정을 행하여, 2-(4-(4-벤질옥시-3-피리딘-2-일페닐)페닐-4,6-다이페닐피리미딘 1.66g(20%)을 얻었다. 모액은 농축 후, 얻어진 잔사를 컬럼 크로마토그래피(C300, 다이클로로메테인:메탄올)에 의해 정제하여, 2-(4-(4-벤질옥시-3-피리딘-2-일페닐)페닐-4,6-다이페닐피리미딘 1.41g(16%, 계 36%)을 얻었다.4-Benzyloxy-3-pyridin-2-ylphenylboronic acid pinacol ester (M024) 3.87g (10mmol), 2-(4-bromophenyl)-4,6-diphenylpyrimidine (M001) 3.87g (10 mmol), 0.15 g (0.2 mmol) of PdCl 2 (dppf)-CH 2 Cl 2 adduct, and 10 mL (30 mmol) of 3M potassium carbonate aqueous solution were added to 60 mL of dioxane, followed by stirring at 100° C. for 16 hours. After completion of the reaction, it was cooled and the insoluble matter was separated by filtration. Water was added to the filtrate and extracted with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was recrystallized with ethyl acetate to obtain 1.66 g (20%) of 2-(4-(4-benzyloxy-3-pyridin-2-ylphenyl)phenyl-4,6-diphenylpyrimidine. After concentration of silver, the obtained residue was purified by column chromatography (C300, dichloromethane:methanol), and 2-(4-(4-benzyloxy-3-pyridin-2-ylphenyl)phenyl-4,6 -Diphenylpyrimidine 1.41g (16%, total 36%) was obtained.

(2) L101의 합성(2) Synthesis of L101

Figure 112019010503878-pct00060
Figure 112019010503878-pct00060

2-(4-(4-벤질옥시-3-피리딘-2-일페닐)페닐-4,6-다이페닐피리미딘 1.70g(3mmol), 10% 팔라듐탄소 0.48g(Pd 0.45mmol)을 아세트산 45mL에 가하고, 5% H2-N2 혼합 가스 분위기하, 100℃에서 16시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 셀라이트를 사용하여 불용물을 제거했다. 여과액은 감압하에서 농축하여, 2-(4-(4-하이드록시-3-피리딘-2-일페닐)페닐-4,6-다이페닐피리미딘(L101) 0.75g(52%)을 얻었다.2-(4-(4-benzyloxy-3-pyridin-2-ylphenyl)phenyl-4,6-diphenylpyrimidine 1.70 g (3 mmol), 10% palladium carbon 0.48 g (Pd 0.45 mmol) in acetic acid 45 mL Then, the mixture was stirred for 16 hours at 100° C. in a 5% H 2 -N 2 mixed gas atmosphere After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. It was concentrated under to obtain 0.75 g (52%) of 2-(4-(4-hydroxy-3-pyridin-2-ylphenyl)phenyl-4,6-diphenylpyrimidine (L101).

(1-1-3) 착체의 합성: 리튬2-(피리딘-2-일)-4-(4-(4,6-다이페닐피리미딘-2-일)페닐)페놀레이트 착체(L101-Li)의 합성(1-1-3) Synthesis of complex: lithium 2-(pyridin-2-yl)-4-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)phenolate complex (L101-Li ) Synthesis

Figure 112019010503878-pct00061
Figure 112019010503878-pct00061

배위자 L101 0.19g(0.4mmol)-메탄올 현탁액 2mL에 4M 수산화리튬 수용액 0.1mL(0.4mmol)-메탄올 용액 1mL를 적하하고, 실온에서 교반했다. 2시간 후, 침전을 여과 분리하고, 여과액은 감압하에서 농축했다. 생성된 석출물은 톨루엔-메탄올로 재결정을 행하고, L101-Li 0.09g(47%)을 얻었다. 얻어진 착체의 NMR은 도 2에 나타낸다.To 2 mL of a 0.19 g (0.4 mmol)-methanol suspension of ligand L101, 1 mL of a 0.1 mL (0.4 mmol)-methanol solution of 4M lithium hydroxide was added dropwise, followed by stirring at room temperature. After 2 hours, the precipitate was separated by filtration, and the filtrate was concentrated under reduced pressure. The produced precipitate was recrystallized from toluene-methanol to obtain 0.09 g (47%) of L101-Li. The NMR of the obtained complex is shown in FIG.

[A-1-2] 세슘2-(피리딘-2-일)-4-(4-(4,6-다이페닐피리미딘-2-일)페닐)페놀레이트 착체(L101-Cs)의 합성[A-1-2] Synthesis of cesium 2-(pyridin-2-yl)-4-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)phenolate complex (L101-Cs)

Figure 112019010503878-pct00062
Figure 112019010503878-pct00062

상기 (1-1-2)에서 합성한 배위자 L101 0.19g(0.4mmol)-메탄올 현탁액 2mL에 50% 수산화세슘 수용액 0.12mL-메탄올 용액 1mL를 적하하고, 실온에서 교반했다. 2시간 후, 침전을 여과 분리하고, 여과액은 감압하에서 농축했다. 생성된 석출물은 톨루엔-메탄올로 재결정을 행하여, L101-Cs 0.08g(31%)을 얻었다. 얻어진 착체의 NMR은 도 2에 도시한다.To 2 mL of a 0.19 g (0.4 mmol)-methanol suspension of ligand L101 synthesized in (1-1-2) above, 0.12 mL of a 50% cesium hydroxide aqueous solution-1 mL of a methanol solution was added dropwise, followed by stirring at room temperature. After 2 hours, the precipitate was separated by filtration, and the filtrate was concentrated under reduced pressure. The produced precipitate was recrystallized from toluene-methanol to obtain 0.08 g (31%) of L101-Cs. The NMR of the obtained complex is shown in FIG.

[A-2] 2-(피리딘-2-일)-4-(3-(4,6-다이페닐피리미딘-2-일)페닐)페놀레이트 착체(L102-M)의 합성[A-2] Synthesis of 2-(pyridin-2-yl)-4-(3-(4,6-diphenylpyrimidin-2-yl)phenyl)phenolate complex (L102-M)

[A-2-1] 리튬2-(피리딘-2-일)-4-(3-(4,6-다이페닐피리미딘-2-일)페닐)페놀레이트 착체(L102-Li)의 합성[A-2-1] Synthesis of lithium 2-(pyridin-2-yl)-4-(3-(4,6-diphenylpyrimidin-2-yl)phenyl)phenolate complex (L102-Li)

(1-2-1) 중간 원료의 합성: (1-2-1) Synthesis of intermediate raw materials:

(1) 3-(4,6-다이페닐피리미딘-2-일)페닐보론산피나콜에스터(CAS No. 1381862-91-4, M003)는 Jung 등의 방법(US20140158999A1)을 기초로 2-(3-브로모페닐)-4,6-다이페닐피리미딘을 사용하여 합성했다.(1) 3-(4,6-diphenylpyrimidin-2-yl)phenylboronic acid pinacol ester (CAS No. 1381862-91-4, M003) is based on the method of Jung et al. (US20140158999A1). It synthesized using (3-bromophenyl)-4,6-diphenylpyrimidine.

(1-2-2) 배위자의 합성: 2-(3-(4-하이드록시-3-피리딘-2-일페닐)페닐-4,6-다이페닐피리미딘(L102)의 합성(1-2-2) Synthesis of ligand: Synthesis of 2-(3-(4-hydroxy-3-pyridin-2-ylphenyl)phenyl-4,6-diphenylpyrimidine (L102)

Figure 112019010503878-pct00063
Figure 112019010503878-pct00063

상기 (1-1-1)의 (2)의 1)에서 합성한 2-(2-아세톡시-5-브로모페닐)피리딘(M008) 2.25g(7.7mmol), 3-(4,6-다이페닐피리미딘-2-일)페닐보론산피나콜에스터(M003) 3.04g(7mmol), 테트라키스(트라이페닐포스핀)팔라듐 404mg(0.35mmol), 2M 탄산소듐 수용액 7mL(14mmol)를 다이옥세인 35mL에 가하고, 100℃에서 16시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(C300, 다이클로로메테인:헵테인)에 의해 정제하고, 2-(3-(4-하이드록시-3-피리딘-2-일페닐)페닐-4,6-다이페닐피리미딘(L102) 1.61g(44mmol)을 얻었다.2-(2-acetoxy-5-bromophenyl)pyridine (M008) 2.25 g (7.7 mmol) synthesized in (2) 1) of (1-1-1) above, 3-(4,6- Diphenylpyrimidin-2-yl) phenylboronic acid pinacol ester (M003) 3.04g (7mmol), tetrakis (triphenylphosphine) palladium 404mg (0.35mmol), 2M sodium carbonate aqueous solution 7mL (14mmol) dioxane It added to 35 mL and stirred at 100 degreeC for 16 hours. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (C300, dichloromethane:heptane), and 2-(3-(4-hydroxy-3-pyridin-2-ylphenyl)phenyl-4,6-diphenyl 1.61 g (44 mmol) of pyrimidine (L102) were obtained.

(1-2-3) 착체의 합성: 리튬2-(피리딘-2-일)-4-(3-(4,6-다이페닐피리미딘-2-일)페닐)페놀레이트 착체(L102-Li)의 합성(1-2-3) Synthesis of complex: lithium 2-(pyridin-2-yl)-4-(3-(4,6-diphenylpyrimidin-2-yl)phenyl)phenolate complex (L102-Li ) Synthesis

Figure 112019010503878-pct00064
Figure 112019010503878-pct00064

배위자 L102 0.19g(0.4mmol)-메탄올 현탁액 2mL에 4M 수산화리튬 수용액 0.1mL(0.4mmol)-메탄올 용액 1mL를 적하하고, 실온에서 교반했다. 2시간 후, 침전을 여과 분리하고, 여과액은 감압하에서 농축했다. 생성된 석출물은 톨루엔-메탄올로 재결정을 행하여, L102-Li 0.05g(24%)을 얻었다. 얻어진 착체의 NMR은 도 3에 나타낸다.To 2 mL of a ligand L102 0.19 g (0.4 mmol)-methanol suspension, 1 mL of a 4 M lithium hydroxide aqueous solution 0.1 mL (0.4 mmol)-methanol solution was added dropwise, followed by stirring at room temperature. After 2 hours, the precipitate was separated by filtration, and the filtrate was concentrated under reduced pressure. The produced precipitate was recrystallized from toluene-methanol to obtain 0.05 g (24%) of L102-Li. The NMR of the obtained complex is shown in FIG. 3.

[A-2-2] 세슘2-(피리딘-2-일)-4-(3-(4,6-다이페닐피리미딘-2-일)페닐)페놀레이트 착체(L102-Cs)의 합성[A-2-2] Synthesis of cesium 2-(pyridin-2-yl)-4-(3-(4,6-diphenylpyrimidin-2-yl)phenyl)phenolate complex (L102-Cs)

Figure 112019010503878-pct00065
Figure 112019010503878-pct00065

상기 (1-2-2)에서 합성한 배위자 L102 0.19g(0.4mmol)-메탄올 현탁액 2mL에 50% 수산화세슘 수용액 0.12mL-메탄올 용액 1mL를 적하하고, 실온에서 교반했다. 2시간 후, 침전을 여과 분리하고, 여과액은 감압하에서 농축했다. 생성된 석출물은 톨루엔-메탄올로 재결정을 행하고, L102-Cs 0.09g(38%)을 얻었다. 얻어진 착체의 NMR은 도 3에 나타낸다.To 2 mL of a 0.19 g (0.4 mmol)-methanol suspension of ligand L102 synthesized in (1-2-2) above, 0.12 mL of a 50% cesium hydroxide aqueous solution-1 mL of a methanol solution was added dropwise, followed by stirring at room temperature. After 2 hours, the precipitate was separated by filtration, and the filtrate was concentrated under reduced pressure. The produced precipitate was recrystallized from toluene-methanol to obtain 0.09 g (38%) of L102-Cs. The NMR of the obtained complex is shown in FIG. 3.

[A-3] 2-(피리딘-2-일)-4-(2,6-다이페닐피리미딘-4-일)페놀레이트 착체(L103-M)의 합성[A-3] Synthesis of 2-(pyridin-2-yl)-4-(2,6-diphenylpyrimidin-4-yl)phenolate complex (L103-M)

[A-3-1] 루비듐2-(피리딘-2-일)-4-(2,6-다이페닐피리미딘-4-일)페놀레이트 착체(L103-Rb)의 합성[A-3-1] Synthesis of rubidium 2-(pyridin-2-yl)-4-(2,6-diphenylpyrimidin-4-yl)phenolate complex (L103-Rb)

(1-3-2) 배위자의 합성: 2,6-다이페닐-4-(3-(피리딘-2-일)-4-하이드록시페닐)피리미딘(L103)의 합성(1-3-2) Synthesis of ligand: Synthesis of 2,6-diphenyl-4-(3-(pyridin-2-yl)-4-hydroxyphenyl)pyrimidine (L103)

(1) L103 중간체의 합성(1) Synthesis of L103 intermediate

Figure 112019010503878-pct00066
Figure 112019010503878-pct00066

상기 (1-1-1)의 (2)에서 합성한 4-벤질옥시-3-피리딘-2-일페닐보론산피나콜에스터(M024) 2.36g(6.1mmol), 4-브로모-2,6-다이페닐피리미딘 1.95g(7.32mmol), 테트라키스(트라이페닐포스핀)팔라듐 423mg(0.366mmol), 2M 탄산소듐 수용액 6.1mL(12.2mmol)를 다이옥세인 37mL에 가하고, 100℃에서 4시간 교반했다. 반응 종료 후, 물을 가하고 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(C300, 다이클로로메테인:헵테인)로 정제하고, 2,6-다이페닐-4-(3-(피리딘-2-일)-4-벤질옥시페닐)피리미딘 1.61g(54%)을 얻었다.4-benzyloxy-3-pyridin-2-ylphenylboronic acid pinacol ester synthesized in (2) of (1-1-1) above (M024) 2.36 g (6.1 mmol), 4-bromo-2, 6-diphenylpyrimidine 1.95 g (7.32 mmol), tetrakis (triphenylphosphine) palladium 423 mg (0.366 mmol), 2M sodium carbonate aqueous solution 6.1 mL (12.2 mmol) was added to 37 mL of dioxane, and at 100° C. for 4 hours Stirred. After completion of the reaction, water was added and extraction was performed with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (C300, dichloromethane:heptane), and 2,6-diphenyl-4-(3-(pyridin-2-yl)-4-benzyloxyphenyl)pyrimidine 1.61 g (54%) was obtained.

(2) L103의 합성(2) Synthesis of L103

Figure 112019010503878-pct00067
Figure 112019010503878-pct00067

2,6-다이페닐-4-(3-(피리딘-2-일)-4-벤질옥시페닐)피리미딘 1.52g(3.1mmol), 10% 팔라듐탄소 495mg을 아세트산 45mL에 가하고, 5% H2-N2 혼합 가스 분위기하 80℃에서 하룻밤 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, NaHCO3 수용액으로 중화하고 셀라이트를 사용하여 불용물을 여과했다. 여과액은 다이클로로메테인으로 추출하고, 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 감압하, 300℃에서 승화 정제를 행하여, 2,6-다이페닐-4-(3-(피리딘-2-일)-4-하이드록시페닐)피리미딘(L103) 808mg(64%)을 얻었다.2,6-diphenyl-4-(3-(pyridin-2-yl)-4-benzyloxyphenyl)pyrimidine 1.52 g (3.1 mmol), 495 mg of 10% palladium carbon was added to 45 mL of acetic acid, and 5% H 2 It stirred at 80 degreeC overnight under -N 2 mixed gas atmosphere. After completion of the reaction, it was diluted with dichloromethane, neutralized with an aqueous NaHCO 3 solution, and filtered off insoluble matters using Celite. The filtrate was extracted with dichloromethane, and the organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was subjected to sublimation purification at 300°C under reduced pressure, and 2,6-diphenyl-4-(3-(pyridin-2-yl)-4-hydroxyphenyl)pyrimidine (L103) 808 mg (64%) Got it.

(1-3-3) 착체의 합성: 루비듐2-(피리딘-2-일)-4-(2,6-다이페닐피리미딘-4-일)페놀레이트 착체(L103-Rb)의 합성(1-3-3) Synthesis of complex: Synthesis of rubidium 2-(pyridin-2-yl)-4-(2,6-diphenylpyrimidin-4-yl)phenolate complex (L103-Rb)

Figure 112019010503878-pct00068
Figure 112019010503878-pct00068

배위자 L103 0.17g(0.42mmol)-톨루엔 현탁액 4mL에, 50% 수산화루비듐 수용액 0.4mL(0.4mmol)-메탄올 용액 2mL를 적하하고 실온에서 교반했다. 1시간 후, 반응 혼합물은 감압하에서 농축하고, 얻어진 잔사에 헵테인을 가하고 침전을 여과하여 취했다. 얻어진 침전은 감압하, 260℃로 가열하여 미반응의 배위자를 제거하여 L103-Rb 0.17g(88%)을 얻었다. 얻어진 착체의 NMR은 도 4에 나타낸다.To 4 mL of a ligand L103 0.17 g (0.42 mmol)-toluene suspension, a 50% rubidium hydroxide aqueous solution 0.4 mL (0.4 mmol)-methanol solution 2 mL was added dropwise and stirred at room temperature. After 1 hour, the reaction mixture was concentrated under reduced pressure, heptane was added to the obtained residue, and the precipitate was filtered off. The obtained precipitate was heated to 260°C under reduced pressure to remove an unreacted ligand to obtain 0.17 g (88%) of L103-Rb. The NMR of the obtained complex is shown in FIG. 4.

[A-3-2] 세슘2-(피리딘-2-일)-4-(2,6-다이페닐피리미딘-4-일)페놀레이트 착체(L103-Cs)의 합성[A-3-2] Synthesis of cesium 2-(pyridin-2-yl)-4-(2,6-diphenylpyrimidin-4-yl)phenolate complex (L103-Cs)

Figure 112019010503878-pct00069
Figure 112019010503878-pct00069

상기 (1-3-2)에서 합성한 배위자 L103 0.17g(0.42mmol)-톨루엔 현탁액 4mL에, 50% 수산화세슘 수용액 0.4mL(0.4mmol)-메탄올 용액 2mL를 적하하고 실온에서 교반했다. 1시간 후, 반응 혼합물은 감압하에서 농축하고, 얻어진 잔사에 헵테인을 가하고 침전을 여과하여 취했다. 얻어진 침전은 감압하, 260℃로 가열하여 미반응의 배위자를 제거하여 L103-Cs 0.17g(82%)을 얻었다. 얻어진 착체의 NMR은 도 4에 나타낸다.To 4 mL of a 0.17 g (0.42 mmol)-toluene suspension of ligand L103 synthesized in (1-3-2), 2 mL of a 0.4 mL (0.4 mmol)-methanol solution of 50% cesium hydroxide was added dropwise, followed by stirring at room temperature. After 1 hour, the reaction mixture was concentrated under reduced pressure, heptane was added to the obtained residue, and the precipitate was filtered off. The obtained precipitate was heated to 260°C under reduced pressure to remove an unreacted ligand to obtain 0.17 g (82%) of L103-Cs. The NMR of the obtained complex is shown in FIG. 4.

[A-4] 2-(피리딘-2-일)-4-(4,6-다이페닐-1,3,5-트라이아진-2-일)페놀레이트 착체(L104-M)의 합성[A-4] Synthesis of 2-(pyridin-2-yl)-4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenolate complex (L104-M)

[A-4-1] 루비듐2-(피리딘-2-일)-4-(4,6-다이페닐-1,3,5-트라이아진-2-일)페놀레이트 착체(L104-Rb)의 합성[A-4-1] Rubidium 2-(pyridin-2-yl)-4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenolate complex (L104-Rb) synthesis

(1-4-2) 배위자의 합성: 2-(3-피리딘-2-일-4-하이드록시페닐)-4,6-다이페닐-1,3,5-트라이아진(L104)의 합성(1-4-2) Synthesis of ligand: Synthesis of 2-(3-pyridin-2-yl-4-hydroxyphenyl)-4,6-diphenyl-1,3,5-triazine (L104)

(1) L104 중간체의 합성(1) Synthesis of L104 intermediate

Figure 112019010503878-pct00070
Figure 112019010503878-pct00070

상기 (1-1-1)의 (2)에서 합성한 4-벤질옥시-3-피리딘-2-일페닐보론산피나콜에스터(M024) 2.01g(5.2mmol), 2-클로로-4,6-다이페닐트라이아진 1.67g(6.24mmol), 테트라키스(트라이페닐포스핀)팔라듐 361mg(0.312mmol), 2M 탄산소듐 수용액 5.2mL(10.4mmol)를 다이옥세인 31mL에 가하고, 100℃에서 4시간 교반했다. 반응 종료 후, 물을 가하고 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(C300, 다이클로로메테인:헵테인)로 정제하고, 2-(3-피리딘-2-일-4-벤질옥시페닐)-4,6-다이페닐-1,3,5-트라이아진 953mg(37%)을 얻었다.4-benzyloxy-3-pyridin-2-ylphenylboronic acid pinacol ester synthesized in (2) of (1-1-1) above (M024) 2.01 g (5.2 mmol), 2-chloro-4,6 -Diphenyltriazine 1.67g (6.24mmol), tetrakis (triphenylphosphine) palladium 361mg (0.312mmol), 2M sodium carbonate aqueous solution 5.2mL (10.4mmol) was added to dioxane 31mL, and stirred at 100℃ for 4 hours did. After completion of the reaction, water was added and extraction was performed with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (C300, dichloromethane:heptane), and 2-(3-pyridin-2-yl-4-benzyloxyphenyl)-4,6-diphenyl-1,3, 953mg (37%) of 5-triazine was obtained.

(2) L104의 합성(2) Synthesis of L104

Figure 112019010503878-pct00071
Figure 112019010503878-pct00071

2-(3-피리딘-2-일-4-벤질옥시페닐)-4,6-다이페닐-1,3,5-트라이아진 936mg(1.9mmol), 10% 팔라듐탄소 303mg(0.285mmol)을 1-뷰탄올 100mL에 가했다. 5% H2-N2 혼합 가스 분위기하, 80℃에서 16시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 셀라이트를 사용하여 여과했다. 여과액은 감압하에서 농축하여, 황색 고체 864mg(113%)을 얻었다. 얻어진 황색 고체는 진공 상태, 320℃에서 승화 정제를 행하여, 2-(3-(피리딘-2-일)-4-하이드록시페닐)-4,6-다이페닐-1,3,5-트라이아진(L104) 598mg(78%)을 얻었다.2-(3-pyridin-2-yl-4-benzyloxyphenyl)-4,6-diphenyl-1,3,5-triazine 936 mg (1.9 mmol), 10% palladium carbon 303 mg (0.285 mmol) 1 -It was added to 100 mL of butanol. The mixture was stirred at 80°C for 16 hours in a 5% H 2 -N 2 mixed gas atmosphere. After completion of the reaction, it was diluted with dichloromethane and filtered through Celite. The filtrate was concentrated under reduced pressure to obtain 864 mg (113%) of a yellow solid. The obtained yellow solid was subjected to sublimation purification at 320°C in a vacuum state, and 2-(3-(pyridin-2-yl)-4-hydroxyphenyl)-4,6-diphenyl-1,3,5-triazine (L104) 598mg (78%) was obtained.

(1-4-3) 착체의 합성: (1-4-3) Synthesis of complex:

루비듐2-(피리딘-2-일)-4-(4,6-다이페닐-1,3,5-트라이아진-2-일)페놀레이트 착체(L104-Rb)의 합성Synthesis of rubidium 2-(pyridin-2-yl)-4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenolate complex (L104-Rb)

Figure 112019010503878-pct00072
Figure 112019010503878-pct00072

배위자 L104 0.17g(0.42mmol)-톨루엔 현탁액 4mL에, 50% 수산화루비듐 수용액 0.4mL(0.4mmol)-메탄올 용액 2mL를 적하하고 실온에서 교반했다. 1시간 후, 반응 혼합물은 감압하에서 농축하고, 얻어진 잔사에 헵테인을 가하고 침전을 여과하여 취했다. 얻어진 침전은 감압하, 250℃로 가열하여 미반응의 배위자를 제거하여 L104-Rb 0.13g(65%)을 얻었다. 얻어진 착체의 NMR은 도 5에 나타낸다.To 4 mL of a ligand L104 0.17 g (0.42 mmol)-toluene suspension, a 50% rubidium hydroxide aqueous solution 0.4 mL (0.4 mmol)-methanol solution 2 mL was added dropwise and stirred at room temperature. After 1 hour, the reaction mixture was concentrated under reduced pressure, heptane was added to the obtained residue, and the precipitate was filtered off. The obtained precipitate was heated to 250° C. under reduced pressure to remove unreacted ligands to obtain 0.13 g (65%) of L104-Rb. The NMR of the obtained complex is shown in FIG.

[A-4-2] 세슘2-(피리딘-2-일)-4-(4,6-다이페닐-1,3,5-트라이아진-2-일)페놀레이트 착체 (L104-Cs)의 합성[A-4-2] Cesium 2-(pyridin-2-yl)-4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenolate complex (L104-Cs) synthesis

Figure 112019010503878-pct00073
Figure 112019010503878-pct00073

상기 (1-4-2)에서 합성한 배위자 L104 0.17g(0.42mmol)-톨루엔 현탁액 4mL에, 50% 수산화세슘 수용액 0.4mL(0.4mmol)-메탄올 용액 2mL를 적하하고 실온에서 교반했다. 1시간 후, 반응 혼합물은 감압하에서 농축하고, 얻어진 잔사에 헵테인을 가하고 침전을 여과하여 취했다. 얻어진 침전은 감압하, 250℃로 가열하여 미반응의 배위자를 제거하여 L104-Cs 0.17g(78%)을 얻었다. 얻어진 착체의 NMR은 도 5에 나타낸다.To 4 mL of a 0.17 g (0.42 mmol)-toluene suspension of ligand L104 synthesized in (1-4-2), 2 mL of a 0.4 mL (0.4 mmol)-methanol solution of 50% cesium hydroxide was added dropwise, followed by stirring at room temperature. After 1 hour, the reaction mixture was concentrated under reduced pressure, heptane was added to the obtained residue, and the precipitate was filtered off. The obtained precipitate was heated to 250° C. under reduced pressure to remove the unreacted ligand to obtain 0.17 g (78%) of L104-Cs. The NMR of the obtained complex is shown in FIG.

[A-5] 2-(피리딘-2-일)-4-(4-(피리딘-3-일)페닐)페놀레이트 착체(L105-M)의 합성[A-5] Synthesis of 2-(pyridin-2-yl)-4-(4-(pyridin-3-yl)phenyl)phenolate complex (L105-M)

[A-5-1] 루비듐2-(피리딘-2-일)-4-(4-(피리딘-3-일)페닐)페놀레이트 착체(L105-Rb)의 합성[A-5-1] Synthesis of rubidium 2-(pyridin-2-yl)-4-(4-(pyridin-3-yl)phenyl)phenolate complex (L105-Rb)

(1-5-1) 중간 원료의 합성: (1-5-1) Synthesis of intermediate raw materials:

(1) 4-(피리딘-3-일)페닐보론산피나콜에스터(CAS No. 929203-04-3, M005)는 Ono 등의 방법(WO2011152466)을 사용하여 합성했다.(1) 4-(pyridin-3-yl) phenylboronic acid pinacol ester (CAS No. 929203-04-3, M005) was synthesized using the method of Ono et al. (WO2011152466).

(1-5-2) 배위자의 합성: 2-(2-하이드록시-5-(4-피리딘-3-일페닐)페닐)피리딘(L105)의 합성(1-5-2) Synthesis of ligand: Synthesis of 2-(2-hydroxy-5-(4-pyridin-3-ylphenyl)phenyl)pyridine (L105)

(1) L105 중간체의 합성(1) Synthesis of L105 intermediate

Figure 112019010503878-pct00074
Figure 112019010503878-pct00074

상기 (1-1-1)의 (2)의 3)에서 합성한 2-(2-벤질옥시-5-브로모페닐)피리딘(M023) 1.52g(4mmol), 4-피리딘-3-일페닐보론산피나콜에스터(M005) 1.74g(4mmol), 테트라키스(트라이페닐포스핀)팔라듐 140mg(0.2mmol), 2M 탄산소듐 수용액 8mL(16mL)를 다이옥세인 32mL에 가하고 100℃에서 18시간 교반했다. 반응 종료 후, 감압하에서 농축하고, 물을 가했다. 다이클로로메테인으로 추출 후, 유기층은 황산 마그네슘으로 건조하고, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(NH, 다이클로로메테인)에 의해 정제를 행하고, 2-(2-벤질옥시-5-(4-피리딘-3-일페닐)페닐)피리딘 1.32g(53%)을 얻었다.2-(2-benzyloxy-5-bromophenyl)pyridine (M023) 1.52g (4mmol), 4-pyridin-3-ylphenyl synthesized in 3) of (2) of (1-1-1) above Pinacol ester boronic acid (M005) 1.74 g (4 mmol), tetrakis (triphenylphosphine) palladium 140 mg (0.2 mmol), 2M sodium carbonate aqueous solution 8 mL (16 mL) was added to dioxane 32 mL, followed by stirring at 100°C for 18 hours. . After completion of the reaction, it was concentrated under reduced pressure, and water was added. After extraction with dichloromethane, the organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained residue was purified by column chromatography (NH, dichloromethane), and 1.32 g (53%) of 2-(2-benzyloxy-5-(4-pyridin-3-ylphenyl)phenyl)pyridine was prepared. Got it.

(2) L105의 합성(2) Synthesis of L105

Figure 112019010503878-pct00075
Figure 112019010503878-pct00075

2-(2-벤질옥시-5-(4-피리딘-3-일페닐)페닐)피리딘 1.99g(4.8mmol)을 10% 팔라듐탄소 766mg(Pd 0.72mmol)을 아세트산에 가하고, 5% H2-N2 혼합 가스 분위기하, 80℃에서 24시간 교반했다. 반응 종료 후, 다이클로로메테인으로 반응 용액을 희석하고, 셀라이트를 사용하여 팔라듐탄소를 제거했다. 여과액은 감압하에서 농축하여, 2-(2-하이드록시-5-(4-피리딘-3-일페닐)페닐)피리딘(L105) 1.35g(86%)을 얻었다.2-(2-benzyloxy-5-(4-pyridin-3-ylphenyl)phenyl)pyridine 1.99 g (4.8 mmol) was added 10% palladium carbon 766 mg (Pd 0.72 mmol) to acetic acid, and 5% H 2- It stirred at 80 degreeC for 24 hours in an N 2 mixed gas atmosphere. After completion of the reaction, the reaction solution was diluted with dichloromethane, and palladium carbon was removed using Celite. The filtrate was concentrated under a reduced pressure to obtain 1.35 g (86%) of 2-(2-hydroxy-5-(4-pyridin-3-ylphenyl)phenyl)pyridine (L105).

(1-5-3) 착체의 합성: 루비듐2-(피리딘-2-일)-4-(4-(피리딘-3-일)페닐)페놀레이트 착체(L105-Rb)의 합성(1-5-3) Synthesis of complex: Synthesis of rubidium 2-(pyridin-2-yl)-4-(4-(pyridin-3-yl)phenyl)phenolate complex (L105-Rb)

Figure 112019010503878-pct00076
Figure 112019010503878-pct00076

배위자 L105 0.13g(0.4mmol)-톨루엔 현탁액 4mL에, 50% 수산화루비듐 수용액 0.045mL(0.38mmol)-메탄올 용액 2mL에 적하하고, 실온에서 교반했다. 1시간 후, 반응 혼합물은 감압하에서 농축하고, 석출물을 여과하여 취했다. 얻어진 석출물은 감압하, 200℃로 가열하여 미반응의 배위자를 제거하고, L105-Rb 0.12g(79%)을 얻었다. 얻어진 착체의 NMR은 도 6에 나타낸다.To 4 mL of a ligand L105 0.13 g (0.4 mmol)-toluene suspension, 50% rubidium hydroxide aqueous solution 0.045 mL (0.38 mmol)-methanol solution 2 mL was added dropwise, followed by stirring at room temperature. After 1 hour, the reaction mixture was concentrated under reduced pressure, and the precipitate was filtered off. The obtained precipitate was heated to 200° C. under reduced pressure to remove an unreacted ligand to obtain 0.12 g (79%) of L105-Rb. The NMR of the obtained complex is shown in FIG. 6.

[A-5-2] 세슘2-(피리딘-2-일)-4-(4-(피리딘-3-일)페닐)페놀레이트 착체 (L105-Cs)의 합성[A-5-2] Synthesis of cesium 2-(pyridin-2-yl)-4-(4-(pyridin-3-yl)phenyl)phenolate complex (L105-Cs)

Figure 112019010503878-pct00077
Figure 112019010503878-pct00077

상기 (1-5-2)에서 합성한 배위자 L105 0.13g(0.4mmol)-톨루엔 현탁액 4mL에, 메탄올로 희석한 50% 수산화세슘 수용액 0.066mL(0.38mmol)-메탄올 용액 2mL에 적하하고, 실온에서 교반했다. 1시간 후, 반응 혼합물은 감압하에서 농축하고, 석출물을 여과하여 취했다. 얻어진 석출물은 감압하, 200℃로 가열하여 미반응의 배위자를 제거하고, L105-Cs 0.14g(78%)을 얻었다. 얻어진 착체의 NMR은 도 6에 나타낸다.The ligand L105 synthesized in (1-5-2) was added dropwise to 4 mL of a 0.13 g (0.4 mmol)-toluene suspension, and 0.066 mL (0.38 mmol) of a 50% cesium hydroxide aqueous solution diluted with methanol-2 mL of a methanol solution, and at room temperature. Stirred. After 1 hour, the reaction mixture was concentrated under reduced pressure, and the precipitate was filtered off. The obtained precipitate was heated to 200° C. under reduced pressure to remove an unreacted ligand to obtain 0.14 g (78%) of L105-Cs. The NMR of the obtained complex is shown in FIG. 6.

[A-6] 2-(피리딘-2-일)4,6-비스(4-(피리딘-3-일)페닐)페놀레이트 착체(L106-M)의 합성[A-6] Synthesis of 2-(pyridin-2-yl)4,6-bis(4-(pyridin-3-yl)phenyl)phenolate complex (L106-M)

[A-6-1] 리튬2-(피리딘-2-일)4,6-비스(4-(피리딘-3-일)페닐)페놀레이트 착체(L106-Li)의 합성[A-6-1] Synthesis of lithium 2-(pyridin-2-yl)4,6-bis(4-(pyridin-3-yl)phenyl)phenolate complex (L106-Li)

(1-6-1) 중간 원료의 합성: (1-6-1) Synthesis of intermediate raw materials:

(1) 2-(2-벤질옥시-3,5-다이브로모페닐)피리딘(M026)의 합성(1) Synthesis of 2-(2-benzyloxy-3,5-dibromophenyl)pyridine (M026)

Figure 112019010503878-pct00078
Figure 112019010503878-pct00078

1) 1-벤질옥시-2,4,6-트라이브로모벤젠(CAS No. 88486-72-0, M006)은 Sakai 등의 방법(Chem. Commun., 51(15), 3181-3184, 2015)에서 2-(2-하이드록시페닐)벤조옥사졸을 2,4,6-트라이브로모페놀로 바꾸어 합성했다.1) 1-Benzyloxy-2,4,6-tribromobenzene (CAS No. 88486-72-0, M006) is a method of Sakai et al. (Chem. Commun., 51(15), 3181-3184, 2015) It was synthesized by replacing 2-(2-hydroxyphenyl)benzoxazole with 2,4,6-tribromophenol.

2) 2-벤질옥시-3,5-다이브로모페닐보론산(M025)의 합성2) Synthesis of 2-benzyloxy-3,5-dibromophenylboronic acid (M025)

2,4,6-트라이브로모페닐벤질에터(M006) 4.21g(10mmol)을 다이에틸에터 50mL에 가하고 -60℃로 냉각했다. 거기에 2.5Mn-뷰틸리튬-헥세인 용액 4.8mL(12mmol)를 가하고, 60분간 교반했다. 계속해서 -60℃에서 트라이아이소프로폭시보레인 3.46mL(ca. 2.82g, 15mmol)를 가하고, -60℃에서 30분간, 실온에서 15시간 교반했다. 반응 종료 후, 1N 염산 50mL를 가하고, 실온에서 1시간 교반했다. NaHCO3로 중화 후, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축하고, 2-벤질옥시-3,5-다이브로모페닐보론산(M025)을 얻었다. 얻어진 화합물은 더 정제하지 않고 다음 브로모피리딘과의 커플링 반응에 사용했다.4.21 g (10 mmol) of 2,4,6-tribromophenylbenzyl ether (M006) was added to 50 mL of diethyl ether and cooled to -60°C. 4.8 mL (12 mmol) of a 2.5Mn-butyllithium-hexane solution was added thereto, followed by stirring for 60 minutes. Then, 3.46 mL (ca. 2.82 g, 15 mmol) of triisopropoxyborane was added at -60°C, followed by stirring at -60°C for 30 minutes and at room temperature for 15 hours. After completion of the reaction, 50 mL of 1N hydrochloric acid was added, followed by stirring at room temperature for 1 hour. After neutralization with NaHCO 3 , it was extracted with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure to obtain 2-benzyloxy-3,5-dibromophenylboronic acid (M025). The obtained compound was used for the next coupling reaction with bromopyridine without further purification.

3) 2-(2-벤질옥시-3,5-다이브로모페닐)피리딘(M026)의 합성3) Synthesis of 2-(2-benzyloxy-3,5-dibromophenyl)pyridine (M026)

앞의 반응에서 얻어진 잔사(10mmol로 판단), 2-브로모피리딘 1.43mL(ca. 2.37g, 15mmol), 테트라키스(트라이페닐포스핀)팔라듐 347mg(0.3mmol), 2M 탄산소듐 수용액 10mL(20mmol)를 다이옥세인 60mL에 가하고, 80℃에서 22시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(NH, 다이클로로메테인: MeOH)로 정제하여 2-(2-벤질옥시-3,5-다이브로모페닐)피리딘(M026) 1.67g(트라이브로모페닐벤질에터로부터 40%)을 얻었다.The residue obtained in the previous reaction (determined as 10 mmol), 2-bromopyridine 1.43 mL (ca. 2.37 g, 15 mmol), tetrakis (triphenylphosphine) palladium 347 mg (0.3 mmol), 2M sodium carbonate aqueous solution 10 mL (20 mmol) ) Was added to 60 mL of dioxane, and stirred at 80°C for 22 hours. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (NH, dichloromethane: MeOH), and 2-(2-benzyloxy-3,5-dibromophenyl)pyridine (M026) 1.67 g (40 from tribromophenylbenzyl ether). %).

(1-6-2) 배위자의 합성: 2-(2-하이드록시-3,5-비스(4-피리딘-3-일페닐)페닐)피리딘(L106)의 합성(1-6-2) Synthesis of ligand: Synthesis of 2-(2-hydroxy-3,5-bis(4-pyridin-3-ylphenyl)phenyl)pyridine (L106)

(1) L106 중간체의 합성(1) Synthesis of L106 intermediate

Figure 112019010503878-pct00079
Figure 112019010503878-pct00079

2-(2-벤질옥시-3,5-다이브로모페닐)피리딘(M026) 3.39g(8mmol), 상기 (1-5-1)의 (1)에서 합성한 4-피리딘-3-일페닐보론산피나콜에스터(M005) 5.4g(19.2mmol), 테트라키스(트라이페닐포스핀)팔라듐 555mg(0.48mmol), 2M 탄산소듐 수용액 16mL(32mmol)를 다이옥세인 48mL에 가하고, 100℃에서 15시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(NH, 다이클로로메테인:헵테인)로 정제를 행하여, 2-(2-벤질옥시-3,5-비스(4-피리딘-3-일페닐)페닐)피리딘 2.44g(53%)을 얻었다.2-(2-benzyloxy-3,5-dibromophenyl)pyridine (M026) 3.39g (8mmol), 4-pyridin-3-ylphenylborone synthesized in (1) of (1-5-1) above Sanpinacol ester (M005) 5.4g (19.2mmol), tetrakis (triphenylphosphine) palladium 555mg (0.48mmol), 2M sodium carbonate aqueous solution 16mL (32mmol) was added to 48mL of dioxane, and stirred at 100℃ for 15 hours did. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (NH, dichloromethane:heptane), and 2.44 g of 2-(2-benzyloxy-3,5-bis(4-pyridin-3-ylphenyl)phenyl)pyridine (53%) was obtained.

(2) L106의 합성(2) Synthesis of L106

Figure 112019010503878-pct00080
Figure 112019010503878-pct00080

2-(2-벤질옥시-3,5-비스(4-피리딘-3-일페닐)페닐)피리딘 3.41g(6mmol), 10% 팔라듐탄소 958mg(0.9mmol)을 아세트산 90mL에 가하고 5% H2-N2 혼합 가스 분위기하, 80℃에서 23시간 교반했다. 반응 종료 후, 물, 다이클로로메테인을 가하고, NaHCO3로 중화했다. 불용물은 셀라이트를 사용하여 제거하고, 여과액은 유기층과 수층을 나누고, 수층은 다이클로로메테인으로 세정했다. 세정액은 유기층과 합치고, 황산 마그네슘으로 건조 후, 감압하에서 농축하여, 2-(2-하이드록시-3,5-비스(4-피리딘-3-일페닐)페닐)피리딘(L106) 2.78g(97%)을 얻었다.2-(2-benzyloxy-3,5-bis(4-pyridin-3-ylphenyl)phenyl)pyridine 3.41 g (6 mmol), 10% palladium carbon 958 mg (0.9 mmol) was added to 90 mL of acetic acid and 5% H 2 It stirred at 80 degreeC for 23 hours in -N 2 mixed gas atmosphere. After completion of the reaction, water and dichloromethane were added and neutralized with NaHCO 3 . The insoluble matter was removed using Celite, the filtrate was divided into an organic layer and an aqueous layer, and the aqueous layer was washed with dichloromethane. The washing solution was combined with the organic layer, dried over magnesium sulfate, concentrated under reduced pressure, and 2-(2-hydroxy-3,5-bis(4-pyridin-3-ylphenyl)phenyl)pyridine (L106) 2.78 g (97 %).

(1-6-3) 착체의 합성: 리튬2-(피리딘-2-일)4,6-비스(4-(피리딘-3-일)페닐)페놀레이트 착체(L106-Li)의 합성(1-6-3) Synthesis of complex: lithium 2-(pyridin-2-yl)4,6-bis(4-(pyridin-3-yl)phenyl)phenolate complex (L106-Li) synthesis

Figure 112019010503878-pct00081
Figure 112019010503878-pct00081

배위자 L106 0.19g(0.4mmol)-메탄올 현탁액 4mL에 4M 수산화리튬 수용액 0.1mL(0.4mmol)-메탄올 2mL를 적하하고 40℃에서 교반했다. 2시간 후, 반응용액을 감압하에서 농축하고, 톨루엔을 가하고, 침전을 여과하여 취했다. 침전은 감압하 250℃로 가열하여 용매 및 미반응의 배위자를 제거하고 L106-Li 0.05g(26%)을 얻었다. 얻어진 착체의 NMR은 도 7에 나타낸다.To 4 mL of the ligand L106 0.19 g (0.4 mmol)-methanol suspension, 0.1 mL (0.4 mmol) of 4 M lithium hydroxide aqueous solution-2 mL of methanol was added dropwise, followed by stirring at 40°C. After 2 hours, the reaction solution was concentrated under reduced pressure, toluene was added, and the precipitate was collected by filtration. Precipitation was heated to 250° C. under reduced pressure to remove the solvent and unreacted ligand to obtain 0.05 g (26%) of L106-Li. The NMR of the obtained complex is shown in FIG. 7.

[A-6-2] 소듐2-(피리딘-2-일)-4,6-비스(4-(피리딘-3-일)페닐)페놀레이트 착체(L106-Na)의 합성[A-6-2] Synthesis of sodium 2-(pyridin-2-yl)-4,6-bis(4-(pyridin-3-yl)phenyl)phenolate complex (L106-Na)

Figure 112019010503878-pct00082
Figure 112019010503878-pct00082

상기 (1-6-2)에서 합성한 배위자 L106 0.18g(0.37mmol)-메탄올 현탁액 4mL에 수산화소듐 0.01g(0.37mmol)-메탄올 2mL를 적하하고 40℃에서 교반했다. 2시간 후, 반응용액을 감압하에서 농축하고, 톨루엔을 가하고, 침전을 여과하여 취했다. 침전은 감압하 250℃로 가열하여 용매 및 미반응의 배위자를 제거하고 L106-Na 0.11g(61%)을 얻었다. 얻어진 착체의 NMR은 도 7에 나타낸다.0.18 g (0.37 mmol) of ligand L106 synthesized in the above (1-6-2)-2 mL of sodium hydroxide 0.01 g (0.37 mmol)-methanol was added dropwise to 4 mL of methanol suspension, followed by stirring at 40°C. After 2 hours, the reaction solution was concentrated under reduced pressure, toluene was added, and the precipitate was collected by filtration. Precipitation was heated to 250° C. under reduced pressure to remove the solvent and unreacted ligand to obtain 0.11 g (61%) of L106-Na. The NMR of the obtained complex is shown in FIG. 7.

[A-6-3] 포타슘2-(피리딘-2-일)-4,6-비스(4-(피리딘-3-일)페닐)페놀레이트 착체(L106-K)의 합성[A-6-3] Synthesis of potassium 2-(pyridin-2-yl)-4,6-bis(4-(pyridin-3-yl)phenyl)phenolate complex (L106-K)

Figure 112019010503878-pct00083
Figure 112019010503878-pct00083

상기 (1-6-2)에서 합성한 배위자 L106 0.17g(0.35mmol)-메탄올 현탁액 4mL에 수산화포타슘 0.02g(0.35mmol)-메탄올 2mL를 적하하고 40℃에서 교반했다. 2시간 후, 반응용액을 감압하에서 농축하고, 톨루엔을 가하고, 침전을 여과하여 취했다. 침전은 감압하 250℃로 가열하여 용매 및 미반응의 배위자를 제거하고 L106-K 0.12 g(69%)을 얻었다. 얻어진 착체의 NMR은 도 7에 나타낸다.To 4 mL of the ligand L106 synthesized in (1-6-2) above, 0.17 g (0.35 mmol)-methanol suspension, 0.02 g (0.35 mmol)-methanol 2 mL of potassium hydroxide was added dropwise and stirred at 40°C. After 2 hours, the reaction solution was concentrated under reduced pressure, toluene was added, and the precipitate was collected by filtration. Precipitation was heated to 250° C. under reduced pressure to remove the solvent and unreacted ligand to obtain 0.12 g (69%) of L106-K. The NMR of the obtained complex is shown in FIG. 7.

[A-6-4] 루비듐2-(피리딘-2-일)-4,6-비스(4-(피리딘-3-일)페닐)페놀레이트 착체(L106-Rb)의 합성[A-6-4] Synthesis of rubidium 2-(pyridin-2-yl)-4,6-bis(4-(pyridin-3-yl)phenyl)phenolate complex (L106-Rb)

Figure 112019010503878-pct00084
Figure 112019010503878-pct00084

상기 (1-6-2)에서 합성한 배위자 L106 0.18g(0.37mmol)-메탄올 현탁액 4mL에 50% 수산화루비듐 0.044mL(0.37mmol)-메탄올 2mL를 적하하고 40℃에서 교반했다. 2시간 후, 반응용액을 감압하에서 농축하고, 톨루엔을 가하고, 침전을 여과하여 취했다. 침전은 감압하 250℃로 가열하여 용매 및 미반응의 배위자를 제거하고 L106-Rb 0.13g(63%)을 얻었다. 얻어진 착체의 NMR은 도 7에 나타낸다.To 4 mL of the ligand L106 synthesized in (1-6-2) above, 0.18 g (0.37 mmol)-methanol suspension, 0.044 mL (0.37 mmol) of 50% rubidium hydroxide-2 mL of methanol was added dropwise and stirred at 40°C. After 2 hours, the reaction solution was concentrated under reduced pressure, toluene was added, and the precipitate was collected by filtration. Precipitation was heated to 250° C. under reduced pressure to remove the solvent and unreacted ligand to obtain 0.13 g (63%) of L106-Rb. The NMR of the obtained complex is shown in FIG. 7.

[A-6-4] 세슘2-(피리딘-2-일)-4,6-비스(4-(피리딘-3-일)페닐)페놀레이트 착체 (L106-Cs)의 합성[A-6-4] Synthesis of cesium 2-(pyridin-2-yl)-4,6-bis(4-(pyridin-3-yl)phenyl)phenolate complex (L106-Cs)

Figure 112019010503878-pct00085
Figure 112019010503878-pct00085

상기 (1-6-2)에서 합성한 배위자 L106 0.17g(0.35mmol)-메탄올 현탁액 4mL에 50% 수산화세슘 0.061mL(0.35mmol)-메탄올 2mL를 적하하고 40℃에서 교반했다. 2시간 후, 반응용액을 감압하에서 농축하고, 톨루엔을 가하고, 침전을 여과하여 취했다. 침전은 감압하 250℃로 가열하여 용매 및 미반응의 배위자를 제거하고 L106-Cs 0.11g(51%)을 얻었다. 얻어진 착체의 NMR은 도 7에 나타낸다.To 4 mL of the ligand L106 synthesized in (1-6-2) above, 0.17 g (0.35 mmol)-methanol suspension, 0.061 mL (0.35 mmol) of 50% cesium hydroxide-2 mL of methanol was added dropwise and stirred at 40°C. After 2 hours, the reaction solution was concentrated under reduced pressure, toluene was added, and the precipitate was collected by filtration. Precipitation was heated to 250° C. under reduced pressure to remove the solvent and unreacted ligand to obtain 0.11 g (51%) of L106-Cs. The NMR of the obtained complex is shown in FIG. 7.

[A-7] 2-(피리딘-2-일)-4-(4-아자카바졸-9-일)페놀레이트 착체(107-M)의 합성[A-7] Synthesis of 2-(pyridin-2-yl)-4-(4-azacarbazol-9-yl)phenolate complex (107-M)

[A-7-1] 리튬2-(피리딘-2-일)-4-(4-아자카바졸-9-일)페놀레이트 착체(107-Li)의 합성[A-7-1] Synthesis of lithium 2-(pyridin-2-yl)-4-(4-azacarbazol-9-yl)phenolate complex (107-Li)

(1-7-2) 배위자의 합성: 9-(2-하이드록시-3-(피리딘-2-일)페닐)-4-아자카바졸(L107)의 합성(1-7-2) Synthesis of ligand: Synthesis of 9-(2-hydroxy-3-(pyridin-2-yl)phenyl)-4-azacarbazole (L107)

(1) L107 중간체의 합성(1) Synthesis of L107 intermediate

Figure 112019010503878-pct00086
Figure 112019010503878-pct00086

상기 (1-1-1)의 (2)의 3)에서 합성한 2-(2-벤질옥시-5-브로모페닐)피리딘(M023) 2.04g(6mmol), 4-아자카바졸 1.31g(7.8mmol), 아이오딘화구리(I) 2.29(12mmol), 탄산포타슘 2.49g(18mmol)을 1,3-다이메틸-2-이미다졸리딘온 4mL를 가하고, 160℃에서 12시간 교반했다. 반응 종료 후, 셀라이트를 사용하여 불용물을 제거하고, 여과액은 물을 가하고, 톨루엔으로 추출했다. 석출물은 다시 셀라이트를 사용하여 제거하고, 여과액은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(NH, 다이클로로메테인:헵테인)로 정제하여, 9-(2-벤질옥시-3-(피리딘-2-일)페닐)-4-아자카바졸 1.30g(50%)을 얻었다.2-(2-benzyloxy-5-bromophenyl)pyridine (M023) 2.04 g (6 mmol) synthesized in (2) 3) of (1-1-1) above, 1.31 g of 4-azacabazole ( 7.8 mmol), copper (I) iodide 2.29 (12 mmol), potassium carbonate 2.49 g (18 mmol) were added to 4 mL of 1,3-dimethyl-2-imidazolidinone, followed by stirring at 160°C for 12 hours. After completion of the reaction, insoluble matters were removed using Celite, and water was added to the filtrate, followed by extraction with toluene. The precipitate was removed again using Celite, and the filtrate was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (NH, dichloromethane:heptane), and 9-(2-benzyloxy-3-(pyridin-2-yl)phenyl)-4-azacabazole 1.30 g (50 %).

(2) L107의 합성(2) Synthesis of L107

Figure 112019010503878-pct00087
Figure 112019010503878-pct00087

9-(2-벤질옥시-3-(피리딘-2-일)페닐)-4-아자카바졸 1.25g(2.92mmol), 10% 팔라듐탄소 133mg(Pd 0.125mmol)을 1-뷰탄올 6mL에 가하고, 5% H2-N2 혼합 가스 분위기하, 80℃에서 18시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 셀라이트를 사용하여 불용물을 제거했다. 여과액은 감압하에서 농축하여, 9-(2-하이드록시-3-(피리딘-2-일)페닐)-4-아자카바졸(L107) 0.90g(91%)을 얻었다.9-(2-Benzyloxy-3-(pyridin-2-yl)phenyl)-4-azacarbazole 1.25 g (2.92 mmol), 10% palladium carbon 133 mg (Pd 0.125 mmol) was added to 6 mL of 1-butanol , The mixture was stirred at 80°C for 18 hours in a 5% H 2 -N 2 mixed gas atmosphere. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate was concentrated under a reduced pressure to obtain 0.90 g (91%) of 9-(2-hydroxy-3-(pyridin-2-yl)phenyl)-4-azacabazole (L107).

(1-7-3) 착체의 합성: 리튬2-(피리딘-2-일)-4-(4-아자카바졸-9-일)페놀레이트 착체(107-Li)의 합성(1-7-3) Synthesis of complex: lithium 2-(pyridin-2-yl)-4-(4-azacarbazol-9-yl)phenolate complex (107-Li) synthesis

Figure 112019010503878-pct00088
Figure 112019010503878-pct00088

배위자 L107 0.27g(0.8mmol)-톨루엔 용액 8mL에, 4M 수산화리튬 수용액 0.2mL-메탄올 용액 4mL를 적하하고 실온에서 교반했다. 1시간 후, 반응 혼합물을 감압하에서 농축하고 잔사에 톨루엔을 가하고, 침전을 여과하여 취했다. 얻어진 침전은 감압하 200℃로 가열하여 미반응의 배위자 및 용매를 제거하고, L107-Li 0.26g(95%)을 얻었다. 얻어진 착체의 NMR은 도 8에 나타낸다.To 8 mL of a 0.27 g (0.8 mmol)-toluene solution of ligand L107, 4 mL of a 0.2 mL of 4M lithium hydroxide aqueous solution-4 mL of a methanol solution was added dropwise, followed by stirring at room temperature. After 1 hour, the reaction mixture was concentrated under reduced pressure, toluene was added to the residue, and the precipitate was collected by filtration. The obtained precipitate was heated to 200° C. under reduced pressure to remove the unreacted ligand and the solvent to obtain 0.26 g (95%) of L107-Li. The NMR of the obtained complex is shown in FIG. 8.

[A-8] 2-(피리딘-2-일)-4-(1-아자카바졸-9-일)페놀레이트 착체(L108-M)의 합성[A-8] Synthesis of 2-(pyridin-2-yl)-4-(1-azacarbazol-9-yl)phenolate complex (L108-M)

[A-8-1] 리튬2-(피리딘-2-일)-4-(1-아자카바졸-9-일)페놀레이트 착체(L108-Li)의 합성[A-8-1] Synthesis of lithium 2-(pyridin-2-yl)-4-(1-azacarbazol-9-yl)phenolate complex (L108-Li)

(1-8-1) 중간 원료의 합성: (1-8-1) Synthesis of intermediate raw materials:

(1) 9-(3-피리딘-2-일페닐)-1-아자카바졸의 합성(1) Synthesis of 9-(3-pyridin-2-ylphenyl)-1-azacarbazole

1) 2-(3-브로모페닐)피리딘(CAS No. 4373-60-8, M007)은 Burn 등의 방법(WO200206652A1)을 사용하여 합성했다.1) 2-(3-bromophenyl)pyridine (CAS No. 4373-60-8, M007) was synthesized using a method such as Burn (WO200206652A1).

2) 9-(3-피리딘-2-일페닐)-1-아자카바졸의 합성2) Synthesis of 9-(3-pyridin-2-ylphenyl)-1-azacarbazole

Figure 112019010503878-pct00089
Figure 112019010503878-pct00089

1-아자카바졸 1.01g(6mmol), 2-(3-브로모페닐)피리딘(M007) 1.40g(6mmol), 아이오딘화구리(I) 2.29g(12mmol), 탄산포타슘 2.49g(18mmol)을 1,3-다이메틸-2-이미다졸리딘온 12mL에 가하고, 160℃에서 12시간 교반했다. 반응 종료 후, 불용물을 셀라이트로 제거하고, 물을 가하고, 톨루엔으로 추출했다. 석출물은 다시 셀라이트를 사용하여 제거하고, 여과액은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(NH, 다이클로로메테인:헵테인)로 정제하여, 9-(3-피리딘-2-일페닐)-1-아자카바졸 0.90g(47%)을 얻었다.1-Azacarbazole 1.01g(6mmol), 2-(3-bromophenyl)pyridine (M007) 1.40g(6mmol), copper iodide (I) 2.29g(12mmol), potassium carbonate 2.49g(18mmol) Was added to 12 mL of 1,3-dimethyl-2-imidazolidinone, and stirred at 160°C for 12 hours. After completion of the reaction, the insoluble matter was removed with Celite, water was added, and the mixture was extracted with toluene. The precipitate was removed again using Celite, and the filtrate was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (NH, dichloromethane:heptane) to obtain 0.90 g (47%) of 9-(3-pyridin-2-ylphenyl)-1-azacarbazole.

(1-8-2) 배위자의 합성: 9-(2-하이드록시-3-(피리딘-2-일)페닐)-1-아자카바졸(L108)의 합성(1-8-2) Synthesis of ligand: Synthesis of 9-(2-hydroxy-3-(pyridin-2-yl)phenyl)-1-azacarbazole (L108)

Figure 112019010503878-pct00090
Figure 112019010503878-pct00090

9-(3-피리딘-2-일페닐)-1-아자카바졸 1.15g(3.58mmol), 무수아세트산 7mL(74.1mmol), (다이아세톡시아이오다이드)벤젠 1.21g(3.76mmmol), 아세트산 팔라듐 40mg(0.18mmol)을 톨루엔 7mL에 가하고, 110℃에서 1.5시간 반응했다. 반응 종료 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(NH, 다이클로로메테인:메탄올)로 정제하여 9-(2-아세톡시-3-(피리딘-2-일)페닐)-1-아자카바졸 1.37g(100%)을 얻었다.9-(3-pyridin-2-ylphenyl)-1-azacarbazole 1.15 g (3.58 mmol), acetic anhydride 7 mL (74.1 mmol), (diacetoxyiodide) benzene 1.21 g (3.76 mmmol), acetic acid Palladium 40 mg (0.18 mmol) was added to 7 mL of toluene, and reacted at 110°C for 1.5 hours. After completion of the reaction, it was concentrated under reduced pressure. The obtained residue was purified by column chromatography (NH, dichloromethane:methanol), and 9-(2-acetoxy-3-(pyridin-2-yl)phenyl)-1-azacarbazole 1.37 g (100%) Got it.

얻어진 9-(2-아세톡시-3-(피리딘-2-일)페닐)-1-아자카바졸 1.37g(3.6mmol), 수산화포타슘 808mg(14.4mmol)을 에탄올 15mL에 가하고, 1시간 환류했다. 반응 종료 후, 아세트산, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(NH, 다이클로로메테인:메탄올)로 정제하여, 9-(2-하이드록시-3-(피리딘-2-일)페닐)-1-아자카바졸(L108) 0.99g(82%)을 얻었다.The obtained 9-(2-acetoxy-3-(pyridin-2-yl)phenyl)-1-azacarbazole 1.37 g (3.6 mmol) and potassium hydroxide 808 mg (14.4 mmol) were added to 15 mL of ethanol and refluxed for 1 hour. . After completion of the reaction, acetic acid and water were added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (NH, dichloromethane:methanol), and 0.99 g of 9-(2-hydroxy-3-(pyridin-2-yl)phenyl)-1-azacarbazole (L108) (82%) was obtained.

(1-8-3) 착체의 합성: 리튬2-(피리딘-2-일)-4-(1-아자카바졸-9-일)페놀레이트 착체(L108-Li)의 합성(1-8-3) Synthesis of complex: lithium 2-(pyridin-2-yl)-4-(1-azacarbazol-9-yl)phenolate complex (L108-Li) synthesis

Figure 112019010503878-pct00091
Figure 112019010503878-pct00091

배위자 L108 0.51g(1.5mmol)-메탄올 현탁액 15mL에 4M 수산화리튬 수용액 0.38mL(1.5mmol)-메탄올 용액 7.5mL를 적하하고 실온에서 교반했다. 1시간 후, 반응 혼합물은 감압하에서 농축하고 석출물을 여과하여 취했다. 석출물은 감압하 350℃로 가열하여 용매와 미반응의 배위자를 제거하고, L108-Li 0.45g(87%)을 얻었다. 얻어진 착체의 NMR은 도 9에 나타낸다.To 15 mL of a ligand L108 0.51 g (1.5 mmol)-methanol suspension, 0.38 mL (1.5 mmol) of a 4M lithium hydroxide solution-7.5 mL of a methanol solution was added dropwise, followed by stirring at room temperature. After 1 hour, the reaction mixture was concentrated under reduced pressure, and the precipitate was filtered off. The precipitate was heated to 350° C. under reduced pressure to remove the solvent and the unreacted ligand to obtain 0.45 g (87%) of L108-Li. The NMR of the obtained complex is shown in FIG. 9.

[A-8-2] 세슘2-(피리딘-2-일)-4-(1-아자카바졸-9-일)페놀레이트 착체(L108-Cs)의 합성[A-8-2] Synthesis of cesium 2-(pyridin-2-yl)-4-(1-azacabazol-9-yl)phenolate complex (L108-Cs)

Figure 112019010503878-pct00092
Figure 112019010503878-pct00092

상기 (1-8-2)에서 합성한 배위자 L108 0.14g(0.42mmol)-메탄올 현탁액 15mL에 50% 수산화세슘 수용액 0.07mL(0.4mmol)-메탄올 용액 2mL를 적하하고 실온에서 교반했다. 1시간 후, 반응 혼합물은 감압하에서 농축하고 석출물을 여과하여 취했다. 석출물은 감압하 200℃로 가열하여 용매와 미반응의 배위자를 제거하고, L108-Cs 0.17g(77%)을 얻었다. 얻어진 착체의 NMR은 도 9에 나타낸다.The ligand L108 synthesized in (1-8-2) was added dropwise to 15 mL of a 0.14 g (0.42 mmol)-methanol suspension, and 2 mL of a 50% aqueous cesium hydroxide solution, 0.07 mL (0.4 mmol)-methanol, was added dropwise and stirred at room temperature. After 1 hour, the reaction mixture was concentrated under reduced pressure, and the precipitate was filtered off. The precipitate was heated to 200° C. under reduced pressure to remove the solvent and the unreacted ligand to obtain 0.17 g (77%) of L108-Cs. The NMR of the obtained complex is shown in FIG. 9.

[A-9] 2-(피리딘-2-일)-4-(2,2'-바이피리딘-5-일)페놀레이트 착체(L109-M)의 합성[A-9] Synthesis of 2-(pyridin-2-yl)-4-(2,2'-bipyridin-5-yl)phenolate complex (L109-M)

[A-9-1] 세슘2-(피리딘-2-일)-4-(2,2'-바이피리딘-5-일)페놀레이트 착체(L109-Cs)의 합성[A-9-1] Synthesis of cesium 2-(pyridin-2-yl)-4-(2,2'-bipyridin-5-yl)phenolate complex (L109-Cs)

(1-9-1) 중간 원료의 합성: (1-9-1) Synthesis of intermediate raw materials:

(1) 5-브로모-2,2'-바이피리딘(CAS No. 15862-19-8, M009)은 Fang 등의 방법(Synlett, (6), 852-854, 2003)을 사용하여 합성했다.(1) 5-Bromo-2,2'-bipyridine (CAS No. 15862-19-8, M009) was synthesized using the method of Fang et al. (Synlett, (6), 852-854, 2003). .

(1-9-2) 배위자의 합성: 2-(5-(2,2'-바이피리딜-4-일)-2-하이드록시페닐)피리딘(L109)의 합성(1-9-2) Synthesis of ligand: Synthesis of 2-(5-(2,2'-bipyridyl-4-yl)-2-hydroxyphenyl)pyridine (L109)

(1) L109 중간체의 합성(1) Synthesis of L109 intermediate

Figure 112019010503878-pct00093
Figure 112019010503878-pct00093

상기 (1-1-1)의 (2)에서 합성한 4-벤질옥시-3-피리딘-2-일페닐보론산피나콜에스터(M024) 1.94g(5mmol), 5-브로모-2,2'-바이피리딜(M009) 2.82g(12mmol), 테트라키스(트라이페닐포스핀)팔라듐 347mg(0.3mmol), 2M 탄산소듐 수용액 10mL(20mmol)를 다이옥세인 30mL에 가하고, 100℃에서 3시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 고체는 아세트산 에틸로 재결정을 행하여, 5-(2,2'-바이피리딜-4-일)-2-벤질옥시페닐피리딘 1.46g(70%)을 얻었다.4-benzyloxy-3-pyridin-2-ylphenylboronic acid pinacol ester synthesized in (2) of (1-1-1) (M024) 1.94 g (5 mmol), 5-bromo-2,2 '-Bipyridyl (M009) 2.82g (12mmol), tetrakis (triphenylphosphine) palladium 347mg (0.3mmol), 2M sodium carbonate aqueous solution 10mL (20mmol) was added to dioxane 30mL, and stirred at 100℃ for 3 hours did. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained solid was recrystallized with ethyl acetate to obtain 1.46 g (70%) of 5-(2,2'-bipyridyl-4-yl)-2-benzyloxyphenylpyridine.

(2) L109의 합성(2) Synthesis of L109

Figure 112019010503878-pct00094
Figure 112019010503878-pct00094

5-(2,2'-바이피리딜-4-일)-2-벤질옥시페닐피리딘 1.45g(3.5mmol), 10% 팔라듐탄소 559mg(Pd,0.525mmol)을 아세트산 53mL에 가하고, 5% H2-N2 혼합 가스 분위기하, 100℃에서 20시간 교반했다. 반응 종료 후, 다이클로로메테인과 물을 가하고, NaHCO3를 사용하여 중화했다. 용액은 다이클로로메테인을 더 가하고, 셀라이트를 사용하여 불용물을 여과 분리했다. 여과액은 유기층과 수층으로 나누고, 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축하여, 적색 고체 1.05g(미정제 수율 92%)을 얻었다. 얻어진 잔사는 에탄올-헵테인으로 재결정을 행하여 2-(5-(2,2'-바이피리딜-4-일)-2-하이드록시페닐)피리딘(L109) 875mg(77%)을 얻었다.5-(2,2'-bipyridyl-4-yl)-2-benzyloxyphenylpyridine 1.45 g (3.5 mmol), 10% palladium carbon 559 mg (Pd, 0.525 mmol) was added to 53 mL of acetic acid, and 5% H It stirred at 100 degreeC for 20 hours in 2 -N 2 mixed gas atmosphere. After completion of the reaction, dichloromethane and water were added, followed by neutralization with NaHCO 3 . To the solution, dichloromethane was further added, and insoluble matters were separated by filtration using Celite. The filtrate was divided into an organic layer and an aqueous layer, and the organic layer was dried over magnesium sulfate and then concentrated under reduced pressure to obtain 1.05 g of a red solid (crude yield: 92%). The obtained residue was recrystallized from ethanol-heptane to obtain 875 mg (77%) of 2-(5-(2,2'-bipyridyl-4-yl)-2-hydroxyphenyl)pyridine (L109).

(1-9-3) 착체의 합성: 세슘2-(피리딘-2-일)-4-(2,2'-바이피리딘-5-일)페놀레이트 착체(L109-Cs)의 합성(1-9-3) Synthesis of complex: Synthesis of cesium 2-(pyridin-2-yl)-4-(2,2'-bipyridin-5-yl)phenolate complex (L109-Cs)

Figure 112019010503878-pct00095
Figure 112019010503878-pct00095

배위자 L109 0.13g(0.4mmol)-톨루엔 현탁액 4mL에, 50% 수산화세슘 수용액 0.07mL-메탄올 용액을 적하하고 1시간 교반했다. 얻어진 반응 혼합물은 감압하에서 농축했다. 얻어진 잔사에 헵테인을 가하고, 석출물을 여과하여 취했다. 얻어진 석출물은 감압하, 200℃로 가열하여 용매와 미반응의 배위자를 제거하고, L109-Cs 0.11g(63%)을 얻었다. 얻어진 착체의 NMR은 도 10에 나타낸다.To 4 mL of a ligand L109 0.13 g (0.4 mmol)-toluene suspension, a 50% aqueous solution of cesium hydroxide 0.07 mL-methanol was added dropwise, followed by stirring for 1 hour. The obtained reaction mixture was concentrated under reduced pressure. Heptane was added to the obtained residue, and the precipitate was collected by filtration. The obtained precipitate was heated to 200° C. under reduced pressure to remove the solvent and the unreacted ligand to obtain 0.11 g (63%) of L109-Cs. The NMR of the obtained complex is shown in FIG.

[A-10] 6-(다이벤조싸이오펜-4-일)-2-(다이벤조싸이오펜-4-일)피리딘-2-일)페놀레이트 착체(L110-M)의 합성[A-10] Synthesis of 6-(dibenzothiophen-4-yl)-2-(dibenzothiophen-4-yl)pyridin-2-yl)phenolate complex (L110-M)

[A-10-1] 세슘6-(다이벤조싸이오펜-4-일)-2-(다이벤조싸이오펜-4-일)피리딘-2-일)페놀레이트 착체(L110-Cs)의 합성[A-10-1] Synthesis of cesium 6-(dibenzothiophen-4-yl)-2-(dibenzothiophen-4-yl)pyridin-2-yl)phenolate complex (L110-Cs)

(1-10-1) 중간 원료의 합성: (1-10-1) Synthesis of intermediate raw materials:

(1) 4-다이벤조싸이엔일보론산피나콜에스터(CAS No. 912824-84-1, M011)은 Ono 등의 방법(WO2011152466)을 3-(4--브로모페닐)피리딘을 4-브로모다이벤조싸이오펜으로 바꾸어 합성했다.(1) 4-dibenzothienylboronic acid pinacol ester (CAS No. 912824-84-1, M011) is a method of Ono et al. (WO2011152466), using 3-(4--bromophenyl)pyridine to 4-bro. It was synthesized by changing to modibenzothiophene.

(2) 2-(2-벤질옥시-3-브로모페닐)-6-브로모피리딘(M027)의 합성(2) Synthesis of 2-(2-benzyloxy-3-bromophenyl)-6-bromopyridine (M027)

1) 1,3-다이브로모-2-벤질옥시벤젠(CAS No. 122110-76-3, M010)은 Helgeson 등의 방법(J. Am. Chem. Soc., 111(16), 6339-50, 1989)을 사용하여 합성했다.1) 1,3-dibromo-2-benzyloxybenzene (CAS No. 122110-76-3, M010) is the method of Helgeson et al. (J. Am. Chem. Soc., 111(16), 6339-50, 1989).

2) 2-벤질옥시-3-브로모페닐보론산의 합성2) Synthesis of 2-benzyloxy-3-bromophenylboronic acid

Figure 112019010503878-pct00096
Figure 112019010503878-pct00096

마그네슘 0.26g(10.0mmol)-THF 현탁액 7mL에, 2-벤질옥시-1,3-다이브로모벤젠(M010) 3.42g(10.0mmol)을 적하하여, 그리냐르 시약을 조제했다. 조정한 그리냐르 시약은 -40℃로 냉각하고, 붕산 트라이메틸 2.08g(40.0mmol)을 가하고, -40℃에서 15분간, 0℃에서 30분간 교반했다. 반응 종료 후, 3N 염산 50mL를 가하여 ??칭했다. 얻어진 반응 혼합물은 물을 가하고, 톨루엔으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축하여 2-벤질옥시-3-브로모페닐보론산 3.07g(100%)을 얻었다. 얻어진 화합물은 더 이상의 정제는 행하지 않고 다음 반응에 사용했다.To 7 mL of a 0.26 g (10.0 mmol)-THF suspension of magnesium, 3.42 g (10.0 mmol) of 2-benzyloxy-1,3-dibromobenzene (M010) was added dropwise to prepare a Grignard reagent. The adjusted Grignard reagent was cooled to -40°C, 2.08 g (40.0 mmol) of trimethyl borate was added, followed by stirring at -40°C for 15 minutes and 0°C for 30 minutes. After completion of the reaction, 50 mL of 3N hydrochloric acid was added to perform quenching. Water was added to the obtained reaction mixture, and extraction was performed with toluene. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure to obtain 3.07 g (100%) of 2-benzyloxy-3-bromophenylboronic acid. The obtained compound was used for the next reaction without further purification.

3) 2-(2-벤질옥시-3-브로모페닐)-6-브로모피리딘(M027)의 합성3) Synthesis of 2-(2-benzyloxy-3-bromophenyl)-6-bromopyridine (M027)

Figure 112019010503878-pct00097
Figure 112019010503878-pct00097

2-벤질옥시-3-브로모페닐보론산 3.07g(10.0mmol), 2,6-다이브로모피리딘 2.37g(10.0mmol), 테트라키스(트라이페닐포스핀)팔라듐 0.35g(0.30mmol), 3M 탄산포타슘 수용액 10mL(30.0mmol)를 다이옥세인 20mL에 가하고, 80℃에서 3시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 메탄올로 재결정을 행하여, 2-(2-벤질옥시-3-브로모페닐)-6-브로모피리딘(M027) 1.69g(40%)을 얻었다.2-Benzyloxy-3-bromophenylboronic acid 3.07g (10.0mmol), 2,6-dibromopyridine 2.37g (10.0mmol), tetrakis (triphenylphosphine) palladium 0.35g (0.30mmol), 3M 10 mL (30.0 mmol) of an aqueous potassium carbonate solution was added to 20 mL of dioxane, followed by stirring at 80°C for 3 hours. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was recrystallized with methanol to obtain 1.69 g (40%) of 2-(2-benzyloxy-3-bromophenyl)-6-bromopyridine (M027).

(1-10-2) 배위자의 합성: (1-10-2) Synthesis of ligand:

2-(다이벤지싸이오펜-4-일)-2-(2-하이드록시-3-다이벤조싸이오펜-4-일)페닐피리딘(L110)의 합성Synthesis of 2-(dibenzothiophen-4-yl)-2-(2-hydroxy-3-dibenzothiophen-4-yl)phenylpyridine (L110)

(1) L110 중간체의 합성(1) Synthesis of L110 intermediate

Figure 112019010503878-pct00098
Figure 112019010503878-pct00098

6-브로모-2-(2-벤질옥시-3-브로모페닐)피리딘(M027) 0.36g(0.80mmol), 4-(4,4,5,5-테트라메틸-1,3,2-다이옥사보로레인-2-일)다이벤조싸이오펜(M011) 0.55g(1.76mmol), 테트라키스(트라이페닐포스핀)팔라듐 0.056g(0.048mmol), 3M 탄산포타슘 수용액 1.6mL(4.8mmol)를 다이옥세인 3.6mL에 가하고, 100℃에서 5시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(C300, 헵테인:다이클로로메테인)로 정제하고, 얻어진 결정은 사이클로헥세인으로 재결정을 행하여 2-(다이벤지싸이오펜-4-일)-2-(2-벤질옥시-3-다이벤조싸이오펜-4-일)페닐피리딘 0.25g(50%)을 얻었다.6-bromo-2-(2-benzyloxy-3-bromophenyl)pyridine (M027) 0.36g (0.80mmol), 4-(4,4,5,5-tetramethyl-1,3,2- Dioxabororain-2-yl) dibenzothiophene (M011) 0.55g (1.76mmol), tetrakis (triphenylphosphine) palladium 0.056g (0.048mmol), 3M potassium carbonate aqueous solution 1.6mL (4.8mmol) It added to 3.6 mL of cein, and stirred at 100 degreeC for 5 hours. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (C300, heptane:dichloromethane), and the obtained crystal was recrystallized with cyclohexane to obtain 2-(dibenziophen-4-yl)-2-(2-benzyl). 0.25 g (50%) of oxy-3-dibenzothiophen-4-yl)phenylpyridine was obtained.

(2) L110의 합성(2) Synthesis of L110

Figure 112019010503878-pct00099
Figure 112019010503878-pct00099

2-(다이벤지싸이오펜-4-일)-2-(2-벤질옥시-3-다이벤조싸이오펜-4-일)페닐피리딘 0.25g(0.40mmol), 10% 팔라듐탄소 0.064g(Pd 0.064mmol)을 아세트산 6mL에 가하고, 5% H2-N2 가스 기류하, 100℃에서 19시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 불용물을 셀라이트를 사용하여 제거했다. 여과액은 감압하에서 농축했다. 얻어진 잔사는 사이클로헥세인으로 재결정을 행하여, 2-(다이벤지싸이오펜-4-일)-2-(2-하이드록시-3-다이벤조싸이오펜-4-일)페닐피리딘(L110) 0.10g(47%)을 얻었다.2-(Dibenzothiophen-4-yl)-2-(2-benzyloxy-3-dibenzothiophen-4-yl)phenylpyridine 0.25g (0.40mmol), 10% palladium carbon 0.064g (Pd 0.064 mmol) was added to 6 mL of acetic acid, and the mixture was stirred at 100°C for 19 hours under a 5% H 2 -N 2 gas flow. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate was concentrated under reduced pressure. The obtained residue was recrystallized with cyclohexane, and 2-(dibenzothiophen-4-yl)-2-(2-hydroxy-3-dibenzothiophen-4-yl)phenylpyridine (L110) 0.10 g (47%) was obtained.

1HNMR(CDCl3) δ 6.96-8.22(m, 20H, ArH), 14. 15(s, 1H, OH) 1 HNMR(CDCl 3 ) δ 6.96-8.22 (m, 20H, ArH), 14. 15 (s, 1H, OH)

(1-10-3) 착체의 합성: 세슘6-(다이벤조싸이오펜-4-일)-2-(다이벤조싸이오펜-4-일)피리딘-2-일)페놀레이트 착체(L110-Cs)의 합성(1-10-3) Synthesis of complex: Cesium 6-(dibenzothiophen-4-yl)-2-(dibenzothiophen-4-yl)pyridin-2-yl)phenolate complex (L110-Cs ) Synthesis

Figure 112019010503878-pct00100
Figure 112019010503878-pct00100

배위자 L110 0.19g(0.35mmol)-톨루엔 현탁액 7mL에, 50% 수산화세슘 수용액 0.11mL-메탄올 1.8mL 용액을 적하하고, 실온에서 1시간 교반했다. 얻어진 반응 혼합물은 감압하에서 농축하고, 얻어진 잔사에 헵테인을 가하고, 석출물을 여과하여 취했다. 얻어진 석출물은 진공하 220℃에서 가열하고, 용매를 제거하여, L110-Cs 0.20g(87%)을 얻었다. 얻어진 착체의 NMR은 도 11에 나타낸다.A solution of 0.11 mL of 50% cesium hydroxide aqueous solution-1.8 mL of methanol was added dropwise to 7 mL of a ligand L110 0.19 g (0.35 mmol)-toluene suspension, followed by stirring at room temperature for 1 hour. The obtained reaction mixture was concentrated under reduced pressure, heptane was added to the obtained residue, and the precipitate was collected by filtration. The obtained precipitate was heated at 220° C. under vacuum to remove the solvent to obtain 0.20 g (87%) of L110-Cs. The NMR of the obtained complex is shown in FIG. 11.

[A-11] 2,6-비스(2,2'-바이피리딘-6-일)페놀레이트 착체(L111-M)의 합성[A-11] Synthesis of 2,6-bis(2,2'-bipyridin-6-yl)phenolate complex (L111-M)

[A-11-1] 세슘2,6-비스(2,2'-바이피리딘-6-일)페놀레이트 착체(L111-Cs)의 합성[A-11-1] Synthesis of cesium 2,6-bis(2,2'-bipyridin-6-yl)phenolate complex (L111-Cs)

(1-11-1) 중간 원료의 합성: (1-11-1) Synthesis of intermediate raw materials:

(1) 2-벤질옥시-1,3-비스(4,4,5,5-테트라메틸-1,3,2-다이옥사보로레인-2-일)벤젠의 합성(1) Synthesis of 2-benzyloxy-1,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxabororain-2-yl)benzene

Figure 112019010503878-pct00101
Figure 112019010503878-pct00101

상기 (1-10-1)의 (2)의 1)에서 합성한 2-벤질옥시-1,3-다이브로모벤젠(M010) 3.42g(10mmol), 4,4,5,5,-테트라메틸-1,3,2-다이옥사보로레인 5.8mL(ca. 5.12g, 40mmol), 아세트산 팔라듐 67.4mg(0.3mmol), SPhos 246mg(0.6mmol), 트라이에틸아민 8.3mL(ca. 6.07g, 60mmol)를 다이옥세인 40mL에 가하고, 100℃에서 16시간 교반했다. 반응 종료 후, 농축하고, 얻어진 잔사를 물에 부었다. 다이클로로메테인으로 추출하고, 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 메탄올을 가하여 -40℃에서 석출하고, 2-벤질옥시-1,3-비스(4,4,5,5-테트라메틸-1,3,2-다이옥사보로레인-2-일)벤젠 2.99g(68%)을 얻었다.2-benzyloxy-1,3-dibromobenzene (M010) 3.42 g (10 mmol), 4,4,5,5,-tetramethyl synthesized in 1) of (2) of (1-10-1) -1,3,2-dioxaborolane 5.8mL (ca. 5.12g, 40mmol), palladium acetate 67.4mg (0.3mmol), SPhos 246mg (0.6mmol), triethylamine 8.3mL (ca. 6.07g, 60mmol) Was added to 40 mL of dioxane, and stirred at 100°C for 16 hours. After completion of the reaction, it was concentrated, and the obtained residue was poured into water. Extracted with dichloromethane, the organic layer was dried over magnesium sulfate, and then concentrated under reduced pressure. The obtained residue was precipitated at -40°C by adding methanol, and 2-benzyloxy-1,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxabororain-2-yl)benzene 2.99g (68%) was obtained.

(1-11-2) 배위자의 합성: 2,6-비스(2,2'-바이피피리딘-6-일)페놀(L111)의 합성(1-11-2) Synthesis of ligand: Synthesis of 2,6-bis(2,2'-bipipyridin-6-yl)phenol (L111)

(1) L111 중간체의 합성(1) Synthesis of L111 intermediate

Figure 112019010503878-pct00102
Figure 112019010503878-pct00102

2-벤질옥시-1,3-비스(4,4,5,5-테트라메틸-1,3,2-다이옥사보로레인-2-일)벤젠 741mg(1.7mmol), 6-브로모-2,2'-바이피리딜 879mg(3.74mmol), 아세트산 팔라듐 23mg(0.102mmol), SPhos(2-다이사이클로헥실포스피노-2'6'-다이메톡시바이페닐) 42mg(0.102mmol), K3PO4 수용액 3.4mL(10.2mmol)를 다이옥세인 6.8mL에 가하고 100℃에서 1.5시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 다이클로로메테인으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(NH, 다이클로로메테인)로 정제를 행하여, 2-벤질옥시-1,3-비스(2,2'-바이피리딘-6-일)벤젠 447mg(53%)을 얻었다.2-Benzyloxy-1,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxabororain-2-yl)benzene 741mg (1.7mmol), 6-bromo-2, 2'-bipyridyl 879mg (3.74mmol), palladium acetate 23mg (0.102mmol), SPhos (2-dicyclohexylphosphino-2'6'-dimethoxybiphenyl) 42mg (0.102mmol), K 3 PO 4 3.4 mL (10.2 mmol) of aqueous solution was added to 6.8 mL of dioxane, followed by stirring at 100° C. for 1.5 hours. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over dichloromethane and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (NH, dichloromethane) to obtain 447 mg (53%) of 2-benzyloxy-1,3-bis(2,2'-bipyridin-6-yl)benzene. .

(2) L111의 합성(2) Synthesis of L111

Figure 112019010503878-pct00103
Figure 112019010503878-pct00103

2-벤질옥시-1,3-비스(2,2'-바이피피리딘-6-일)벤젠 837mg(1.7mmol), 10% 팔라듐탄소 271mg(Pd 0.255mmol)을 아세트산 26mL에 가하고, 5% H2-N2 혼합 가스를 가하면서 100℃에서 19시간 반응했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 셀라이트를 사용하여 불용물을 제거했다. 여과액은 감압하에서 용매를 제거했다. 얻어진 잔사는 메탄올-아세트산 에틸로 재결정을 행하여 황색 고체 151mg(22%)을 얻었다. 모액은 다시 농축하고, 컬럼 크로마토그래피(NH, 헵테인:다이클로로메테인)로 정제하여, 2,6-비스(2,2'-바이피피리딘-6-일)페놀(L111) 82mg(12%)을 얻었다.2-Benzyloxy-1,3-bis(2,2'-bipipyridin-6-yl)benzene 837 mg (1.7 mmol), 10% palladium carbon 271 mg (Pd 0.255 mmol) was added to 26 mL of acetic acid, and 5% H It reacted at 100 degreeC for 19 hours, adding a 2 -N 2 mixed gas. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate removed the solvent under reduced pressure. The obtained residue was recrystallized from methanol-ethyl acetate to obtain 151 mg (22%) of a yellow solid. The mother liquor was concentrated again, purified by column chromatography (NH, heptane:dichloromethane), and 2,6-bis(2,2'-bipipyridin-6-yl)phenol (L111) 82 mg (12 %).

(1-11-3) 착체의 합성: 세슘2,6-비스(2,2'-바이피리딘-6-일)페놀레이트 착체(L111-Cs)의 합성(1-11-3) Synthesis of complex: Synthesis of cesium 2,6-bis(2,2'-bipyridin-6-yl)phenolate complex (L111-Cs)

Figure 112019010503878-pct00104
Figure 112019010503878-pct00104

배위자 L111 0.12g(0.3mmol)-톨루엔 현탁액 3mL에 50% 수산화세슘 수용액 0.05mL(0.3mmol)-메탄올 용액 1.5mL를 적하하고, 실온에서 1시간 교반했다. 얻어진 반응 혼합물은 감압하에서 농축하고, 잔사에 톨루엔을 가하고, 석출물을 여과하여 취했다. 얻어진 석출물은 감압하 220℃에서 가열하여 용매와 미반응의 배위자를 제거하고, L111-Cs 0.08g(53%)을 얻었다. 얻어진 착체의 NMR은 도 12에 나타낸다.To 3 mL of a ligand L111 0.12 g (0.3 mmol)-toluene suspension, a 50% aqueous solution of cesium hydroxide 0.05 mL (0.3 mmol)-methanol 1.5 mL was added dropwise, followed by stirring at room temperature for 1 hour. The obtained reaction mixture was concentrated under reduced pressure, toluene was added to the residue, and the precipitate was filtered off. The obtained precipitate was heated at 220° C. under reduced pressure to remove the solvent and the unreacted ligand to obtain 0.08 g (53%) of L111-Cs. The NMR of the obtained complex is shown in FIG. 12.

[A-12] 2-(6-(3-(피리딘-3-일)페닐)피리딘-2-일)-4,6-비스(3-피리딘-3-일페닐)페놀레이트 착체(L112-M)의 합성[A-12] 2-(6-(3-(pyridin-3-yl)phenyl)pyridin-2-yl)-4,6-bis(3-pyridin-3-ylphenyl)phenolate complex (L112- Synthesis of M)

[A-12-1] 세슘2-(6-(3-(피리딘-3-일)페닐)피리딘-2-일)-4,6-비스(3-피리딘-3-일페닐)페놀레이트 착체(L112-Cs)의 합성[A-12-1] Cesium 2-(6-(3-(pyridin-3-yl)phenyl)pyridin-2-yl)-4,6-bis(3-pyridin-3-ylphenyl)phenolate complex Synthesis of (L112-Cs)

(1-12-1) 중간 원료의 합성: (1-12-1) Synthesis of intermediate raw materials:

(1) 3-(피리딘-3-일)페닐보론산피나콜에스터(CAS No. 939430-30-5, M012)는 Ono 등의 방법(WO2012073541)을 사용하여 합성했다.(1) 3-(pyridin-3-yl)phenylboronic acid pinacol ester (CAS No. 939430-30-5, M012) was synthesized using the method of Ono et al. (WO2012073541).

(2) 2-(2-벤질옥시-3,5-다이브로모페닐)-6-브로모피리딘의 합성(2) Synthesis of 2-(2-benzyloxy-3,5-dibromophenyl)-6-bromopyridine

Figure 112019010503878-pct00105
Figure 112019010503878-pct00105

상기 (1-6-1)의 (1)의 2)에서 합성한 2-벤질옥시-3,5-다이브로모페닐보론산피나콜에스터(M025) 7.70g(16.5mmol), 2,6-다이브로모피리딘 5.92g(25mmol), PdCl2(dppf)-CH2Cl2 부가체 204mg(0.25mmol), 3M 탄산포타슘 수용액 16.5mL(50mmol)를 다이옥세인 33mL에 가하고, 80℃에서 20시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 감압하에서 증류하여, 2-(2-벤질옥시-3,5-다이브로모페닐)-6-브로모피리딘 7.07g(86%, 240℃, 0.05Torr)을 얻었다.2-benzyloxy-3,5-dibromophenylboronic acid pinacol ester synthesized in (1) 2) of (1-6-1) above (M025) 7.70 g (16.5 mmol), 2,6-dive Lomopyridine 5.92 g (25 mmol), PdCl 2 (dppf)-CH 2 Cl 2 adduct 204 mg (0.25 mmol), and 3M potassium carbonate aqueous solution 16.5 mL (50 mmol) were added to 33 mL of dioxane, followed by stirring at 80°C for 20 hours. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was distilled under reduced pressure to obtain 7.07 g (86%, 240°C, 0.05 Torr) of 2-(2-benzyloxy-3,5-dibromophenyl)-6-bromopyridine.

(1-12-2) 배위자의 합성: (1-12-2) Synthesis of ligand:

(1) L112 중간체의 합성(1) Synthesis of L112 intermediate

Figure 112019010503878-pct00106
Figure 112019010503878-pct00106

2-(2-벤질옥시-3,5-다이브로모페닐)-6-브로모피리딘 1.25g(2.5mmol), 3-피리딘-3-일페닐보론산피나콜에스터(M012) 2.53g(9mmol), PdCl2(dppf)-CH2Cl2 부가체 122mg(0.15mmol), 3M 탄산소듐 수용액 10mL(30mmol)를 다이옥세인 30mL에 가하고, 100℃에서 4시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(C300, 다이클로로메테인:IPA)로 정제하여, 2-벤질옥시-1-6-(3-피리딘-3-일페닐)피리딘2-일-3,5-비스(3-피리딘-3-일페닐)벤젠 1.63g(92%)을 얻었다.2-(2-Benzyloxy-3,5-dibromophenyl)-6-bromopyridine 1.25g (2.5mmol), 3-pyridin-3-ylphenylboronic acid pinacol ester (M012) 2.53g (9mmol) , PdCl 2 (dppf)-CH 2 Cl 2 adduct 122 mg (0.15 mmol) and 3M sodium carbonate aqueous solution 10 mL (30 mmol) were added to dioxane 30 mL, followed by stirring at 100°C for 4 hours. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (C300, dichloromethane:IPA), and 2-benzyloxy-1-6-(3-pyridin-3-ylphenyl)pyridin2-yl-3,5-bis( 3-pyridin-3-ylphenyl)benzene 1.63g (92%) was obtained.

(2) L112의 합성(2) Synthesis of L112

Figure 112019010503878-pct00107
Figure 112019010503878-pct00107

2-벤질옥시-1-(6-(3-피리딘-3-일페닐)피리딘-2-일)-3,5-비스(3-피리딘-3-일페닐)벤젠 1.63g(2.26mmol), 10% 팔라듐탄소 373mg(Pd 0.35mmol)을 아세트산 12mL에 가하고, 5% H2-N2 혼합 가스 분위기하, 100℃에서 17시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 셀라이트를 사용하여 불용물을 제거했다. 여과액은 감압하에서 농축하고, 소량의 톨루엔에 용해했다. 이 톨루엔 용액은 헵테인 200mL에 천천히 적하했다. 생성된 석출물은 여과하여 취하고, 2-하이드록시-1-(6-(3-피리딘-3-일페닐)피리딘-2-일)-3,5-비스(3-피리딘-3-일페닐)벤젠(L112) 1.28g(90%)을 얻었다.2-benzyloxy-1-(6-(3-pyridin-3-ylphenyl)pyridin-2-yl)-3,5-bis(3-pyridin-3-ylphenyl)benzene 1.63 g (2.26 mmol), 373 mg (Pd 0.35 mmol) of 10% palladium carbon was added to 12 mL of acetic acid, followed by stirring at 100°C for 17 hours in a 5% H 2 -N 2 mixed gas atmosphere. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate was concentrated under reduced pressure and dissolved in a small amount of toluene. This toluene solution was slowly added dropwise to 200 mL of heptane. The resulting precipitate was collected by filtration, and 2-hydroxy-1-(6-(3-pyridin-3-ylphenyl)pyridin-2-yl)-3,5-bis(3-pyridin-3-ylphenyl) Benzene (L112) 1.28g (90%) was obtained.

(1-12-3) 착체의 합성: 세슘2-(6-(3-(피리딘-3-일)페닐)피리딘-2-일)-4,6-비스(3-피리딘-3-일페닐)페놀레이트 착체(L112-Cs)의 합성(1-12-3) Synthesis of complex: cesium 2-(6-(3-(pyridin-3-yl)phenyl)pyridin-2-yl)-4,6-bis(3-pyridin-3-ylphenyl ) Synthesis of phenolate complex (L112-Cs)

Figure 112019010503878-pct00108
Figure 112019010503878-pct00108

배위자 L112 0.13g(0.2mmol)-톨루엔 현탁액 2mL에 메탄올 1mL로 희석한 50% 수산화세슘 수용액 0.035mL(0.2mmol)-메탄올 용액 1mL를 적하하고 실온에서 교반했다. 1시간 후 감압하에서 농축하고, 얻어진 잔사에 톨루엔을 가하여 석출물을 회수했다. 얻어진 석출물은 감압하 200℃에서 가열하여 용매를 제거하고, L112-Cs 1.22g(80%)을 얻었다. 얻어진 착체의 NMR은 도 13에 나타낸다.To 2 mL of a ligand L112 0.13 g (0.2 mmol)-toluene suspension, 0.035 mL (0.2 mmol) of 50% cesium hydroxide aqueous solution diluted with 1 mL of methanol-1 mL of a methanol solution was added dropwise, followed by stirring at room temperature. After 1 hour, it was concentrated under reduced pressure, and toluene was added to the obtained residue to recover a precipitate. The obtained precipitate was heated at 200° C. under reduced pressure to remove the solvent, and L112-Cs 1.22 g (80%) was obtained. The NMR of the obtained complex is shown in FIG.

[A-13] 2-(5-(3-(4,6-다이페닐피리미딘-2-일)페닐)피리딘-2-일)페놀레이트 착체(L113-M)의 합성[A-13] Synthesis of 2-(5-(3-(4,6-diphenylpyrimidin-2-yl)phenyl)pyridin-2-yl)phenolate complex (L113-M)

[A-13-1] 세슘2-(5-(3-(4,6-다이페닐피리미딘-2-일)페닐)피리딘-2-일)페놀레이트 착체(L113-Cs)의 합성[A-13-1] Synthesis of cesium 2-(5-(3-(4,6-diphenylpyrimidin-2-yl)phenyl)pyridin-2-yl)phenolate complex (L113-Cs)

(1-13-1) 중간 원료의 합성: (1-13-1) Synthesis of intermediate raw materials:

(1) 2-(2-벤질옥시페닐)-5-브로모피리딘의 합성(1) Synthesis of 2-(2-benzyloxyphenyl)-5-bromopyridine

1) 2-벤질옥시페닐보론산(CAS No. 1906612-29-1, M013)은 Thede 등의 방법(Org. Lett., 6(24), 4595-4597, 2004)을 사용하여 합성했다.1) 2-Benzyloxyphenylboronic acid (CAS No. 1906612-29-1, M013) was synthesized using Thede et al. method (Org. Lett., 6(24), 4595-4597, 2004).

2) 2-(2-벤질옥시페닐)-5-브로모피리딘의 합성2) Synthesis of 2-(2-benzyloxyphenyl)-5-bromopyridine

Figure 112019010503878-pct00109
Figure 112019010503878-pct00109

2-벤질옥시페닐보론산(M013) 3.42g(15.0mmol), 2,5-다이브로모피리딘 4.26g(18.0mmol), 테트라키스(트라이페닐포스핀)팔라듐 0.52g(0.45mmol), 3M 탄산포타슘 수용액 15mL(45mmol)를 다이옥세인 45mL에 가하고, 100℃에서 1시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 이후, 감압하에서 농축했다. 얻어진 잔사는 메탄올로 재결정을 행하여, 2-(2-벤질옥시페닐)-5-브로모피리딘 4.25g(83%)으로 얻었다.2-Benzyloxyphenylboronic acid (M013) 3.42g (15.0mmol), 2,5-dibromopyridine 4.26g (18.0mmol), tetrakis (triphenylphosphine) palladium 0.52g (0.45mmol), 3M potassium carbonate 15 mL (45 mmol) of aqueous solution was added to 45 mL of dioxane, followed by stirring at 100°C for 1 hour. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was recrystallized with methanol to obtain 4.25 g (83%) of 2-(2-benzyloxyphenyl)-5-bromopyridine.

(1-13-2) 배위자의 합성: 2-(3-(6-(2-하이드록시페닐)피리딘-3-일)페닐)-4,6-다이페닐피리미딘(L113)의 합성(1-13-2) Synthesis of ligand: 2-(3-(6-(2-hydroxyphenyl)pyridin-3-yl)phenyl)-4,6-diphenylpyrimidine (L113)

(1) L113 중간체의 합성(1) Synthesis of L113 intermediate

Figure 112019010503878-pct00110
Figure 112019010503878-pct00110

상기 (1-2-1)의 (1)에서 합성한 3-(4,6-다이페닐피리미딘-2-일)페닐보론산피나콜에스터(M003) 0.76g(1.76mmol), 2-(2-벤질옥시페닐)-5-브로모피리딘 0.72g(2.11mmol), 테트라키스(트라이페닐포스핀)팔라듐 0.061g(0.053mmol), 2M 탄산소듐 수용액 2.6mL(5.2mmol)를 다이옥세인 5.9mL에 가하고, 100℃에서 2시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 크로마토그래피(NH, 헵테인:다이클로로메테인)로 정제하여 백색 고체를 얻었다. 얻어진 백색 고체는 톨루엔으로 재결정을 행하여, 2-(3-(6-(2-벤질옥시페닐)피리딘-3-일)페닐)-4,6-다이페닐피리미딘 0.77g(77%)을 얻었다.3-(4,6-diphenylpyrimidin-2-yl)phenylboronic acid pinacol ester synthesized in (1) of (1-2-1) above (M003) 0.76g (1.76mmol), 2-( 2-Benzyloxyphenyl)-5-bromopyridine 0.72g (2.11mmol), tetrakis (triphenylphosphine) palladium 0.061g (0.053mmol), 2M sodium carbonate aqueous solution 2.6mL (5.2mmol) dioxane 5.9mL And stirred at 100°C for 2 hours. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by chromatography (NH, heptane:dichloromethane) to obtain a white solid. The obtained white solid was recrystallized from toluene to obtain 0.77 g (77%) of 2-(3-(6-(2-benzyloxyphenyl)pyridin-3-yl)phenyl)-4,6-diphenylpyrimidine. .

(2) L113의 합성(2) Synthesis of L113

2-(3-(6-(2-하이드록시페닐)피리딘-3-일)페닐)-4,6-다이페닐피리미딘(L113)의 합성Synthesis of 2-(3-(6-(2-hydroxyphenyl)pyridin-3-yl)phenyl)-4,6-diphenylpyrimidine (L113)

Figure 112019010503878-pct00111
Figure 112019010503878-pct00111

2-(3-(6-(2-벤질옥시페닐)피리딘-3-일)페닐)-4,6-다이페닐피리미딘 0.76g(1.34mmol), 10% 팔라듐탄소 0.19g(Pd 0.17mmol)을 아세트산 20mL에 가하고 5% H2-N2 가스 분위기하, 100℃에서 19시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 불용물을 셀라이트를 사용하여 제거했다. 여과액은 감압하 농축했다. 얻어진 잔사는 톨루엔을 사용하여 재결정을 행하여, 2-(3-(6-(2-하이드록시페닐)피리딘-3-일)페닐)-4,6-다이페닐피리미딘(L113) 0.56g(88%)을 얻었다.2-(3-(6-(2-benzyloxyphenyl)pyridin-3-yl)phenyl)-4,6-diphenylpyrimidine 0.76g (1.34mmol), 10% palladium carbon 0.19g (Pd 0.17mmol) Was added to 20 mL of acetic acid, and stirred at 100°C for 19 hours in a 5% H 2 -N 2 gas atmosphere. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate was concentrated under reduced pressure. The obtained residue was recrystallized using toluene, and 2-(3-(6-(2-hydroxyphenyl)pyridin-3-yl)phenyl)-4,6-diphenylpyrimidine (L113) 0.56g (88 %).

(1-13-3) 착체의 합성: 세슘2-(5-(3-(4,6-다이페닐피리미딘-2-일)페닐)피리딘-2-일)페놀레이트 착체(L113-Cs)의 합성(1-13-3) Synthesis of complex: cesium 2-(5-(3-(4,6-diphenylpyrimidin-2-yl)phenyl)pyridin-2-yl)phenolate complex (L113-Cs) Synthesis of

Figure 112019010503878-pct00112
Figure 112019010503878-pct00112

배위자 L113 0.14g(0.3mmol)-톨루엔 현탁액 3mL에, 50% 수산화세슘 수용액 0.05mL(0.3mmol)-메탄올 용액 1.3mL를 적하하고 실온에서 교반했다. 1시간 후, 반응 혼합물을 감압하에서 농축하고 톨루엔을 가하고 석출물을 여과하여 취했다. 얻어진 석출물은 감압하 220℃로 가열을 하여 용매와 미반응의 배위자를 제거하고 L113-Cs 0.09g(52%)을 얻었다. 얻어진 착체의 NMR은 도 14에 나타낸다.To 3 mL of a ligand L113 0.14 g (0.3 mmol) -toluene suspension, a 50% cesium hydroxide aqueous solution 0.05 mL (0.3 mmol) -1.3 mL of a methanol solution was added dropwise, followed by stirring at room temperature. After 1 hour, the reaction mixture was concentrated under reduced pressure, toluene was added, and the precipitate was collected by filtration. The obtained precipitate was heated at 220° C. under reduced pressure to remove the solvent and the unreacted ligand to obtain 0.09 g (52%) of L113-Cs. The NMR of the obtained complex is shown in FIG. 14.

[A-14] 2-(6-(4-(4,6-다이페닐피리미딘-2-일)페닐)피리딘-2-일)페놀레이트 착체(L114-M)의 합성[A-14] Synthesis of 2-(6-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)pyridin-2-yl)phenolate complex (L114-M)

[A-14-1] 리튬2-(6-(4-(4,6-다이페닐피리미딘-2-일)페닐)피리딘-2-일)페놀레이트 착체(L114-Li)의 합성[A-14-1] Synthesis of lithium 2-(6-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)pyridin-2-yl)phenolate complex (L114-Li)

(1-14-1) 중간 원료의 합성: (1-14-1) Synthesis of intermediate raw materials:

(1) 4-(4,6-다이페닐피리미딘-2-일)페닐보론산피나콜에스터(CAS No. 1613163-88-4, M002)은 Jung 등의 방법(US20140158999A1)을 사용하여 합성했다.(1) 4-(4,6-diphenylpyrimidin-2-yl)phenylboronic acid pinacol ester (CAS No. 1613163-88-4, M002) was synthesized using the method of Jung et al. (US20140158999A1). .

(2) 2-(2-벤질옥시페닐)-6-브로모피리딘(M028)의 합성(2) Synthesis of 2-(2-benzyloxyphenyl)-6-bromopyridine (M028)

Figure 112019010503878-pct00113
Figure 112019010503878-pct00113

상기 (1-13-1)의 (1)에서 합성한 2-벤질옥시페닐보론산(M013) 8.50g(37.3mmol), 2,6-다이브로모피리딘 9.28g(39.2mmol), 테트라키스(트라이페닐포스핀)팔라듐 1.29g(1.12mmol), 3M 탄산포타슘 수용액 37.3mL(112mmol)를 다이옥세인 112mL에 가하고, 100℃에서 1시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출한 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(C300, 헵테인:다이클로로메테인)로 정제하고, 얻어진 결정을 메탄올로 재결정을 행하여, 2-(2-벤질옥시페닐)-6-브로모피리딘(M028) 8.63g(68%)으로 얻었다.2-benzyloxyphenylboronic acid (M013) 8.50 g (37.3 mmol) synthesized in (1) of (1-13-1), 2,6-dibromopyridine 9.28 g (39.2 mmol), tetrakis (tri Phenylphosphine) palladium 1.29 g (1.12 mmol) and 37.3 mL (112 mmol) of 3M potassium carbonate aqueous solution were added to 112 mL of dioxane, followed by stirring at 100° C. for 1 hour. After completion of the reaction, water was added, and the organic layer extracted with dichloromethane was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (C300, heptane:dichloromethane), and the obtained crystal was recrystallized with methanol, and 2-(2-benzyloxyphenyl)-6-bromopyridine (M028) 8.63 g (68%).

(1-14-2) 배위자의 합성: 4-(6-(2-하이드록시페닐)피리딘-2-일)페닐)-4,6-다이페닐피리미딘(L114)의 합성(1-14-2) Synthesis of ligand: 4-(6-(2-hydroxyphenyl)pyridin-2-yl)phenyl)-4,6-diphenylpyrimidine (L114)

(1) L114 중간체의 합성(1) Synthesis of L114 intermediate

Figure 112019010503878-pct00114
Figure 112019010503878-pct00114

4-(4,6-다이페닐피리미딘-2-일)페닐보론산피나콜에스터(M002) 3.47g(7.99mmol), 2-(2-벤질옥시페닐)-6-브로모피리딘(M028) 2.99g(8.79mmol), 테트라키스(트라이페닐포스핀)팔라듐 0.28g(0.24mmol), 2M 탄산소듐 수용액 26.6mL(53.2mL)를 다이옥세인 26.6mL에 가하고, 100℃에서 3시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 톨루엔-메탄올으로 재결정을 행하여, 4-(6-(2-벤질옥시페닐)피리딘-2-일)페닐)-4,6-다이페닐피리미딘 4.00g(88%)을 얻었다.4- (4,6-diphenylpyrimidin-2-yl) phenylboronic acid pinacol ester (M002) 3.47 g (7.99 mmol), 2- (2-benzyloxyphenyl) -6-bromopyridine (M028) 2.99 g (8.79 mmol), tetrakis (triphenylphosphine) palladium 0.28 g (0.24 mmol), and 26.6 mL (53.2 mL) of 2M sodium carbonate aqueous solution were added to 26.6 mL of dioxane, followed by stirring at 100° C. for 3 hours. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was recrystallized from toluene-methanol to obtain 4.00 g (88%) of 4-(6-(2-benzyloxyphenyl)pyridin-2-yl)phenyl)-4,6-diphenylpyrimidine.

(2) L114의 합성(2) Synthesis of L114

Figure 112019010503878-pct00115
Figure 112019010503878-pct00115

4-(6-(2-벤질옥시페닐)피리딘-2-일)페닐)-4,6-다이페닐피리미딘 3.99g(7.03mmol), 10% 팔라듐탄소 1.12g(Pd 1.05mmol)을 아세트산 106mL에 가하고, 5% H2-N2 가스 분위기하, 100℃에서 17시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 불용물을 셀라이트를 사용하여 제거했다. 여과액은 감압하 농축했다. 얻어진 잔사는 사이클로헥세인을 가하여 생성된 석출물을 여과하여 취하고, 4-(6-(2-하이드록시페닐)피리딘-2-일)페닐)-4,6-다이페닐피리미딘(L114) 2.60g(77%)을 얻었다.4-(6-(2-benzyloxyphenyl)pyridin-2-yl)phenyl)-4,6-diphenylpyrimidine 3.99 g (7.03 mmol), 10% palladium carbon 1.12 g (Pd 1.05 mmol) in acetic acid 106 mL And stirred at 100°C for 17 hours in a 5% H 2 -N 2 gas atmosphere. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate was concentrated under reduced pressure. The obtained residue was collected by filtration of the precipitate produced by adding cyclohexane, and 4-(6-(2-hydroxyphenyl)pyridin-2-yl)phenyl)-4,6-diphenylpyrimidine (L114) 2.60 g (77%) was obtained.

(1-14-3) 착체의 합성: 리튬2-(6-(4-(4,6-다이페닐피리미딘-2-일)페닐)피리딘-2-일)페놀레이트 착체(L114-Li)의 합성(1-14-3) Synthesis of complex: lithium 2-(6-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)pyridin-2-yl)phenolate complex (L114-Li) Synthesis of

Figure 112019010503878-pct00116
Figure 112019010503878-pct00116

배위자 L114 0.24g(0.5mmol)-톨루엔 현탁액 7.5mL에, 4M 수산화리튬 수용액 0.13mL(0.52mmol)-메탄올 용액 2.5mL를 적하하고 실온에서 교반했다. 1시간 후, 감압하에서 농축하고, 석출물을 여과하여 취했다. 얻어진 석출물은 감압하 280℃로 가열하여 미반응의 배위자와 용매의 제거를 행하고, L114-Li 0.14g(58%)을 얻었다. 얻어진 착체의 NMR은 도 15에 나타낸다.To 7.5 mL of a ligand L114 0.24 g (0.5 mmol)-toluene suspension, 0.13 mL (0.52 mmol) of a 4M lithium hydroxide aqueous solution-2.5 mL of a methanol solution was added dropwise, followed by stirring at room temperature. After 1 hour, it was concentrated under reduced pressure, and the precipitate was collected by filtration. The obtained precipitate was heated to 280°C under reduced pressure to remove the unreacted ligand and the solvent to obtain 0.14 g (58%) of L114-Li. The NMR of the obtained complex is shown in FIG. 15.

(A-14-2) 루비듐2-(6-(4-(4,6-다이페닐피리미딘-2-일)페닐)피리딘-2-일)페놀레이트 착체(L114-Rb)의 합성(A-14-2) Synthesis of rubidium 2-(6-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)pyridin-2-yl)phenolate complex (L114-Rb)

Figure 112019010503878-pct00117
Figure 112019010503878-pct00117

상기 (1-14-2)에서 합성한 배위자 L114 0.57g(1.2mmol)-톨루엔 현탁액 24mL에, 50% 수산화루비듐 수용액 0.14mL(1.2mmol)-메탄올 용액 6mL를 적하하고 실온에서 교반했다. 1시간 후, 감압하에서 농축하고, 석출물을 여과하여 취했다. 얻어진 석출물은 감압하 300℃로 가열하여 미반응의 배위자와 용매의 제거를 행하고, 루비듐2-(6-(4-(4,6-다이페닐피리미딘-2-일)페닐)피리딘-2-일)페놀레이트 0.29g(43%)을 얻었다. 얻어진 착체의 NMR은 도 15에 나타낸다.To 24 mL of the ligand L114 0.57 g (1.2 mmol)-toluene suspension synthesized in (1-14-2) above, 0.14 mL (1.2 mmol) of 50% rubidium hydroxide aqueous solution-6 mL of a methanol solution was added dropwise, followed by stirring at room temperature. After 1 hour, it was concentrated under reduced pressure, and the precipitate was collected by filtration. The resulting precipitate was heated to 300° C. under reduced pressure to remove the unreacted ligand and the solvent, and rubidium 2-(6-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)pyridin-2- Il) 0.29g (43%) of phenolate was obtained. The NMR of the obtained complex is shown in FIG. 15.

(A-14-3) 세슘2-(6-(4-(4,6-다이페닐피리미딘-2-일)페닐)피리딘-2-일)페놀레이트 착체(L114-Cs)의 합성(A-14-3) Synthesis of cesium 2-(6-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)pyridin-2-yl)phenolate complex (L114-Cs)

Figure 112019010503878-pct00118
Figure 112019010503878-pct00118

상기 (1-14-2)에서 합성한 배위자 L114 0.57g(1.2mmol)-톨루엔 현탁액 24mL에, 50% 수산화세슘 수용액 0.21mL(1.2mmol)-메탄올 용액 6mL를 적하하고 실온에서 교반했다. 1시간 후, 감압하에서 농축하고, 석출물을 여과하여 취했다. 얻어진 석출물은 감압하 200℃로 가열하여 미반응의 배위자와 용매의 제거를 행하고, L114-Cs 0.60g(82%)을 얻었다. 얻어진 착체의 NMR은 도 15에 나타낸다.To 24 mL of the ligand L114 0.57 g (1.2 mmol)-toluene suspension synthesized in (1-14-2) above, 0.21 mL (1.2 mmol)-methanol solution of 50% cesium hydroxide solution was added dropwise and stirred at room temperature. After 1 hour, it was concentrated under reduced pressure, and the precipitate was collected by filtration. The obtained precipitate was heated to 200° C. under reduced pressure to remove the unreacted ligand and the solvent to obtain 0.60 g (82%) of L114-Cs. The NMR of the obtained complex is shown in FIG. 15.

[A-15] 2-(6-(3-(4,6-다이페닐-피리미딘-2-일)페닐)피리미딘-2-일)페놀레이트 착체(L115-M)의 합성[A-15] Synthesis of 2-(6-(3-(4,6-diphenyl-pyrimidin-2-yl)phenyl)pyrimidin-2-yl)phenolate complex (L115-M)

[A-15-1] 세슘2-(6-(3-(4,6-다이페닐-피리미딘-2-일)페닐)피리미딘-2-일)페놀레이트 착체(L115-Cs)의 합성[A-15-1] Synthesis of cesium 2-(6-(3-(4,6-diphenyl-pyrimidin-2-yl)phenyl)pyrimidin-2-yl)phenolate complex (L115-Cs)

(1-15-2) 배위자의 합성: 2-(3-(6-(2-하이드록시페닐)피리딘-2-일)페닐)-4,6-다이페닐피리미딘(L115)의 합성(1-15-2) Synthesis of ligand: Synthesis of 2-(3-(6-(2-hydroxyphenyl)pyridin-2-yl)phenyl)-4,6-diphenylpyrimidine (L115)

(1) L115 중간체의 합성(1) Synthesis of L115 intermediate

Figure 112019010503878-pct00119
Figure 112019010503878-pct00119

상기 (1-2-1)의 (1)에서 합성한 3-(4,6-다이페닐피리미딘-2-일)페닐보론산피나콜에스터(M003) 7.32g(16.9mmol), 상기 (1-14-1)의 (2)에서 합성한 2-(2-벤질옥시페닐)-6-브로모피리딘(M028) 6.90g(20.3mmol), 테트라키스(트라이페닐포스핀)팔라듐 0.59g(0.51mmol), 2M 탄산소듐 수용액 25.4mmol(50.8mmol)을 다이옥세인 56.4mL에 가하고 100℃에서 3시간 교반했다. 반응 종료 후, 물을 가하고 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 톨루엔을 사용하여 재결정을 행하고, 2-(3-(6-(2-벤질옥시페닐)피리딘-2-일)페닐)-4,6-다이페닐피리미딘 8.73g(91%)으로 얻었다.3-(4,6-diphenylpyrimidin-2-yl)phenylboronic acid pinacol ester (M003) 7.32g (16.9mmol) synthesized in (1) of (1-2-1) above, (1) 2-(2-benzyloxyphenyl)-6-bromopyridine (M028) 6.90 g (20.3 mmol) synthesized in (2) of -14-1), tetrakis (triphenylphosphine) palladium 0.59 g (0.51) mmol) and 25.4 mmol (50.8 mmol) of 2M sodium carbonate aqueous solution were added to 56.4 mL of dioxane, followed by stirring at 100° C. for 3 hours. After completion of the reaction, water was added and extraction was performed with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was recrystallized using toluene, and 2-(3-(6-(2-benzyloxyphenyl)pyridin-2-yl)phenyl)-4,6-diphenylpyrimidine was 8.73 g (91%). Got it.

(2) L115의 합성(2) Synthesis of L115

Figure 112019010503878-pct00120
Figure 112019010503878-pct00120

2-(3-(6-(2-벤질옥시페닐)피리딘-2-일)페닐)-4,6-다이페닐피리미딘 1.76g(3.10mmol), 10% 팔라듐탄소 0.50g(Pd 0.47mmol)을 아세트산 47mL에 가하고 5% H2-N2 가스 분위기하, 100℃에서 19시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 불용물을 셀라이트를 사용하여 제거했다. 여과액은 감압하 농축했다. 얻어진 잔사는 톨루엔을 사용하여 재결정을 행하여, 2-(3-(6-(2-하이드록시페닐)피리딘-2-일)페닐)-4,6-다이페닐피리미딘(L115) 1.09g(74%)을 얻었다.2-(3-(6-(2-benzyloxyphenyl)pyridin-2-yl)phenyl)-4,6-diphenylpyrimidine 1.76g (3.10mmol), 10% palladium carbon 0.50g (Pd 0.47mmol) Was added to 47 mL of acetic acid, and stirred at 100°C for 19 hours in a 5% H 2 -N 2 gas atmosphere. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate was concentrated under reduced pressure. The obtained residue was recrystallized using toluene, and 2-(3-(6-(2-hydroxyphenyl)pyridin-2-yl)phenyl)-4,6-diphenylpyrimidine (L115) 1.09 g (74 %).

(1-15-3) 착체의 합성: 세슘2-(6-(3-(4,6-다이페닐-피리미딘-2-일)페닐)피리미딘-2-일)페놀레이트 착체(L115-Cs)의 합성(1-15-3) Synthesis of complex: Cesium 2-(6-(3-(4,6-diphenyl-pyrimidin-2-yl)phenyl)pyrimidin-2-yl)phenolate complex (L115- Synthesis of Cs)

Figure 112019010503878-pct00121
Figure 112019010503878-pct00121

배위자 L115 0.12g(0.25mmol)-톨루엔 현탁액 2.5mL에, 50% 수산화세슘 수용액 0.04mL(0.25mmol)-메탄올 용액 1.3mL를 적하하고 실온에서 교반했다. 1시간 후, 감압하에서 농축하고, 잔사에 톨루엔을 가하고 석출물을 여과하여 취했다. 얻어진 석출물은 감압하 220℃에서 가열하여 용매와 미반응의 배위자를 제거하고, L115-Cs 0.10g(67%)을 얻었다. 얻어진 착체의 NMR은 도 16에 나타낸다.To 2.5 mL of a ligand L115 0.12 g (0.25 mmol)-toluene suspension, a 50% cesium hydroxide aqueous solution 0.04 mL (0.25 mmol) 1.3 mL of a methanol solution was added dropwise, followed by stirring at room temperature. After 1 hour, it was concentrated under reduced pressure, toluene was added to the residue, and the precipitate was collected by filtration. The obtained precipitate was heated at 220° C. under reduced pressure to remove the solvent and the unreacted ligand to obtain 0.10 g (67%) of L115-Cs. The NMR of the obtained complex is shown in FIG. 16.

[A-16] 2-(6-(3-(2,6-다이페닐피리미딘-4-일)페닐)피리딘-2-일)페놀레이트 착체(L116-M)의 합성[A-16] Synthesis of 2-(6-(3-(2,6-diphenylpyrimidin-4-yl)phenyl)pyridin-2-yl)phenolate complex (L116-M)

[A-16-1] 세슘2-(6-(3-(2,6-다이페닐피리미딘-4-일)페닐)피리딘-2-일)페놀레이트 착체(L116-Cs)의 합성[A-16-1] Synthesis of cesium 2-(6-(3-(2,6-diphenylpyrimidin-4-yl)phenyl)pyridin-2-yl)phenolate complex (L116-Cs)

(1-16-1) 중간 원료의 합성: (1-16-1) Synthesis of intermediate raw materials:

(1) 3-(6-(2-벤질옥시페닐)피리딘-2-일)페닐보론산피나콜에스터(M029)의 합성(1) Synthesis of 3-(6-(2-benzyloxyphenyl)pyridin-2-yl)phenylboronic acid pinacol ester (M029)

1) 2-(1-아세톡시-5-브로모페닐)피리딘(CAS No. 1388112-32-0, M014)은 후나타니의 방법(일본 특개 2015-199919)을 사용하여 합성했다.1) 2-(1-acetoxy-5-bromophenyl)pyridine (CAS No. 1388112-32-0, M014) was synthesized using Funatani's method (Japanese Patent Application Laid-Open No. 2015-199919).

2) 2-(3-브로모페닐)-6-(2-벤질옥시페닐)피리딘의 합성2) Synthesis of 2-(3-bromophenyl)-6-(2-benzyloxyphenyl)pyridine

Figure 112019010503878-pct00122
Figure 112019010503878-pct00122

상기 (1-13-1)의 (1)에서 합성한 2-벤질옥시페닐보론산(M013) 958mg(4.2mmol), 2-브로모-6-(3-브로모페닐)피리딘(M014) 1.20g(3.83mmol), 테트라키스(트라이페닐포스핀)팔라듐 87.8mg(0.0935mmol), 3M 탄산포타슘 수용액 4mL(12mmol)를 다이옥세인 8mL에 가하고, 60℃에서 1시간 교반했다. 반응 종료 후, 물에 붓고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(C300, 메탄올:다이클로로메테인)로 정제하고, 2-(3-브로모페닐)-6-(2-벤질옥시페닐)피리딘 1.44g(91%)을 얻었다.2-benzyloxyphenylboronic acid (M013) 958mg (4.2mmol) synthesized in (1) of (1-13-1) above, 2-bromo-6-(3-bromophenyl)pyridine (M014) 1.20 g (3.83 mmol), tetrakis (triphenylphosphine) palladium 87.8 mg (0.0935 mmol), and 4 mL (12 mmol) of 3M potassium carbonate aqueous solution were added to 8 mL of dioxane, followed by stirring at 60° C. for 1 hour. After completion of the reaction, it was poured into water and extracted with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (C300, methanol:dichloromethane) to obtain 1.44 g (91%) of 2-(3-bromophenyl)-6-(2-benzyloxyphenyl)pyridine.

3) 3-(6-(2-벤질옥시페닐)피리딘-2-일)페닐보론산피나콜에스터(M029)의 합성3) Synthesis of 3-(6-(2-benzyloxyphenyl)pyridin-2-yl)phenylboronic acid pinacol ester (M029)

Figure 112019010503878-pct00123
Figure 112019010503878-pct00123

2-(3-브로모페닐)-6-(2-벤질옥시페닐)피리딘 7.98g(19.2mmol), 비스(피나콜레이토)다이보론 5.94g(23.4mmol), PdCl2(dppf)-CH2Cl2 부가체 314mg(0.384mg), 아세트산 포타슘 18.8g(192mmol)을 다이옥세인 38mL에 가하고, 100℃에서 1.5시간 교반했다. 반응 종료 후, 셀라이트로 불용물을 제거했다. 여과액은 물에 붓고 톨루엔으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(C300, 메탄올:다이클로로메테인)로 정제하여, 3-(6-(2-벤질옥시페닐)피리딘-2-일)페닐보론산피나콜에스터(M029) 6.04g(68%)을 얻었다.2-(3-bromophenyl)-6-(2-benzyloxyphenyl)pyridine 7.98 g (19.2 mmol), bis (pinacolato) diboron 5.94 g (23.4 mmol), PdCl 2 (dppf)-CH 2 314 mg (0.384 mg) of Cl 2 adduct and 18.8 g (192 mmol) of potassium acetate were added to 38 mL of dioxane, followed by stirring at 100°C for 1.5 hours. After completion of the reaction, insoluble matters were removed with Celite. The filtrate was poured into water and extracted with toluene. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (C300, methanol: dichloromethane), and 3-(6-(2-benzyloxyphenyl)pyridin-2-yl)phenylboronic acid pinacol ester (M029) 6.04 g ( 68%).

(1-16-2) 배위자의 합성: 4-(3-(6-(2-하이드록시페닐)피리미딘-2-일)페닐)-2,6-다이페닐피리미딘(L116)의 합성(1-16-2) Synthesis of ligand: 4-(3-(6-(2-hydroxyphenyl)pyrimidin-2-yl)phenyl)-2,6-diphenylpyrimidine (L116)

(1) L116 중간체의 합성(1) Synthesis of L116 intermediate

Figure 112019010503878-pct00124
Figure 112019010503878-pct00124

2-(3-(6-(2-벤질옥시페닐)피리딘-2-일)페닐보론산피나콜에스터(M029) 1.85g(4.00mmol), 2-브로모-4,6-다이페닐피리미딘 1.24g(4.00mmol), 테트라키스(트라이페닐포스핀)팔라듐 0.14g(0.12mmol), 3M 탄산포타슘 수용액 4.00mL(12mmol)를 다이옥세인 12mL에 가하고, 100℃에서 5시간 교반했다. 반응 종료 후, 물을 가하고, 톨루엔으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 사이클로헥세인으로 재결정을 행하여, 4-(3-(6-(2-벤질옥시페닐)피리미딘-2-일)페닐)-2,6-다이페닐피리미딘 1.92g(85%)을 얻었다.2-(3-(6-(2-benzyloxyphenyl)pyridin-2-yl)phenylboronic acid pinacol ester (M029) 1.85g (4.00mmol), 2-bromo-4,6-diphenylpyrimidine 1.24 g (4.00 mmol), tetrakis (triphenylphosphine) palladium 0.14 g (0.12 mmol), and 4.00 mL (12 mmol) of 3M potassium carbonate aqueous solution were added to 12 mL of dioxane, followed by stirring at 100° C. for 5 hours. , Water was added and extraction was performed with toluene The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure, and the obtained residue was recrystallized from cyclohexane, and 4-(3-(6-(2-benzyloxyphenyl)pyrimated) Midin-2-yl)phenyl)-2,6-diphenylpyrimidine 1.92g (85%) was obtained.

(2) L116의 합성(2) Synthesis of L116

Figure 112019010503878-pct00125
Figure 112019010503878-pct00125

4-(3-(6-(2-벤질옥시페닐)피리미딘-2-일)페닐)-2,6-다이페닐피리미딘 2.41g(4.25mmol), 10% 팔라듐탄소 0.68g(Pd 0.64mmol)을 아세트산 65mL에 가하고, 5% H2-N2 가스 기류하, 100℃에서 19시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 불용물을 셀라이트를 사용하여 제거했다. 여과액은 감압하에서 농축했다. 얻어진 잔사는 사이클로헥세인으로 재결정을 행하고, 4-(3-(6-(2-하이드록시페닐)피리미딘-2-일)페닐)-2,6-다이페닐피리미딘(L116) 1.80g(89%)을 얻었다.4-(3-(6-(2-benzyloxyphenyl)pyrimidin-2-yl)phenyl)-2,6-diphenylpyrimidine 2.41g (4.25mmol), 10% palladium carbon 0.68g (Pd 0.64mmol) ) Was added to 65 mL of acetic acid, and the mixture was stirred at 100°C for 19 hours under a 5% H 2 -N 2 gas flow. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate was concentrated under reduced pressure. The obtained residue was recrystallized from cyclohexane, and 4-(3-(6-(2-hydroxyphenyl)pyrimidin-2-yl)phenyl)-2,6-diphenylpyrimidine (L116) 1.80 g ( 89%).

1HNMR(CDCl3) δ6.83-8.87(m, 21H, ArH), 14.71(s, 1H, OH) 1 HNMR (CDCl 3 ) δ 6.83-8.87 (m, 21H, ArH), 14.71 (s, 1H, OH)

(1-16-3) 착체의 합성: 세슘2-(6-(3-(2,6-다이페닐피리미딘-4-일)페닐)피리딘-2-일)페놀레이트 착체(L116-Cs)의 합성(1-16-3) Synthesis of complex: Cesium 2-(6-(3-(2,6-diphenylpyrimidin-4-yl)phenyl)pyridin-2-yl)phenolate complex (L116-Cs) Synthesis of

Figure 112019010503878-pct00126
Figure 112019010503878-pct00126

산화세슘 수용액 0.087mL(0.5mmol)-메탄올 1.5mL를 적하하고 실온에서 교반했다. 1시간 후 감압하에서 농축하고, 석출물을 여과하여 취했다. 석출물은 감압하 220℃로 가열하여 미반응의 배위자와 용매를 제거하고 L116-Cs 0.22g(74%)을 얻었다. 얻어진 착체의 NMR은 도 17에 나타낸다.0.087 mL (0.5 mmol) of cesium oxide aqueous solution-1.5 mL of methanol was added dropwise, followed by stirring at room temperature. After 1 hour, it was concentrated under reduced pressure, and the precipitate was collected by filtration. The precipitate was heated to 220° C. under reduced pressure to remove the unreacted ligand and the solvent to obtain 0.22 g (74%) of L116-Cs. The NMR of the obtained complex is shown in Fig. 17.

[A-17] 2-(6-(3-(4,6-다이페닐1,3,5-트라이아진-2-일)페닐)피리딘-2-일)페놀레이트 착체(L117-M)의 합성[A-17] 2-(6-(3-(4,6-diphenyl1,3,5-triazin-2-yl)phenyl)pyridin-2-yl)phenolate complex (L117-M) synthesis

[A-17-1] 세슘2-(6-(3-(4,6-다이페닐1,3,5-트라이아진-2-일)페닐)피리딘-2-일)페놀레이트 착체(L117-M)의 합성[A-17-1] Cesium 2-(6-(3-(4,6-diphenyl1,3,5-triazin-2-yl)phenyl)pyridin-2-yl)phenolate complex (L117- Synthesis of M)

(1-17-2) 배위자의 합성: 2-(3-(6-(2-하이드록시페닐)피리딘-2-일)페닐)-4,6-다이페닐-1,3,5-트라이아진(L117)의 합성(1-17-2) Synthesis of ligand: 2-(3-(6-(2-hydroxyphenyl)pyridin-2-yl)phenyl)-4,6-diphenyl-1,3,5-triazine Synthesis of (L117)

(1) L117 중간체의 합성(1) Synthesis of L117 intermediate

Figure 112019010503878-pct00127
Figure 112019010503878-pct00127

상기 (1-16-1)의 (1)에서 합성한 2-(3-(6-(2-벤질옥시페닐)피리딘-2-일)페닐보론산피나콜에스터(M029) 1.85g(200mmol), 2-클로로-4,6-다이페닐-1,3,5-트라이아진 1.07g(4.00mmol), 테트라키스(트라이페닐포스핀)팔라듐 0.14g(0.12mmol), 3M 탄산포타슘 수용액 4mL(12mmol)를 다이옥세인 12mL에 가하고 100℃에서 2시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서에서 농축했다. 얻어진 잔사에 사이클로헥세인을 가하고 생성된 석출물을 여과하여 취하고, 2-(3-(2-(2-벤질옥시페닐)피리딘-6-일)페닐)-4,6-다이페닐-1,3,5-트라이아진 1.77g(78%)을 얻었다.2-(3-(6-(2-benzyloxyphenyl)pyridin-2-yl) phenylboronic acid pinacol ester (M029) 1.85 g (200 mmol) synthesized in (1) of (1-16-1) above , 2-chloro-4,6-diphenyl-1,3,5-triazine 1.07g (4.00mmol), tetrakis (triphenylphosphine) palladium 0.14g (0.12mmol), 3M potassium carbonate aqueous solution 4mL (12mmol) ) Was added to 12 mL of dioxane and stirred for 2 hours at 100° C. After completion of the reaction, water was added and extraction was performed with dichloromethane The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. Sein was added and the resulting precipitate was collected by filtration, and 2-(3-(2-(2-benzyloxyphenyl)pyridin-6-yl)phenyl)-4,6-diphenyl-1,3,5-triazine 1.77g (78%) was obtained.

(2) L117의 합성(2) Synthesis of L117

Figure 112019010503878-pct00128
Figure 112019010503878-pct00128

2-(3-(2-(2-벤질옥시페닐)피리딘-6-일)페닐)-4,6-다이페닐-1,3,5-트라이아진 2.21g(3.89mmol), 10% 팔라듐탄소 0.62g(Pd 0.58mmol)을 아세트산 80mL에 가하고 5% H2-N2 가스 분위기하, 100℃에서 17시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 불용물을 셀라이트를 사용하여 제거했다. 여과액은 감압하 농축했다. 얻어진 잔사는 사이클로헥세인을 가하고 생성된 석출물을 여과하여 취하고, 2-(3-(2-(2-하이드록시페닐)피리딘-6-일)페닐)-4,6-다이페닐-1,3,5-트라이아진(L117) 1.75g(94%)을 얻었다.2-(3-(2-(2-benzyloxyphenyl)pyridin-6-yl)phenyl)-4,6-diphenyl-1,3,5-triazine 2.21g (3.89mmol), 10% palladium carbon 0.62 g (Pd 0.58 mmol) was added to 80 mL of acetic acid, followed by stirring at 100°C for 17 hours in a 5% H 2 -N 2 gas atmosphere. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate was concentrated under reduced pressure. The obtained residue was collected by adding cyclohexane and the resulting precipitate was filtered, and 2-(3-(2-(2-hydroxyphenyl)pyridin-6-yl)phenyl)-4,6-diphenyl-1,3 ,5-triazine (L117) 1.75g (94%) was obtained.

1HNMR(CDCl3) δ6.93-9.37(21H, ArH), 14.71(s, 1H, OH) 1 HNMR (CDCl 3 ) δ6.93-9.37 (21H, ArH), 14.71 (s, 1H, OH)

(1-17-3) 착체의 합성: 세슘2-(6-(3-(4,6-다이페닐1,3,5-트라이아진-2-일)페닐)피리딘-2-일)페놀레이트 착체(L117-Cs)의 합성(1-17-3) Synthesis of complex: cesium 2-(6-(3-(4,6-diphenyl1,3,5-triazin-2-yl)phenyl)pyridin-2-yl)phenolate Synthesis of complex (L117-Cs)

Figure 112019010503878-pct00129
Figure 112019010503878-pct00129

배위자 L117 0.19g(0.4mmol)-톨루엔 현탁액 4mL에 50% 수산화세슘 수용액 0.077mL(0.44mmol)-메탄올 용액 2.2mL를 적하하고 40℃에서 교반했다. 1시간 후, 용액은 감압하에서 농축하고 석출물을 여과하여 취했다. 얻어진 석출물은 감압하 220℃에서 가열하여 용매를 제거하고, L117-Cs 0.11g(47%)을 얻었다. 얻어진 착체의 NMR은 도 18에 나타낸다.To 4 mL of a ligand L117 0.19 g (0.4 mmol)-toluene suspension, 0.077 mL (0.44 mmol) of 50% cesium hydroxide aqueous solution (2.2 mL of a methanol solution) was added dropwise, followed by stirring at 40°C. After 1 hour, the solution was concentrated under reduced pressure, and the precipitate was filtered off. The obtained precipitate was heated at 220° C. under reduced pressure to remove the solvent, and 0.11 g (47%) of L117-Cs was obtained. The NMR of the obtained complex is shown in FIG. 18.

[A-18] 2-(6-(3-(2,6-다이(피리딘-3-일)피리미딘-4-일)페닐)피리딘-2-일)페놀레이트 착체(L118-M)의 합성[A-18] 2-(6-(3-(2,6-di(pyridin-3-yl)pyrimidin-4-yl)phenyl)pyridin-2-yl)phenolate complex (L118-M) synthesis

[A-18-1] 세슘2-(6-(3-(2,6-다이(피리딘-3-일)피리미딘-4-일)페닐)피리딘-2-일)페놀레이트 착체(L118-Cs)의 합성[A-18-1] Cesium 2-(6-(3-(2,6-di(pyridin-3-yl)pyrimidin-4-yl)phenyl)pyridin-2-yl)phenolate complex (L118- Synthesis of Cs)

(1-18-1) 중간 원료의 합성: (1-18-1) Synthesis of intermediate raw materials:

(1) 4-브로모-2,6-다이피리딘-3-일피리미딘(M030)의 합성(1) Synthesis of 4-bromo-2,6-dipyridin-3-ylpyrimidine (M030)

1) 4-아미노-2,6-다이피리딘-3-일피리미딘의 합성1) Synthesis of 4-amino-2,6-dipyridin-3-ylpyrimidine

Figure 112019010503878-pct00130
Figure 112019010503878-pct00130

4-아미노-2,6-다이클로로피리미딘 3.28g(20mmol), 3-피리딜보론산 4.92g(40mmol), PdCl2(dppf)-CH2Cl2 부가체 653mg(0.8mmol), 3M 탄산포타슘 수용액 40mL(120mmol)를 다이옥세인 120mL에 가하고, 100℃에서 33시간 교반했다. 반응 종료 후, 한번 농축하고, 물을 가하고 석출물을 여과하여 취했다. 얻어진 석출물은 톨루엔을 가하고, 불용물을 여과하여 취하고, 4-아미노-2,6-다이피리딘-3-일피리미딘 4.85g(97%)을 얻었다.4-amino-2,6-dichloropyrimidine 3.28 g (20 mmol), 3-pyridyl boronic acid 4.92 g (40 mmol), PdCl 2 (dppf)-CH 2 Cl 2 adduct 653 mg (0.8 mmol), 3M carbonic acid 40 mL (120 mmol) of aqueous potassium solution was added to 120 mL of dioxane, followed by stirring at 100°C for 33 hours. After completion of the reaction, it was concentrated once, water was added, and the precipitate was filtered off. Toluene was added to the obtained precipitate, and the insoluble matter was filtered off to obtain 4.85 g (97%) of 4-amino-2,6-dipyridin-3-ylpyrimidine.

2) 4-브로모-2,6-다이피리딘-3-일피리미딘(M030)의 합성2) Synthesis of 4-bromo-2,6-dipyridin-3-ylpyrimidine (M030)

Figure 112019010503878-pct00131
Figure 112019010503878-pct00131

4-아미노-2,6-다이(피리딘-2-일)피리미딘 4.99g(20mmol), 브로민화구리(II) 5.36g(24mmol)-DMSO 현탁액 60mL에 아질산 tert-뷰틸 2.85mL(ca. 24mmol)-DMSO 용액 40mL를 가하고, 65℃에서 22시간 교반했다. 반응 종료 후, 포화 NaHCO3 수용액 200mL를 가하고 실온에서 1시간 교반했다. 침전은 셀라이트를 사용하여 여과하고, 여과액은 물을 가하고, 다이클로로메테인으로 추출했다. 침전은 다이클로로메테인으로 추출하고, 여과액을 추출한 유기층에 합쳤다. 유기층은 황산 마그네슘으로 건조 후, 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(C300, 다이클로로메테인:메탄올)로 정제하여, 4-브로모-2,6-다이(피리딘-3-일)피리미딘(M030) 1.61g(26%)을 얻었다.4-amino-2,6-di(pyridin-2-yl)pyrimidine 4.99 g (20 mmol), copper (II) bromide 5.36 g (24 mmol)-DMSO suspension in 60 mL of nitrite tert-butyl 2.85 mL (ca. 24 mmol) )-DMSO solution 40mL was added, and it stirred at 65 degreeC for 22 hours. After completion of the reaction, 200 mL of a saturated NaHCO 3 aqueous solution was added, followed by stirring at room temperature for 1 hour. The precipitate was filtered through Celite, and water was added to the filtrate, followed by extraction with dichloromethane. The precipitate was extracted with dichloromethane, and the filtrate was combined with the extracted organic layer. The organic layer was dried over magnesium sulfate and then concentrated. The obtained residue was purified by column chromatography (C300, dichloromethane:methanol) to obtain 1.61 g (26%) of 4-bromo-2,6-di(pyridin-3-yl)pyrimidine (M030). .

(1-18-2) 배위자의 합성: 4-(3-(6-(2-하이드록시페닐)피리딘-2-일)페닐)-2,6-다이(피리딘-3-일)피리미딘(L118)의 합성(1-18-2) Synthesis of ligand: 4-(3-(6-(2-hydroxyphenyl)pyridin-2-yl)phenyl)-2,6-di(pyridin-3-yl)pyrimidine ( L118) synthesis

(1) L118 중간체의 합성(1) Synthesis of L118 intermediate

Figure 112019010503878-pct00132
Figure 112019010503878-pct00132

상기 (1-16-1)의 (1)에서 합성한 3-(6-(2-벤질옥시페닐)피리딘-2-일)페닐보론산피나콜에스터(M029) 2.09g(4.5mmol), 4-브로모-2,6-다이(피리딘-3-일)피리미딘(M030) 1.41g(4.5mmol), PdCl2(dppf)-CH2Cl2 부가체 68mg(0.09mmol), 3M 탄산포타슘 수용액 9mL를 다이옥세인 27mL에 가하고, 2시간 환류했다. 반응 종료 후, 농축하여 얻어진 잔사에 물을 가했다. 다이클로로메테인으로 추출하고, 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사에 아세톤을 가하고 화합물을 결정화했다. 석출한 결정은 여과하여 취하고, 4-(3-(6-(2-벤질옥시페닐)피리딘-2-일)페닐)-2,6-다이(피리딘-3-일)피리미딘 1.34g(52%)을 얻었다.3-(6-(2-benzyloxyphenyl)pyridin-2-yl) phenylboronic acid pinacol ester (M029) synthesized in (1) of (1-16-1) above 2.09 g (4.5 mmol), 4 -Bromo-2,6-di(pyridin-3-yl)pyrimidine (M030) 1.41g (4.5mmol), PdCl 2 (dppf)-CH 2 Cl 2 adduct 68mg (0.09mmol), 3M potassium carbonate aqueous solution 9 mL was added to 27 mL of dioxane and refluxed for 2 hours. After completion of the reaction, water was added to the residue obtained by concentration. Extracted with dichloromethane, the organic layer was dried over magnesium sulfate, and then concentrated under reduced pressure. Acetone was added to the obtained residue to crystallize the compound. The precipitated crystals were collected by filtration, and 4-(3-(6-(2-benzyloxyphenyl)pyridin-2-yl)phenyl)-2,6-di(pyridin-3-yl)pyrimidine 1.34 g (52 %).

(2) L118의 합성(2) Synthesis of L118

Figure 112019010503878-pct00133
Figure 112019010503878-pct00133

4-(3-(6-(2-벤질옥시페닐)피리딘-2-일)페닐)-2,6-다이(피리딘-3-일)피리미딘 1.31g(2.3mmol), 10% 팔라듐탄소 367mg(Pd 0.345mmol), 톨루엔 7.1mL를 아세트산 14.2mL에 가하고, 5% H2-N2 가스 분위기하, 100℃에서 19시간 교반했다. 반응 종료 후, 다이클로로메테인을 가하여 희석하고, 셀라이트를 사용하여 불용물을 제거했다. 여과액은 감압하에서 농축하여, 4-(3-(6-(2-하이드록시페닐)피리딘-2-일)페닐)-2,6-다이(피리딘-3-일)피리미딘(L118) 1.05g(95%)을 얻었다.4-(3-(6-(2-benzyloxyphenyl)pyridin-2-yl)phenyl)-2,6-di(pyridin-3-yl)pyrimidine 1.31g (2.3mmol), 10% palladium carbon 367mg (Pd 0.345 mmol) and 7.1 mL of toluene were added to 14.2 mL of acetic acid, and the mixture was stirred at 100°C for 19 hours in a 5% H 2 -N 2 gas atmosphere. After completion of the reaction, dichloromethane was added and diluted, and insoluble matters were removed using Celite. The filtrate was concentrated under reduced pressure, and 4-(3-(6-(2-hydroxyphenyl)pyridin-2-yl)phenyl)-2,6-di(pyridin-3-yl)pyrimidine (L118) 1.05 g (95%) was obtained.

(1-18-3) 착체의 합성: 세슘2-(6-(3-(2,6-다이(피리딘-3-일)피리미딘-4-일)페닐)피리딘-2-일)페놀레이트 착체(L118-Cs)의 합성(1-18-3) Synthesis of complex: Cesium 2-(6-(3-(2,6-di(pyridin-3-yl)pyrimidin-4-yl)phenyl)pyridin-2-yl)phenolate Synthesis of complex (L118-Cs)

Figure 112019010503878-pct00134
Figure 112019010503878-pct00134

배위자 L118 0.14g(0.3mmol)-톨루엔 현탁액 3mL에, 50% 수산화세슘 수용액 0.052mL(0.3mmol)-메탄올 용액 1.6mL를 적하하고, 실온에서 교반했다. 1시간 후, 반응용액을 감압하에서 농축하고, 잔사에 톨루엔을 가하고, 석출물을 여과하여 취했다. 얻어진 석출물은 감압하 260℃로 가열하여 미반응의 배위자와 용매를 제거하고, L118-Cs 0.15g(83%)을 얻었다. 얻어진 착체의 NMR은 도 19에 나타낸다.To 3 mL of a ligand L118 0.14 g (0.3 mmol)-toluene suspension, 0.052 mL (0.3 mmol) of 50% cesium hydroxide aqueous solution (1.6 mL of a methanol solution) was added dropwise, followed by stirring at room temperature. After 1 hour, the reaction solution was concentrated under reduced pressure, toluene was added to the residue, and the precipitate was collected by filtration. The obtained precipitate was heated to 260° C. under reduced pressure to remove the unreacted ligand and the solvent to obtain 0.15 g (83%) of L118-Cs. The NMR of the obtained complex is shown in FIG. 19.

[A-19] 2-(6-(3-(1,10-펜안트롤린-2-일)페닐)피리딘-2-일)페놀레이트 착체(L119-M)의 합성[A-19] Synthesis of 2-(6-(3-(1,10-phenantholin-2-yl)phenyl)pyridin-2-yl)phenolate complex (L119-M)

[A-19-1] 세슘2-(6-(3-(1,10-펜안트롤린-2-일)페닐)피리딘-2-일)페놀레이트 착체(L119-M)의 합성[A-19-1] Synthesis of cesium 2-(6-(3-(1,10-phenantholin-2-yl)phenyl)pyridin-2-yl)phenolate complex (L119-M)

(1-19-1) 중간 원료의 합성: (1-19-1) Synthesis of intermediate raw materials:

(1) 3-(1,10-펜안트롤린-2-일)페닐보론산피나콜에스터(M031)의 합성(1) Synthesis of 3-(1,10-phenantholin-2-yl)phenylboronic acid pinacol ester (M031)

1) 2-(3-브로모페닐)-1,10-펜안트롤린(CAS No. 224030-72-2, M015)은 Dietrch-Buchecker 등의 방법(Chem. A Eur. J., 11(15), 2005)을 사용하여 합성했다.1) 2-(3-bromophenyl)-1,10-phenanthroline (CAS No. 224030-72-2, M015) was prepared by Dietrch-Buchecker et al. (Chem. A Eur. J., 11(15) ), 2005).

2) 3-(1,10펜안트롤린-2-일)페닐보론산피나콜에스터(M031)의 합성2) Synthesis of 3-(1,10 phenantholin-2-yl) phenylboronic acid pinacol ester (M031)

Figure 112019010503878-pct00135
Figure 112019010503878-pct00135

2-(3-브로모페닐)-1,10펜안트롤린(M015) 1.90g(5.67mmol), 비스(피나콜레이토)다이보론 1.73g(6.8mmol), PdCl2(dppf)-CH2Cl2 부가체 90mg(0.11mmol), 아세트산 포타슘 5.59g(57mmol)을 다이옥세인 11mL에 가하고, 100℃에서 16시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(C300, 다이클로로메테인:메탄올)로 정제를 행하고, 3-(1,10펜안트롤린-2-일)페닐보론산피나콜에스터(M031) 1.42g(65%)을 얻었다.2-(3-bromophenyl)-1,10 phenanthroline (M015) 1.90 g (5.67 mmol), bis (pinacollato) diboron 1.73 g (6.8 mmol), PdCl 2 (dppf)-CH 2 Cl 2 Additive 90 mg (0.11 mmol) and potassium acetate 5.59 g (57 mmol) were added to 11 mL of dioxane, followed by stirring at 100°C for 16 hours. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (C300, dichloromethane: methanol), and 3-(1,10 phenanthroline-2-yl) phenylboronic acid pinacol ester (M031) 1.42 g (65%) Got it.

(1-19-2) 배위자의 합성: 2-(3-(6-(2-하이드록시페닐)피리딘-2-일)페닐)-1,10-펜안트롤린(L119)의 합성(1-19-2) Synthesis of ligand: Synthesis of 2-(3-(6-(2-hydroxyphenyl)pyridin-2-yl)phenyl)-1,10-phenanthroline (L119)

(1) L119 중간체의 합성(1) Synthesis of L119 intermediate

Figure 112019010503878-pct00136
Figure 112019010503878-pct00136

3-(1,10-펜안트롤린-2-일)페닐보론산(M031) 1.70g(5mmol), 상기 (1-14-1)의 (2)에서 합성한 2-브로모-6-(2-벤질옥시페닐)피리딘(M028) 1.91g(5mmol), 테트라키스(트라이페닐포스핀)팔라듐 290mg(0.25mmol), 3M 탄산포타슘 수용액 5mL(15mmol), 에탄올 2.5mL를 톨루엔 25mL에 가하고, 100℃에서 16시간 교반했다. 반응 종료 후, 물을 가하고, 톨루엔으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(NH, 헵테인:다이클로로메테인)로 정제하고, 2-(3-(6-(2-벤질옥시페닐)피리딘-2-일)페닐)-1,10-펜안트롤린 1.27g(50%)을 얻었다.3-(1,10-phenanthrolin-2-yl)phenylboronic acid (M031) 1.70 g (5 mmol), 2-bromo-6- (synthesized in (2) of (1-14-1) above) 2-benzyloxyphenyl) pyridine (M028) 1.91 g (5 mmol), tetrakis (triphenylphosphine) palladium 290 mg (0.25 mmol), 3M potassium carbonate aqueous solution 5 mL (15 mmol), ethanol 2.5 mL was added to 25 mL of toluene, and 100 It stirred at °C for 16 hours. After completion of the reaction, water was added and extraction was performed with toluene. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (NH, heptane:dichloromethane), and 2-(3-(6-(2-benzyloxyphenyl)pyridin-2-yl)phenyl)-1,10-phenane 1.27 g (50%) of troline was obtained.

(2) L119의 합성(2) Synthesis of L119

Figure 112019010503878-pct00137
Figure 112019010503878-pct00137

2-(3-(6-(2-벤질옥시페닐)피리딘-2-일)페닐)-1,10-펜안트롤린 2.10g(4.07mmol), 10% 팔라듐탄소 210mg(Pd 0.2mmol), 톨루엔 4mL를 아세트산 4mL에 가하고, 5% H2-N2 혼합 가스 분위기하, 100℃에서 17시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 셀라이트를 사용하여 불용물을 제거했다. 여과액은 감압하에서 농축하고, 2-(3-(6-(2-하이드록시페닐)피리딘-2-일)페닐)-1,10-펜안트롤린(L119) 1.43g(82%)을 얻었다.2-(3-(6-(2-benzyloxyphenyl)pyridin-2-yl)phenyl)-1,10-phenanthroline 2.10g (4.07mmol), 10% palladium carbon 210mg (Pd 0.2mmol), toluene 4 mL was added to 4 mL of acetic acid, and the mixture was stirred at 100°C for 17 hours in a 5% H 2 -N 2 mixed gas atmosphere. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate was concentrated under reduced pressure to obtain 1.43 g (82%) of 2-(3-(6-(2-hydroxyphenyl)pyridin-2-yl)phenyl)-1,10-phenanthroline (L119). .

(1-19-3) 착체의 합성: 세슘2-(6-(3-(1,10-펜안트롤린-2-일)페닐)피리딘-2-일)페놀레이트 착체(L119-Cs)의 합성(1-19-3) Synthesis of complex: Cesium 2-(6-(3-(1,10-phenantholin-2-yl)phenyl)pyridin-2-yl)phenolate complex (L119-Cs) synthesis

Figure 112019010503878-pct00138
Figure 112019010503878-pct00138

배위자 L119 0.17g(0.4mmol)-톨루엔 용액 8mL에 50% 수산화세슘 수용액 0.070mL(0.4mmol)-메탄올 용액 2mL를 적하하고, 실온에서 교반했다. 1시간 후, 반응용액은 감압하에서 농축했다. 얻어진 잔사에 톨루엔을 가하고, 석출물을 여과하여 취했다. 얻어진 석출물은 감압하 200℃로 가열하여 용매의 제거를 행하고, L119-Cs 0.18g(81%)을 얻었다. 얻어진 착체의 NMR은 도 20에 나타낸다.A 50% aqueous solution of cesium hydroxide 0.070 mL (0.4 mmol)-2 mL of a methanol solution was added dropwise to 8 mL of a ligand L119 0.17 g (0.4 mmol)-toluene solution, followed by stirring at room temperature. After 1 hour, the reaction solution was concentrated under reduced pressure. Toluene was added to the obtained residue, and the precipitate was filtered and taken out. The obtained precipitate was heated to 200° C. under reduced pressure to remove the solvent to obtain 0.18 g (81%) of L119-Cs. The NMR of the obtained complex is shown in FIG. 20.

[A-20] 2-(피리딘-2-일)-4-(1,10-펜안트롤린-2-일)페놀레이트 착체(L120-M)의 합성[A-20] Synthesis of 2-(pyridin-2-yl)-4-(1,10-phenantholin-2-yl)phenolate complex (L120-M)

[A-20-1] 세슘2-(피리딘-2-일)-4-(1,10-펜안트롤린-2-일)페놀레이트 착체(L120-Cs)의 합성[A-20-1] Synthesis of cesium 2-(pyridin-2-yl)-4-(1,10-phenantholin-2-yl)phenolate complex (L120-Cs)

(1-20-1) 중간 원료의 합성: (1-20-1) Synthesis of intermediate raw materials:

(1) 2-클로로-1,10-펜안트롤린(CAS No. 7089-68-1, M016)은 Ferretti 등의 방법(J. Organomet. Chem., 771, 59-67, 2014)을 사용하여 합성했다.(1) 2-chloro-1,10-phenanthroline (CAS No. 7089-68-1, M016) was prepared by Ferretti et al. method (J. Organomet. Chem., 771, 59-67, 2014). Synthesized.

(1-20-2) 배위자의 합성: 2-(5-(1,10-펜안트롤린-2-일)-2-하이드록시페닐)피리딘(L120)의 합성(1-20-2) Synthesis of ligand: Synthesis of 2-(5-(1,10-phenanthrolin-2-yl)-2-hydroxyphenyl)pyridine (L120)

(1) L120 중간체의 합성(1) Synthesis of L120 intermediate

Figure 112019010503878-pct00139
Figure 112019010503878-pct00139

상기 (1-1-1)의 (2)에서 합성한 4-벤질옥시-3-피리딘-2-일페닐보론산피나콜에스터(M024) 3.87g(10mmol), 2-클로로-1,10-펜안트롤린(M016) 2.15g(10mmol), 테트라키스(트라이페닐포스핀)팔라듐 578mg(0.5mmol), 3M 탄산세슘 수용액 10mL(30mmol), 에탄올 3mL를 톨루엔 30mL에 가하고, 100℃에서 24시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 고체는 사이클로헥세인-아세트산 에틸로 재결정을 행하고, 2-(5-(1,10-펜안트롤린-2-일)-2-벤질옥시페닐)피리딘 3.96g(90%)을 얻었다.4-benzyloxy-3-pyridin-2-ylphenylboronic acid pinacol ester synthesized in (2) of (1-1-1) above (M024) 3.87 g (10 mmol), 2-chloro-1,10- Penanthroline (M016) 2.15 g (10 mmol), tetrakis (triphenylphosphine) palladium 578 mg (0.5 mmol), 3M cesium carbonate aqueous solution 10 mL (30 mmol), ethanol 3 mL was added to 30 mL of toluene, and stirred at 100° C. for 24 hours did. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained solid was recrystallized from cyclohexane-ethyl acetate to obtain 3.96 g (90%) of 2-(5-(1,10-phenantholin-2-yl)-2-benzyloxyphenyl)pyridine.

(2) L120의 합성(2) Synthesis of L120

Figure 112019010503878-pct00140
Figure 112019010503878-pct00140

2-(5-(1,10-펜안트롤린-2-일)-2-벤질옥시페닐)피리딘 3.96g(9mmol), 10% 팔라듐탄소 479mg(Pd, 0.45mmol)을 아세트산 50mL에 가하고, 5% H2-N2 혼합 가스 분위기하, 100℃에서 20시간 교반했다. 반응 종료 후, 다이클로로메테인을 가하고, 셀라이트를 사용하여 불용물을 여과 분리했다. 여과액은 감압하에서 농축했다. 얻어진 잔사는 승화 정제를 행하여 2-(5-(1,10-펜안트롤린-2-일)-2-하이드록시페닐)피리딘(L120) 2.82g(90%)을 얻었다.2-(5-(1,10-phenanthrolin-2-yl)-2-benzyloxyphenyl)pyridine 3.96 g (9 mmol), 10% palladium carbon 479 mg (Pd, 0.45 mmol) was added to 50 mL of acetic acid, and 5 The mixture was stirred at 100°C for 20 hours in a% H 2 -N 2 mixed gas atmosphere. After completion of the reaction, dichloromethane was added, and insoluble matters were separated by filtration using Celite. The filtrate was concentrated under reduced pressure. The obtained residue was subjected to sublimation purification to obtain 2.82 g (90%) of 2-(5-(1,10-phenantholin-2-yl)-2-hydroxyphenyl)pyridine (L120).

(1-20-3) 착체의 합성: 세슘2-(피리딘-2-일)-4-(1,10-펜안트롤린-2-일)페놀레이트 착체(L120-Cs)의 합성(1-20-3) Synthesis of complex: Synthesis of cesium 2-(pyridin-2-yl)-4-(1,10-phenantholin-2-yl)phenolate complex (L120-Cs)

Figure 112019010503878-pct00141
Figure 112019010503878-pct00141

배위자 L120 0.28g(0.8mmol)-톨루엔 용액 12mL에, 50% 수산화세슘 수용액 0.14mL-메탄올 용액 4mL를 적하하고, 40℃에서 1시간 교반했다. 얻어진 반응 혼합물은 감압하에서 농축했다. 얻어진 잔사는 감압하, 220℃로 가열하여 용매와 미반응의 배위자를 제거하고, L120-Cs 0.35g(90%)을 얻었다. 얻어진 착체의 NMR은 도 21에 나타낸다.To 12 mL of a 0.28 g (0.8 mmol)-toluene solution of ligand L120, 4 mL of a 50% aqueous solution of cesium hydroxide 0.14 mL-methanol was added dropwise, followed by stirring at 40°C for 1 hour. The obtained reaction mixture was concentrated under reduced pressure. The obtained residue was heated at 220° C. under reduced pressure to remove the solvent and the unreacted ligand, to obtain 0.35 g (90%) of L120-Cs. The NMR of the obtained complex is shown in FIG. 21.

[B] 일반식 (2)로 표시되는 금속 착체[B] Metal complex represented by general formula (2)

[B-1] 5-(1,10-펜안트롤린-2-일)-8-퀴놀레이트 착체(L201-M)의 합성[B-1] Synthesis of 5-(1,10-phenantholin-2-yl)-8-quinolate complex (L201-M)

[B-1-1] 리튬5-(1,10-펜안트롤린-2-일)-8-퀴놀레이트 착체(L201-Li)의 합성[B-1-1] Synthesis of lithium 5-(1,10-phenantholin-2-yl)-8-quinolate complex (L201-Li)

(2-1-1) 중간 원료의 합성: (2-1-1) Synthesis of intermediate raw materials:

(1) 8-벤질옥시퀴놀린-5-일보론산피나콜에스터(M018)의 합성(1) Synthesis of 8-benzyloxyquinoline-5-ylboronic acid pinacol ester (M018)

1) 5-브로모-8-벤질옥시퀴놀린(CAS No. 202259-06-1, M017)은 Omar 등의 방법(J. Chem. Sci. ,127(11), 1937-1943, 2015)을 사용하여 합성했다.1) 5-Bromo-8-benzyloxyquinoline (CAS No. 202259-06-1, M017) was prepared by Omar et al. (J. Chem. Sci., 127(11), 1937-1943, 2015). And synthesized.

2) 8-벤질옥시퀴놀린-5-일보론산피나콜에스터(CAS No. 675880-76-9, M018)는 Ono 등의 방법(WO2011152466)의 3-(4-브로모페닐)피리딘을, 1)에서 합성한 5-브로모-8-벤질옥시퀴놀린으로 바꾸어 합성했다.2) 8-benzyloxyquinoline-5-ylboronic acid pinacol ester (CAS No. 675880-76-9, M018) is 3-(4-bromophenyl)pyridine of the method of Ono et al. (WO2011152466), 1) It was synthesized by replacing it with 5-bromo-8-benzyloxyquinoline synthesized in

(2-1-2) 배위자의 합성: 8-하이드록시-5-(1,10-펜안트롤린-2-일)퀴놀린(L201)의 합성(2-1-2) Synthesis of ligand: Synthesis of 8-hydroxy-5-(1,10-phenantholin-2-yl)quinoline (L201)

(1) L201 중간체의 합성(1) Synthesis of L201 intermediate

Figure 112019010503878-pct00142
Figure 112019010503878-pct00142

8-벤질옥시퀴놀린-5-일보론산피나콜에스터(M018) 361mg(1.0mmol), 상기 (1-20-1)의 (1)에서 합성한 2-클로로-1,10-펜안트롤린(M016) 236mg(1.0mmol), 테트라키스(트라이페닐포스핀)팔라듐 41mg(0.05mmol), 3M 탄산포타슘 수용액 1.0mL, 에탄올 0.6mL를 톨루엔 6mL에 가하고 100℃에서 23시간 교반했다. 반응 종료 후, 물과 톨루엔을 가했다. 불용물은 셀라이트를 사용하여 제거하고, 유기층과 수층으로 분리했다. 유기층은 물로 세정하고, 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(NH, 다이클로로메테인: MeOH)로 정제하고, 8-벤질옥시-5-(1,10-펜안트롤린-2-일)퀴놀린 330mg(79%)을 얻었다.8-benzyloxyquinoline-5-ylboronic acid pinacol ester (M018) 361 mg (1.0 mmol), 2-chloro-1,10-phenanthroline (M016) synthesized in (1) of (1-20-1) ) 236 mg (1.0 mmol), tetrakis (triphenylphosphine) palladium 41 mg (0.05 mmol), 1.0 mL of 3M potassium carbonate aqueous solution, and 0.6 mL of ethanol were added to 6 mL of toluene, followed by stirring at 100° C. for 23 hours. After completion of the reaction, water and toluene were added. The insoluble matter was removed using Celite, and separated into an organic layer and an aqueous layer. The organic layer was washed with water, dried over magnesium sulfate, and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (NH, dichloromethane: MeOH), and 330 mg (79%) of 8-benzyloxy-5-(1,10-phenantholin-2-yl)quinoline was obtained.

(2) L201의 합성(2) Synthesis of L201

Figure 112019010503878-pct00143
Figure 112019010503878-pct00143

8-벤질옥시-5-(1,10-펜안트롤린-2-일)퀴놀린 207mg(0.5mmol), 10% 팔라듐탄소 80mg(Pd 0.075mmol), 톨루엔 1.5mL를 아세트산 3.1mL에 가하고, 5% H2-N2 혼합 가스를 가하면서 100℃에서 18.5시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 불용물을 셀라이트를 사용하여 제거했다. 여과액은 감압하에서 농축하여, 8-하이드록시-5-(1,10-펜안트롤린-2-일)퀴놀린(L201) 145mg(89%)을 얻었다.8-benzyloxy-5-(1,10-phenanthroline-2-yl)quinoline 207 mg (0.5 mmol), 10% palladium carbon 80 mg (Pd 0.075 mmol), and 1.5 mL of toluene were added to 3.1 mL of acetic acid, and 5% It stirred at 100 degreeC for 18.5 hours, adding H 2 -N 2 mixed gas. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate was concentrated under a reduced pressure to obtain 145 mg (89%) of 8-hydroxy-5-(1,10-phenantholin-2-yl)quinoline (L201).

(2-1-3) 착체의 합성: 리튬5-(1,10-펜안트롤린-2-일)-8-퀴놀레이트 착체(L201-Li)의 합성(2-1-3) Synthesis of complex: Synthesis of lithium 5-(1,10-phenantholin-2-yl)-8-quinolate complex (L201-Li)

Figure 112019010503878-pct00144
Figure 112019010503878-pct00144

배위자 L201 0.13g(0.4mmol)-톨루엔 용액 5mL에, 4M 수산화물 리튬 수용액 0.1mL(0.4mmol)-메탄올 용액 2mL를 적하하고 실온에서 교반했다. 1시간 후, 생성된 석출물을 회수했다. 얻어진 석출물은 감압하 220℃로 가열하여 미반응의 배위자와 용매를 제거하고, L201-Li 0.12g(92%)을 얻었다. 얻어진 착체의 NMR은 도 22에 나타낸다.To 5 mL of a 0.13 g (0.4 mmol)-toluene solution of ligand L201, 2 mL of a 0.1 mL (0.4 mmol)-methanol solution of 4 M lithium hydroxide solution was added dropwise, followed by stirring at room temperature. After 1 hour, the generated precipitate was recovered. The obtained precipitate was heated to 220° C. under reduced pressure to remove the unreacted ligand and the solvent to obtain 0.12 g (92%) of L201-Li. The NMR of the obtained complex is shown in FIG. 22.

[B-1-2] 소듐5-(1,10-펜안트롤린-2-일)-8-퀴놀레이트 착체(L201-Na)의 합성[B-1-2] Synthesis of sodium 5-(1,10-phenantholin-2-yl)-8-quinolate complex (L201-Na)

Figure 112019010503878-pct00145
Figure 112019010503878-pct00145

상기 (2-1-2)에서 합성한 배위자 L201 0.13g(0.4mmol)-톨루엔 용액 5mL에, 수산화물 소듐 0.016g(0.4mmol)-메탄올 용액 2mL를 적하하고 실온에서 교반했다. 1시간 후, 생성된 석출물을 회수했다. 얻어진 석출물은 감압하 220℃로 가열하여 미반응의 배위자와 용매를 제거하고, L201-Na 0.12g(90%)을 얻었다. 얻어진 착체의 NMR은 도 22에 나타낸다.To 5 mL of a 0.13 g (0.4 mmol)-toluene solution of ligand L201 synthesized in (2-1-2), 2 mL of a 0.016 g (0.4 mmol)-methanol solution of sodium hydroxide was added dropwise, followed by stirring at room temperature. After 1 hour, the generated precipitate was recovered. The obtained precipitate was heated to 220° C. under reduced pressure to remove the unreacted ligand and the solvent to obtain 0.12 g (90%) of L201-Na. The NMR of the obtained complex is shown in FIG. 22.

[B-1-3] 포타슘5-(1,10-펜안트롤린-2-일)-8-퀴놀레이트 착체(L201-K)의 합성[B-1-3] Synthesis of potassium 5-(1,10-phenantholin-2-yl)-8-quinolate complex (L201-K)

Figure 112019010503878-pct00146
Figure 112019010503878-pct00146

상기 (2-1-2)에서 합성한 배위자 L201 0.13g(0.4mmol)-톨루엔 용액 12mL에, 수산화물 포타슘 0.22g(0.4mmol)-메탄올 용액 2mL를 적하하고 실온에서 교반했다. 1시간 후, 생성된 석출물을 회수했다. 얻어진 석출물은 감압하 220℃로 가열하여 미반응의 배위자와 용매를 제거하고, L201-K 0.10g(84%)을 얻었다. 얻어진 착체의 NMR은 도 22에 나타낸다.To 12 mL of a 0.13 g (0.4 mmol)-toluene solution of ligand L201 synthesized in (2-1-2), 2 mL of a 0.22 g (0.4 mmol)-methanol solution of potassium hydroxide was added dropwise, followed by stirring at room temperature. After 1 hour, the generated precipitate was recovered. The obtained precipitate was heated to 220° C. under reduced pressure to remove the unreacted ligand and the solvent to obtain 0.10 g (84%) of L201-K. The NMR of the obtained complex is shown in FIG. 22.

[B-1-4] 루비듐5-(1,10-펜안트롤린-2-일)-8-퀴놀레이트 착체(L201-Rb)의 합성[B-1-4] Synthesis of rubidium 5-(1,10-phenantholin-2-yl)-8-quinolate complex (L201-Rb)

Figure 112019010503878-pct00147
Figure 112019010503878-pct00147

상기 (2-1-2)에서 합성한 배위자 L201 0.19g(0.6mmol)-톨루엔 용액 12mL에, 50% 수산화물 루비듐 수용액 0.07mL(0.6mmol)-메탄올 용액 3mL를 적하하고 실온에서 교반했다. 1시간 후, 감압하에서 농축하고 석출물을 회수했다. 얻어진 석출물은 감압하 220℃로 가열하여 미반응의 배위자와 용매를 제거하고, L201-Rb 0.21g(84%)을 얻었다. 얻어진 착체의 NMR은 도 22에 나타낸다.To 12 mL of a 0.19 g (0.6 mmol)-toluene solution of ligand L201 synthesized in the above (2-1-2), 0.07 mL (0.6 mmol) of a 50% rubidium hydroxide solution-3 mL of a methanol solution was added dropwise, followed by stirring at room temperature. After 1 hour, it was concentrated under reduced pressure and the precipitate was recovered. The obtained precipitate was heated at 220° C. under reduced pressure to remove the unreacted ligand and the solvent to obtain 0.21 g (84%) of L201-Rb. The NMR of the obtained complex is shown in FIG. 22.

[B-1-5] 세슘5-(1,10-펜안트롤린-2-일)-8-퀴놀레이트 착체(L201-Cs)의 합성[B-1-5] Synthesis of cesium 5-(1,10-phenantholin-2-yl)-8-quinolate complex (L201-Cs)

Figure 112019010503878-pct00148
Figure 112019010503878-pct00148

상기 (2-1-2)에서 합성한 배위자 L201 0.10g(0.3mmol)-톨루엔 용액 3mL에, 50% 수산화물 세슘 수용액 0.05mL(0.3mmol)-메탄올 용액 1.5mL를 적하하고 실온에서 교반했다. 1시간 후, 감압하에서 농축하여 석출물을 회수했다. 얻어진 석출물은 감압하 220℃로 가열하여 미반응의 배위자와 용매를 제거하고, L201-Cs 0.10g(72%)을 얻었다. 얻어진 착체의 NMR은 도 22에 나타낸다.To 3 mL of a 0.10 g (0.3 mmol)-toluene solution of ligand L201 synthesized in the above (2-1-2), 0.05 mL (0.3 mmol) of a 50% cesium hydroxide aqueous solution-1.5 mL of a methanol solution was added dropwise, followed by stirring at room temperature. After 1 hour, it was concentrated under reduced pressure and the precipitate was recovered. The obtained precipitate was heated at 220° C. under reduced pressure to remove the unreacted ligand and the solvent to obtain 0.10 g (72%) of L201-Cs. The NMR of the obtained complex is shown in FIG. 22.

[B-1-6] 바륨 비스(5-(1,10-펜안트롤린-2-일)-8-퀴놀레이트) 착체(L201-Ba)의 합성[B-1-6] Synthesis of barium bis(5-(1,10-phenanthrolin-2-yl)-8-quinolate) complex (L201-Ba)

Figure 112019010503878-pct00149
Figure 112019010503878-pct00149

상기 (2-1-2)에서 합성한 배위자 L201 0.10g(0.3mmol)-에탄올 용액 5mL에 수산화바륨 0.05g(0.15mmol) 수용액 1.5mL를 적하하고 실온에서 교반했다. 1시간 후, 1M 수산화소듐 수용액을 적하하여 pH=11로 하고, 석출물을 여과하여 취했다. 얻어진 석출물은 물로 세정하고, L201-Ba 0.11g(91%)을 얻었다. 얻어진 착체의 NMR은 도 22에 나타낸다.1.5 mL of an aqueous solution of 0.05 g (0.15 mmol) of barium hydroxide was added dropwise to 5 mL of a 0.10 g (0.3 mmol)-ethanol solution of ligand L201 synthesized in (2-1-2), followed by stirring at room temperature. After 1 hour, a 1M aqueous sodium hydroxide solution was added dropwise to make pH=11, and the precipitate was filtered off. The obtained precipitate was washed with water to obtain 0.11 g (91%) of L201-Ba. The NMR of the obtained complex is shown in FIG. 22.

[B-1-7] 베릴륨비스(5-(1,10-펜안트롤린-2-일)-8-퀴놀레이트) 착체(L201-Be)의 합성[B-1-7] Synthesis of beryllium bis(5-(1,10-phenantholin-2-yl)-8-quinolate) complex (L201-Be)

Figure 112019010503878-pct00150
Figure 112019010503878-pct00150

상기 (2-1-2)에서 합성한 배위자 L201 0.13g(0.4mmol)-메탄올 용액 16mL에 황산베릴륨사수화물 0.035g(0.2mmol)-메탄올 용액 4mL를 적하하고 실온에서 교반했다. 5시간 후, 1M 수산화소듐 수용액을 적하하여 pH=12로 하고, 석출물을 여과하여 취했다. 얻어진 석출물은 물로 세정했다. 석출물은 감압하 200℃로 가열하여 미반응의 배위자를 제거하고, L201-Be 0.078g(60%)을 얻었다. 얻어진 착체의 NMR은 도 22에 나타낸다.To 16 mL of a 0.13 g (0.4 mmol)-methanol solution of ligand L201 synthesized in (2-1-2), 4 mL of a 0.035 g (0.2 mmol)-methanol solution of beryllium sulfate was added dropwise, followed by stirring at room temperature. After 5 hours, a 1M aqueous sodium hydroxide solution was added dropwise to make pH=12, and the precipitate was filtered and taken out. The obtained precipitate was washed with water. The precipitate was heated to 200° C. under reduced pressure to remove an unreacted ligand to obtain 0.078 g (60%) of L201-Be. The NMR of the obtained complex is shown in FIG. 22.

[B-2] 5-(3-(1,10-펜안트롤린-2-일)페닐)-8-퀴놀레이트 착체(L202-M)의 합성[B-2] Synthesis of 5-(3-(1,10-phenantholin-2-yl)phenyl)-8-quinolate complex (L202-M)

[B-2-1] 세슘5-(3-(1,10-펜안트롤린-2-일)페닐)-8-퀴놀레이트 착체(L202-Cs)의 합성[B-2-1] Synthesis of cesium 5-(3-(1,10-phenantholin-2-yl)phenyl)-8-quinolate complex (L202-Cs)

(2-2-2) 배위자의 합성: 8-하이드록시-5-(3-(1,10-펜안트롤린-2-일)페닐)퀴놀린(L202)의 합성(2-2-2) Synthesis of ligand: Synthesis of 8-hydroxy-5-(3-(1,10-phenantholin-2-yl)phenyl)quinoline (L202)

(1) L202 중간체의 합성(1) Synthesis of L202 intermediate

Figure 112019010503878-pct00151
Figure 112019010503878-pct00151

상기 (2-1-1)의 (1)에서 합성한 8-벤질옥시퀴놀린-5-일보론산피나콜에스터(M018) 251mg(0.8mmol), 상기 (1-19-1)의 (1)의 1)에서 합성한 2-(3-브로모페닐)-1,10-펜안트롤린(M015) 306mg(0.8mmol), 테트라키스(트라이페닐포스핀)팔라듐 33mg(0.04mmol), 3M 탄산포타슘 수용액 0.8mL(2.4mmol), 에탄올 0.48mL를 톨루엔 4.8mL에 가하고, 100℃에서 16시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(C300, 다이클로로메테인:MeOH)로 정제하여, 8-벤질옥시-5-(3-(1,10-펜안트롤린-2-일)페닐)퀴놀린 264mg(67%)을 얻었다.8-benzyloxyquinoline-5-ylboronic acid pinacol ester (M018) synthesized in (1) of (2-1-1) above, 251 mg (0.8 mmol) of (1) of (1-19-1) above 2-(3-bromophenyl)-1,10-phenanthroline (M015) 306 mg (0.8 mmol) synthesized in 1), tetrakis (triphenylphosphine) palladium 33 mg (0.04 mmol), 3M potassium carbonate aqueous solution 0.8 mL (2.4 mmol) and 0.48 mL of ethanol were added to 4.8 mL of toluene, followed by stirring at 100°C for 16 hours. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (C300, dichloromethane:MeOH), and 8-benzyloxy-5-(3-(1,10-phenantholin-2-yl)phenyl)quinoline 264mg (67%) ).

(2) L202의 합성(2) Synthesis of L202

Figure 112019010503878-pct00152
Figure 112019010503878-pct00152

8-벤질옥시-5-(3-(1,10-펜안트롤린-2-일)페닐)퀴놀린 392mg(0.8mmol), 10% 팔라듐탄소 128mg(Pd 0.12mmol), 톨루엔 2.5mL를 아세트산 5mL에 가하고, 5% H2-N2 혼합 가스 분위기하, 100℃에서 16시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 셀라이트를 사용하여 불용물을 제거했다. 얻어진 여과액은 감압하에서 농축하고, 컬럼 크로마토그래피(PEI, 다이클로로메테인: MeOH)로 정제하여, 8-하이드록시-5-(3-(1,10-펜안트롤린-2-일)페닐)퀴놀린(L202) 195mg(61%)을 얻었다.8-benzyloxy-5-(3-(1,10-phenanthrolin-2-yl)phenyl)quinoline 392mg (0.8mmol), 10% palladium carbon 128mg (Pd 0.12mmol), toluene 2.5mL to 5mL acetic acid Then, the mixture was stirred at 100°C for 16 hours in a 5% H 2 -N 2 mixed gas atmosphere. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The obtained filtrate was concentrated under reduced pressure and purified by column chromatography (PEI, dichloromethane: MeOH), and 8-hydroxy-5-(3-(1,10-phenantholin-2-yl)phenyl ) Quinoline (L202) 195mg (61%) was obtained.

(2-2-3) 착체의 합성: 세슘5-(3-(1,10-펜안트롤린-2-일)페닐)-8-퀴놀레이트 착체(L202-Cs)의 합성(2-2-3) Synthesis of complex: Synthesis of cesium 5-(3-(1,10-phenantholin-2-yl)phenyl)-8-quinolate complex (L202-Cs)

Figure 112019010503878-pct00153
Figure 112019010503878-pct00153

배위자 L202 0.32g(0.8mmol)-톨루엔 용액 8mL에 50% 수산화세슘 수용액 0.14mL(0.8mmol)-메탄올 용액 4mL를 적하하고 실온에서 교반했다. 1시간 후, 반응용액은 감압하에서 농축하고, 석출물을 회수했다. 석출물은 감압하 200℃로 가열하여 용매를 제거하고, L202-Cs 0.31g(74%)을 얻었다. 얻어진 착체의 NMR은 도 23에 나타낸다.To 8 mL of a ligand L202 0.32 g (0.8 mmol)-toluene solution, 0.14 mL (0.8 mmol)-methanol solution of 50% cesium hydroxide solution was added dropwise, followed by stirring at room temperature. After 1 hour, the reaction solution was concentrated under reduced pressure, and the precipitate was recovered. The precipitate was heated to 200° C. under reduced pressure to remove the solvent, and 0.31 g (74%) of L202-Cs was obtained. The NMR of the obtained complex is shown in FIG. 23.

[B-2-2] 바륨비스(5-(3-(1,10-펜안트롤린-2-일)페닐)-8-퀴놀레이트) 착체(L202-Ba)의 합성[B-2-2] Synthesis of barium bis(5-(3-(1,10-phenantholin-2-yl)phenyl)-8-quinolate) complex (L202-Ba)

Figure 112019010503878-pct00154
Figure 112019010503878-pct00154

상기 (2-2-2)에서 합성한 배위자 L202 0.24g(0.6mmol)-에탄올 현탁액 12mL에, 수산화바륨 0.095g(0.3mmol) 수용액 3mL를 적하하고 실온에서 교반했다. 1시간 후, 1M 수산화소듐 수용액을 적하하고 pH=11로 조정했다. 생성된 석출물은 여과하여 취한 후, 석출물은 물로 세정하고, L202-Ba 0.27g(95%)을 얻었다. 얻어진 착체의 NMR은 도 23에 나타낸다.To 12 mL of a 0.24 g (0.6 mmol)-ethanol suspension of ligand L202 synthesized in (2-2-2), 3 mL of an aqueous solution of 0.095 g (0.3 mmol) of barium was added dropwise, followed by stirring at room temperature. After 1 hour, a 1M aqueous sodium hydroxide solution was added dropwise to adjust the pH to 11. The produced precipitate was collected by filtration, and the precipitate was washed with water to obtain 0.27 g (95%) of L202-Ba. The NMR of the obtained complex is shown in FIG. 23.

[B-3] 5,7-비스(4-(피리딘-3-일)페닐)-8-퀴놀레이트 착체(L203-M)의 합성[B-3] Synthesis of 5,7-bis(4-(pyridin-3-yl)phenyl)-8-quinolate complex (L203-M)

[B-3-1] 리튬5,7-비스(4-(피리딘-3-일)페닐)-8-퀴놀레이트 착체(L203-Li)의 합성[B-3-1] Synthesis of lithium 5,7-bis(4-(pyridin-3-yl)phenyl)-8-quinolate complex (L203-Li)

(2-3-1) 중간 원료의 합성: (2-3-1) Synthesis of intermediate raw materials:

(1) 5,7-다이브로모-8-벤질옥시퀴놀린(CAS No. 84165-50-4, M019)은 Sakai 등의 방법(Chem. Commun., 51(15), 3181-3184, 2015)을 2-(2-하이드록시페닐)벤조옥사졸을 5,7-다이브로모-8-하이드록시퀴놀린으로 바꾸어 합성했다.(1) 5,7-dibromo-8-benzyloxyquinoline (CAS No. 84165-50-4, M019) was prepared by the method of Sakai et al. (Chem. Commun., 51(15), 3181-3184, 2015). It was synthesized by replacing 2-(2-hydroxyphenyl)benzooxazole with 5,7-dibromo-8-hydroxyquinoline.

(2-3-2) 배위자의 합성: 8-하이드록시-5,7-비스(4-피리딘-3-일페닐)퀴놀린(L203)의 합성(2-3-2) Synthesis of ligand: Synthesis of 8-hydroxy-5,7-bis(4-pyridin-3-ylphenyl)quinoline (L203)

(1) L203 중간체의 합성(1) Synthesis of L203 intermediate

Figure 112019010503878-pct00155
Figure 112019010503878-pct00155

5,7-다이브로모-8-벤질옥시퀴놀린(M019) 2.36g(6mmol), 상기 (1-5-1)의 (1)에서 합성한 4-피리딘-3-일페닐보론산피나콜에스터(M005) 4.05g(14.4mmol), 테트라키스(트라이페닐포스핀)팔라듐 416mg(0.36mmol), 2M 탄산소듐 수용액 12mL(24mmol)를 다이옥세인 36mL에 가하고, 100℃에서 16시간 반응했다. 반응 종료 후, 다이클로로메테인으로 추출하고, 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(PEI, 헵테인:다이클로로메테인)로 정제하고, 황색 고체 3.53g을 얻었다. 얻어진 고체는 아세트산 에틸, 계속해서 사이클로헥세인으로 재결정을 행하여, 8-벤질옥시-5,7-비스(4-피리딘-3-일페닐)퀴놀린 2.50g(77%)을 얻었다.5,7-dibromo-8-benzyloxyquinoline (M019) 2.36 g (6 mmol), 4-pyridin-3-ylphenylboronic acid pinacol ester synthesized in (1) of (1-5-1) above ( M005) 4.05 g (14.4 mmol), tetrakis (triphenylphosphine) palladium 416 mg (0.36 mmol), 2M sodium carbonate aqueous solution 12 mL (24 mmol) was added to 36 mL of dioxane, and reacted at 100° C. for 16 hours. After completion of the reaction, extraction was performed with dichloromethane, and the organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (PEI, heptane:dichloromethane) to obtain 3.53 g of a yellow solid. The obtained solid was recrystallized from ethyl acetate and then cyclohexane to obtain 2.50 g (77%) of 8-benzyloxy-5,7-bis(4-pyridin-3-ylphenyl)quinoline.

(2) L203의 합성(2) Synthesis of L203

Figure 112019010503878-pct00156
Figure 112019010503878-pct00156

8-벤질옥시-5,7-비스(4-피리딘3-일)퀴놀린 975mg(1.8mmmol), 10% 팔라듐탄소 287mg(0.27mmol)을 아세트산 27mL에 가하고, 5% H2-N2 혼합 가스를 흘리면서 80℃에서 5.5시간 교반했다. 반응 종료 후, 다이클로로메테인을 가하고 NaHCO3 수용액으로 중화했다. 중화한 용액은 셀라이트로 여과하고, 여과액은 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(PEI, 헵테인:다이클로로메테인)로 정제하여, 백색 고체 736mg(90%)을 얻었다. 얻어진 결정은 또한 아세트산 에틸-헵테인으로 재결정을 행하고, 8-하이드록시-5,7-비스(4-피리딘-3-일페닐)퀴놀린(L203) 633mg(77%)을 얻었다.8-benzyloxy-5,7-bis(4-pyridin3-yl)quinoline 975 mg (1.8 mmmol), 10% palladium carbon 287 mg (0.27 mmol) was added to 27 mL of acetic acid, and 5% H 2 -N 2 mixed gas It stirred at 80 degreeC for 5.5 hours, flowing. After completion of the reaction, dichloromethane was added and neutralized with an aqueous NaHCO 3 solution. The neutralized solution was filtered through Celite, and the filtrate was extracted with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (PEI, heptane:dichloromethane) to obtain 736 mg (90%) of a white solid. The obtained crystal was further recrystallized with ethyl acetate-heptane to obtain 633 mg (77%) of 8-hydroxy-5,7-bis(4-pyridin-3-ylphenyl)quinoline (L203).

(2-3-3) 착체의 합성: 리튬 5,7-비스(4-(피리딘-3-일)페닐)-8-퀴놀레이트 착체(L203-Li)의 합성(2-3-3) Synthesis of complex: Synthesis of lithium 5,7-bis(4-(pyridin-3-yl)phenyl)-8-quinolate complex (L203-Li)

Figure 112019010503878-pct00157
Figure 112019010503878-pct00157

배위자 L203 0.18g(0.4mmol)-메탄올 현탁액 4mL에, 4M 수산화리튬 수용액 0.1mL(0.4mmol)-메탄올 용액 1mL를 적하하고, 실온에서 교반했다. 2시간 후 반응용액은 감압하에서 농축했다. 얻어진 잔사에 톨루엔을 가하고, 석출물을 여과하여 취하고, L203-Li 0.21g(117%)을 얻었다. 얻어진 착체의 NMR은 도 24에 나타낸다.To 4 mL of a ligand L203 0.18 g (0.4 mmol)-methanol suspension, 1 mL of a 4 M lithium hydroxide aqueous solution 0.1 mL (0.4 mmol)-methanol solution was added dropwise, followed by stirring at room temperature. After 2 hours, the reaction solution was concentrated under reduced pressure. Toluene was added to the obtained residue, and the precipitate was filtered off to obtain 0.21 g (117%) of L203-Li. The NMR of the obtained complex is shown in FIG. 24.

[B-3-2] 소듐5,7-비스(4-(피리딘-3-일)페닐)-8-퀴놀레이트 착체(L203-Na)의 합성[B-3-2] Synthesis of sodium 5,7-bis(4-(pyridin-3-yl)phenyl)-8-quinolate complex (L203-Na)

Figure 112019010503878-pct00158
Figure 112019010503878-pct00158

상기 (2-3-2)에서 합성한 배위자 L203 0.19g(0.42mmol)-메탄올 현탁액 4.4mL에, 수산화소듐 0.02g(0.4mmol)-메탄올 용액 1mL를 적하하고, 실온에서 교반했다. 2시간 후, 반응용액은 감압하에서 농축했다. 얻어진 잔사에 톨루엔을 가하고, 석출물을 여과하여 취하고, L203-Na 0.18g(93%)을 얻었다. 얻어진 착체의 NMR은 도 24에 나타낸다.To 4.4 mL of a 0.19 g (0.42 mmol)-methanol suspension of ligand L203 synthesized in (2-3-2), 1 mL of a 0.02 g (0.4 mmol)-methanol solution of sodium hydroxide was added dropwise, followed by stirring at room temperature. After 2 hours, the reaction solution was concentrated under reduced pressure. Toluene was added to the obtained residue, and the precipitate was collected by filtration to give 0.18 g (93%) of L203-Na. The NMR of the obtained complex is shown in FIG. 24.

[B-3-3] 포타슘 5,7-비스(4-(피리딘-3-일)페닐)-8-퀴놀레이트 착체(L203-K)의 합성[B-3-3] Synthesis of potassium 5,7-bis(4-(pyridin-3-yl)phenyl)-8-quinolate complex (L203-K)

Figure 112019010503878-pct00159
Figure 112019010503878-pct00159

상기 (2-3-2)에서 합성한 배위자 L203 0.19g(0.42mmol)-메탄올 현탁액 4.4mL에, 수산화포타슘 0.026g(0.4mmol)-메탄올 용액 2mL를 적하하고, 실온에서 교반했다. 2시간 후 반응용액은 감압하에서 농축했다. 얻어진 잔사에 톨루엔을 가하고, 석출물을 여과하여 취하고, L203-K 0.17g(84%)을 얻었다. 얻어진 착체의 NMR은 도 24에 나타낸다.To 4.4 mL of a 0.19 g (0.42 mmol)-methanol suspension of ligand L203 synthesized in (2-3-2), 2 mL of a 0.026 g (0.4 mmol)-methanol solution of potassium hydroxide was added dropwise, followed by stirring at room temperature. After 2 hours, the reaction solution was concentrated under reduced pressure. Toluene was added to the obtained residue, and the precipitate was collected by filtration to obtain 0.17 g (84%) of L203-K. The NMR of the obtained complex is shown in FIG. 24.

[B-3-4] 루비듐5,7-비스(4-(피리딘-3-일)페닐)-8-퀴놀레이트 착체(L203-Rb)의 합성[B-3-4] Synthesis of rubidium 5,7-bis(4-(pyridin-3-yl)phenyl)-8-quinolate complex (L203-Rb)

Figure 112019010503878-pct00160
Figure 112019010503878-pct00160

상기 (2-3-2)에서 합성한 배위자 L203 0.19g(0.42mmol)-메탄올 현탁액 4.4mL에, 50% 수산화루비듐 수용액 0.05mL(0.4mmol)-메탄올 용액 2mL를 적하하고, 실온에서 교반했다. 2시간 후 반응용액은 감압하에서 농축했다. 얻어진 잔사에 톨루엔을 가하고, 석출물을 여과하여 취하고, L203-Rb 0.21g(97%)을 얻었다. 얻어진 착체의 NMR은 도 24에 나타낸다.To 4.4 mL of a 0.19 g (0.42 mmol)-methanol suspension of ligand L203 synthesized in (2-3-2), a 0.05 mL (0.4 mmol)-methanol solution of 50% rubidium hydroxide was added dropwise, followed by stirring at room temperature. After 2 hours, the reaction solution was concentrated under reduced pressure. Toluene was added to the obtained residue, and the precipitate was collected by filtration to obtain 0.21 g (97%) of L203-Rb. The NMR of the obtained complex is shown in FIG. 24.

[B-3-5] 세슘 5,7-비스(4-(피리딘-3-일)페닐)-8-퀴놀레이트 착체(L203-Cs)의 합성[B-3-5] Synthesis of cesium 5,7-bis(4-(pyridin-3-yl)phenyl)-8-quinolate complex (L203-Cs)

Figure 112019010503878-pct00161
Figure 112019010503878-pct00161

상기 (2-3-2)에서 합성한 배위자 L203 0.19g(0.42mmol)-메탄올 현탁액 4.4mL에, 50% 수산화세슘 수용액 0.07mL(0.4mmol)-메탄올 용액 2mL를 적하하고, 실온에서 교반했다. 2시간 후 반응용액은 감압하에서 농축했다. 얻어진 잔사에 톨루엔을 가하고, 석출물을 여과하여 취하고, L203-Cs 0.21g(91%)을 얻었다. 얻어진 착체의 NMR은 도 24에 나타낸다.To 4.4 mL of a 0.19 g (0.42 mmol)-methanol suspension of ligand L203 synthesized in (2-3-2), a 0.07 mL (0.4 mmol)-methanol solution of 50% cesium hydroxide was added dropwise, followed by stirring at room temperature. After 2 hours, the reaction solution was concentrated under reduced pressure. Toluene was added to the obtained residue, and the precipitate was filtered off to obtain 0.21 g (91%) of L203-Cs. The NMR of the obtained complex is shown in FIG. 24.

[B-3-6] 바륨비스(5,7-비스(4-(피리딘-3-일)페닐)-8-퀴놀레이트) 착체(L203-Ba)의 합성[B-3-6] Synthesis of barium bis(5,7-bis(4-(pyridin-3-yl)phenyl)-8-quinolate) complex (L203-Ba)

Figure 112019010503878-pct00162
Figure 112019010503878-pct00162

상기 (2-3-2)에서 합성한 배위자 L203 0.14g(0.3mmol)-에탄올 현탁액 3mL에, 수산화바륨 0.05g(0.15mmol) 수용액을 적하하고, 실온에서 교반을 행했다. 1시간 후, 1M 수산화소듐 수용액을 적하하여 pH=11로 조정했다. 생성된 석출물은 여과하여 취하고, 감압하 300℃로 가열하여 미반응의 배위자를 제거하고, L203-Ba 0.12g(75%)을 얻었다. 얻어진 착체의 NMR은 도 24에 나타낸다.To 3 mL of a 0.14 g (0.3 mmol)-ethanol suspension of ligand L203 synthesized in (2-3-2), an aqueous solution of 0.05 g (0.15 mmol) of barium hydroxide was added dropwise, followed by stirring at room temperature. After 1 hour, a 1M aqueous sodium hydroxide solution was added dropwise to adjust the pH to 11. The produced precipitate was collected by filtration and heated to 300° C. under reduced pressure to remove an unreacted ligand, and 0.12 g (75%) of L203-Ba was obtained. The NMR of the obtained complex is shown in FIG. 24.

[B-4] 2-(3-(2,6-다이페닐피리미딘-4-일)페닐)-8-퀴놀레이트 착체(L204-M)의 합성[B-4] Synthesis of 2-(3-(2,6-diphenylpyrimidin-4-yl)phenyl)-8-quinolate complex (L204-M)

[B-4-1] 세슘2-(3-(2,6-다이페닐피리미딘-4-일)페닐)-8-퀴놀레이트 착체(L204-Cs)의 합성[B-4-1] Synthesis of cesium 2-(3-(2,6-diphenylpyrimidin-4-yl)phenyl)-8-quinolate complex (L204-Cs)

(2-4-1) 중간 원료의 합성: (2-4-1) Synthesis of intermediate raw materials:

(1) 3-(8-벤질옥시퀴놀린-2-일)페닐보론산피나콜에스터(M032)의 합성(1) Synthesis of 3-(8-benzyloxyquinolin-2-yl)phenylboronic acid pinacol ester (M032)

1) 8-벤질옥시퀴놀린(CAS No. 84165-42-4, M020)은 Sakai 등의 방법(Chem. Commun., 51(15), 3181-3184, 2015)을 2-(2-하이드록시페닐)벤조옥사졸을 8-하이드록시퀴놀린으로 바꾸어 합성했다.1) 8-benzyloxyquinoline (CAS No. 84165-42-4, M020) is a method of Sakai et al. (Chem. Commun., 51(15), 3181-3184, 2015) and 2-(2-hydroxyphenyl) ) It was synthesized by replacing benzoxazole with 8-hydroxyquinoline.

2) 2-(3-브로모페닐)-8-벤질옥시퀴놀린의 합성2) Synthesis of 2-(3-bromophenyl)-8-benzyloxyquinoline

Figure 112019010503878-pct00163
Figure 112019010503878-pct00163

0℃에서 1,3-다이브로모벤젠 14.2g(60mmol)-다이에틸에터 용액 120mL에 2.5mn-뷰틸리튬-헥세인 용액 24mL(60mmol)를 가하고, 0℃에서 30분간 교반했다. 계속해서 8-벤질옥시퀴놀린 9.41g(40mmol)-다이에틸에터 용액 60mL를 가하고, 0℃에서 교반했다. 2.5시간 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조하고, 감압하에서 농축했다. 얻어진 잔사는 다이클로로메테인 60mL를 가하여 용해하고, 이산화망간 34.8g(400mmol)을 가하고, 실온에서 1시간 교반했다. 반응 종료 후, 셀라이트를 사용하여 불용물을 제거하고, 여과액에 물을 가하고, 다이클로로메테인으로 추출했다. 얻어진 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(C300, 다이클로로메테인:헵테인)로 정제하여, 2-(3-브로모페닐)-8-벤질옥시퀴놀린 7.46g(48%)을 얻었다.To 120 mL of 1,3-dibromobenzene 14.2 g (60 mmol)-diethyl ether solution at 0°C, 24 mL (60 mmol) of 2.5 mn-butyllithium-hexane solution was added, followed by stirring at 0°C for 30 minutes. Then, 60 mL of a solution of 9.41 g (40 mmol)-diethyl ether of 8-benzyloxyquinoline was added, followed by stirring at 0°C. After 2.5 hours, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained residue was dissolved by adding 60 mL of dichloromethane, 34.8 g (400 mmol) of manganese dioxide was added, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, celite was used to remove insoluble matters, water was added to the filtrate, and extraction was performed with dichloromethane. The obtained organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (C300, dichloromethane:heptane) to obtain 7.46 g (48%) of 2-(3-bromophenyl)-8-benzyloxyquinoline.

3) 3-(8-벤질옥시퀴놀린-2-일)페닐보론산피나콜에스터(M032)의 합성3) Synthesis of 3-(8-benzyloxyquinolin-2-yl)phenylboronic acid pinacol ester (M032)

Figure 112019010503878-pct00164
Figure 112019010503878-pct00164

2-(3-브로모페닐)-8-벤질옥시퀴놀린 7.46g(19.1mmol), 비스(피나콜레이토)다이보론 5.82g(22.9mmol), PdCl2(dppf)-CH2Cl2 부가체 234mg(0.287mmol), 아세트산 포타슘 18.6g(190mmol)을 다이옥세인 40mL에 가하고, 100℃에서 16시간 교반했다. 반응 종료 후, 물을 가하고, 톨루엔으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(C300, 다이클로로메테인:헵테인)로 정제를 행하여 3-(8-벤질옥시퀴놀린-2-일)페닐보론산피나콜에스터(M032) 8.37g(100%)을 얻었다.2-(3-bromophenyl)-8-benzyloxyquinoline 7.46g (19.1mmol), bis(pinacollato)diboron 5.82g(22.9mmol), PdCl 2 (dppf)-CH 2 Cl 2 adduct 234 mg (0.287 mmol) and potassium acetate 18.6 g (190 mmol) were added to 40 mL of dioxane, and the mixture was stirred at 100°C for 16 hours. After completion of the reaction, water was added and extraction was performed with toluene. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (C300, dichloromethane:heptane) to obtain 8.37 g (100%) of 3-(8-benzyloxyquinolin-2-yl) phenylboronic acid pinacol ester (M032). Got it.

(2-4-2) 배위자의 합성: 4-(3-(8-하이드록시퀴놀린-2-일)페닐)-2,6-다이페닐피리미딘(L204)의 합성(2-4-2) Synthesis of ligand: 4-(3-(8-hydroxyquinolin-2-yl)phenyl)-2,6-diphenylpyrimidine (L204) synthesis

(1) L204 중간체의 합성(1) Synthesis of L204 intermediate

Figure 112019010503878-pct00165
Figure 112019010503878-pct00165

3-(8-벤질옥시퀴놀린-2-일)페닐보론산피나콜에스터(M032) 3.06g(7mmol), 4-브로모-2,4-다이페닐피리미딘 3.27g(10.5mmol), 테트라키스(트라이페닐포스핀)팔라듐 243mg(0.21mmol), 3M 탄산포타슘 수용액 7mL(21mmol)를 다이옥세인 21mL에 가하고, 100℃에서 15시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(NH, 다이클로로메테인:헵테인)로 정제를 행하고, 얻어진 고체를 톨루엔-사이클로헥세인으로 재결정을 행하여 4-(3-(8-벤질옥시퀴놀린-2-일)페닐)-2,6-다이페닐피리미딘 2.41g(64%)을 얻었다.3-(8-benzyloxyquinolin-2-yl) phenylboronic acid pinacol ester (M032) 3.06g (7mmol), 4-bromo-2,4-diphenylpyrimidine 3.27g (10.5mmol), tetrakis (Triphenylphosphine) 243 mg (0.21 mmol) of palladium and 7 mL (21 mmol) of 3M potassium carbonate aqueous solution were added to 21 mL of dioxane, followed by stirring at 100°C for 15 hours. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (NH, dichloromethane:heptane), and the obtained solid was recrystallized from toluene-cyclohexane, and 4-(3-(8-benzyloxyquinolin-2-yl) Phenyl)-2,6-diphenylpyrimidine 2.41g (64%) was obtained.

(2) L204의 합성(2) Synthesis of L204

Figure 112019010503878-pct00166
Figure 112019010503878-pct00166

4-(3-(8-벤질옥시퀴놀린-2-일)페닐)-2,6-다이페닐피리미딘 2.42g(4.47mmol), 10% 팔라듐탄소 713mg(Pd 0.67mmol), 톨루엔 5mL를 아세트산 10mL에 가하고, 5% H2-N2 혼합 가스 분위기하, 100℃에서 24시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 셀라이트를 사용하여 불용물을 제거했다. 여과액은 감압하에서 농축하고, 4-(3-(8-하이드록시퀴놀린-2-일)페닐)-2,6-다이페닐피리미딘(L204) 1.60g(78%)을 얻었다.4-(3-(8-benzyloxyquinolin-2-yl)phenyl)-2,6-diphenylpyrimidine 2.42 g (4.47 mmol), 10% palladium carbon 713 mg (Pd 0.67 mmol), toluene 5 mL, acetic acid 10 mL And stirred at 100° C. for 24 hours in a 5% H 2 -N 2 mixed gas atmosphere. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate was concentrated under a reduced pressure to obtain 1.60 g (78%) of 4-(3-(8-hydroxyquinolin-2-yl)phenyl)-2,6-diphenylpyrimidine (L204).

(2-4-3) 착체의 합성: 세슘2-(3-(2,6-다이페닐피리미딘-4-일)페닐)-8-퀴놀레이트 착체(L204-Cs)의 합성(2-4-3) Synthesis of complex: Synthesis of cesium 2-(3-(2,6-diphenylpyrimidin-4-yl)phenyl)-8-quinolate complex (L204-Cs)

Figure 112019010503878-pct00167
Figure 112019010503878-pct00167

배위자 L204 0.32mg(0.7mmol)-톨루엔 현탁액 7mL에, 50% 수산화세슘 수용액 0.12mL(0.7mmol)-메탄올 용액 3.5mL를 적하하고, 실온에서 교반했다. 1시간 후, 반응용액을 감압하에서 농축하고, 석출물을 여과하여 취했다. 얻어진 석출물은 감압하 300℃로 가열하여 미반응의 배위자와 용매를 제거하고, L204-Cs 0.38g(94%)을 얻었다. 얻어진 착체의 NMR은 도 25에 나타낸다.To 7 mL of a ligand L204 0.32 mg (0.7 mmol) -toluene suspension, a 50% aqueous cesium hydroxide solution 0.12 mL (0.7 mmol) -3.5 mL of a methanol solution was added dropwise, followed by stirring at room temperature. After 1 hour, the reaction solution was concentrated under reduced pressure, and the precipitate was collected by filtration. The obtained precipitate was heated to 300°C under reduced pressure to remove the unreacted ligand and the solvent to obtain 0.38 g (94%) of L204-Cs. The NMR of the obtained complex is shown in FIG. 25.

[B-5] 2-(3-(4,6-다이페닐-1,3,5-트라이아진-2-일)페닐)-8-퀴놀레이트 착체(L205-M)의 합성[B-5] Synthesis of 2-(3-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-8-quinolate complex (L205-M)

[B-5-1] 세슘2-(3-(4,6-다이페닐-1,3,5-트라이아진-2-일)페닐)-8-퀴놀레이트 착체(L205-Cs)의 합성[B-5-1] Synthesis of cesium 2-(3-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-8-quinolate complex (L205-Cs)

(2-5-2) 배위자의 합성: 4-(3-(8-하이드록시퀴놀린-2-일)페닐)-2,6-다이페닐-1,3,5-트라이아진(L205)의 합성(2-5-2) Synthesis of ligand: 4-(3-(8-hydroxyquinolin-2-yl)phenyl)-2,6-diphenyl-1,3,5-triazine (L205) synthesis

(1) L205 중간체의 합성(1) Synthesis of L205 intermediate

Figure 112019010503878-pct00168
Figure 112019010503878-pct00168

상기 (2-4-1)의 (1)에서 합성한 3-(8-벤질옥시퀴놀린-2-일)페닐보론산피나콜에스터(M032) 3.06g(7mmol), 2-클로로-4,6-다이페닐-1,3,5-트라이아진 2.81g(10.5mmol), 테트라키스(트라이페닐포스핀)팔라듐 243mg(0.21mmol), 3M 탄산포타슘 수용액 7mL(21mmol)를 다이옥세인 21mL에 가하고, 100℃에서 16시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(NH, 다이클로로메테인:헵테인)로 정제를 행하고, 얻어진 잔사는 톨루엔-사이클로헥세인으로 재결정을 행하고, 4-(3-(8-벤질옥시퀴놀린-2-일)페닐)-2,6-다이페닐-1,3,5-트라이아진 2.42g(64%)을 얻었다.3-(8-benzyloxyquinolin-2-yl) phenylboronic acid pinacol ester synthesized in (1) of (2-4-1) (M032) 3.06 g (7 mmol), 2-chloro-4,6 -Diphenyl-1,3,5-triazine 2.81g (10.5mmol), tetrakis (triphenylphosphine) palladium 243mg (0.21mmol), 3M potassium carbonate aqueous solution 7mL (21mmol) was added to 21mL of dioxane, 100 It stirred at °C for 16 hours. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (NH, dichloromethane:heptane), and the obtained residue was recrystallized from toluene-cyclohexane, and 4-(3-(8-benzyloxyquinolin-2-yl) )Phenyl)-2,6-diphenyl-1,3,5-triazine 2.42g (64%) was obtained.

(2) L205의 합성(2) Synthesis of L205

Figure 112019010503878-pct00169
Figure 112019010503878-pct00169

4-(3-(8-벤질옥시퀴놀린-2-일)페닐)-2,6-다이페닐-1,3,5-트라이아진 2.42g(4.46mmol), 10% 팔라듐탄소 713mg(Pd 0.67mmol), 톨루엔 5mL를 아세트산 10mL에 가하고, 5% H2-N2 혼합 가스 분위기하 100℃에서 16시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 셀라이트를 사용하여 불용물을 제거했다. 여과액은 감압하에서 농축하고, 4-(3-(8-하이드록시퀴놀린-2-일)페닐)-2,6-다이페닐-1,3,5-트라이아진(L205) 1.38g(70%)을 얻었다.4-(3-(8-benzyloxyquinolin-2-yl)phenyl)-2,6-diphenyl-1,3,5-triazine 2.42g (4.46mmol), 10% palladium carbon 713mg (Pd 0.67mmol ), 5 mL of toluene was added to 10 mL of acetic acid, and the mixture was stirred at 100°C for 16 hours in a 5% H 2 -N 2 mixed gas atmosphere. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate was concentrated under reduced pressure, and 4-(3-(8-hydroxyquinolin-2-yl)phenyl)-2,6-diphenyl-1,3,5-triazine (L205) 1.38 g (70%) ).

(2-5-3) 착체의 합성: 세슘2-(3-(4,6-다이페닐-1,3,5-트라이아진-2-일)페닐)-8-퀴놀레이트 착체(L205-Cs)의 합성(2-5-3) Synthesis of complex: cesium 2-(3-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-8-quinolate complex (L205-Cs ) Synthesis

Figure 112019010503878-pct00170
Figure 112019010503878-pct00170

배위자 L205 0.32g(0.7mmol)-톨루엔 현탁액 7mL에, 50% 수산화세슘 수용액 0.12mL(0.7mmol)-메탄올 용액 3.5mL를 적하하고, 실온에서 교반했다. 1시간 후, 반응용액을 감압하에서 농축하고, 석출물을 여과하여 취했다. 얻어진 석출물은 감압하 300℃로 가열하여 미반응의 배위자와 용매를 제거하고, L205-Cs 0.40g(98%)을 얻었다. 얻어진 착체의 NMR은 도 26에 나타낸다.To 7 mL of a ligand L205 0.32 g (0.7 mmol)-toluene suspension, 0.12 mL (0.7 mmol) of 50% cesium hydroxide aqueous solution (3.5 mL of a methanol solution) was added dropwise, followed by stirring at room temperature. After 1 hour, the reaction solution was concentrated under reduced pressure, and the precipitate was collected by filtration. The obtained precipitate was heated to 300°C under reduced pressure to remove the unreacted ligand and the solvent to obtain 0.40 g (98%) of L205-Cs. The NMR of the obtained complex is shown in FIG. 26.

[B-6] 2-(3-(2,6-다이페닐피리미딘-4-일)페닐)-8-퀴놀레이트 착체(L206-M)의 합성[B-6] Synthesis of 2-(3-(2,6-diphenylpyrimidin-4-yl)phenyl)-8-quinolate complex (L206-M)

[B-6-1] 세슘2-(3-(2,6-다이페닐피리미딘-4-일)페닐)-8-퀴놀레이트 착체(L206-Cs)의 합성[B-6-1] Synthesis of cesium 2-(3-(2,6-diphenylpyrimidin-4-yl)phenyl)-8-quinolate complex (L206-Cs)

(2-6-2) 배위자의 합성: 4-(3-(8-하이드록시퀴놀린-2-일)페닐)-2,6-다이(피리딘-3-일)피리미딘(L206)의 합성(2-6-2) Synthesis of ligand: 4-(3-(8-hydroxyquinolin-2-yl)phenyl)-2,6-di(pyridin-3-yl)pyrimidine (L206) synthesis

(1) L206 중간체의 합성(1) Synthesis of L206 intermediate

Figure 112019010503878-pct00171
Figure 112019010503878-pct00171

상기 (2-4-1)의 (1)에서 합성한 3-(8-벤질옥시퀴놀린-2-일)페닐보론산피나콜에스터(M032) 1.47g(3.36mmol), 상기 (1-18-1)의 (1)에서 합성한 4-브로모-2,6-다이(피리딘-3-일)피리미딘(M030) 1.05g(3.36mmol), PdCl2(dppf)-CH2Cl2 부가체 51mg(0.067mmol), 3M 탄산포타슘 수용액 6.7mL를 다이옥세인 20mL에 가하고, 100℃에서 1시간 교반했다. 반응 종료 후, 감압하에서 농축하고, 물을 가했다. 다이클로로메테인으로 추출하고, 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 아세톤을 가하여 결정화시켰다. 석출한 결정은 여과하여 취하고, 4-(3-(8-벤질옥시퀴놀린-2-일)페닐)-2,6-다이(피리딘-3-일)피리미딘 1.25g(68%)을 얻었다.3-(8-benzyloxyquinolin-2-yl) phenylboronic acid pinacol ester (M032) synthesized in (1) of (2-4-1) above 1.47 g (3.36 mmol), above (1-18- 1.05g (3.36mmol) of 4-bromo-2,6-di(pyridin-3-yl)pyrimidine (M030) synthesized in (1) of 1), PdCl 2 (dppf)-CH 2 Cl 2 adduct 51 mg (0.067 mmol) and 6.7 mL of 3M potassium carbonate aqueous solution were added to 20 mL of dioxane, followed by stirring at 100°C for 1 hour. After completion of the reaction, it was concentrated under reduced pressure, and water was added. Extracted with dichloromethane, the organic layer was dried over magnesium sulfate, and then concentrated under reduced pressure. The obtained residue was crystallized by adding acetone. The precipitated crystals were collected by filtration to obtain 1.25 g (68%) of 4-(3-(8-benzyloxyquinolin-2-yl)phenyl)-2,6-di(pyridin-3-yl)pyrimidine.

(2) L206의 합성(2) Synthesis of L206

Figure 112019010503878-pct00172
Figure 112019010503878-pct00172

4-(3-(8-벤질옥시퀴놀린-2-일)페닐)-2,6-다이(피리딘-3-일)피리미딘 1.2g(2.2mmol), 10% 팔라듐탄소 351mg(Pd 0.33mmol), 톨루엔 6.8mL를 아세트산 13.6mL에 가하고, 5% H2-N2 혼합 가스 분위기하, 100℃에서 17.5시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 셀라이트를 사용하여 불용물을 제거했다. 여과액은 감압하에서 농축하고, 회색 고체 1.08g(미정제 수율 108%)을 얻었다. 얻어진 화합물은 승화 정제를 행하고, 4-(3-(8-하이드록시퀴놀린-2-일)페닐)-2,6-다이(피리딘-3-일)피리미딘(L206) 639mg(64%)을 얻었다.4-(3-(8-benzyloxyquinolin-2-yl)phenyl)-2,6-di(pyridin-3-yl)pyrimidine 1.2g(2.2mmol), 10% palladium carbon 351mg(Pd 0.33mmol) , 6.8 mL of toluene was added to 13.6 mL of acetic acid, and the mixture was stirred at 100°C for 17.5 hours in a 5% H 2 -N 2 mixed gas atmosphere. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate was concentrated under reduced pressure, and 1.08 g of a gray solid (crude yield of 108%) was obtained. The obtained compound was subjected to sublimation purification, and 4-(3-(8-hydroxyquinolin-2-yl)phenyl)-2,6-di(pyridin-3-yl)pyrimidine (L206) 639 mg (64%) was added. Got it.

(2-6-3) 착체의 합성: 세슘2-(3-(2,6-다이페닐피리미딘-4-일)페닐)-8-퀴놀레이트 착체(L206-Cs)의 합성(2-6-3) Synthesis of complex: Cesium 2-(3-(2,6-diphenylpyrimidin-4-yl)phenyl)-8-quinolate complex (L206-Cs) synthesis

Figure 112019010503878-pct00173
Figure 112019010503878-pct00173

배위자 L206 0.14g(0.3mmol)-톨루엔 현탁액 3mL에 50% 수산화세슘 수용액 0.052mL(0.3mmol)-메탄올 용액 1.5mL를 적하하고 실온에서 교반했다. 1시간 후, 반응용액은 감압하에서 농축하고 잔사에 톨루엔을 가하고, 석출물을 여과하여 취했다. 석출물은 감압하 260℃로 가열하여 미반응의 배위자와 용매를 제거하고, L206-Cs 0.16g(89%)을 얻었다. 얻어진 착체의 NMR은 도 27에 나타낸다.To 3 mL of a ligand L206 0.14 g (0.3 mmol)-toluene suspension, 0.052 mL (0.3 mmol) of 50% cesium hydroxide aqueous solution (1.5 mL of a methanol solution) was added dropwise, followed by stirring at room temperature. After 1 hour, the reaction solution was concentrated under reduced pressure, toluene was added to the residue, and the precipitate was collected by filtration. The precipitate was heated to 260°C under reduced pressure to remove the unreacted ligand and the solvent to obtain 0.16 g (89%) of L206-Cs. The NMR of the obtained complex is shown in FIG. 27.

[B-7] 5-(2-뷰틸피리딘-5-일)퀴놀레이트 착체(L207-M)의 합성[B-7] Synthesis of 5-(2-butylpyridin-5-yl)quinolate complex (L207-M)

[B-7-1] 세슘5-(2-뷰틸피리딘-5-일)퀴놀레이트 착체(L207-Cs)의 합성[B-7-1] Synthesis of cesium 5-(2-butylpyridin-5-yl)quinolate complex (L207-Cs)

(2-7-1) 중간 원료의 합성: (2-7-1) Synthesis of intermediate raw materials:

(1) 5-브로모-2-뷰틸피리딘의 합성(1) Synthesis of 5-bromo-2-butylpyridine

Figure 112019010503878-pct00174
Figure 112019010503878-pct00174

마그네슘 0.608g(25mmol)에 1-브로모뷰테인 3.08g(22.5mmol)-THF 용액 25mL를 가하고, 그리냐르 시약을 조정했다. 계속해서, 0℃에서 염화아연 4.09g(30mmol)으로 조정한 그리냐르 시약을 가하고, 실온에서 15분간 교반했다. 이 용액에 2,5-다이브로모피리딘 5.92g(25mmol)-THF 용액 25mL, 테트라키스(트라이페닐포스핀)팔라듐 0.867g(0.75mmol)을 가하고, 20시간 교반했다. 반응 종료 후, 물에 붓고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조하고, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(C300, 헵테인:다이클로로메테인)로 정제하여, 5-브로모-2-뷰틸피리딘 2.02g(42%)을 얻었다.To 0.608 g (25 mmol) of magnesium, 25 mL of a 3.08 g (22.5 mmol)-THF solution of 1-bromobutane was added to prepare a Grignard reagent. Then, a Grignard reagent adjusted to 4.09 g (30 mmol) of zinc chloride at 0°C was added, followed by stirring at room temperature for 15 minutes. To this solution, 5.92 g (25 mmol) of 2,5-dibromopyridine-25 mL of THF solution and 0.867 g (0.75 mmol) of tetrakis (triphenylphosphine) palladium were added, followed by stirring for 20 hours. After completion of the reaction, it was poured into water and extracted with dichloromethane. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained residue was purified by column chromatography (C300, heptane:dichloromethane) to obtain 2.02 g (42%) of 5-bromo-2-butylpyridine.

(2-7-2) 배위자의 합성: 5-(2-뷰틸피리딘-5-일)-8-하이드록시퀴놀린(L207)의 합성(2-7-2) Synthesis of ligand: Synthesis of 5-(2-butylpyridin-5-yl)-8-hydroxyquinoline (L207)

(1) L207 중간체의 합성(1) Synthesis of L207 intermediate

Figure 112019010503878-pct00175
Figure 112019010503878-pct00175

5-브로모-2-뷰틸피리딘 1.07g(5mmol), 상기 (2-1-1)의 (1)에서 합성한 8-벤질옥시퀴놀린-5-일보론산피나콜에스터(M018) 1.81g(5mmol), 테트라키스(트라이페닐포스핀)팔라듐 0.173g(0.15mmol), 3M 탄산포타슘 수용액 5mL를 다이옥세인 16.7mL에 가하고, 100℃에서 5시간 교반했다. 반응 종료 후, 물에 붓고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사에 헵테인을 가하여 결정화시켜, 5-(2-뷰틸피리딘-5-일)-8-벤질옥시퀴놀린 1.47g(80%)을 얻었다.5-bromo-2-butylpyridine 1.07 g (5 mmol), 8-benzyloxyquinoline-5-ylboronic acid pinacol ester (M018) synthesized in (1) of (2-1-1) 1.81 g (5 mmol) ), tetrakis (triphenylphosphine) palladium 0.173 g (0.15 mmol), 3M potassium carbonate aqueous solution 5 mL was added to 16.7 mL of dioxane, followed by stirring at 100°C for 5 hours. After completion of the reaction, it was poured into water and extracted with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. Heptane was added to the obtained residue to crystallize, thereby obtaining 1.47 g (80%) of 5-(2-butylpyridin-5-yl)-8-benzyloxyquinoline.

(2) L207의 합성(2) Synthesis of L207

Figure 112019010503878-pct00176
Figure 112019010503878-pct00176

5-(2-뷰틸피리딘-5-일)-8-벤질옥시퀴놀린 1.76g(4.78mmol), 10% 팔라듐탄소 0.761g(Pd 0.715mmol)을 아세트산 68.2mL에 가하고, 5% H2-N2 혼합 가스를 불어 넣으면서 100℃에서 19시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고 셀라이트를 사용하여 불용물을 제거했다. 여과액은 감압하에서 농축하여, 5-(2-뷰틸피리딘-5-일)-8-하이드록시퀴놀린(L207) 1.00g(75%)을 얻었다.5-(2-butylpyridin-5-yl)-8-benzyloxyquinoline 1.76 g (4.78 mmol), 10% palladium carbon 0.761 g (Pd 0.715 mmol) was added to 68.2 mL of acetic acid, and 5% H 2 -N 2 The mixture was stirred at 100°C for 19 hours while blowing the gas. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate was concentrated under a reduced pressure to obtain 1.00 g (75%) of 5-(2-butylpyridin-5-yl)-8-hydroxyquinoline (L207).

(2-7-3) 착체의 합성: 세슘5-(2-뷰틸피리딘-5-일)퀴놀레이트 착체(L207-Cs)의 합성(2-7-3) Synthesis of complex: Synthesis of cesium 5-(2-butylpyridin-5-yl)quinolate complex (L207-Cs)

Figure 112019010503878-pct00177
Figure 112019010503878-pct00177

배위자 L207 0.14g(0.5mmol)-톨루엔 용액 5mL에 50% 수산화세슘 0.17mL(0.25mmol)-메탄올 용액 2.5mL를 가하고, 실온에서 1시간 교반했다. 반응 종료 후, 감압하에서 농축했다. 얻어진 잔사는 또한 감압하, 200℃로 가열하여 용매와 미반응의 배위자를 제거하고 L207-Cs 0.06g(28%)을 얻었다. 얻어진 착체의 NMR은 도 28에 나타낸다.To 5 mL of a ligand L207 0.14 g (0.5 mmol)-toluene solution, 2.5 mL of a 50% cesium hydroxide 0.17 mL (0.25 mmol)-methanol solution was added, followed by stirring at room temperature for 1 hour. After completion of the reaction, it was concentrated under reduced pressure. The obtained residue was further heated to 200° C. under reduced pressure to remove the solvent and unreacted ligand to obtain 0.06 g (28%) of L207-Cs. The NMR of the obtained complex is shown in FIG. 28.

[C] 일반식 (3)으로 표시되는 금속 착체[C] Metal complex represented by general formula (3)

[C-1] 7-(3-(피리딘-3-일)페닐)벤조퀴놀린-10-올리에이트(L301-M)의 합성[C-1] Synthesis of 7-(3-(pyridin-3-yl)phenyl)benzoquinoline-10-oleate (L301-M)

[C-1-1] 세슘7-(3-(피리딘-3-일)페닐)벤조퀴놀린-10-올리에이트(L301-Cs)의 합성Synthesis of [C-1-1] cesium 7-(3-(pyridin-3-yl)phenyl)benzoquinoline-10-oleate (L301-Cs)

(3-1-1) 중간 원료의 합성: (3-1-1) Synthesis of intermediate raw materials:

(1) 7-브로모-10-하이드록시벤조[h]퀴놀린(M033)의 합성(1) Synthesis of 7-bromo-10-hydroxybenzo[h]quinoline (M033)

Figure 112019010503878-pct00178
Figure 112019010503878-pct00178

-60℃에서 10-하이드록시벤조[h]퀴놀린 1.95g(10mmol)-클로로폼 용액 50mL에 N-브로모석신산이미드 1.78g(10mmol)을 가하고, -60℃에서 1.5시간 교반했다. 반응 종료 후, 실온까지 승온하고, 싸이오황산 소듐 수용액을 가했다. 다이클로로메테인으로 추출하고, 유기층은 포화 NaHCO3 수용액으로 세정 후, 황산 마그네슘으로 건조하고, 감압하에서 농축했다. 얻어진 잔사는 헵테인-에탄올로 재결정을 행하여, 7-브로모-10-하이드록시벤조[h]퀴놀린(M033) 2.45g(89%)을 얻었다.To 50 mL of a 10-hydroxybenzo[h]quinoline 1.95 g (10 mmol)-chloroform solution at -60°C, 1.78 g (10 mmol) of N-bromosuccinimide was added, followed by stirring at -60°C for 1.5 hours. After completion of the reaction, the temperature was raised to room temperature, and an aqueous sodium thiosulfate solution was added. Extracted with dichloromethane, and the organic layer was washed with a saturated aqueous NaHCO 3 solution, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained residue was recrystallized from heptane-ethanol to obtain 2.45 g (89%) of 7-bromo-10-hydroxybenzo[h]quinoline (M033).

(3-1-2) 배위자의 합성: 7-(3-(피리딘-3-일)페닐)-10-하이드록시-벤조[h]퀴놀린(L301)의 합성(3-1-2) Synthesis of ligand: 7-(3-(pyridin-3-yl)phenyl)-10-hydroxy-benzo[h]quinoline (L301)

Figure 112019010503878-pct00179
Figure 112019010503878-pct00179

7-브로모-10-하이드록시벤조[h]퀴놀린(M033) 0.822g(3mmol), 상기 (1-12-1)의 (1)에서 합성한 3-(피리딘-3-일)페닐보론산피나콜에스터(M012) 0.843g(3mmol), 테트라키스(트라이페닐포스핀)팔라듐 0.104g(0.09mmol), 3M 탄산포타슘 수용액 3mL, 에탄올 3mL를 톨루엔 12mL에 가하고, 17시간 환류했다. 반응 종료 후, 1N 염산을 가하여 산성으로 하고, 포화 NaHCO3 수용액으로 중화했다. 얻어진 수용액은 다이클로로메테인으로 추출하고, 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(다이클로로메테인:메탄올)로 정제하여, 7-(3-(피리딘-3-일)페닐)-10-하이드록시벤조[h]퀴놀린(L301) 0.954g(91%)을 얻었다.7-bromo-10-hydroxybenzo[h]quinoline (M033) 0.822 g (3 mmol), 3-(pyridin-3-yl)phenylboronic acid synthesized in (1) of (1-12-1) above Pinacol ester (M012) 0.843 g (3 mmol), tetrakis (triphenylphosphine) palladium 0.104 g (0.09 mmol), 3M aqueous potassium carbonate solution 3 mL, ethanol 3 mL were added to 12 mL of toluene, and refluxed for 17 hours. After completion of the reaction, 1N hydrochloric acid was added to make it acidic, and neutralized with a saturated aqueous NaHCO 3 solution. The obtained aqueous solution was extracted with dichloromethane, and the organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (dichloromethane: methanol), and 7-(3-(pyridin-3-yl)phenyl)-10-hydroxybenzo[h]quinoline (L301) 0.954 g (91%) ).

(3-1-3) 착체의 합성: 세슘7-(3-(피리딘-3-일)페닐)벤조퀴놀린-10-올리에이트(L301-Cs)의 합성(3-1-3) Synthesis of complex: Synthesis of cesium 7-(3-(pyridin-3-yl)phenyl)benzoquinoline-10-oleate (L301-Cs)

Figure 112019010503878-pct00180
Figure 112019010503878-pct00180

배위자 L301 0.348g(1mmol)-톨루엔 용액 10mL에 50% 수산화세슘 수용액 0.174mL(1mmol)-메탄올 용액 5mL를 적하하고 실온에서 교반했다. 1시간 후, 반응용액은 감압하에서 농축하고 잔사에 톨루엔을 첨가하고, 석출물을 여과하여 취했다. 석출물은 감압하 200℃로 가열하여 미반응의 배위자와 용매를 제거하고, L301-Cs 0.413g(86%)을 얻었다. 얻어진 착체의 NMR은 도 29에 나타낸다.A 50% aqueous solution of cesium hydroxide 0.174 mL (1 mmol)-5 mL of a methanol solution was added dropwise to 10 mL of a ligand L301 0.348 g (1 mmol)-toluene solution, followed by stirring at room temperature. After 1 hour, the reaction solution was concentrated under reduced pressure, toluene was added to the residue, and the precipitate was collected by filtration. The precipitate was heated to 200°C under reduced pressure to remove the unreacted ligand and the solvent to obtain 0.413 g (86%) of L301-Cs. The NMR of the obtained complex is shown in FIG. 29.

[D] 일반식 (4)로 표시되는 금속 착체[D] Metal complex represented by general formula (4)

[D-1] 2-(벤조옥사졸-2-일)-4-(4-(4,6-다이페닐피리미딘-2-일)페닐)페놀레이트 착체(L401-M)의 합성[D-1] Synthesis of 2-(benzoxazol-2-yl)-4-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)phenolate complex (L401-M)

[D-1-1] 리튬2-(벤조옥사졸-2-일)-4-(4-(4,6-다이페닐피리미딘-2-일)페닐)페놀레이트 착체(L401-Li)의 합성[D-1-1] Lithium 2-(benzoxazol-2-yl)-4-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)phenolate complex (L401-Li) synthesis

(4-1-1) 중간 원료의 합성: (4-1-1) Synthesis of intermediate raw materials:

(1) 1-벤질옥시-2-(벤조옥사졸-2-일)-4-브로모벤젠(CAS No. 1696398-77-2, M021)은 Sakai 등의 방법(Chem. Commun., 51(15), 3181-3184, 2015)을 사용하여 합성했다.(1) 1-Benzyloxy-2-(benzoxazol-2-yl)-4-bromobenzene (CAS No. 1696398-77-2, M021) is a method of Sakai et al. (Chem.Commun., 51( 15), 3181-3184, 2015).

(4-1-2) 배위자의 합성: 2-(2-하이드록시-5-(4-(4,6-다이페닐피리미딘-2-일)페닐)페닐)벤조옥사졸(L401)의 합성(4-1-2) Synthesis of ligand: 2-(2-hydroxy-5-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)phenyl)benzoxazole (L401) synthesis

(1) L401 중간체의 합성(1) Synthesis of L401 intermediate

Figure 112019010503878-pct00181
Figure 112019010503878-pct00181

2-(2-벤질옥시-5-브로모페닐)벤조옥사졸(M021) 760mg(2mmol), 상기 (1-14-1)의 (1)에서 합성한 4-(4,6-다이페닐피리미딘-3-일)페닐보론산피나콜에스터(M002) 869mg(2mmol), 테트라키스(트라이페닐포스핀)팔라듐 70mg(0.1mmol), 2M 탄산소듐 수용액 4mL(8mmol)를 다이옥세인 16mL에 가하고 100℃에서 16시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 아세트산 에틸로 재결정을 행하여, 2-(2-벤질옥시-5-(4-(4,6-다이페닐피리미딘-2-일)페닐)페닐)벤조옥사졸 350mg(28%)을 얻었다.2-(2-benzyloxy-5-bromophenyl)benzoxazole (M021) 760mg (2mmol), 4-(4,6-diphenylpyridi synthesized in (1) of (1-14-1) above Midin-3-yl) phenylboronic acid pinacol ester (M002) 869 mg (2 mmol), tetrakis (triphenylphosphine) palladium 70 mg (0.1 mmol), 2M sodium carbonate aqueous solution 4 mL (8 mmol) was added to 16 mL of dioxane and 100 It stirred at °C for 16 hours. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was recrystallized with ethyl acetate to obtain 350 mg (28%) of 2-(2-benzyloxy-5-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)phenyl)benzoxazole. Got it.

(2) L401의 합성(2) Synthesis of L401

Figure 112019010503878-pct00182
Figure 112019010503878-pct00182

2-(2-벤질옥시-5-(4-(4,6-다이페닐피리미딘-2-일)페닐)페닐)벤조옥사졸 350mg(0.576mmol), 10% 팔라듐탄소 92mg(0.0864mmol)을 1-뷰탄올 29mL에 가하고, 5% H2-N2 혼합 가스 분위기하, 80℃에서 22시간 교반했다. 반응 종료 후 다이클로로메테인으로 희석하고, 셀라이트를 사용하여 불용물을 여과했다. 여과액은 감압하에서 농축하여, 2-(2-하이드록시-5-(4-(4,6-다이페닐피리미딘-2-일)페닐)페닐)벤조옥사졸(L401) 172mg(57%)을 얻었다.2-(2-benzyloxy-5-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)phenyl)benzoxazole 350mg (0.576mmol), 10% palladium carbon 92mg (0.0864mmol) It added to 29 mL of 1-butanol, and stirred at 80 degreeC for 22 hours in 5% H 2 -N 2 mixed gas atmosphere. After completion of the reaction, it was diluted with dichloromethane, and an insoluble matter was filtered using Celite. The filtrate was concentrated under reduced pressure, and 2-(2-hydroxy-5-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)phenyl)benzoxazole (L401) 172mg (57%) Got it.

(4-1-3) 착체의 합성: 리튬2-(벤조옥사졸-2-일)-4-(4-(4,6-다이페닐피리미딘-2-일)페닐)페놀레이트 착체(L401-Li)의 합성(4-1-3) Synthesis of complex: lithium 2-(benzoxazol-2-yl)-4-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)phenolate complex (L401 -Li) synthesis

Figure 112019010503878-pct00183
Figure 112019010503878-pct00183

배위자 L401 0.16g(0.3mmol)-메탄올 현탁액 3mL에 4M 수산화리튬 수용액 0.075mL(0.3mmol)-메탄올 용액 1.5mL를 적하하고 실온에서 교반했다. 2시간 후, 불용물을 여과 분리하고, 여과액을 감압하에서 농축했다. 얻어진 잔사는 톨루엔-메탄올로 재결정을 행하여, L401-Li 0.16g(99%)을 얻었다. 얻어진 착체의 NMR은 도 30에 나타낸다.To 3 mL of a ligand L401 0.16 g (0.3 mmol)-methanol suspension, 0.075 mL (0.3 mmol) of 4M lithium hydroxide solution-1.5 mL of a methanol solution was added dropwise, followed by stirring at room temperature. After 2 hours, the insoluble matter was separated by filtration, and the filtrate was concentrated under reduced pressure. The obtained residue was recrystallized from toluene-methanol to obtain 0.16 g (99%) of L401-Li. The NMR of the obtained complex is shown in FIG. 30.

[D-2] 2-(벤조옥사졸-2-일)-4-(3-(4,6-다이페닐피리미딘-2-일)페닐)페놀레이트 착체(L402-M)의 합성[D-2] Synthesis of 2-(benzoxazol-2-yl)-4-(3-(4,6-diphenylpyrimidin-2-yl)phenyl)phenolate complex (L402-M)

[D-2-1] 리튬2-(벤조옥사졸-2-일)-4-(3-(4,6-다이페닐피리미딘-2-일)페닐)페놀레이트 착체(L402-Li)의 합성[D-2-1] Lithium 2-(benzooxazol-2-yl)-4-(3-(4,6-diphenylpyrimidin-2-yl)phenyl)phenolate complex (L402-Li) synthesis

(4-2-2) 배위자의 합성: 2-(2-하이드록시-5-(3-(4,6-다이페닐피리미딘-2-일)페닐)페닐)벤조옥사졸(L402)의 합성(4-2-2) Synthesis of ligand: 2-(2-hydroxy-5-(3-(4,6-diphenylpyrimidin-2-yl)phenyl)phenyl)benzoxazole (L402) synthesis

(1) L402 중간체의 합성(1) Synthesis of L402 intermediate

Figure 112019010503878-pct00184
Figure 112019010503878-pct00184

상기 (4-1-1)의 (1)에서 합성한 2-(2-벤질옥시-5-브로모페닐)벤조옥사졸(M021) 1.52g(4mmol), 상기 (1-2-1)의 (1)에서 합성한 3-(4,6-다이페닐피리미딘-2-일)페닐보론산피나콜에스터(M003) 1.74g(4mmol), 테트라키스(트라이페닐포스핀)팔라듐 140mg(0.2mmol), 2M 탄산소듐 수용액 8mL(16mmol)를 다이옥세인 32mL에 가하고 100℃에서 18시간 교반했다. 반응 종료 후, 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 아세트산 에틸로 재결정을 행하여, 2-(2-벤질옥시-5-(3-(4,6-다이페닐피리미딘-2-일)페닐)페닐)벤조옥사졸 1.30g(53%)을 얻었다.1.52g (4mmol) of 2-(2-benzyloxy-5-bromophenyl)benzoxazole (M021) synthesized in (1) of (4-1-1), above (1-2-1) 3-(4,6-diphenylpyrimidin-2-yl)phenylboronic acid pinacol ester (M003) synthesized in (1) 1.74g (4mmol), tetrakis (triphenylphosphine) palladium 140mg (0.2mmol) ), 8 mL (16 mmol) of 2M sodium carbonate aqueous solution was added to 32 mL of dioxane, followed by stirring at 100°C for 18 hours. After completion of the reaction, water was added, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was recrystallized with ethyl acetate, and 2-(2-benzyloxy-5-(3-(4,6-diphenylpyrimidin-2-yl)phenyl)phenyl)benzoxazole 1.30 g (53%) Got it.

(2) L402의 합성(2) Synthesis of L402

Figure 112019010503878-pct00185
Figure 112019010503878-pct00185

2-(2-벤질옥시-5-(3-(4,6-다이페닐피리미딘-2-일)페닐)페닐)벤조옥사졸 913mg(1.5mmol), 10% 팔라듐탄소 239mg(0.225mmol)을 1-뷰탄올 75mL에 가하고, 5% H2-N2 혼합 가스 분위기하, 80℃에서 24시간 교반했다. 반응 종료 후 다이클로로메테인으로 희석하고, 셀라이트를 사용하여 불용물을 여과했다. 여과액은 감압하에서 농축하여, 2-(2-하이드록시-5-(3-(4,6-다이페닐피리미딘-2-일)페닐)페닐)벤조옥사졸(L402) 722mg(92%)을 얻었다.2-(2-benzyloxy-5-(3-(4,6-diphenylpyrimidin-2-yl)phenyl)phenyl)benzoxazole 913mg (1.5mmol), 10% palladium carbon 239mg (0.225mmol) It added to 75 mL of 1-butanol, and stirred at 80 degreeC for 24 hours in 5% H 2 -N 2 mixed gas atmosphere. After completion of the reaction, it was diluted with dichloromethane, and an insoluble matter was filtered using Celite. The filtrate was concentrated under reduced pressure, and 2-(2-hydroxy-5-(3-(4,6-diphenylpyrimidin-2-yl)phenyl)phenyl)benzoxazole (L402) 722mg (92%) Got it.

(4-2-3) 착체의 합성: 리튬2-(벤조옥사졸-2-일)-4-(3-(4,6-다이페닐피리미딘-2-일)페닐)페놀레이트 착체(L402-Li)의 합성(4-2-3) Synthesis of complex: lithium 2-(benzoxazol-2-yl)-4-(3-(4,6-diphenylpyrimidin-2-yl)phenyl)phenolate complex (L402 -Li) synthesis

Figure 112019010503878-pct00186
Figure 112019010503878-pct00186

배위자 L402 0.21g(0.4mmol)-메탄올 현탁액 4mL에 4M 수산화리튬 수용액 0.1mL(0.4mmol)-메탄올 용액 2mL를 적하하고, 실온에서 교반했다. 2시간 후, 불용물을 여과 분리하고, 여과액을 감압하에서 농축했다. 얻어진 잔사는 톨루엔-메탄올로 재결정을 행하여, L402-Li 0.16g(76%)을 얻었다. 얻어진 착체의 NMR은 도 31에 나타낸다.To 4 mL of a 0.21 g (0.4 mmol)-methanol suspension of ligand L402, 2 mL of a 0.1 mL (0.4 mmol)-methanol solution of 4 M lithium hydroxide was added dropwise, followed by stirring at room temperature. After 2 hours, the insoluble matter was separated by filtration, and the filtrate was concentrated under reduced pressure. The obtained residue was recrystallized from toluene-methanol to obtain 0.16 g (76%) of L402-Li. The NMR of the obtained complex is shown in Fig. 31.

[D-3] 2-(벤조옥사졸-2-일)-4,6-비스(4-(피리딘-3-일)페닐)페놀레이트 착체(L403-M)의 합성[D-3] Synthesis of 2-(benzoxazol-2-yl)-4,6-bis(4-(pyridin-3-yl)phenyl)phenolate complex (L403-M)

[D-3-1] 리튬2-(벤조옥사졸-2-일)-4,6-비스(4-(피리딘-3-일)페닐)페놀레이트 착체(L403-Li)의 합성[D-3-1] Synthesis of lithium 2-(benzoxazol-2-yl)-4,6-bis(4-(pyridin-3-yl)phenyl)phenolate complex (L403-Li)

(4-3-1) 중간 원료의 합성: (4-3-1) Synthesis of intermediate raw materials:

(1) 2-(2-벤질옥시-3,5-다이브로모페닐)벤조옥사졸(M034)의 합성(1) Synthesis of 2-(2-benzyloxy-3,5-dibromophenyl)benzoxazole (M034)

1) 2-(3,5-다이브로모-2-하이드록시페닐)벤조옥사졸의 합성1) Synthesis of 2-(3,5-dibromo-2-hydroxyphenyl)benzoxazole

Figure 112019010503878-pct00187
Figure 112019010503878-pct00187

3,5-다이브로모살리실산 7.40g(25mmol), o-아미노페놀 2.73g(25mmol)을 폴리인산 25.8g(ca.12.5mL)에 가하고 200℃에서 2.5시간 교반했다. 반응 종료 후, 반응 혼합물을 빙냉하고, 물을 가했다. 생성된 석출물을 여과하여 취하고, 자색 고체 8.67g 얻었다. 얻어진 고체는 우선 아세트산 에틸-에탄올, 계속해서 아세트산 에틸-톨루엔으로 재결정을 행하여, 2-(3,5-다이브로모-2-하이드록시페닐)벤조옥사졸 3.90g(40%)을 얻었다.7.40 g (25 mmol) of 3,5-dibromosalicylic acid and 2.73 g (25 mmol) of o-aminophenol were added to 25.8 g (ca.12.5 mL) of polyphosphoric acid, followed by stirring at 200°C for 2.5 hours. After completion of the reaction, the reaction mixture was ice-cooled and water was added. The produced precipitate was collected by filtration, and 8.67 g of a purple solid was obtained. The obtained solid was first recrystallized from ethyl acetate-ethanol and then ethyl acetate-toluene to obtain 3.90 g (40%) of 2-(3,5-dibromo-2-hydroxyphenyl)benzoxazole.

2) 2-(2-벤질옥시-3,5-다이브로모페닐)벤조옥사졸(M034)의 합성2) Synthesis of 2-(2-benzyloxy-3,5-dibromophenyl)benzoxazole (M034)

Figure 112019010503878-pct00188
Figure 112019010503878-pct00188

2-(3,5-다이브로모-2-하이드록시페닐)벤조옥사졸 3.90g(10.6mmol), 브로민화 벤질 1.3mL(ca. 1.90g, 11.1mmol), 탄산포타슘 7.32g(53mmol), 18-크라운-6 28mg(0.106mmol)을 아세톤 21mL에 가하고, 2시간 환류했다. 반응 종료 후, 감압하에서 농축하고, 얻어진 잔사에 물을 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 사이클로헥세인으로 재결정을 행하여, 2-(2-벤질옥시-3,5-다이브로모페닐)벤조옥사졸(M034) 4.23g(86%)을 얻었다.2-(3,5-dibromo-2-hydroxyphenyl)benzoxazole 3.90 g (10.6 mmol), benzyl bromide 1.3 mL (ca. 1.90 g, 11.1 mmol), potassium carbonate 7.32 g (53 mmol), 18 -Crown-6 28 mg (0.106 mmol) was added to 21 mL of acetone and refluxed for 2 hours. After completion of the reaction, it was concentrated under reduced pressure, and water was added to the obtained residue, followed by extraction with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was recrystallized from cyclohexane to obtain 4.23 g (86%) of 2-(2-benzyloxy-3,5-dibromophenyl)benzoxazole (M034).

(4-3-2) 배위자의 합성: 2-(2-하이드록시-3,5비스(4-피리딘-3-일페닐)페닐)벤조옥사졸(L403)의 합성(4-3-2) Synthesis of ligand: Synthesis of 2-(2-hydroxy-3,5bis(4-pyridin-3-ylphenyl)phenyl)benzoxazole (L403)

(1) L403 중간체의 합성(1) Synthesis of L403 intermediate

Figure 112019010503878-pct00189
Figure 112019010503878-pct00189

2-(2-벤질옥시-3,5-다이브로모페닐)벤조옥사졸(M034) 2.30g(5mmol), 상기 (1-5-1)의 (2)에서 합성한 4-(3-피리딜)페닐보론산피나콜에스터(M005) 3.37g(12mmol), 테트라키스(트라이페닐포스핀)팔라듐 347mg(0.3mmol), 2M 탄산소듐 수용액 10mL(20mmol)를 다이옥세인 30mL에 가하고, 100℃에서 20시간 교반했다. 반응 종료 후, 감압하에서 농축하고, 물을 가했다. 계속해서 다이클로로메테인으로 추출하고 유기층은 황산 마그네슘으로 건조 후, 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(NH, 다이클로로메테인:헵테인)로 정제를 행하여, 2-(2-벤질옥시-3,5비스(4-피리딘-3-일페닐)페닐)벤조옥사졸 2.27g(74%)을 얻었다.2-(2-benzyloxy-3,5-dibromophenyl)benzoxazole (M034) 2.30 g (5 mmol), 4-(3-pyridyl synthesized in (2) of (1-5-1) above ) Phenylboronic acid pinacol ester (M005) 3.37g (12mmol), tetrakis (triphenylphosphine) palladium 347mg (0.3mmol), 2M sodium carbonate aqueous solution 10mL (20mmol) was added to dioxane 30mL, and 20 at 100℃. Stirred for hours. After completion of the reaction, it was concentrated under reduced pressure, and water was added. Subsequently, extraction was performed with dichloromethane, and the organic layer was dried over magnesium sulfate and then concentrated. The obtained residue was purified by column chromatography (NH, dichloromethane:heptane), and 2-(2-benzyloxy-3,5bis(4-pyridin-3-ylphenyl)phenyl)benzoxazole 2.27 g (74%) was obtained.

(2) L403의 합성(2) Synthesis of L403

Figure 112019010503878-pct00190
Figure 112019010503878-pct00190

2-(2-벤질옥시-3,5비스(4-피리딘-3-일페닐)페닐)벤조옥사졸 1.22g(2mmol), 10% 팔라듐탄소 320mg(Pd 0.3mmol)을 아세트산 30mL에 가하고, 80℃로 가열했다. 계속해서 5% H2-N2 혼합 가스를 가하면서 80℃에서 24시간 교반했다. 반응 종료 후, 물, 다이클로로메테인을 가하고, NaHCO3를 사용하여 중화했다. 셀라이트를 사용하여 여과 후, 유기층과 수층을 분리했다. 수층은 다이클로로메테인으로 추출하고, 앞의 유기층과 합쳤다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(NH, 헵테인:다이클로로메테인)로 정제하여, 2-(2-하이드록시-3,5비스(4-피리딘-3-일페닐)페닐)벤조옥사졸(L403) 854mg(82%)을 얻었다.2-(2-benzyloxy-3,5bis(4-pyridin-3-ylphenyl)phenyl)benzoxazole 1.22 g (2 mmol), 10% palladium carbon 320 mg (Pd 0.3 mmol) was added to 30 mL of acetic acid, and 80 Heated to °C. Subsequently, it stirred at 80 degreeC for 24 hours, adding 5% H 2 -N 2 mixed gas. After completion of the reaction, water and dichloromethane were added and neutralized with NaHCO 3 . After filtration using Celite, the organic layer and the aqueous layer were separated. The aqueous layer was extracted with dichloromethane and combined with the previous organic layer. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (NH, heptane:dichloromethane), and 2-(2-hydroxy-3,5bis(4-pyridin-3-ylphenyl)phenyl)benzoxazole (L403 ) 854mg (82%) was obtained.

(4-3-3) 착체의 합성: 리튬2-(벤조옥사졸-2-일)-4,6-비스(4-(피리딘-3-일)페닐)페놀레이트 착체(L403-Li)의 합성(4-3-3) Synthesis of complex: lithium 2-(benzoxazol-2-yl)-4,6-bis(4-(pyridin-3-yl)phenyl)phenolate complex (L403-Li) synthesis

Figure 112019010503878-pct00191
Figure 112019010503878-pct00191

배위자 L403 0.18g(0.35mmol)-톨루엔 현탁액 4mL에 4M 수산화리튬 수용액 0.088mL(0.35mmol)-메탄올 2mL 용액을 적하하고, 실온에서 2시간 교반했다. 얻어진 반응 혼합물은 감압하에서 농축하여, L403-Li 0.19g(105%)을 얻었다. 얻어진 착체의 NMR은 도 32에 나타낸다.To 4 mL of a ligand L403 0.18 g (0.35 mmol) -toluene suspension, a 4 M aqueous lithium hydroxide solution 0.088 mL (0.35 mmol)-a 2 mL solution of methanol was added dropwise, followed by stirring at room temperature for 2 hours. The obtained reaction mixture was concentrated under reduced pressure to obtain 0.19 g (105%) of L403-Li. The NMR of the obtained complex is shown in FIG. 32.

[D-3-2] 세슘2-(벤조옥사졸-2-일)-4,6-비스(4-(피리딘-3-일)페닐)페놀레이트 착체(L403-Cs)의 합성[D-3-2] Synthesis of cesium 2-(benzooxazol-2-yl)-4,6-bis(4-(pyridin-3-yl)phenyl)phenolate complex (L403-Cs)

Figure 112019010503878-pct00192
Figure 112019010503878-pct00192

상기 (4-3-2)에서 합성한 배위자 L403 0.18g(0.35mmol)-톨루엔 현탁액 4mL에 50% 수산화세슘 수용액 0.11mL(0.35mmol)-메탄올 2mL 용액을 적하하고, 실온에서 2시간 교반했다. 얻어진 반응 혼합물은 감압하에서 농축하여, L403-Cs 0.20g(90%)을 얻었다. 얻어진 착체의 NMR은 도 32에 나타낸다.A solution of 0.11 mL (0.35 mmol)-methanol 2 mL of 50% cesium hydroxide aqueous solution was added dropwise to 4 mL of the ligand L403 synthesized in (4-3-2), and stirred at room temperature for 2 hours. The obtained reaction mixture was concentrated under reduced pressure to obtain 0.20 g (90%) of L403-Cs. The NMR of the obtained complex is shown in FIG. 32.

[E] 일반식 (5)로 표시되는 금속 착체[E] Metal complex represented by general formula (5)

[E-1] 2-(벤조싸이아졸-2-일)-4-(1,10-펜안트롤린-2-일)페놀레이트(L501-M)의 합성[E-1] Synthesis of 2-(benzothiazol-2-yl)-4-(1,10-phenantholin-2-yl)phenolate (L501-M)

[E-1-1] 세슘2-(벤조싸이아졸-2-일)-4-(1,10-펜안트롤린-2-일)페놀레이트(L501-Cs)의 합성[E-1-1] Synthesis of cesium 2-(benzothiazol-2-yl)-4-(1,10-phenantholin-2-yl)phenolate (L501-Cs)

(5-1-1) 중간 원료의 합성: (5-1-1) Synthesis of intermediate raw materials:

(1) 4-벤질옥시-3-(벤조싸이아졸-2-일)페닐보론산피나콜에스터(M035)의 합성(1) Synthesis of 4-benzyloxy-3-(benzothiazol-2-yl)phenylboronic acid pinacol ester (M035)

1) 2-(5-브로모-2-하이드록시페닐)벤조싸이아졸의 합성1) Synthesis of 2-(5-bromo-2-hydroxyphenyl)benzothiazole

Figure 112019010503878-pct00193
Figure 112019010503878-pct00193

5-브로모살리실산 7.73g(35.6mmol), 2-아미노벤젠싸이올 4.45g(35.6mmol)을 폴리인산 73.3g(ca. 35.6mmol)에 가하고, 180℃에서 1.5시간 교반했다. 반응 종료 후, 반응 혼합물을 빙냉하고, 물을 가했다. 생성된 석출물을 여과하여 취하고, 얻어진 고체는 아세트산 에틸-에탄올로 재결정을 행하여 2-(5-브로모-2-하이드록시페닐)벤조싸이아졸 8.59g(79%)을 얻었다.7.73 g (35.6 mmol) of 5-bromosalicylic acid and 4.45 g (35.6 mmol) of 2-aminobenzenethiol were added to 73.3 g (ca. 35.6 mmol) of polyphosphoric acid, followed by stirring at 180°C for 1.5 hours. After completion of the reaction, the reaction mixture was ice-cooled and water was added. The produced precipitate was collected by filtration, and the obtained solid was recrystallized with ethyl acetate-ethanol to obtain 8.59 g (79%) of 2-(5-bromo-2-hydroxyphenyl)benzothiazole.

2) 2-(5-브로모-2-벤질옥시페닐)벤조싸이아졸의 합성2) Synthesis of 2-(5-bromo-2-benzyloxyphenyl)benzothiazole

Figure 112019010503878-pct00194
Figure 112019010503878-pct00194

2-(5-브로모-2-하이드록시페닐)벤조싸이아졸 3.98g(13mmol), 브로민화벤질 1.7mL(ca.14.3mmol), 탄산포타슘 8.26g(59.8mmol), 18-crown-6 31mg(0.177mmol)을 아세톤에 가하고, 60℃에서 반응했다. 2시간 후, TLC에서 원료의 소실을 확인하고, 메탄올 20mL를 가하고, 또한 60℃에서 1시간 교반했다. 반응 종료 후, 감압하에서 농축하고, 얻어진 잔사는 물에 부었다. 다이클로로메테인으로 추출하고, 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 사이클로헥세인으로 재결정을 행하여, 2-(5-브로모-2-벤질옥시페닐)벤조싸이아졸 4.24g(83%)을 얻었다.2-(5-bromo-2-hydroxyphenyl)benzothiazole 3.98g (13mmol), benzyl bromide 1.7mL (ca.14.3mmol), potassium carbonate 8.26g (59.8mmol), 18-crown-6 31mg (0.177 mmol) was added to acetone and reacted at 60°C. After 2 hours, disappearance of the raw materials was confirmed by TLC, and 20 mL of methanol was added, followed by stirring at 60°C for 1 hour. After completion of the reaction, it was concentrated under reduced pressure, and the obtained residue was poured into water. Extracted with dichloromethane, the organic layer was dried over magnesium sulfate, and then concentrated under reduced pressure. The obtained residue was recrystallized from cyclohexane to obtain 4.24 g (83%) of 2-(5-bromo-2-benzyloxyphenyl)benzothiazole.

3) 4-벤질옥시-3-(벤조싸이아졸-2-일)페닐보론산피나콜에스터(M035)의 합성3) Synthesis of 4-benzyloxy-3-(benzothiazol-2-yl)phenylboronic acid pinacol ester (M035)

Figure 112019010503878-pct00195
Figure 112019010503878-pct00195

2-(5-브로모-2-벤질옥시페닐)벤조싸이아졸 2.59g(4.5mmol), 비스(피나콜레이토)다이보론 1.14g(4.5mmol), PdCl2(dppf)-CH2Cl2 부가체 61mg(0.075mmol), 아세트산 포타슘 2.45g(25mmol)을 다이옥세인 5mL에 가하고, 100℃에서 2.5시간 교반했다. 반응 종료 후, 물과 다이클로로메테인을 가하고, 불용물을 셀라이트를 사용하여 제거했다. 여과액은 다이클로로메테인으로 추출하고, 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 사이클로헥세인으로 재결정을 행하고, 4-벤질옥시-3-(벤조싸이아졸-2-일)페닐보론산피나콜에스터(M035) 887mg(81%)을 얻었다.2- (5-bromo-2-benzyloxyphenyl) benzothiazole 2.59 g (4.5 mmol), bis (pinacollato) diboron 1.14 g (4.5 mmol), PdCl 2 (dppf) -CH 2 Cl 2 added 61 mg (0.075 mmol) of sieve and 2.45 g (25 mmol) of potassium acetate were added to 5 mL of dioxane, followed by stirring at 100°C for 2.5 hours. After completion of the reaction, water and dichloromethane were added, and insoluble matters were removed using Celite. The filtrate was extracted with dichloromethane, and the organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was recrystallized from cyclohexane, and 887 mg (81%) of 4-benzyloxy-3-(benzothiazol-2-yl) phenylboronic acid pinacol ester (M035) was obtained.

(5-1-2) 배위자의 합성: 2-(2-하이드록시-5-(1,10-펜안트롤린-2-일)페닐)벤조싸이아졸(L501)의 합성(5-1-2) Synthesis of ligand: Synthesis of 2-(2-hydroxy-5-(1,10-phenantholin-2-yl)phenyl)benzothiazole (L501)

(1) L501 중간체의 합성(1) Synthesis of L501 intermediate

Figure 112019010503878-pct00196
Figure 112019010503878-pct00196

4-벤질옥시-3-(벤조싸이아졸-2-일)페닐보론산피나콜에스터(M035) 887mg(2mmol), 상기 (1-20-1)의 (1)에서 합성한 2-클로로-1,10-펜안트롤린(M016) 472mg(2.2mmol), 테트라키스(트라이페닐포스핀)팔라듐 116mg(0.1mmol), 3M 탄산포타슘 수용액 4mL(123mmol), 에탄올 0.8mL를 톨루엔 8mL에 가하고, 100℃에서 2시간 교반했다. 반응 종료 후, 물에 가하고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 아세트산 에틸로 재결정을 행하여, 2-(2-벤질옥시-5-(1,10-펜안트롤린-2-일)페닐)벤조싸이아졸 775mg(76%)을 얻었다.4-Benzyloxy-3-(benzothiazol-2-yl) phenylboronic acid pinacol ester (M035) 887 mg (2 mmol), 2-chloro-1 synthesized in (1) of (1-20-1) above ,10-phenanthroline (M016) 472mg (2.2mmol), tetrakis (triphenylphosphine) palladium 116mg (0.1mmol), 3M potassium carbonate aqueous solution 4mL (123mmol), ethanol 0.8mL was added to 8mL of toluene, and 100℃ It stirred at for 2 hours. After completion of the reaction, it was added to water and extracted with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was recrystallized with ethyl acetate to obtain 775 mg (76%) of 2-(2-benzyloxy-5-(1,10-phenantholin-2-yl)phenyl)benzothiazole.

(2) L501의 합성(2) Synthesis of L501

Figure 112019010503878-pct00197
Figure 112019010503878-pct00197

2-(2-벤질옥시-5-(1,10-펜안트롤린-2-일)페닐)벤조싸이아졸 743mg(1.5mmol), 10% 수산화팔라듐탄소 80mg(0.075mmol)을 아세트산 8.4mL에 가하고, 5% H2-N2 혼합 가스 분위기하, 100℃에서 19시간 교반했다. 반응 종료 후 다이클로로메테인으로 희석하고, 셀라이트를 사용하여 불용물을 여과했다. 여과액은 감압하에서 농축했다. 얻어진 잔사는 에탄올로 재결정을 행하여 2-(2-하이드록시-5-(1,10-펜안트롤린-2-일)페닐)벤조옥사졸(L501) 444mg(73%)을 얻었다.2-(2-Benzyloxy-5-(1,10-phenanthrolin-2-yl)phenyl)benzothiazole 743mg (1.5mmol), 10% palladium hydroxide 80mg (0.075mmol) was added to 8.4 mL of acetic acid. The mixture was stirred at 100°C for 19 hours in a 5% H 2 -N 2 mixed gas atmosphere. After completion of the reaction, it was diluted with dichloromethane, and an insoluble matter was filtered using Celite. The filtrate was concentrated under reduced pressure. The obtained residue was recrystallized with ethanol to obtain 444 mg (73%) of 2-(2-hydroxy-5-(1,10-phenantholin-2-yl)phenyl)benzoxazole (L501).

(5-1-3) 착체의 합성: 세슘2-(벤조싸이아졸-2-일)-4-(1,10-펜안트롤린-2-일)페놀레이트(L501-Cs)의 합성(5-1-3) Synthesis of complex: Synthesis of cesium 2-(benzothiazol-2-yl)-4-(1,10-phenantholin-2-yl)phenolate (L501-Cs)

Figure 112019010503878-pct00198
Figure 112019010503878-pct00198

배위자 L501 0.10g(0.25mmol)-톨루엔 현탁액 2.5mL에 50% 수산화세슘 수용액 0.04mL(0.25mmol)-메탄올 1.25mL 용액을 적하하고, 40℃에서 1시간 교반했다. 반응 혼합물은 감압하에서 농축했다. 얻어진 잔사는 감압하, 200℃로 가열하여 용매, 미반응의 배위자를 제거하고, L501-Cs 0.10g(74%)을 얻었다. 얻어진 착체의 NMR은 도 33에 나타낸다.A solution of 0.04 mL (0.25 mmol) of 50% cesium hydroxide aqueous solution (0.25 mmol)-1.25 mL of methanol was added dropwise to 2.5 mL of a ligand L501 0.10 g (0.25 mmol)-toluene suspension, followed by stirring at 40°C for 1 hour. The reaction mixture was concentrated under reduced pressure. The obtained residue was heated to 200° C. under reduced pressure to remove the solvent and the unreacted ligand to obtain 0.10 g (74%) of L501-Cs. The NMR of the obtained complex is shown in FIG. 33.

[F] 일반식 (6)으로 표시되는 금속 착체[F] Metal complex represented by general formula (6)

[F-1] 2,4-(1,10-펜안트롤린-2-일)페놀레이트 착체(L601-M)의 합성[F-1] Synthesis of 2,4-(1,10-phenanthrolin-2-yl)phenolate complex (L601-M)

[F-1-1] 세슘 2,4-(1,10-펜안트롤린-2-일)페놀레이트 착체(L601-Cs)의 합성[F-1-1] Synthesis of cesium 2,4-(1,10-phenantholin-2-yl)phenolate complex (L601-Cs)

(6-1-1) 중간 원료의 합성: (6-1-1) Synthesis of intermediate raw materials:

(1) 1-벤질옥시-2,4-다이브로모벤젠(CAS No. 856380-98-8, M022)은 Sakai 등의 방법(Chem. Commun., 51(15), 3181-3184, 2015)으로 2-(2-하이드록시페닐)벤조옥사졸을 2,4-다이브로모페놀로 바꾸어 합성했다.(1) 1-Benzyloxy-2,4-dibromobenzene (CAS No. 856380-98-8, M022) was prepared by the method of Sakai et al. (Chem. Commun., 51(15), 3181-3184, 2015). It was synthesized by replacing 2-(2-hydroxyphenyl)benzoxazole with 2,4-dibromophenol.

(2) 4-벤질옥시-1,3-벤젠다이보론산비스피나콜에스터(M036)의 합성(2) Synthesis of 4-benzyloxy-1,3-benzenediboronic acid bispinacol ester (M036)

1) 4-벤질옥시-1,3-벤젠다이보론산비스피나콜에스터(M036)의 합성1) Synthesis of 4-benzyloxy-1,3-benzenediboronic acid bispinacol ester (M036)

Figure 112019010503878-pct00199
Figure 112019010503878-pct00199

1-벤질옥시-2,4-다이브로모벤젠(M022) 6.84g(20mmol), 비스(피나콜레이토)다이보론 11.2g(44mmol), PdCl2(dppf)-CH2Cl2 부가체 490mg(0.6mmol), 아세트산 포타슘 39.3g(400mmol)을 다이옥세인 80mL에 가하고, 100℃에서 16시간 교반했다. 반응 종료 후, 물에 가하고, 톨루엔으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축하여, 4-벤질옥시-1,3-벤젠지보론산비스피나콜에스터(M036) 10.1g(116%)을 얻었다. 얻어진 화합물은 더 정제하지 않고 다음 반응에 사용했다.1-benzyloxy-2,4-dibromobenzene (M022) 6.84 g (20 mmol), bis (pinacolato) diboron 11.2 g (44 mmol), PdCl 2 (dppf) -CH 2 Cl 2 adduct 490 mg (0.6 mmol) and potassium acetate 39.3 g (400 mmol) were added to 80 mL of dioxane, followed by stirring at 100°C for 16 hours. After completion of the reaction, it was added to water and extracted with toluene. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure to obtain 10.1 g (116%) of 4-benzyloxy-1,3-benzeneziboronic acid bispinacol ester (M036). The obtained compound was used for the next reaction without further purification.

(6-1-2) 배위자의 합성: 4-하이드록시-1,3-비스(1,10-펜안트롤린-2-일)벤젠(L601)의 합성(6-1-2) Synthesis of ligand: Synthesis of 4-hydroxy-1,3-bis(1,10-phenantholin-2-yl)benzene (L601)

(1) L601 중간체의 합성(1) Synthesis of L601 intermediate

Figure 112019010503878-pct00200
Figure 112019010503878-pct00200

4-벤질옥시-1,3-벤젠다이보론산비스피나콜에스터(M036) 4.36g(10mmol), 상기 (1-20-1)의 (1)에서 합성한 2-클로로-1,10-펜안트롤린(M016) 4.29g(20mmol), 테트라키스(트라이페닐포스핀)팔라듐 693mg(0.6mmol), 3M 탄산포타슘 수용액 20mL(60mmol), 에탄올 15mL를 톨루엔 60mL에 가하고, 100℃에서 17시간 교반했다. 반응 종료 후, 물에 붓고 톨루엔으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 톨루엔으로 재결정을 행하여, 4-벤질옥시-1,3-비스(1,10-펜안트롤린-2-일)벤젠 6.51g(120%)을 얻었다. 얻어진 화합물은 더 정제하지 않고, 다음 반응에 사용했다.4-Benzyloxy-1,3-benzenediboronic acid bispinacol ester (M036) 4.36 g (10 mmol), 2-chloro-1,10-phenane synthesized in (1) of (1-20-1) above Troline (M016) 4.29 g (20 mmol), tetrakis (triphenylphosphine) palladium 693 mg (0.6 mmol), 3M potassium carbonate aqueous solution 20 mL (60 mmol), ethanol 15 mL were added to 60 mL of toluene, followed by stirring at 100°C for 17 hours. . After completion of the reaction, it was poured into water and extracted with toluene. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was recrystallized from toluene to obtain 6.51 g (120%) of 4-benzyloxy-1,3-bis(1,10-phenantholin-2-yl)benzene. The obtained compound was used for the next reaction without further purification.

(2) L601의 합성(2) Synthesis of L601

Figure 112019010503878-pct00201
Figure 112019010503878-pct00201

4-벤질옥시-1,3-비스(1,10-펜안트롤린-2-일)벤젠 5.42g(10mmol), 10% 팔라듐탄소 53mg(Pd 0.5mmol)을 아세트산 100mL에 가하고, 5% H2-N2 혼합 가스를 가하면서, 100℃에서 16시간 교반했다. 반응 종료 후, 실온까지 냉각하고 다이클로로메테인으로 희석했다. 불용물은 셀라이트를 사용하여 제거하고, 여과액은 감압하에서 농축했다. 얻어진 잔사는 톨루엔-아세트산으로 재결정을 행하여, 4-하이드록시-1,3-비스(1,10-펜안트롤린-2-일)벤젠(L601) 3.74g(83%)을 얻었다.4-benzyloxy-1,3-bis(1,10-phenanthrolin-2-yl)benzene 5.42 g (10 mmol), 10% palladium carbon 53 mg (Pd 0.5 mmol) was added to 100 mL of acetic acid, and 5% H 2 It stirred at 100 degreeC for 16 hours, adding -N 2 mixed gas. After completion of the reaction, it was cooled to room temperature and diluted with dichloromethane. The insoluble matter was removed using Celite, and the filtrate was concentrated under reduced pressure. The obtained residue was recrystallized from toluene-acetic acid to obtain 3.74 g (83%) of 4-hydroxy-1,3-bis(1,10-phenantholin-2-yl)benzene (L601).

(6-1-3) 착체의 합성: 세슘2,4-(1,10-펜안트롤린-2-일)페놀레이트 착체(L601-Cs)의 합성(6-1-3) Synthesis of complex: Synthesis of cesium 2,4-(1,10-phenanthrolin-2-yl)phenolate complex (L601-Cs)

Figure 112019010503878-pct00202
Figure 112019010503878-pct00202

배위자 L601 113mg(0.25mmol)-톨루엔 현탁액 3.75mL에 50% 수산화세슘-메탄올 1.25mL를 적하하고, 40℃에서 1시간 교반했다. 반응 종료 후, 감압하에서 용매를 제거하여, L601-Cs 0.133g(91%)을 얻었다. 얻어진 착체의 NMR은 도 34에 나타낸다.1.25 mL of 50% cesium hydroxide-methanol was added dropwise to 3.75 mL of a ligand L601 113 mg (0.25 mmol)-toluene suspension, followed by stirring at 40°C for 1 hour. After completion of the reaction, the solvent was removed under reduced pressure to obtain 0.133 g (91%) of L601-Cs. The NMR of the obtained complex is shown in FIG. 34.

[A-21] 2-(피리딘-2-일)-4-(1,10-펜안트롤린-4-일)페놀레이트 착체(L121-M)의 합성[A-21] Synthesis of 2-(pyridin-2-yl)-4-(1,10-phenantholin-4-yl)phenolate complex (L121-M)

[A-21-1] 리튬2-(피리딘-2-일)-4-(1,10-펜안트롤린-4-일)페놀레이트 착체(L121-Li)의 합성[A-21-1] Synthesis of lithium 2-(pyridin-2-yl)-4-(1,10-phenantholin-4-yl)phenolate complex (L121-Li)

(1-21-1) 배위자의 합성: 2-(5-(1,10-펜안트롤린-4-일)-2-하이드록시페닐)피리딘(L121)의 합성(1-21-1) Synthesis of ligand: Synthesis of 2-(5-(1,10-phenantholin-4-yl)-2-hydroxyphenyl)pyridine (L121)

(1) L121 중간체의 합성(1) Synthesis of L121 intermediate

1) 4-(4-벤질옥시-3-(피리딘-2-일)페닐)-1,10-펜안트롤린의 합성1) Synthesis of 4-(4-benzyloxy-3-(pyridin-2-yl)phenyl)-1,10-phenanthroline

Figure 112019010503878-pct00203
Figure 112019010503878-pct00203

실온까지 냉각 후, 4-벤질옥시-3-피리딘-2-일페닐보론산피나콜에스터(M024) 2.40g(6.2mmol), 4-클로로-1,10-펜안트롤린(M037) 1.40g(6.6mmol), 75% 트리스(다이벤질리덴아세톤)비스팔라듐 76mg(0.062mmol), 트라이사이클로헥실포스핀 138mg(0.48mmol), 인산 포타슘 2.24g(10.6mmol), 물 9mL를 다이옥세인 18mL에 가하고, 100℃에서 18시간 교반했다. 반응 종료 후, 물에 가하고 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 아세트산 에틸로 재결정을 행하여, 4-(4-벤질옥시-3-(피리딘-2-일)페닐)-1,10-펜안트롤린 2.41g(81%)을 얻었다.After cooling to room temperature, 4-benzyloxy-3-pyridin-2-ylphenylboronic acid pinacol ester (M024) 2.40 g (6.2 mmol), 4-chloro-1,10-phenanthroline (M037) 1.40 g ( 6.6mmol), 75% tris(dibenzylideneacetone)bispalladium 76mg(0.062mmol), tricyclohexylphosphine 138mg(0.48mmol), potassium phosphate 2.24g(10.6mmol), water 9mL was added to dioxane 18mL And stirred at 100°C for 18 hours. After completion of the reaction, it was added to water and extracted with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was recrystallized with ethyl acetate to obtain 2.41 g (81%) of 4-(4-benzyloxy-3-(pyridin-2-yl)phenyl)-1,10-phenanthroline.

(2) L121의 합성(2) Synthesis of L121

Figure 112019010503878-pct00204
Figure 112019010503878-pct00204

4-(4-벤질옥시-3-(피리딘-2-일)페닐)-1,10-펜안트롤린 1.32g(3mmol), 10% 팔라듐탄소(Pd 0.15mmol)를 다이옥세인 19mL 가하고, 5% H2-N2 가스 분위기하, 100℃에서 19시간 교반했다. 반응 종료 후, 다이클로로메테인을 가하여 희석하고, 셀라이트를 사용하여 불용물을 제거했다. 여과액은 감압하에서 농축하고, 얻어진 잔사는 컬럼 크로마토그래피(NH2, 다이클로로메테인:메탄올)로 정제하여, 2-(5-(1,10-펜안트롤린-4-일)-2-하이드록시페닐)피리딘(L121) 627mg(60%)을 얻었다.4-(4-benzyloxy-3-(pyridin-2-yl)phenyl)-1,10-phenanthroline 1.32 g (3 mmol), 10% palladium carbon (Pd 0.15 mmol) was added to 19 mL of dioxane, and 5% The mixture was stirred at 100°C for 19 hours in an H 2 -N 2 gas atmosphere. After completion of the reaction, dichloromethane was added and diluted, and insoluble matters were removed using Celite. The filtrate was concentrated under reduced pressure, and the obtained residue was purified by column chromatography (NH 2 , dichloromethane: methanol), and 2-(5-(1,10-phenanthrolin-4-yl)-2- Hydroxyphenyl) pyridine (L121) 627 mg (60%) was obtained.

(1-21-2) 착체의 합성: 리튬2-(피리딘-2-일)-4-(1,10-펜안트롤린-4-일)페놀레이트 착체(L121-Li)의 합성(1-21-2) Synthesis of complex: Synthesis of lithium 2-(pyridin-2-yl)-4-(1,10-phenantholin-4-yl)phenolate complex (L121-Li)

Figure 112019010503878-pct00205
Figure 112019010503878-pct00205

배위자 L121 140mg(0.4mmol)-톨루엔 용액 4mL에 4M 수산화리튬 수용액 0.1mL(0.4mmol)-메탄올 2mL 용액을 적하하고, 실온에서 1시간 교반했다. 반응 혼합물은 감압하에서 농축했다. 얻어진 잔사는 감압하, 220℃에서 가열하여 용매, 미반응의 배위자를 제거하고, L121-Li 108mg(75%)을 얻었다. 얻어진 착체의 NMR을 도 35에 나타낸다.A 4M lithium hydroxide aqueous solution 0.1 mL (0.4 mmol)-methanol 2 mL solution was added dropwise to 4 mL of a ligand L121 140 mg (0.4 mmol)-toluene solution, followed by stirring at room temperature for 1 hour. The reaction mixture was concentrated under reduced pressure. The obtained residue was heated at 220° C. under reduced pressure to remove the solvent and the unreacted ligand to obtain 108 mg (75%) of L121-Li. Fig. 35 shows the NMR of the obtained complex.

[A-21-2] 세슘2-(피리딘-2-일)-4-(1,10-펜안트롤린-4-일)페놀레이트 착체(L121-Cs)의 합성[A-21-2] Synthesis of cesium 2-(pyridin-2-yl)-4-(1,10-phenantholin-4-yl)phenolate complex (L121-Cs)

Figure 112019010503878-pct00206
Figure 112019010503878-pct00206

배위자 L121 280mg(0.8mmol)-톨루엔 용액 8mL에 50% 수산화세슘 수용액 0.14mL(0.8mmol)-메탄올 4mL 용액을 적하하고, 실온에서 1시간 교반했다. 반응 혼합물은 감압하에서 농축했다. 얻어진 잔사는 감압하, 220℃로 가열하여 용매, 미반응의 배위자를 제거하고, L121-Cs 182mg(47%)을 얻었다. 얻어진 착체의 NMR을 도 35에 나타낸다.A 50% aqueous solution of cesium hydroxide 0.14 mL (0.8 mmol)-4 mL of methanol was added dropwise to 8 mL of a ligand L121 280 mg (0.8 mmol)-toluene solution, followed by stirring at room temperature for 1 hour. The reaction mixture was concentrated under reduced pressure. The obtained residue was heated to 220° C. under reduced pressure to remove the solvent and the unreacted ligand to obtain 182 mg (47%) of L121-Cs. Fig. 35 shows the NMR of the obtained complex.

[B-9] 5-(1,10-펜안트롤린-4-일)-8-퀴놀레이트 착체(L209-M)의 합성[B-9] Synthesis of 5-(1,10-phenantholin-4-yl)-8-quinolate complex (L209-M)

[B-9-1] 리튬5-(1,10-펜안트롤린-4-일)-8-퀴놀레이트 착체(L209-Li)의 합성[B-9-1] Synthesis of lithium 5-(1,10-phenantholin-4-yl)-8-quinolate complex (L209-Li)

(2-9-1) 배위자의 합성: 8-하이드록시-5-(1,10-펜안트롤린-4-일)퀴놀린(L209)의 합성(2-9-1) Synthesis of ligand: Synthesis of 8-hydroxy-5-(1,10-phenantholin-4-yl)quinoline (L209)

(1) L209 중간체의 합성(1) Synthesis of L209 intermediate

1) 8-벤질옥시-5-(1,10-펜안트롤린-4-일)퀴놀린의 합성1) Synthesis of 8-benzyloxy-5-(1,10-phenantholin-4-yl)quinoline

Figure 112019010503878-pct00207
Figure 112019010503878-pct00207

8-벤질옥시퀴놀린-5-일보론산피나콜에스터(M018) 1.44g(4.0mmol), 4-브로모-1,10-펜안트롤린(M038) 1.04g(4.0mmol), 75% 트리스(다이벤질리덴아세톤)비스팔라듐 73mg(0.06mmol), 트라이사이클로헥실포스핀 39mg(0.140mmol) 인산 포타슘 1.44g(6.8mmol), 물 6mL를 다이옥세인 12mL에 가하고 100℃에서 20시간 교반했다. 반응 종료 후, 물에 가하고 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(NH, 다이클로로메테인: MeOH)로 정제하여, 8-벤질옥시-5-(1,10-펜안트롤린-4-일)퀴놀린 1.13g(68%)을 얻었다.8-benzyloxyquinoline-5-ylboronic acid pinacol ester (M018) 1.44 g (4.0 mmol), 4-bromo-1,10-phenanthroline (M038) 1.04 g (4.0 mmol), 75% tris (Da Ibenzylideneacetone) bispalladium 73 mg (0.06 mmol), tricyclohexylphosphine 39 mg (0.140 mmol) potassium phosphate 1.44 g (6.8 mmol), and water 6 mL were added to 12 mL of dioxane, followed by stirring at 100°C for 20 hours. After completion of the reaction, it was added to water and extracted with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (NH, dichloromethane: MeOH) to obtain 1.13 g (68%) of 8-benzyloxy-5-(1,10-phenantholin-4-yl)quinoline.

(2) L209의 합성(2) Synthesis of L209

Figure 112019010503878-pct00208
Figure 112019010503878-pct00208

8-벤질옥시-5-(1,10-펜안트롤린-4-일)퀴놀린 580mg(1.4mmol), 10% 팔라듐탄소 223mg(Pd 0.21mmol), 폼산 암모늄 882mg(14mmol)을 메탄올 28mL에 가하고, 65℃에서 18시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 불용물을 셀라이트를 사용하여 제거했다. 여과액은 감압하에서 농축하고, 얻어진 잔사는 톨루엔으로 재결정하여, 8-하이드록시-5-(1,10-펜안트롤린-4-일)퀴놀린(L209) 300mg(66%)을 얻었다.8-benzyloxy-5-(1,10-phenanthroline-4-yl)quinoline 580 mg (1.4 mmol), 10% palladium carbon 223 mg (Pd 0.21 mmol), and ammonium formate 882 mg (14 mmol) were added to 28 mL of methanol, It stirred at 65 degreeC for 18 hours. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate was concentrated under reduced pressure, and the obtained residue was recrystallized from toluene to obtain 300 mg (66%) of 8-hydroxy-5-(1,10-phenantholin-4-yl)quinoline (L209).

(2-9-2) 착체의 합성: 리튬5-(1,10-펜안트롤린-4-일)-8-퀴놀레이트 착체(L209-Li)의 합성(2-9-2) Synthesis of complex: Synthesis of lithium 5-(1,10-phenantholin-4-yl)-8-quinolate complex (L209-Li)

Figure 112019010503878-pct00209
Figure 112019010503878-pct00209

배위자 L209 129mg(0.4mmol)-톨루엔 현탁액 10mL에 4M 수산화리튬 수용액 0.1mL(0.4mmol)-메탄올 2mL 용액을 적하하고, 실온에서 1시간 교반했다. 생성된 석출물을 여과하여 취했다. 얻어진 석출물은 감압하, 220℃로 가열하여 용매, 미반응의 배위자를 제거하고, L209-Li 100mg(76%)을 얻었다. 얻어진 착체의 NMR을 도 36에 나타낸다.To 10 mL of a ligand L209 129 mg (0.4 mmol)-toluene suspension was added dropwise a solution of 0.1 mL (0.4 mmol) of a 4M lithium hydroxide solution-2 mL of methanol, and stirred at room temperature for 1 hour. The produced precipitate was collected by filtration. The obtained precipitate was heated to 220° C. under reduced pressure to remove the solvent and the unreacted ligand to obtain 100 mg (76%) of L209-Li. Fig. 36 shows the NMR of the obtained complex.

[B-9-2] 세슘5-(1,10-펜안트롤린-4-일)-8-퀴놀레이트 착체(L209-Cs)의 합성[B-9-2] Synthesis of cesium 5-(1,10-phenantholin-4-yl)-8-quinolate complex (L209-Cs)

Figure 112019010503878-pct00210
Figure 112019010503878-pct00210

배위자 L209 129mg(0.4mmol)을 톨루엔 현탁액 10mL에 50% 수산화세슘 수용액 0.07mL(0.4mmol)-메탄올 2mL 용액을 적하하고, 실온에서 1시간 교반했다. 반응 혼합물은 감압하에서 농축했다. 얻어진 잔사는 감압하, 220℃로 가열하여 용매, 미반응의 배위자를 제거하고, L209-Cs 147mg(81%)을 얻었다. 얻어진 착체의 NMR을 도 36에 나타낸다.129 mg (0.4 mmol) of ligand L209 was added dropwise a solution of 0.07 mL (0.4 mmol) of 50% cesium hydroxide aqueous solution (2 mL of methanol) to 10 mL of a toluene suspension, followed by stirring at room temperature for 1 hour. The reaction mixture was concentrated under reduced pressure. The obtained residue was heated to 220° C. under reduced pressure to remove the solvent and the unreacted ligand to obtain 147 mg (81%) of L209-Cs. Fig. 36 shows the NMR of the obtained complex.

[B-9-3] 바륨비스(5-(1,10-펜안트롤린-4-일)-8-퀴놀레이트) 착체(L209-Ba)의 합성[B-9-3] Synthesis of barium bis(5-(1,10-phenantholin-4-yl)-8-quinolate) complex (L209-Ba)

Figure 112019010503878-pct00211
Figure 112019010503878-pct00211

배위자 L209 97mg(0.3mmol)-에탄올 현탁액 5mL에 수산화바륨팔수화물 47mg(0.15mmol)-물 1.5mL 용액을 적하하고, 실온에서 1시간 교반했다. 계속해서 1N 수산화소듐 수용액을 적하하여 pH=11로 조정했다. 발생한 침전을 여과하여 취하고, L209-Ba 110mg(47%)을 얻었다.A solution of 47 mg (0.15 mmol) of barium hydroxide (0.15 mmol)-1.5 mL of water was added dropwise to 5 mL of an ethanol suspension of 97 mg (0.3 mmol) of ligand L209, followed by stirring at room temperature for 1 hour. Subsequently, a 1N aqueous sodium hydroxide solution was added dropwise to adjust the pH to 11. The generated precipitate was collected by filtration, and 110 mg (47%) of L209-Ba was obtained.

[B-10] 5,7-다이(1,10-펜안트롤린-2-일)-8-퀴놀레이트 착체(L210-M)의 합성[B-10] Synthesis of 5,7-di(1,10-phenantholin-2-yl)-8-quinolate complex (L210-M)

[B-10-1] 루비듐 5,7-다이(1,10-펜안트롤린-2-일)-8-퀴놀레이트 착체(L210-Rb)의 합성[B-10-1] Synthesis of rubidium 5,7-di(1,10-phenantholin-2-yl)-8-quinolate complex (L210-Rb)

(2-10-1) 배위자의 합성: 8-벤질옥시-5,7-다이(1,10펜안트롤린-2-일)퀴놀린(L210)의 합성(2-10-1) Synthesis of ligand: Synthesis of 8-benzyloxy-5,7-di (1,10 phenantholin-2-yl) quinoline (L210)

(1) L210 중간체의 합성(1) Synthesis of L210 intermediate

1) 8-벤질옥시-5,7-비스(4,4,5,5-테트라메틸다이옥사보로레인-2-일)퀴놀린의 합성1) Synthesis of 8-benzyloxy-5,7-bis(4,4,5,5-tetramethyldioxabororain-2-yl)quinoline

Figure 112019010503878-pct00212
Figure 112019010503878-pct00212

8-벤질옥시-5,7-다이브로모퀴놀린(M019) 1.97g(5mmol), 비스(피나콜레이토)다이보론 3.81g(15mmol), PdCl2(dppf)-CH2Cl2 부가체 226mg(0.3mmol), 아세트산 포타슘 9.81g(100mmol)을 다이옥세인 20mL에 가하고, 100℃에서 2시간 교반했다. 반응 종료 후, 물에 붓고, 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 컬럼 크로마토그래피(C300, 메탄올:다이클로로메테인)로 정제하여, 8-벤질옥시-5,7-비스(4,4,5,5-테트라메틸다이옥사보로레인-2-일)퀴놀린 1.92g(79%)을 얻었다.8-benzyloxy-5,7-dibromoquinoline (M019) 1.97 g (5 mmol), bis (pinacollato) diboron 3.81 g (15 mmol), PdCl 2 (dppf) -CH 2 Cl 2 adduct 226 mg (0.3 mmol) and potassium acetate 9.81 g (100 mmol) were added to 20 mL of dioxane, followed by stirring at 100°C for 2 hours. After completion of the reaction, it was poured into water and extracted with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was purified by column chromatography (C300, methanol:dichloromethane), and 8-benzyloxy-5,7-bis(4,4,5,5-tetramethyldioxabororain-2-yl)quinoline 1.92g (79%) was obtained.

2) 8-벤질옥시-5,7-다이(1,10펜안트롤린-2-일)퀴놀린의 합성2) Synthesis of 8-benzyloxy-5,7-di (1,10 phenanthrolin-2-yl) quinoline

Figure 112019010503878-pct00213
Figure 112019010503878-pct00213

75% 트리스(다이벤질리덴아세톤)비스팔라듐 148mg(0.162mmol), 트라이사이클로헥실포스핀 118mg(0.42mmol), 인산포타슘 4.16g(24mmol), 물 15mL를 다이옥세인 30mL에 가하고 100℃에서 30분간 교반하고, 촉매를 조정했다. 실온까지 냉각 후, 8-벤질옥시-5,7-비스(4,4,5,5-테트라메틸다이옥사보로레인-2-일)퀴놀린 2.92g(6mmol), 4-브로모-1,10-펜안트롤린(M038) 3.42g(13.2mmol)을 이 용액에 가하고, 100℃에서 18시간 교반했다. 반응 종료 후, 물에 가하고 다이클로로메테인으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 얻어진 잔사는 아세트산 에틸로 재결정을 행하여, 8-벤질옥시-5,7-다이(1,10펜안트롤린-2-일)퀴놀린 2.00g(56%)을 얻었다.75% tris (dibenzylideneacetone) bispalladium 148mg (0.162mmol), tricyclohexylphosphine 118mg (0.42mmol), potassium phosphate 4.16g (24mmol), water 15mL was added to 30mL of dioxane and 30 minutes at 100℃ It was stirred and the catalyst was adjusted. After cooling to room temperature, 8-benzyloxy-5,7-bis(4,4,5,5-tetramethyldioxabororain-2-yl)quinoline 2.92 g (6 mmol), 4-bromo-1,10- 3.42 g (13.2 mmol) of phenanthroline (M038) was added to this solution, followed by stirring at 100°C for 18 hours. After completion of the reaction, it was added to water and extracted with dichloromethane. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The obtained residue was recrystallized with ethyl acetate to obtain 2.00 g (56%) of 8-benzyloxy-5,7-di(1,10 phenantholin-2-yl)quinoline.

(2) L210의 합성(2) Synthesis of L210

Figure 112019010503878-pct00214
Figure 112019010503878-pct00214

브로민화리튬 282mg(3.25mmol)-아세토나이트릴 현탁액 25mL에 클로로-tert-뷰틸다이메틸실레인 588mg(3,9mmol)을 가하고 실온에서 5분간 교반했다. 이 용액에 8-벤질옥시-5,7-다이(1,10펜안트롤린-2-일)퀴놀린 1.48g(2.5mmol)을 가하고, 18시간 실온에서 교반했다. 반응 종료 후, 메탄올 25mL를 가하고, 감압하에서 농축했다. 얻어진 잔사는 1-뷰탄올로 재결정을 행하여, 적색 개체 1.44g(114%)을 얻었다. 얻어진 개체 중 663mg을 취하고 다이클로로메테인, 물로 세정하고, 8-하이드록시-5,7-다이(1,10펜안트롤린-2-일)퀴놀린(L210) 506mg(세정의 조작에 의해 81%, 반응수율 1.14X0.81X100=92%)을 얻었다.To 25 mL of lithium bromide 282 mg (3.25 mmol)-acetonitrile suspension, 588 mg (3,9 mmol) of chloro-tert-butyldimethylsilane was added, followed by stirring at room temperature for 5 minutes. To this solution, 1.48 g (2.5 mmol) of 8-benzyloxy-5,7-di(1,10 phenanthrolin-2-yl)quinoline was added, followed by stirring at room temperature for 18 hours. After completion of the reaction, 25 mL of methanol was added and concentrated under reduced pressure. The obtained residue was recrystallized from 1-butanol, and 1.44 g (114%) of a red individual was obtained. 663 mg of the obtained individual was taken, washed with dichloromethane and water, and 506 mg of 8-hydroxy-5,7-di(1,10 phenanthrolin-2-yl)quinoline (L210) (81% by washing operation) , A reaction yield of 1.14X0.81X100=92%) was obtained.

(2-10-2) 착체의 합성: 루비듐5,7-다이(1,10-펜안트롤린-2-일)-8-퀴놀레이트 착체(L210-Rb)의 합성(2-10-2) Synthesis of complex: Synthesis of rubidium 5,7-di(1,10-phenantholin-2-yl)-8-quinolate complex (L210-Rb)

Figure 112019010503878-pct00215
Figure 112019010503878-pct00215

배위자 L210 150mg(0.3mmol)-에탄올 용액 6mL에 50% 수산화세슘 수용액 0.04mL(0.36mmol)-에탄올 1.2mL 용액을 적하하고, 실온에서 1시간 교반했다. 생성된 석출물을 여과하여 취한 후, 석출물은 다이클로로메테인으로 세정하고, L210-Rb 145mg(82%)을 얻었다. 얻어진 착체의 NMR을 도 37에 나타낸다.A solution of 50% cesium hydroxide aqueous solution 0.04 mL (0.36 mmol)-ethanol 1.2 mL was added dropwise to 6 mL of a ligand L210 150 mg (0.3 mmol)-ethanol solution, and stirred at room temperature for 1 hour. After the generated precipitate was collected by filtration, the precipitate was washed with dichloromethane to obtain 145 mg (82%) of L210-Rb. Fig. 37 shows the NMR of the obtained complex.

[B-10-2] 세슘5,7-다이(1,10-펜안트롤린-2-일)-8-퀴놀레이트 착체(L210-Cs)의 합성[B-10-2] Synthesis of cesium 5,7-di(1,10-phenantholin-2-yl)-8-quinolate complex (L210-Cs)

Figure 112019010503878-pct00216
Figure 112019010503878-pct00216

배위자 L210 251mg(0.5mmol)-에탄올 용액 8mL에 50% 수산화세슘 수용액 0.11mL(0.6mmol)-에탄올 2mL 용액을 적하하고, 실온에서 2시간 교반했다. 생성된 석출물을 여과하여 취한 후, 석출물은 다이클로로메테인으로 세정하여, L210-Cs 201mg(63%)을 얻었다. 얻어진 착체의 NMR을 도 37에 나타낸다.A solution of 0.11 mL (0.6 mmol) of 50% cesium hydroxide aqueous solution of 2 mL of ethanol was added dropwise to 8 mL of a ligand L210 251 mg (0.5 mmol)-ethanol solution, followed by stirring at room temperature for 2 hours. After the generated precipitate was collected by filtration, the precipitate was washed with dichloromethane to obtain 201 mg (63%) of L210-Cs. Fig. 37 shows the NMR of the obtained complex.

[G-1] 2-(1-(1,10-펜안트롤린2-일)벤조이미다졸-2-일)페놀레이트 착체(L701-M)의 합성[G-1] Synthesis of 2-(1-(1,10-phenantholin2-yl)benzoimidazol-2-yl)phenolate complex (L701-M)

[G-1-1] 루비듐2-(1-(1,10-펜안트롤린2-일)벤조이미다졸-2-일)페놀레이트 착체(L701-Rb)의 합성[G-1-1] Synthesis of rubidium 2-(1-(1,10-phenantholin2-yl)benzoimidazol-2-yl)phenolate complex (L701-Rb)

(7-1-1) 배위자의 합성: 2-(2-하이드록시페닐)벤조이미다졸(L701)의 합성(7-1-1) Synthesis of ligand: Synthesis of 2-(2-hydroxyphenyl)benzoimidazole (L701)

(1) L701 중간체의 합성(1) Synthesis of L701 intermediate

1) 2-(2-벤질옥시페닐)벤조이미다졸의 합성의 합성1) Synthesis of 2-(2-benzyloxyphenyl)benzoimidazole

Figure 112019010503878-pct00217
Figure 112019010503878-pct00217

60℃에서 o-페닐렌다이아민 3.03g(28mmol), 아황산수소소듐 9.37g(90mmol)-DMF 용액 80mL에 2-벤질옥시벤즈알데하이드 6.48g(30.5mmol)-DMF 용액 20mL를 가하고, 적하 종료 후, 100℃에서 12시간 반응했다. 반응 종료 후, 물을 가하고, 톨루엔으로 추출했다. 유기층은 황산 마그네슘으로 건조 후, 감압하에서 농축했다. 선택된 잔사는 사이클로헥세인-아세트산 에틸로 재결정을 행하고, 2-(2-벤질옥시페닐)벤조이미다졸 6.55g(78%)을 얻었다.At 60 ℃ o-phenylenediamine 3.03 g (28 mmol), sodium hydrogen sulfite 9.37 g (90 mmol) -To 80 mL of DMF solution, 6.48 g (30.5 mmol) of 2-benzyloxybenzaldehyde-20 mL of DMF solution was added, and after the dropwise addition And reacted at 100°C for 12 hours. After completion of the reaction, water was added and extraction was performed with toluene. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. The selected residue was recrystallized from cyclohexane-ethyl acetate to obtain 6.55 g (78%) of 2-(2-benzyloxyphenyl)benzoimidazole.

2) 2-(2-벤질옥시페닐)-1-(1,10펜안트롤린-2-일)벤조이미다졸의 합성2) Synthesis of 2-(2-benzyloxyphenyl)-1-(1,10phenantholin-2-yl)benzoimidazole

Figure 112019010503878-pct00218
Figure 112019010503878-pct00218

2-(2-벤질옥시페닐)벤조이미다졸 2.40g(8mmol), 75% 트리스(다이벤질리덴아세톤)비스팔라듐 14mg(0.015mmol), 탄산세슘 7.82g(24mmol)을 자일렌에 가하고 탈기했다. 이 현탁액에 1M 트라이(t-뷰틸)포스핀-톨루엔 용액 0.9mL(0.9mmol)를 가하고, 80℃로 가열했다. 계속해서 2-브로모펜안트롤린 2.49g(9.6mmol)을 가하고, 150℃에서 20시간 반응했다. 반응 종료 후, 실온까지 냉각하고, 발생한 침전을 여과하여 취했다. 톨루엔, 물로 세정하고, IPA-톨루엔으로 재결정을 행하고, 2-(2-벤질옥시페닐)-1-(1,10펜안트롤린-2-일)벤조이미다졸 1.92g(50%)을 얻었다.2-(2-benzyloxyphenyl)benzoimidazole 2.40 g (8 mmol), 75% tris (dibenzylideneacetone) bispalladium 14 mg (0.015 mmol), cesium carbonate 7.82 g (24 mmol) were added to xylene and degassed. . 0.9 mL (0.9 mmol) of a 1M tri(t-butyl)phosphine-toluene solution was added to this suspension, followed by heating to 80°C. Then, 2.49 g (9.6 mmol) of 2-bromophenanthroline was added, and it reacted at 150 degreeC for 20 hours. After completion of the reaction, it was cooled to room temperature, and the generated precipitate was filtered off. Washed with toluene and water, and recrystallized from IPA-toluene to obtain 1.92 g (50%) of 2-(2-benzyloxyphenyl)-1-(1,10 phenantholin-2-yl)benzoimidazole.

(2) L701의 합성(2) Synthesis of L701

Figure 112019010503878-pct00219
Figure 112019010503878-pct00219

2-(2-벤질옥시페닐)-1-(1,10펜안트롤린-2-일)벤조이미다졸 670mg(1.4mmol), 10% 팔라듐탄소 223mg(Pd 0.21mmol), 폼산 암모늄 882mg(14mmol)을 아세트산 28mL에 가하고, 65℃에서 18시간 교반했다. 반응 종료 후, 다이클로로메테인으로 희석하고, 불용물을 셀라이트를 사용하여 제거했다. 여과액은 감압하에서 농축하고, 얻어진 잔사는 톨루엔으로 재결정하여, 2-(2-하이드록시페닐)-1-(1,10펜안트롤린-2-일)벤조이미다졸(L701) 342mg(63%)을 얻었다.2-(2-Benzyloxyphenyl)-1-(1,10phenanthrolin-2-yl)benzoimidazole 670mg (1.4mmol), 10% palladium carbon 223mg (Pd 0.21mmol), ammonium formate 882mg (14mmol) Was added to 28 mL of acetic acid, and stirred at 65°C for 18 hours. After completion of the reaction, it was diluted with dichloromethane, and insoluble matters were removed using Celite. The filtrate was concentrated under reduced pressure, and the obtained residue was recrystallized from toluene, and 2-(2-hydroxyphenyl)-1-(1,10 phenanthrolin-2-yl)benzoimidazole (L701) 342 mg (63%) ).

(7-1-2) 착체의 합성: 루비듐2-(1-(1,10-펜안트롤린2-일)벤조이미다졸-2-일)페놀레이트 착체(L701-Rb)의 합성(7-1-2) Synthesis of complex: Synthesis of rubidium 2-(1-(1,10-phenanthrolin2-yl)benzoimidazol-2-yl)phenolate complex (L701-Rb)

Figure 112019010503878-pct00220
Figure 112019010503878-pct00220

배위자 L701 117mg(0.3mmol)-톨루엔 5mL에 50% 수산화루비듐 수용액 0.017mL(0.29mmol)-메탄올 1mL 용액을 적하하고, 2시간 환류했다. 반응 종료 후, 실온까지 냉각하고, 생성된 석출물을 여과하여 취했다. 석출물은 톨루엔으로 세정하고, L701-Rb 112mg(77%)을 얻었다. 얻어진 착체의 NMR을 도 38에 나타낸다.A solution of 50% rubidium hydroxide aqueous solution 0.017 mL (0.29 mmol)-methanol 1 mL was added dropwise to 5 mL of ligand L701 117 mg (0.3 mmol)-toluene, and refluxed for 2 hours. After completion of the reaction, it was cooled to room temperature, and the produced precipitate was filtered off. The precipitate was washed with toluene to obtain 112 mg (77%) of L701-Rb. Fig. 38 shows the NMR of the obtained complex.

[2] 액상 재료의 제조[2] preparation of liquid materials

상기에서 얻어진 금속 착체를 프로톤성 극성 용매에 용해시켜 유기 전계발광 소자의 전자 수송층을 구축하기 위한 액상 재료를 제조했다.The metal complex obtained above was dissolved in a protic polar solvent to prepare a liquid material for constructing an electron transport layer of an organic electroluminescent device.

예를 들면, 금속 착체 L101-Rb[루비듐2-(피리딘-2-일)-4-(4-(4,6-다이페닐피리미딘-2-일)페닐)페놀레이트 착체](후술의 실시예 1의 착체)를 1-헵탄올에 용해하여, 5g/L∼15g/L의 알코올 용액을 조정했다.For example, metal complex L101-Rb [rubidium 2-(pyridin-2-yl)-4-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)phenolate complex] (as described later) The complex of Example 1) was dissolved in 1-heptanol to prepare an alcohol solution of 5 g/L to 15 g/L.

상기에서 얻어진 그 밖의 금속 착체에 대해서도, 마찬가지로 알코올 용액을 조정했다. 사용한 용매는 표 1에 기재한다. 이것들은 모두 성막성이 우수했다.Also about the other metal complexes obtained above, the alcohol solution was similarly adjusted. The solvent used is shown in Table 1. All of these were excellent in film formability.

[3] 유기 전계발광 소자의 제조와 평가[3] Fabrication and evaluation of organic electroluminescent devices

(1) 유기 전계발광 소자의 제조(1) Fabrication of organic electroluminescent device

ITO 기판은 테크노프린트제(막 두께 150nm)를 사용했다. 기판 세정에 사용하는 2-프로판올은 와코쥰야쿠제의 전자공업용을 사용하고, 전자 수송층의 성막에 사용하는 알코올류, 및 정공 수송층, 발광층에 사용하는 톨루엔은 와코쥰야쿠제의 것을 사용했다. 정공 주입층으로서는 PEDOT:PSS(Heraeus제의 AI4083)를 원액인 채로 사용했다. 정공 수송층으로서는 트라이페닐아민 폴리머에 다이큐밀퍼옥사이드를 1phr 첨가한 톨루엔 용액(5g/L)을 사용했다. 발광층에는 F8BT의 톨루엔 용액(10g/L)을 사용했다. 전자 수송층에는 하기 표 1 중의 화합물을 사용하고, 농도가 7.5g/L의 1-헵탄올 용액을 조정했다.The ITO substrate was made of technoprint (film thickness 150 nm). 2-propanol used for substrate cleaning was used for the electronics industry manufactured by Wako Pure Chemical Industries, and alcohols used for film formation of the electron transport layer, and toluene used for the hole transport layer and light emitting layer were manufactured by Wako Pure Chemical Industries. As the hole injection layer, PEDOT:PSS (AI4083 manufactured by Heraeus) was used as a stock solution. As the hole transport layer, a toluene solution (5 g/L) in which 1 phr of dicumyl peroxide was added to a triphenylamine polymer was used. A toluene solution (10 g/L) of F8BT was used for the light emitting layer. For the electron transport layer, the compounds in Table 1 were used, and a 1-heptanol solution having a concentration of 7.5 g/L was prepared.

또한, 더한층의 구동 전압이나 장기 수명화를 목적으로 금속 알콕사이드를 첨가한 소자도 제작했다. 금속 알콕사이드에는, 리튬-n-뷰톡사이드(LiOBu)와 세슘-n-헵톡사이드(CsOnHep)를 사용했다. 금속 알콕사이드의 첨가는 성막 전에 전자 수송 재료의 용액에 금속 알콕사이드 용액을 첨가함으로써 실시했다. 리튬-n-뷰톡사이드의 경우에는, (주)코쥰도카가쿠켄큐쇼제의 시약을 글로브 박스 중에서 표 1 기재의 용매에 5g/L의 농도로 용해하여 사용했다. 또한 세슘-n-헵톡사이드의 경우(실시예 2)는 금속 세슘(시그마알드리치제)을 글로브 박스 중에서 2.7g/L의 농도로 1-헵탄올에 용해하고, 세슘-n-헵톡사이드 환산 5g/L의 1-헵탄올 용액을 조정했다. 금속 알콕사이드 용액 조정 후에 7.5g/L 전자 수송 재료 용액과 5g/L 알칼리 금속 알콕사이드 용액을 혼합하고, 전자 수송 재료에 대하여 도판트가 10중량 퍼센트가 되도록 혼합하고 그 후 성막에 제공했다.In addition, a device to which a metal alkoxide was added was also fabricated for the purpose of further driving voltage and longer life. For the metal alkoxide, lithium-n-butoxide (LiOBu) and cesium-n-heptoxide (CsOnHep) were used. The addition of the metal alkoxide was performed by adding the metal alkoxide solution to the solution of the electron transport material before film formation. In the case of lithium-n-butoxide, a reagent manufactured by Kojundo Chemical Co., Ltd. was dissolved in a solvent shown in Table 1 in a glove box at a concentration of 5 g/L and used. In the case of cesium-n-heptoxide (Example 2), metal cesium (manufactured by Sigma-Aldrich) was dissolved in 1-heptanol at a concentration of 2.7 g/L in a glove box, and cesium-n-heptoxide equivalent 5 g/l. L 1-heptanol solution was prepared. After the metal alkoxide solution was adjusted, a 7.5 g/L electron transport material solution and a 5 g/L alkali metal alkoxide solution were mixed, mixed so that the dopant was 10% by weight with respect to the electron transport material, and then provided for film formation.

또한, 비교예로서 LiBPP(일본 특개 2008-195623 기재 화합물), ETM2(특허문헌 4 기재 화합물)도 상기와 같이 실시했다.In addition, as comparative examples, LiBPP (a compound described in Japanese Unexamined Patent Application Publication No. 2008-195623) and ETM2 (a compound described in Patent Document 4) were also carried out in the same manner as above.

ITO 기판의 전처리로서 2-프로판올 속에서 5분간 보일링 세정하고, 그 후 바로 UV/O3 처리 장치에 넣고, 15분간 UV 조사에 의해 O3 처리를 행했다.As a pretreatment of the ITO substrate, it was boiled and cleaned in 2-propanol for 5 minutes, then immediately put into a UV/O 3 treatment apparatus, and subjected to O 3 treatment by UV irradiation for 15 minutes.

정공 주입층 및 정공 수송층, 발광층, 전자 수송층은 IDEN제의 스핀 코터를 사용하여 형성 후, N2 분위기하에서 건조했다.The hole injection layer, the hole transport layer, the light emitting layer and the electron transport layer were formed using a spin coater manufactured by IDEN, and then dried in an N 2 atmosphere.

음극(Al, 순도 99.999%) 및 전자 주입층(LiF)의 증착에는 챔버 두께 1×10-4Pa의 고진공 증착 장치를 사용했다. 증착 속도는 LiF에 대해서는 0.1Å/s, Al에 대해서는 5Å/s로 했다. 음극의 성막이 완료 후, 소자를 질소 치환한 글로브 박스 내로 즉시 이동하고, 건조제를 도포한 유리 캡으로 밀봉했다.A high vacuum deposition apparatus having a chamber thickness of 1×10 -4 Pa was used for the deposition of the cathode (Al, purity 99.999%) and the electron injection layer (LiF). The deposition rate was 0.1 Å/s for LiF and 5 Å/s for Al. After the film formation of the negative electrode was completed, the device was immediately moved into a nitrogen-substituted glove box and sealed with a glass cap coated with a drying agent.

소자 구조는 음극과 전자 수송층 사이에 전자 주입층을 설치한 것 이외는 모두 도 1에 도시하는 것이며, 각 층의 막 두께는 하기와 같다.The device structure is all shown in Fig. 1 except that an electron injection layer is provided between the cathode and the electron transport layer, and the film thickness of each layer is as follows.

양극: ITO(150nm)Anode: ITO (150nm)

정공 주입층: PEDOT:PSS(35nm)Hole injection layer: PEDOT:PSS (35nm)

정공 수송층: 트라이페닐아민 폴리머(20nm)Hole transport layer: Triphenylamine polymer (20 nm)

발광층: F8BT(알드리치제 CAS:210347-52-7)(60nm)Emitting layer: F8BT (CAS: 210347-52-7 manufactured by Aldrich) (60 nm)

전자 수송층: 20nmElectron transport layer: 20 nm

음극: LiF(0.5nm)/Al(100nm) 또는 Al(100nm)Cathode: LiF(0.5nm)/Al(100nm) or Al(100nm)

제작한 유기 EL 소자의 전압-전류-휘도 특성은 DC 전압전류전원·모니터(ADCMT제 6241A, 7351A)를 사용하여 0V부터 10V까지 전압을 인가하고 0.1V마다 전류값을 측정했다.The voltage-current-luminance characteristics of the prepared organic EL device were determined by applying a voltage from 0V to 10V using a DC voltage-current power supply/monitor (ADCMT 6241A, 7351A), and measuring a current value every 0.1V.

또한, 제작한 유기 EL 소자의 수명은 수명 평가 측정 장치(규슈케이소쿠키제)를 사용하여 측정했다. 소자를 25℃ 일정한 항온조 내에 설치하고, 정전류 구동에 수반되는 휘도 전압의 변화를 측정했다. 단, 소자 평가의 가속계수에는 1.758을 사용했다. 100cd/m2으로 환산한 구동 시간에 의해, 초기 휘도의 1/2에 도달한 반감 시간에 의해 비교했다.In addition, the life of the produced organic EL element was measured using a life evaluation measuring device (manufactured by Kyushu Keiso Cookie). The device was installed in a constant temperature bath at 25°C, and the change in the luminance voltage accompanying constant current driving was measured. However, 1.758 was used for the acceleration coefficient for element evaluation. The comparison was made by the driving time converted to 100 cd/m 2 by the half-time reaching 1/2 of the initial luminance.

T=(L0/L)1.758×T1 T=(L 0 /L) 1.758 ×T 1

(식 중 L0: 초기 휘도[cd/m2], L: 환산 휘도[cd/m2], T1: 실측의 휘도 반감 시간, T: 환산한 휘도 반감 시간)(In the formula, L 0 : initial luminance [cd/m 2 ], L: converted luminance [cd/m 2 ], T 1 : actual luminance half-time, T: converted luminance half-time)

상대 수명은 실시예 11[재료 착체(L201-Cs)+도판트(LiOBu)+전자 주입층]의 수명을 기준(100)으로 했다.The relative lifetime was based on the lifetime of Example 11 (material complex (L201-Cs) + dopant (LiOBu) + electron injection layer) as a reference (100).

(3) 소자 재료로서 사용한 화합물을 다음에 나타낸다.(3) The compound used as the device material is shown below.

1) 트라이페닐아민 폴리머(CAS:472960-35-3)1) Triphenylamine polymer (CAS:472960-35-3)

Figure 112019010503878-pct00221
Figure 112019010503878-pct00221

2) 다이큐밀퍼옥사이드(CAS:80-43-3)2) Dicumyl peroxide (CAS:80-43-3)

Figure 112019010503878-pct00222
Figure 112019010503878-pct00222

3) F8BT(폴리[(9,9-다이-n-옥틸플루오렌일-2,7-다이일)-alt-(벤조[2,1,3]싸이아다이아졸-4,8-다이일)], cas:210347-52-7)3) F8BT(poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazole-4,8-diyl )], cas:210347-52-7)

Figure 112019010503878-pct00223
Figure 112019010503878-pct00223

4) LiBPP(리튬2-(2',2''-바이피리딘-6'-일)페놀레이트, cas:1049805-81-3)4) LiBPP (lithium 2-(2',2''-bipyridin-6'-yl)phenolate, cas:1049805-81-3)

Figure 112019010503878-pct00224
Figure 112019010503878-pct00224

5) ETM2(1,1',1'',1'''-(9,9'-스파이로바이[9H-플루오렌]-2,2',7,7'-테트라알릴)테트라키스(1,1-다이페닐-포스핀옥사이드)), cas:1234510-17-85) ETM2(1,1',1'',1'''-(9,9'-spirobi[9H-fluorene]-2,2',7,7'-tetraallyl)tetrakis( 1,1-diphenyl-phosphine oxide)), cas:1234510-17-8

Figure 112019010503878-pct00225
Figure 112019010503878-pct00225

(4) 실시예, 비교예(4) Examples, Comparative Examples

1) 실시예 11) Example 1

상기 (1)의 유기 전계발광 소자의 제조에 있어서, 하기 표 1의 실시예 1의 전자 수송층 재료로서 L101-Rb를, 도판트로서 LiOBu를 사용했다. 또한 전자 주입층 유·무의 경우를 아울러 실시했다. 얻어진 소자의 구동 전압(V), 전류 효율(ηc) 및 상대수명의 각 물성값을 아울러 표 1에 나타냈다.In the manufacture of the organic electroluminescent device of the above (1), L101-Rb was used as the electron transport layer material of Example 1 in Table 1 below, and LiOBu was used as the dopant. Moreover, the case of the presence or absence of an electron injection layer was carried out together. Table 1 shows the driving voltage (V), current efficiency (η c ), and physical property values of the resulting device together.

2) 실시예 2 내지 30, 비교예 1 내지 32) Examples 2 to 30, Comparative Examples 1 to 3

실시예 1에서, 전자 수송층 재료를 표 1, 2에 나타내는 화합물로 대신한 이외는 실시예 1과 동일하게 소자를 제조했다. 또한, 실시예 2에서는, 도판트로서 CsOnHep를 사용했다. 얻어진 소자의 구동 전압(V), 전류효율(ηc) 및 상대수명의 각 물성값을 아울러 표 1, 2에 나타냈다.In Example 1, a device was manufactured in the same manner as in Example 1 except that the electron transport layer material was replaced with the compounds shown in Tables 1 and 2. In addition, in Example 2, CsOnHep was used as a dopant. The driving voltage (V), current efficiency (η c ), and the respective physical property values of the obtained device are shown in Tables 1 and 2 together.

(5) 평가와 고찰(5) Evaluation and consideration

우선, 비교예 1의 유사 화합물 LiBPP(3개의 탄소환 및/또는 복소환을 가짐)보다도 본 실시예 화합물을 사용한 소자(실시예 1 내지 23) 쪽이 저구동 전압, 장수명화되고 있는 것을 알 수 있다. 이 이유는, 확실하지 않지만 비교예 화합물에 대하여 4개 이상의 탄소환 및/또는 복소환을 가짐으로써 성막성 및 전자 수송성이 향상되고 있는 것에 기인한다고 생각된다.First of all, it can be seen that the devices using the compounds of this example (Examples 1 to 23) have a lower driving voltage and longer life than the similar compound LiBPP of Comparative Example 1 (having three carbon rings and/or heterocycles). have. Although this reason is not certain, it is thought that the film-forming property and electron transport property are improved by having 4 or more carbocyclic rings and/or heterocycles with respect to the comparative example compound.

또한, 실시예 11, 12와 비교예 2, 3의 비교에서는, 본 실시예 화합물을 사용한 소자의 대폭적인 장기 수명화가 달성되고 있는 것을 알 수 있다. 이 이유는, 확실하지 않지만 비교예의 포스핀옥사이드 화합물의 P-C 결합의 결합해리 에너지가 낮아, 저수명화로 이어진다고 생각된다. 한편, 본 실시예 화합물에서는, P-C 결합을 가지고 있는 화합물은 없고, 장기 수명화가 실현되고 있다.In addition, in the comparison between Examples 11 and 12 and Comparative Examples 2 and 3, it can be seen that a significantly longer lifespan of a device using the compound of the present example is achieved. Although this reason is not clear, it is thought that the bond dissociation energy of the P-C bond of the phosphine oxide compound of the comparative example is low, leading to a reduction in life. On the other hand, in the compound of this example, no compound having a P-C bond is present, and a longer life is achieved.

또한 실시예 1, 2와 실시예 3, 혹은 실시예 11과 실시예 12의 비교에 의해, 금속 알콕사이드의 첨가에 의해 더한층의 저구동 전압, 장기 수명화가 달성되는 것을 알 수 있다.In addition, from the comparison between Examples 1 and 2 and Example 3, or Examples 11 and 12, it can be seen that the addition of a metal alkoxide further achieves a lower driving voltage and longer life.

덧붙여서, 비교예 3은 비교예 2에 대하여 금속 알콕사이드를 첨가한 것이다. 이것에 의해 포스핀옥사이드 화합물이어도 장기 수명화, 저구동 전압화가 실현되고 있지만, 본 실시예 화합물에서는, 금속 알콕사이드, 특히 LiOBu의 첨가에 의해, 대폭 장수명, 저구동 전압화를 나타내고 있어, 본 실시예 화합물의 유용성을 나타내고 있다.In addition, in Comparative Example 3, a metal alkoxide was added to Comparative Example 2. As a result, even with the phosphine oxide compound, long life and low driving voltage are realized, but in the present example compound, the addition of a metal alkoxide, particularly LiOBu, shows a significant long life and low driving voltage. It shows the usefulness of the compound.

실시예, 비교예에서 사용한 재료, 소자의 구성 및 얻어진 발광 소자의 여러 물성을 표 1 및 표 2에 나타낸다.The materials used in Examples and Comparative Examples, the composition of the device, and various physical properties of the obtained light emitting device are shown in Tables 1 and 2.

Figure 112019010503878-pct00226
Figure 112019010503878-pct00226

Figure 112019010503878-pct00227
Figure 112019010503878-pct00227

(산업상의 이용가능성)(Industrial availability)

본 발명의 신규한 배위자를 갖는 금속 착체는 높은 내구성과 전자 수송성을 양립할 수 있고, 유기 전계발광 소자용의 전자 수송 재료로서 적합하게 사용할 수 있다.The metal complex having the novel ligand of the present invention can achieve both high durability and electron transport, and can be suitably used as an electron transport material for organic electroluminescent devices.

1 유기 전계발광 소자
2 기판
3 양극
4 정공 주입층
5 정공 수송층
6 발광층
7 전자 수송층
8 음극
9 밀봉 부재
1 Organic electroluminescent device
2 substrate
3 anode
4 hole injection layer
5 hole transport layer
6 light emitting layer
7 electron transport layer
8 cathode
9 sealing member

Claims (19)

1개의 배위자 중에 5개 이상의 탄소환 및/또는 복소환을 포함하는 하기 일반식 (1)로 표시되는 것을 특징으로 하는 금속 착체.
Figure 112020098762143-pct00284

식 (1)에서, R1 및 R3은 각각 독립적으로 2가의 페닐기 또는 피리딜기로부터 선택되는 접속기이며, R2 및 R4는 각각 독립적으로 수소 원자 또는 하기 (I)∼(IV)로부터 선택된 함질소환식 화합물 잔기를 나타내고, R2 및 R4 중 적어도 하나는 하기 (I)∼(IV)로부터 선택된 함질소환식 화합물 잔기이다. 또한, M은 알칼리 금속 을 나타내고, n1 내지 n2는 각각 독립적으로 0∼2의 정수이며, l은 1의 정수이다.
(I) 다음 일반식 (8a) 내지 (8c)로 표시되는 함질소환식 화합물 잔기
Figure 112020098762143-pct00278

식 (8a) 내지 (8c)에서, R10은 탄소수 1∼4의 알킬기, 페닐기 또는 피리딜기를 나타내고, m1은 0∼2의 정수이다.
(II) 다음 일반식 (9a) 내지 (9d)로 표시되는 함질소환식 화합물 잔기
Figure 112020098762143-pct00279

식 (9a) 내지 (9d)에서, R10은 탄소수 1∼4의 알킬기, 페닐기 또는 피리딜기를 나타내고, m1은 0∼2의 정수이다.
(III) 다음 일반식 (10a) 내지 (10d)로 표시되는 함질소환식 화합물 잔기
Figure 112020098762143-pct00280

식 (10a) 내지 (10d)에서, R10 내지 R12는 각각 독립적으로 탄소수 1∼4의 알킬기, 페닐기 또는 피리딜기를 나타내고, m1 내지 m3은 각각 독립적으로 0∼2의 정수이다.
(IV) 다음 일반식 (11a) 내지 (11d)로 표시되는 함질소환식 화합물 잔기
Figure 112020098762143-pct00281

식 (11a) 내지 (11d)에서, R10, R11은 각각 독립적으로 탄소수 1∼4의 알킬기, 페닐기 또는 피리딜기를 나타내고, m1은 0∼2의 정수이며, m2는 0∼2의 정수이다.
A metal complex represented by the following general formula (1) containing 5 or more carbocyclic rings and/or heterocycles in one ligand.
Figure 112020098762143-pct00284

In formula (1), R 1 and R 3 are each independently a connecting group selected from a divalent phenyl group or a pyridyl group, and R 2 and R 4 are each independently selected from a hydrogen atom or the following (I) to (IV) Represents a nitrogen cyclic compound residue, and at least one of R 2 and R 4 is a nitrogen-containing cyclic compound residue selected from the following (I) to (IV). In addition, M represents an alkali metal, n 1 to n 2 are each independently an integer of 0 to 2 , and l is an integer of 1.
(I) a nitrogen-containing cyclic compound residue represented by the following general formulas (8a) to (8c)
Figure 112020098762143-pct00278

In formulas (8a) to (8c), R 10 represents an alkyl group having 1 to 4 carbon atoms, a phenyl group or a pyridyl group, and m 1 is an integer of 0 to 2.
(II) a nitrogen-containing cyclic compound residue represented by the following general formulas (9a) to (9d)
Figure 112020098762143-pct00279

In formulas (9a) to (9d), R 10 represents an alkyl group having 1 to 4 carbon atoms, a phenyl group or a pyridyl group, and m 1 is an integer of 0 to 2.
(III) a nitrogen-containing cyclic compound residue represented by the following general formulas (10a) to (10d)
Figure 112020098762143-pct00280

In formulas (10a) to (10d), R 10 to R 12 each independently represent a C 1 to C 4 alkyl group, a phenyl group, or a pyridyl group, and m 1 to m 3 are each independently an integer of 0 to 2.
(IV) a nitrogen-containing cyclic compound residue represented by the following general formulas (11a) to (11d)
Figure 112020098762143-pct00281

In formulas (11a) to (11d), R 10 and R 11 each independently represent a C 1 to C 4 alkyl group, a phenyl group or a pyridyl group, m 1 is an integer of 0 to 2 , and m 2 is an integer of 0 to 2 It is an integer.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서, 하기 L101-M, L102-M, L103-M, L104-M, L107-M, L108-M, L111-M, L113-M, L114-M, L115-M, L116-M, L117-M, L118-M, L119-M, L120-M, 또는 L121-M으로 표시되는 것을 특징으로 하는 금속 착체.
Figure 112020098762143-pct00285

Figure 112020098762143-pct00286

상기 금속 착체에서, M은 알칼리 금속을 나타낸다.
According to claim 1, L101-M, L102-M, L103-M, L104-M, L107-M, L108-M, L111-M, L113-M, L114-M, L115-M, L116-M , L117-M, L118-M, L119-M, L120-M, or a metal complex, characterized in that represented by L121-M.
Figure 112020098762143-pct00285

Figure 112020098762143-pct00286

In the above metal complex, M represents an alkali metal.
제1항 또는 제7항에 있어서, 상기 알칼리 금속이 Rb 또는 Cs인 것을 특징으로 하는 금속 착체.The metal complex according to claim 1 or 7, wherein the alkali metal is Rb or Cs. 제1항에 기재된 금속 착체에 사용하는 배위성 화합물로서, 하기 일반식 (α)로 표시되는 배위성 화합물.
Figure 112020069219362-pct00283

식 (α)에서, R1, R2, R3, R4, n1, n2는 식 (1)과 동일한 의미이다.
As a coordination compound used for the metal complex according to claim 1, a coordination compound represented by the following general formula (α).
Figure 112020069219362-pct00283

In formula (α), R 1 , R 2 , R 3 , R 4 , n 1 , and n 2 have the same meaning as in formula (1).
제1항, 또는 제7항에 기재된 금속 착체로 이루어지는 것을 특징으로 하는 유기 전계발광 소자용의 전자 수송 재료.An electron transport material for an organic electroluminescent device, comprising the metal complex according to claim 1 or 7. 제10항에 있어서, 상기 전자 수송 재료가 금속 알콕사이드를 더 함유하는 것을 특징으로 하는 전자 수송 재료.The electron transport material according to claim 10, wherein the electron transport material further contains a metal alkoxide. 제11항에 있어서, 상기 금속 알콕사이드가 하기 일반식 (A) 또는 (B)로 표시되는 것을 특징으로 하는 전자 수송 재료.
R20-M (A)
R20-M-R21 (B)
식 (A) 또는 (B)에서, R20, R21은 각각 독립적으로 임의의 알콕시기를 나타내고, 또한 M은 알칼리 금속 또는 알칼리 토류 금속을 나타낸다.
The electron transport material according to claim 11, wherein the metal alkoxide is represented by the following general formula (A) or (B).
R 20 -M (A)
R 20 -MR 21 (B)
In the formula (A) or (B), R 20 and R 21 each independently represent an arbitrary alkoxy group, and M represents an alkali metal or alkaline earth metal.
제10항에 있어서, 상기 전자 수송 재료가 알칼리 금속 이온 및 알칼리 토류 금속 이온 중 적어도 1종의 금속 이온의 할로젠염, 탄산염, 탄산수소염, 수산화물, 또는 탄소수 1 내지 9의 유기산염을 더 함유하는 것을 특징으로 하는 전자 수송 재료.The method of claim 10, wherein the electron transport material further contains a halogen salt, carbonate, hydrogen carbonate, hydroxide, or an organic acid salt having 1 to 9 carbon atoms of at least one metal ion among alkali metal ions and alkaline earth metal ions. Electron transport material, characterized in that. 제10항에 기재된 전자 수송 재료를 프로톤성 극성 용매에 용해하여 이루어지는 유기 전계발광 소자의 전자 수송층을 구축하기 위한 액상 재료.A liquid material for constructing an electron transport layer of an organic electroluminescent device obtained by dissolving the electron transport material according to claim 10 in a protic polar solvent. 제14항에 있어서, 상기 프로톤성 극성 용매가 탄소수 1∼10의 알코올계 용매인 것을 특징으로 하는 액상 재료.The liquid material according to claim 14, wherein the protic polar solvent is an alcohol-based solvent having 1 to 10 carbon atoms. 제15항에 있어서, 상기 탄소수 1∼10의 알코올계 용매가 1가 또는 2가의 알코올인 것을 특징으로 하는 액상 재료.The liquid material according to claim 15, wherein the alcohol-based solvent having 1 to 10 carbon atoms is a monohydric or dihydric alcohol. 제14항에 있어서, 상기 액상 재료가 상기 금속 착체를 0.01 내지 10중량% 함유하는 것을 특징으로 하는 액상 재료.The liquid material according to claim 14, wherein the liquid material contains 0.01 to 10% by weight of the metal complex. 제10항에 기재된 전자 수송 재료를 사용하여 이루어지는 것을 특징으로 하는 유기 전계발광 소자.An organic electroluminescent device comprising the electron transport material according to claim 10. 제14항에 기재된 액상 재료를 사용하여, 유기 전계발광 소자의 전자 수송층을 습식으로 구축하는 것을 특징으로 하는 유기 전계발광 소자의 제조 방법.A method of manufacturing an organic electroluminescent device, characterized in that the electron transport layer of the organic electroluminescent device is wet-formed using the liquid material according to claim 14.
KR1020197002967A 2016-07-29 2017-07-26 Metal complex and electron transport material using the same KR102182119B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020207026855A KR102305222B1 (en) 2016-07-29 2017-07-26 Metal complex and electron-transporting material using same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016150267 2016-07-29
JPJP-P-2016-150267 2016-07-29
PCT/JP2017/027043 WO2018021406A1 (en) 2016-07-29 2017-07-26 Metal complex and electron-transporting material using same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020207026855A Division KR102305222B1 (en) 2016-07-29 2017-07-26 Metal complex and electron-transporting material using same

Publications (2)

Publication Number Publication Date
KR20190024992A KR20190024992A (en) 2019-03-08
KR102182119B1 true KR102182119B1 (en) 2020-11-23

Family

ID=61016850

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020197002967A KR102182119B1 (en) 2016-07-29 2017-07-26 Metal complex and electron transport material using the same
KR1020207026855A KR102305222B1 (en) 2016-07-29 2017-07-26 Metal complex and electron-transporting material using same

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020207026855A KR102305222B1 (en) 2016-07-29 2017-07-26 Metal complex and electron-transporting material using same

Country Status (4)

Country Link
JP (2) JP6786603B2 (en)
KR (2) KR102182119B1 (en)
CN (2) CN109689665B (en)
WO (1) WO2018021406A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220344599A1 (en) * 2019-10-02 2022-10-27 Dyden Corporation Metal complex and electron transporting material comprising same
CN114989086A (en) * 2021-03-01 2022-09-02 中国科学院上海有机化学研究所 Method for preparing fluorine-containing benzoquinoline heterocyclic compound
CN113072560B (en) * 2021-04-09 2023-11-24 北京八亿时空液晶科技股份有限公司 Carbazole derivative and application thereof
CN114835732B (en) * 2022-05-20 2024-03-29 闽都创新实验室 Efficient blue light OLED material and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195623A (en) * 2007-02-08 2008-08-28 Chemiprokasei Kaisha Ltd Novel hydroxyphenyl metal derivative comprising heterocycle, and electron injection material, electron transporting material and organic electroluminescent device each employing the same
JP2011176063A (en) * 2010-02-24 2011-09-08 Daiden Co Ltd White organic electroluminescence element and method of manufacturing of the same
JP2014138100A (en) * 2013-01-17 2014-07-28 Canon Inc Organic light-emitting element

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3475620B2 (en) * 1995-12-25 2003-12-08 東洋インキ製造株式会社 Organic electroluminescent device material and organic electroluminescent device using the same
JP4876333B2 (en) 2000-06-08 2012-02-15 東レ株式会社 Light emitting element
JP2002352961A (en) 2001-05-25 2002-12-06 Toray Ind Inc Organic electroluminescent device
JP2005063910A (en) 2003-08-20 2005-03-10 Canon Inc Organic light emitting element and its manufacturing method
CN1544574A (en) * 2003-11-26 2004-11-10 吉林大学 Phenolic group-pyridine metal complexes and their application as electroluminescent materials
TW200611899A (en) * 2004-10-13 2006-04-16 Hirose Engineering Co Ltd Metal-containing coordination compound, high molecular compound containing coordination compound residue, organic electroluminescence material, white organic electroluminescence material, white light emitting device and light emitting device
JP2006156981A (en) * 2004-10-29 2006-06-15 Semiconductor Energy Lab Co Ltd Composite material, light-emitting element, light-emitting device, and manufacturing method thereof
JP2007157899A (en) * 2005-12-02 2007-06-21 Toyo Ink Mfg Co Ltd Organic electroluminescence element
JP2008106015A (en) * 2006-10-27 2008-05-08 Chemiprokasei Kaisha Ltd New phenanthroline derivative, its lithium complex, electron transport material using the same, electron injection material and organic el element
US8900722B2 (en) * 2007-11-29 2014-12-02 Global Oled Technology Llc OLED device employing alkali metal cluster compounds
GB0814954D0 (en) * 2008-08-18 2008-09-24 Oled T Ltd Compounds having electron transport properties and their preparation and use
US20120261651A1 (en) 2009-08-18 2012-10-18 Mitsuharu Noto Organic electroluminescent element and novel alcohol-soluble phosphorescent material
DE102010006121B4 (en) * 2010-01-29 2022-08-11 Merck Patent Gmbh Materials for organic electroluminescent devices
JP5505254B2 (en) * 2010-10-21 2014-05-28 コニカミノルタ株式会社 Manufacturing method of organic electroluminescence device and organic electroluminescence device manufactured by the manufacturing method
WO2012160714A1 (en) * 2011-05-20 2012-11-29 国立大学法人山形大学 Organic electronic device and method for manufacturing same
JP5900847B2 (en) * 2011-11-25 2016-04-06 国立大学法人山形大学 Organic electroluminescence device
JP2013028600A (en) * 2012-07-20 2013-02-07 Chemiprokasei Kaisha Ltd Novel heterocycle-containing hydroxyphenyl metal derivative, and electron injecting material, electron transporting material, and organic electroluminescence element using the same
KR102207643B1 (en) * 2013-08-09 2021-01-25 고쿠리쓰다이가쿠호진 규슈다이가쿠 Organic metal complex, luminescent material, delayed phosphor and organic light-emitting element
CN103923035A (en) * 2014-05-02 2014-07-16 吉林大学 Electron transport or main body thin film materials and application thereof in electroluminescent devices
CN105601570A (en) * 2016-03-02 2016-05-25 吉林奥来德光电材料股份有限公司 Compound containing heterocyclic ligand and preparation method and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195623A (en) * 2007-02-08 2008-08-28 Chemiprokasei Kaisha Ltd Novel hydroxyphenyl metal derivative comprising heterocycle, and electron injection material, electron transporting material and organic electroluminescent device each employing the same
JP2011176063A (en) * 2010-02-24 2011-09-08 Daiden Co Ltd White organic electroluminescence element and method of manufacturing of the same
JP2014138100A (en) * 2013-01-17 2014-07-28 Canon Inc Organic light-emitting element

Also Published As

Publication number Publication date
JP6786603B2 (en) 2020-11-18
WO2018021406A1 (en) 2018-02-01
KR102305222B1 (en) 2021-09-27
CN109689665A (en) 2019-04-26
KR20190024992A (en) 2019-03-08
CN112961102A (en) 2021-06-15
CN112961102B (en) 2024-03-12
CN109689665B (en) 2021-10-01
KR20200110819A (en) 2020-09-25
JP2020121976A (en) 2020-08-13
JPWO2018021406A1 (en) 2019-06-20
JP6932808B2 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
US10000517B2 (en) Organic electroluminescent materials and devices
KR102438884B1 (en) Organic electroluminescent materials and devices
EP2966706B1 (en) Organic electroluminescent materials and devices
US10128450B2 (en) Organic electroluminescent materials and devices
JP5809246B2 (en) Azaborin compounds as host materials and dopants for PHOLEDs
EP2070936B1 (en) Platinum complex compound and organic electroluminescence device using the same
JP6932808B2 (en) Metal complex and electron transport material using it
US20120012829A1 (en) Dibenzothiophene-containing materials in phosphorescent light emitting diodes
KR102168144B1 (en) Host compounds for phosphorescent oleds and devices thereof
CN103732603A (en) Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
JP4628435B2 (en) Organic electroluminescence device
CN108475734B (en) Organic electron transport material and organic electroluminescent element using same
KR100846607B1 (en) Organic light emitting diode
KR101573125B1 (en) Electroactive composition
KR20210036097A (en) Compound and organic light emitting device comprising the same
US20140361252A1 (en) Aluminum chelates as materials for oleds
JP2011168544A (en) Pyrrole compound and organic electroluminescent element using the same
KR20210036253A (en) Compound and organic light emitting device comprising the same
KR20150119870A (en) Electronic device including a diazachrysene derivative
JP7267445B2 (en) Metal complexes and electron transport materials using them
KR102657297B1 (en) Organic electroluminescent materials and devices
KR20240051905A (en) Organic electroluminescent materials and devices

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant