JP2005063910A - Organic light emitting element and its manufacturing method - Google Patents

Organic light emitting element and its manufacturing method Download PDF

Info

Publication number
JP2005063910A
JP2005063910A JP2003295976A JP2003295976A JP2005063910A JP 2005063910 A JP2005063910 A JP 2005063910A JP 2003295976 A JP2003295976 A JP 2003295976A JP 2003295976 A JP2003295976 A JP 2003295976A JP 2005063910 A JP2005063910 A JP 2005063910A
Authority
JP
Japan
Prior art keywords
electron injection
light emitting
injection layer
organic light
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003295976A
Other languages
Japanese (ja)
Inventor
Itaru Takatani
格 高谷
Toshinori Hasegawa
利則 長谷川
Toshihide Kimura
俊秀 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003295976A priority Critical patent/JP2005063910A/en
Publication of JP2005063910A publication Critical patent/JP2005063910A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic light emitting element having an electron injection layer doped with an alkali metal compound, prevented from the deterioration of luminous efficiency caused by the passage of time. <P>SOLUTION: The organic light emitting element has an electron injection layer in which the doping amount and doping method of an alkaline metal is controlled. That is to say, the manufacturing method of the organic light emitting element comprises a process of heating the alkali metal containing cesium carbonate or the like by 8 wt.% or less at a temperature of 400°C or less, and forming a film at a rate of 0.1 Å/sec. or less by vapor deposition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、陽極及び陰極からなる一対の電極間に挟持された発光層と電子注入層を少なくとも有する有機発光素子とその製造方法に関する。   The present invention relates to an organic light emitting device having at least a light emitting layer and an electron injection layer sandwiched between a pair of electrodes composed of an anode and a cathode, and a method for manufacturing the same.

図1は一般的な有機発光素子の積層構造を示す模式図である。図中、1は基板、2は陽極、3は正孔輸送層、4は発光層、5は電子輸送層、6は電子注入層、7は陰極をそれぞれ表している。このような有機発光素子の電子注入効率を向上させるために、電子注入層6に、ドナー(電子供与性)ドーパントとして機能する金属を有する有機層が設けられているものもある(例えば、特許文献1参照)。また同じ目的で、電子注入層6に、金属酸化物あるいは金属塩をドーパントとして有する有機層が設けられているものもある(例えば、特許文献2参照)。   FIG. 1 is a schematic view showing a laminated structure of a general organic light emitting device. In the figure, 1 is a substrate, 2 is an anode, 3 is a hole transport layer, 4 is a light emitting layer, 5 is an electron transport layer, 6 is an electron injection layer, and 7 is a cathode. In order to improve the electron injection efficiency of such an organic light-emitting device, there is a case where an organic layer having a metal functioning as a donor (electron donating) dopant is provided in the electron injection layer 6 (for example, Patent Documents). 1). For the same purpose, the electron injection layer 6 may be provided with an organic layer having a metal oxide or metal salt as a dopant (see, for example, Patent Document 2).

一般に、陰極に接する電子注入層中に金属、および金属化合物をドープする際に、電子輸送層中に含まれる金属として定量分析した場合の濃度が0.1重量%以上でドーパントとしての電子注入効果が一定となる。用いる金属、および金属化合物の種類によって電子注入効果が一定となる濃度は異なるが、この最低濃度を下回ると電子注入効果が薄れ、発光効率が低下する。特許文献2においてもドーパント濃度は特に限定されないが、0.1〜99重量%であることが好ましい(第3頁、第87−89行)、と述べられている。   In general, when a metal and a metal compound are doped in the electron injection layer in contact with the cathode, the concentration is 0.1% by weight or more when quantitatively analyzed as a metal contained in the electron transport layer, and the electron injection effect as a dopant Is constant. The concentration at which the electron injection effect is constant varies depending on the type of metal used and the metal compound, but if the concentration is lower than this minimum concentration, the electron injection effect is reduced and the light emission efficiency is lowered. Patent Document 2 also states that the dopant concentration is not particularly limited, but is preferably 0.1 to 99% by weight (page 3, lines 87-89).

以上のように、従来から金属、および金属化合物金属化合物をドーパントとして用いた場合の電子注入性向上の効果は知られていたものの、それに伴う素子寿命の低下やそれを回避する方法については全く知られていなかった。   As described above, although the effect of improving the electron injection property when using a metal or a metal compound metal compound as a dopant has been conventionally known, there is absolutely no knowledge about the device life reduction associated with it and a method for avoiding it. It was not done.

特開平10−270171号(第2頁、第9−13行、第1図)JP 10-270171 (2nd page, lines 9-13, FIG. 1) 特開平10−270172号(第2頁、第2−7行、第1図)Japanese Patent Laid-Open No. 10-270172 (page 2, line 2-7, FIG. 1)

以上に述べた従来の有機発光素子では、電子注入効率を向上させるために、電子注入層に仕事関数が小さい金属や、それら金属を含む金属化合物を前記ドーパントとして用いることが望ましい。   In the conventional organic light emitting device described above, in order to improve the electron injection efficiency, it is desirable to use a metal having a low work function or a metal compound containing these metals as the dopant in the electron injection layer.

しかし仕事関数が小さい金属やそれら金属を含む金属化合物は一般的に反応性が高く、有機発行素子に含有させた場合、経時的に有機化合物や電極と化学反応する事が懸念される。また、電子注入層に前記ドーパントとして用いた前記金属やそれら金属を含む金属化合物が発光層にまで拡散した場合には発光阻害を起こす事も予想される。実際に本発明者は、電子注入層にアルカリ金属化合物などをドーパントとして用いた素子において、経時的に発光効率が低下していく現象を確認している。   However, metals having a low work function and metal compounds containing these metals are generally highly reactive, and there is a concern that when they are contained in an organic issuing element, they may chemically react with the organic compound or the electrode over time. Further, when the metal used as the dopant in the electron injection layer or a metal compound containing these metals diffuses to the light emitting layer, it is expected that light emission is inhibited. In fact, the present inventor has confirmed a phenomenon in which the light emission efficiency decreases with time in an element using an alkali metal compound or the like as a dopant in the electron injection layer.

以上のように、仕事関数が小さい金属や、それら金属を含む金属化合物をドーパントとして電子注入層に用いた有機発光素子は、電子注入効率が高く、製造初期の発光効率は高いものの、経時的な発光効率の低下がこれらドーパントを用いていない有機発光素子に比べて顕著であるという問題があった。   As described above, an organic light-emitting device using a metal having a low work function or a metal compound containing these metals as a dopant in an electron injection layer has high electron injection efficiency and high light emission efficiency at the initial stage of manufacture, but it has changed over time. There has been a problem that the reduction in luminous efficiency is significant compared to organic light emitting devices not using these dopants.

よって前記課題の解決のため、本発明は、前記ドーパントを用いた場合でも、経時的な発光効率の低下の少ない有機発光素子を提供する。   Therefore, in order to solve the above-described problems, the present invention provides an organic light-emitting device with little decrease in luminous efficiency over time even when the dopant is used.

よって本発明は、陽極及び陰極からなる一対の電極間に挟持された発光層と電子注入層を少なくとも有する有機発光素子において、前記陰極と電気的に接している前記電子注入層が少なくとも有機化合物とアルカリ金属化合物とから構成され、前記電子注入層中の前記アルカリ金属化合物の濃度がアルカリ金属として8重量%以下であることを特徴とする有機発光素子を提供する。   Therefore, the present invention provides an organic light emitting device having at least a light emitting layer and an electron injection layer sandwiched between a pair of electrodes consisting of an anode and a cathode, wherein the electron injection layer in electrical contact with the cathode is at least an organic compound. An organic light emitting device comprising: an alkali metal compound, wherein the concentration of the alkali metal compound in the electron injection layer is 8% by weight or less as an alkali metal.

また、陽極及び陰極からなる一対の電極間に挟持された発光層と電子注入層を少なくとも有する有機発光素子の製造方法において、前記陰極と電気的に接している前記電子注入層を少なくとも有機化合物とアルカリ金属化合物とから形成する電子注入層形成工程を有し、前記電子注入層形成工程は前記アルカリ金属化合物を400℃以下の加熱温度で蒸着する工程を有し、そして前記発光層を形成する発光層形成工程を有することを特徴とする有機発光素子の製造方法を提供する。   In the method of manufacturing an organic light emitting device having at least a light emitting layer and an electron injection layer sandwiched between a pair of electrodes including an anode and a cathode, the electron injection layer in electrical contact with the cathode is at least an organic compound. A step of forming an electron injection layer formed from an alkali metal compound, wherein the step of forming an electron injection layer includes a step of depositing the alkali metal compound at a heating temperature of 400 ° C. or less, and light emission for forming the light emitting layer Provided is a method for manufacturing an organic light emitting device comprising a layer forming step.

また、陽極及び陰極からなる一対の電極間に挟持された発光層と電子注入層を少なくとも有する有機発光素子の製造方法において、前記陰極と電気的に接している前記電子注入層を少なくとも有機化合物とアルカリ金属化合物とから形成する電子注入層形成工程を有し、前記電子注入層形成工程は前記アルカリ金属化合物を毎秒0.1Å以下の成膜レートで蒸着する工程を有し、そして前記発光層を形成する発光層形成工程を有することを特徴とする有機発光素子を提供する。   In the method of manufacturing an organic light emitting device having at least a light emitting layer and an electron injection layer sandwiched between a pair of electrodes including an anode and a cathode, the electron injection layer in electrical contact with the cathode is at least an organic compound. A step of forming an electron injection layer formed from an alkali metal compound, the step of forming an electron injection layer includes a step of depositing the alkali metal compound at a film formation rate of 0.1 liter per second or less, and forming the light emitting layer. Provided is an organic light-emitting device including a light-emitting layer forming step to be formed.

本発明ではアルカリ金属化合物をドーパントとして用いた場合でも、アルカリ金属のドーピング量やドーピング方法を制御することにより経時的な発光効率の低下の少ない有機発光素子を提供する事が出来る。   In the present invention, even when an alkali metal compound is used as a dopant, it is possible to provide an organic light emitting device with little decrease in luminous efficiency with time by controlling the doping amount and doping method of alkali metal.

またそのような有機発光素子を製造する方法を提供することができる。   Moreover, the method of manufacturing such an organic light emitting element can be provided.

本発明は、
(1)陽極及び陰極からなる一対の電極間に挟持された発光層と電子注入層を少なくとも有する有機発光素子において、前記陰極と電気的に接している前記電子注入層が少なくとも有機化合物とアルカリ金属化合物とから構成され、前記電子注入層中の前記アルカリ金属化合物の濃度がアルカリ金属として8重量%以下であることを特徴とする有機発光素子である。
The present invention
(1) In an organic light emitting device having at least a light emitting layer and an electron injection layer sandwiched between a pair of electrodes consisting of an anode and a cathode, the electron injection layer in electrical contact with the cathode is at least an organic compound and an alkali metal. The organic light-emitting device is characterized in that the concentration of the alkali metal compound in the electron injection layer is 8% by weight or less as an alkali metal.

また
(2)陽極及び陰極からなる一対の電極間に挟持された発光層と電子注入層を少なくとも有する有機発光素子の製造方法において、前記陰極と電気的に接している前記電子注入層を少なくとも有機化合物とアルカリ金属化合物とから形成する電子注入層形成工程を有し、前記電子注入層形成工程は前記アルカリ金属化合物を400℃以下の加熱温度で蒸着する工程を有し、そして前記発光層を形成する発光層形成工程を有することを特徴とする有機発光素子の製造方法である。
(2) In the method of manufacturing an organic light emitting device having at least a light emitting layer and an electron injection layer sandwiched between a pair of electrodes composed of an anode and a cathode, the electron injection layer in electrical contact with the cathode is at least organic. Forming an electron injection layer formed from a compound and an alkali metal compound, wherein the electron injection layer forming step includes a step of depositing the alkali metal compound at a heating temperature of 400 ° C. or less, and forming the light emitting layer A method for producing an organic light emitting device, comprising the step of forming a light emitting layer.

また
(3)陽極及び陰極からなる一対の電極間に挟持された発光層と電子注入層を少なくとも有する有機発光素子の製造方法において、前記陰極と電気的に接している前記電子注入層を少なくとも有機化合物とアルカリ金属化合物とから形成する電子注入層形成工程を有し、前記電子注入層形成工程は前記アルカリ金属化合物を毎秒0.1Å以下の成膜レートで蒸着する工程を有し、そして前記発光層を形成する発光層形成工程を有することを特徴とする有機発光素子の製造方法である。
(3) In the method of manufacturing an organic light emitting device having at least a light emitting layer sandwiched between a pair of electrodes composed of an anode and a cathode and an electron injection layer, the electron injection layer in electrical contact with the cathode is at least organic A step of forming an electron injection layer formed from a compound and an alkali metal compound, the step of forming an electron injection layer includes a step of depositing the alkali metal compound at a film formation rate of 0.1% or less per second, and the light emission It is a manufacturing method of the organic light emitting element characterized by having the light emitting layer formation process which forms a layer.

また
(4)前記発光層と前記電子注入層の間に有機化合物のみから成る電子輸送層を有することを特徴とする(1)に記載の有機発光素子も好ましくまたそのような有機発光素子の製造方法も好ましい。
(4) The organic light-emitting device according to (1), which has an electron transport layer composed only of an organic compound between the light-emitting layer and the electron injection layer, is also preferable. A method is also preferred.

また
(5)前記アルカリ金属化合物がセシウム化合物であることを特徴とする(1)ないし(3)のいずれかに記載の有機発光素子あるいは有機発光素子の製造方法も好ましい。
(5) The organic light-emitting device or the method for producing an organic light-emitting device according to any one of (1) to (3), wherein the alkali metal compound is a cesium compound.

また
(6)前記セシウム化合物が炭酸セシウムであることを特徴とする(5)に記載の有機発光素子あるいは有機発光素子の製造方法も好ましい。
(6) The organic light-emitting device or the method for producing an organic light-emitting device according to (5), wherein the cesium compound is cesium carbonate is preferable.

本発明ではアルカリ金属化合物をドーパントとして用いた場合で、アルカリ金属のドーピング量やドーピング方法を制御することにより経時的な発光効率の低下の少ない有機発光素子およびそのような有機発光素子の製造方法を提供する事が出来る。   In the present invention, when an alkali metal compound is used as a dopant, an organic light emitting device with little decrease in luminous efficiency over time by controlling the amount and method of alkali metal doping and a method for producing such an organic light emitting device Can be provided.

本発明者は、陰極に接する電子注入層中にアルカリ金属化合物をドープする際に、電子輸送層中に含まれるアルカリ金属として定量分析した場合の濃度、蒸着時にアルカリ金属化合物を加熱する温度、および蒸着時の成膜レート、以上の三つの制御因子に着目して検討した結果、これら三つの制御因子のいずれかがある範囲内の場合において、有機発光素子の電子注入効率が一定以上となり、経時的な発光効率の低下もほとんど無い事を見出した。   The present inventor, when doping an alkali metal compound in the electron injection layer in contact with the cathode, the concentration when quantitatively analyzed as an alkali metal contained in the electron transport layer, the temperature at which the alkali metal compound is heated during vapor deposition, and As a result of studying the deposition rate during deposition and the above three control factors, the electron injection efficiency of the organic light-emitting element becomes more than a certain level when any of these three control factors is within a certain range. It was found that there was almost no decline in luminous efficiency.

以下、本発明の実施形態を詳細に説明する。本発明は、電子注入層(図1中の6)を備えた有機発光素子に関するものであり、有機発光素子の電子注入効率を向上させるために、電子注入層6に、ドナー(電子供与性)ドーパントとして機能するアルカリ金属化合物を含有する有機層が設けられているものである。   Hereinafter, embodiments of the present invention will be described in detail. The present invention relates to an organic light emitting device having an electron injection layer (6 in FIG. 1). In order to improve the electron injection efficiency of the organic light emitting device, the electron injection layer 6 is provided with a donor (electron donating property). An organic layer containing an alkali metal compound that functions as a dopant is provided.

電子注入効率を向上させるには仕事関数の低い金属、もしくはその化合物をドーパントとして用いる事が好ましく、仕事関数が低い金属としてはアルカリ金属が挙げられる。しかしながらアルカリ金属は、空気中の水分と激しく反応し、大気中での取り扱いが困難である。したがって、本発明では、大気中での取り扱いが比較的容易なアルカリ金属化合物をドーパントとして用いたものである。アルカリ金属は単独で電子注入層として用いることも考えられるが、アルカリ金属化合物は金属と異なり導電性が低いため、本発明では、電子輸送性の有機化合物中にドーピングされて用いられる。電子輸送性の有機化合物としては、公知の材料、例えばアルミキノリノール錯体やフェナントロリン化合物等を用いることが出来る。   In order to improve the electron injection efficiency, it is preferable to use a metal having a low work function or a compound thereof as a dopant, and examples of the metal having a low work function include alkali metals. However, alkali metals react violently with moisture in the air and are difficult to handle in the atmosphere. Therefore, in the present invention, an alkali metal compound that is relatively easy to handle in the atmosphere is used as a dopant. The alkali metal may be used alone as the electron injection layer. However, unlike the metal, the alkali metal compound has low conductivity, and in the present invention, the alkali metal compound is used by being doped in an electron transporting organic compound. As the electron-transporting organic compound, a known material such as an aluminum quinolinol complex or a phenanthroline compound can be used.

本発明の一つの発明は前記電子注入層中のアルカリ金属化合物の濃度がアルカリ金属として8重量%以下であることを特徴とする有機発光素子である。アルカリ金属としての濃度はICP−MS分析により電子注入層膜中に含まれる量を定量する事で求められる。8重量%より多いと、有機発光素子を作成した直後から経時的に発光効率が低下していく保存劣化が見られる。経時的にアルカリ金属化合物が有機化合物や電極と化学反応する事、もしくは経時的に発光層にまでアルカリ金属化合物が拡散して発光阻害を起こす事が原因と考えているが、8%以下では経時的な発光効率の低下がほとんど見られない。またアルカリ金属化合物の濃度はより好ましくは0.1重量%以上であることで電子注入層の性能を向上させることができる。   One aspect of the present invention is the organic light-emitting device, wherein the concentration of the alkali metal compound in the electron injection layer is 8% by weight or less as an alkali metal. The concentration as the alkali metal is determined by quantifying the amount contained in the electron injection layer film by ICP-MS analysis. When it is more than 8% by weight, storage deterioration is observed in which the light emission efficiency decreases with time immediately after the organic light emitting device is produced. It is considered that the cause is that the alkali metal compound chemically reacts with the organic compound or the electrode over time, or the alkali metal compound diffuses into the light emitting layer over time and causes light emission inhibition. There is almost no decline in luminous efficiency. The concentration of the alkali metal compound is more preferably 0.1% by weight or more, whereby the performance of the electron injection layer can be improved.

そしてこのような有機発光素子は、前記アルカリ金属化合物が400℃以下の加熱温度で蒸着することによって前記電子注入層中に含有されて得られるものである。蒸着の際、真空中でルツボ等を過熱することによりアルカリ金属化合物を気化させるが、加熱温度はこのときのルツボ等の温度を計測することにより求められる。400℃より高い温度の加熱温度で蒸着した場合には有機発光素子を作成した直後から経時的に発光効率が低下していく保存劣化が見られる。さらにルツボ中の材料の変色が見られる。したがって、加熱による分解反応を起こしてアルカリ金属化合物を蒸着することが経時的な発光効率低下の原因になると考えられる。400℃以下の場合そのような発光効率低下の原因を抑えることができる。またアルカリ金属化合物の好ましい蒸着加熱温度は100℃以上であり、その結果好ましい蒸着が行え且つ好ましい性能の電子注入層を得ることができる。   Such an organic light-emitting device is obtained by containing the alkali metal compound in the electron injection layer by vapor deposition at a heating temperature of 400 ° C. or less. At the time of vapor deposition, the alkali metal compound is vaporized by heating the crucible or the like in a vacuum, and the heating temperature is determined by measuring the temperature of the crucible or the like at this time. When vapor deposition is performed at a heating temperature higher than 400 ° C., storage deterioration is observed in which the light emission efficiency decreases with time immediately after the organic light emitting device is formed. Furthermore, discoloration of the material in the crucible can be seen. Therefore, it is considered that the deposition of an alkali metal compound by causing a decomposition reaction by heating causes a decrease in luminous efficiency over time. When the temperature is 400 ° C. or lower, the cause of such a decrease in luminous efficiency can be suppressed. Moreover, the preferable vapor deposition heating temperature of an alkali metal compound is 100 degreeC or more, As a result, the favorable vapor deposition can be performed and the electron injection layer of a favorable performance can be obtained.

また、本発明の有機発光素子はアルカリ金属化合物が毎秒0.1Å以下の成膜レートで蒸着することによって前記電子注入層中に含有されて得られるものである。成膜レートは加熱温度が一定の場合には、ルツボ等の蒸着源の形状および位置と、そこに仕込まれたアルカリ金属化合物の量や仕込み形状によって決定される。成膜レートが毎秒0.1Åより大きいと、有機発光素子を作成した直後から経時的に発光効率が低下していく保存劣化が見られる。電子注入層中で分散性が低下して経時的な発光効率低下の原因となると考えられる。0.1Å以下の場合そのような発光効率低下の原因を抑えることができる。またアルカリ金属化合物の好ましい成膜レートは0.001Å以上であり、その結果好ましい蒸着が行え且つ好ましい性能の電子注入層を得ることができる。   The organic light-emitting device of the present invention is obtained by containing an alkali metal compound in the electron injection layer by vapor deposition at a film formation rate of 0.1 liter / second or less. When the heating temperature is constant, the film formation rate is determined by the shape and position of a vapor deposition source such as a crucible, the amount of alkali metal compound charged therein, and the charged shape. When the film formation rate is higher than 0.1 mm / second, storage deterioration is observed in which the light emission efficiency decreases with time immediately after the organic light emitting device is formed. It is considered that the dispersibility is lowered in the electron injection layer, causing a decrease in luminous efficiency with time. In the case of 0.1 mm or less, the cause of such a decrease in luminous efficiency can be suppressed. Moreover, the preferable film-forming rate of an alkali metal compound is 0.001 or more, As a result, preferable vapor deposition can be performed and the electron injection layer of preferable performance can be obtained.

また、本発明では、前記発光層と前記電子注入層の間に有機化合物のみから成る電子輸送層を有することが好ましい。従来、前記電子輸送層は電子と正孔のキャリアバランスを制御する効果があるが、本発明では前記電子注入層に含有するアルカリ金属化合物の拡散を防ぐ効果がある。   Moreover, in this invention, it is preferable to have an electron carrying layer which consists only of an organic compound between the said light emitting layer and the said electron injection layer. Conventionally, the electron transport layer has an effect of controlling the carrier balance of electrons and holes, but the present invention has an effect of preventing the diffusion of the alkali metal compound contained in the electron injection layer.

また、本発明では、前記アルカリ金属化合物がセシウム化合物であることが好ましい。セシウムよりも仕事関数の大きいアルカリ金属の化合物、つまりカリウム、ナトリウム、リチウム、ルビジウムの化合物を用いても良いが、セシウム化合物を用いる場合と比べて電子注入効率の向上はさほど見込めない。   In the present invention, the alkali metal compound is preferably a cesium compound. An alkali metal compound having a work function larger than that of cesium, that is, a compound of potassium, sodium, lithium, or rubidium may be used. However, improvement in electron injection efficiency cannot be expected as much as in the case of using a cesium compound.

また、前記セシウム化合物が炭酸セシウムであることがより好ましい。セシウム化合物の大半は大気中での取り扱いが困難であるが、炭酸セシウムは大気中で安定であり、取り扱いが容易なため好ましい。   More preferably, the cesium compound is cesium carbonate. Most of the cesium compounds are difficult to handle in the air, but cesium carbonate is preferable because it is stable in the air and easy to handle.

以下、本発明の実施例について説明するが、実施例に用いたアルカリ金属化合物は、特に好ましい例であるが、これに限定されるものではない。   Examples of the present invention will be described below, but the alkali metal compounds used in the examples are particularly preferred examples, but are not limited thereto.

(実施例1)
以下、本実施形態の具体的な実施例として、炭酸セシウムをドーパントとして用いた素子の構造と作製手順、測定した素子特性を示す。図2は実施例1および比較例1に記載した有機発光素子の積層構造を示す模式図である。図中、10は基板、11は陽極、12は正孔輸送層、13は発光層、14は電子輸送層、15は電子注入層、16は陰極をそれぞれ表している。次に実施例1の有機発光素子作製手順を示す。
(Example 1)
Hereinafter, as a specific example of the present embodiment, a structure and manufacturing procedure of an element using cesium carbonate as a dopant, and measured element characteristics are shown. FIG. 2 is a schematic view showing a laminated structure of organic light-emitting elements described in Example 1 and Comparative Example 1. In the figure, 10 is a substrate, 11 is an anode, 12 is a hole transport layer, 13 is a light emitting layer, 14 is an electron transport layer, 15 is an electron injection layer, and 16 is a cathode. Next, an organic light emitting device manufacturing procedure of Example 1 will be described.

透明基板10上に酸化錫インジウム(ITO)をスパッタ法にて120nmの膜厚で成膜し、陽極11とした。その後陽極11をアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄して乾燥し、さらにUVオゾン洗浄した。   An indium tin oxide (ITO) film was formed on the transparent substrate 10 with a film thickness of 120 nm by sputtering to form an anode 11. Thereafter, the anode 11 was successively subjected to ultrasonic cleaning with acetone and isopropyl alcohol (IPA), dried, and further subjected to UV ozone cleaning.

続いて真空蒸着装置(アルバック機工株式会社製)に洗浄済みの基板と材料を取り付け、1×10-6Torrまで排気した後、陽極11上にN,N’−α−ジナフチルベンジジン(α−NPD)を50nmの膜厚となるように成膜して正孔輸送層12を形成し、さらにその上に下記化学式1: Subsequently, the cleaned substrate and material were attached to a vacuum evaporation apparatus (manufactured by ULVAC Kiko Co., Ltd.), and after exhausting to 1 × 10 −6 Torr, N, N′-α-dinaphthylbenzidine (α- NPD) is formed to a film thickness of 50 nm to form the hole transport layer 12, and further, the following chemical formula 1:

Figure 2005063910
Figure 2005063910

で表されるクマリン6(1.0wt%)とトリス[8−ヒドロキシキノリナート]アルミニウム(Alq3)の共蒸着膜を30nmの膜厚で成膜して発光層13を形成した。次に、電子輸送層14として、化学式2: A co-evaporated film of coumarin 6 (1.0 wt%) and tris [8-hydroxyquinolinate] aluminum (Alq3) represented by the formula was formed to a thickness of 30 nm to form the light emitting layer 13. Next, as the electron transport layer 14, chemical formula 2:

Figure 2005063910
Figure 2005063910

で表される、フェナントロリン化合物を10nm成膜した。次に、電子輸送層14の上に、化学式2で表されるフェナントロリン化合物とアルカリ金属化合物のドーパントとして炭酸セシウムを40nmの厚さに成膜し、電子注入層15とした。この際、炭酸セシウムは抵抗加熱により金属性ボートから蒸着し、300℃で毎秒0.02Åの成膜レートとなるように金属製ボートと基板の距離を調整した。また、化学式2で表されるフェナントロリン化合物の成膜レートは毎秒3Åとした。最後に、前記電子注入層15の上に陰極16としてアルミニウムを150nm蒸着した。その後、基板をグローブボックスに移し、窒素雰囲気中で乾燥剤を入れたガラスキャップにより封止した。 A phenanthroline compound represented by the formula: Next, a cesium carbonate film having a thickness of 40 nm was formed on the electron transport layer 14 as a dopant for the phenanthroline compound and the alkali metal compound represented by Chemical Formula 2 to form an electron injection layer 15. At this time, cesium carbonate was vapor-deposited from a metal boat by resistance heating, and the distance between the metal boat and the substrate was adjusted so as to obtain a film formation rate of 0.02 mm / sec at 300 ° C. The film formation rate of the phenanthroline compound represented by Chemical Formula 2 was 3 liters per second. Finally, 150 nm of aluminum was deposited as a cathode 16 on the electron injection layer 15. Thereafter, the substrate was transferred to a glove box and sealed with a glass cap containing a desiccant in a nitrogen atmosphere.

上記作製において、成膜レートと膜厚に関しては水晶振動子の膜厚モニターを用いて計測したが、前記電子注入層については別途シリコンウエハー上に前記電子注入層15と同条件で単独膜を成膜し、ICP‐MS分析から、セシウムイオンの濃度を求め、電子注入層中のセシウムとしての濃度が1.9重量%であることを確認した。   In the above fabrication, the film formation rate and film thickness were measured using a film thickness monitor of a crystal resonator. However, the electron injection layer was separately formed on a silicon wafer under the same conditions as the electron injection layer 15. Then, the concentration of cesium ions was obtained from ICP-MS analysis, and it was confirmed that the concentration as cesium in the electron injection layer was 1.9% by weight.

上記作製手順により得られた有機発光素子に直流電圧を0Vから輝度が1300cd/m2までになるまで0.25Vずつ上昇させて印加し、発光特性を調べた。その結果この素子は、輝度が1303cd/m2の時の電流密度が18.18mA/cm2であり、初期の発光効率は7.17cd/Aと計算された。さらに、この有機発光素子を暗所にて室温で100日間保存した後、同様に発光特性を調べたところ、輝度が1455cd/m2の時の電流密度が20.58mA/cm2であり、100日間の経時での発光効率は7.07cd/Aと計算された。したがって、100日間の経時による発光効率の低下は1.4%であり、ほとんど効率低下の無い良好な有機発光素子であった。 A direct current voltage was applied to the organic light-emitting device obtained by the above-described production procedure in increments of 0.25 V from 0 V until the luminance reached 1300 cd / m 2 , and the light emission characteristics were examined. Consequently this device, the luminance is the current density at the 1303cd / m 2 was 18.18mA / cm 2, the initial luminous efficiency was calculated to 7.17cd / A. Further, the organic light emitting device was stored at room temperature in the dark at room temperature for 100 days, and the emission characteristics were examined in the same manner. As a result, the current density when the luminance was 1455 cd / m 2 was 20.58 mA / cm 2 , The luminous efficiency over the course of the day was calculated to be 7.07 cd / A. Therefore, the decrease in light emission efficiency over time for 100 days was 1.4%, which was a good organic light emitting device with almost no decrease in efficiency.

(比較例1)
電子注入層15の炭酸セシウムを500℃、毎秒0.12Åの成膜レートで蒸着した以外は実施例1と同様の方法で素子を作製した。
(Comparative Example 1)
A device was fabricated in the same manner as in Example 1 except that cesium carbonate for the electron injection layer 15 was deposited at a film formation rate of 500 ° C. and 0.12 liter per second.

実施例1と同様の方法で分析し、電子注入層中のセシウムとしての濃度が10.4重量%であることを確認した。   Analysis was performed in the same manner as in Example 1, and it was confirmed that the concentration as cesium in the electron injection layer was 10.4% by weight.

実施例1と同様の方法で発光特性を調べた結果、輝度が1845cd/m2の時の電流密度が29.14mA/cm2であり、発光効率は6.33cd/Aと計算された。さらに、この有機発光素子を暗所にて室温で100日間保存した後、同様に発光特性を調べたところ、輝度が1558cd/m2の時の電流密度が59.69mA/cm2であり、発光効率は2.61cd/Aと計算された。したがって、100日間の経時による発光効率の低下は59%であり、かなり効率低下の大きい有機発光素子であった。 As a result of investigating the light emission characteristics by the same method as in Example 1, the current density when the luminance was 1845 cd / m 2 was 29.14 mA / cm 2 and the light emission efficiency was calculated to be 6.33 cd / A. Further, after the organic light-emitting device was stored at room temperature in the dark for 100 days, the emission characteristics were examined in the same manner. As a result, the current density at a luminance of 1558 cd / m 2 was 59.69 mA / cm 2 and The efficiency was calculated to be 2.61 cd / A. Accordingly, the decrease in light emission efficiency over time for 100 days was 59%, and the organic light emitting device had a considerably large decrease in efficiency.

(実施例2)
本実施例は、陽極に、反射電極として機能するクロム(Cr)、陰極に、透明な発光取り出し電極として機能するインジウム錫酸化物(ITO)を用いた発光素子、すなわちトップエミッション型素子への適用例を示す。
(Example 2)
This embodiment is applied to a light emitting element using chromium (Cr) functioning as a reflective electrode for the anode and indium tin oxide (ITO) functioning as a transparent light extraction electrode for the cathode, that is, a top emission type element. An example is shown.

図3は実施例2−7および比較例2−3に記載した有機発光素子の積層構造を示す模式図である。図中、20は陽極側の基板であり、21は陽極であり、反射電極であるクロム(Cr)を示し、22は正孔輸送層、23は発光層、24は電子輸送層、25は電子注入層、26は発光取り出し用の透明電極であるITOを示している。   FIG. 3 is a schematic view showing a laminated structure of organic light-emitting elements described in Example 2-7 and Comparative Example 2-3. In the drawing, 20 is a substrate on the anode side, 21 is an anode, and shows chromium (Cr) as a reflective electrode, 22 is a hole transport layer, 23 is a light emitting layer, 24 is an electron transport layer, and 25 is an electron. An injection layer 26 indicates ITO which is a transparent electrode for extracting light emission.

基板20上にクロム(Cr)をスパッタ法にて200nmの膜厚で成膜し、陽極電極21を得た。その後、該基板にUV/オゾン洗浄を施した。続いて、陽極電極21上に膜厚を70nmとした以外は実施例1と同様な条件にて、正孔輸送層22を成膜し、その上に実施例1と同様な条件にて、発光層23、電子輸送層24、電子注入層25を成膜した。続いて、電子注入層25まで成膜した基板を、別のスパッタ装置(大阪真空製)へ移動させ、前記電子注入層25上にインジウム錫酸化物(ITO)をスパッタ法にて220nm成膜し、透明な発光取り出し陰極電極26を得た。その後、基板をグローブボックスに移し、窒素雰囲気中で乾燥剤を入れたガラスキャップにより封止した。   Chromium (Cr) was formed to a thickness of 200 nm on the substrate 20 by sputtering to obtain an anode electrode 21. Thereafter, the substrate was subjected to UV / ozone cleaning. Subsequently, the hole transport layer 22 was formed under the same conditions as in Example 1 except that the film thickness was set to 70 nm on the anode electrode 21, and light emission was performed under the same conditions as in Example 1 thereon. A layer 23, an electron transport layer 24, and an electron injection layer 25 were formed. Subsequently, the substrate formed up to the electron injection layer 25 is moved to another sputtering apparatus (manufactured by Osaka Vacuum), and indium tin oxide (ITO) is formed on the electron injection layer 25 by a sputtering method to a thickness of 220 nm. A transparent light emitting cathode electrode 26 was obtained. Thereafter, the substrate was transferred to a glove box and sealed with a glass cap containing a desiccant in a nitrogen atmosphere.

上記作製手順により得られた有機発光素子に直流電圧を0Vから輝度が1300cd/m2までになるまで0.1Vずつ上昇させて印加し、発光特性を調べた。その結果この素子は、輝度が1385cd/m2の時の電流密度が18.98mA/cm2であり、初期の発光効率は7.30cd/Aと計算された。さらに、この有機発光素子を暗所にて室温で100日間保存した後、同様に発光特性を調べたところ、輝度が1306cd/m2の時の電流密度が17.18mA/cm2であり、100日間の経時での発光効率は7.60cd/Aと計算された。したがって、100日間の経時によって発光効率は4.9%上昇しており、効率低下の無い良好な有機発光素子であった。 A direct current voltage was applied to the organic light-emitting device obtained by the above-described production procedure in increments of 0.1 V until the luminance reached 1300 cd / m 2 , and the light emission characteristics were examined. Consequently this device, the luminance is the current density at the 1385cd / m 2 was 18.98mA / cm 2, the initial luminous efficiency was calculated to 7.30cd / A. Further, after the organic light-emitting device was stored at room temperature in the dark for 100 days, the emission characteristics were examined in the same manner. As a result, the current density when the luminance was 1306 cd / m 2 was 17.18 mA / cm 2 , The luminous efficiency over the course of the day was calculated to be 7.60 cd / A. Therefore, the luminous efficiency increased by 4.9% over time for 100 days, and the organic light-emitting device did not decrease in efficiency.

(実施例3−6)
電子注入層25以外は実施例2と同様の方法で素子を作製し、実施例1と同様の方法で分析して電子注入層中のセシウムとしての濃度を確認した。さらに実施例2と同様の方法で発光特性を調べた。電子注入層25の作製条件を[表1]、発光特性を[表2]に示す。
(Example 3-6)
Except for the electron injection layer 25, an element was produced by the same method as in Example 2, and analyzed by the same method as in Example 1 to confirm the concentration of cesium in the electron injection layer. Further, the light emission characteristics were examined in the same manner as in Example 2. The production conditions of the electron injection layer 25 are shown in [Table 1], and the emission characteristics are shown in [Table 2].

(比較例2)
電子注入層25は比較例1と同様な条件で成膜し、電子注入層25以外は実施例2と同様の方法で素子を作製した。さらに実施例2と同様の方法で発光特性を調べた。電子注入層25の作製条件を[表1]、発光特性を[表2]に示す。
(Comparative Example 2)
The electron injection layer 25 was formed under the same conditions as in Comparative Example 1, and a device was fabricated in the same manner as in Example 2 except for the electron injection layer 25. Further, the light emission characteristics were examined in the same manner as in Example 2. The production conditions of the electron injection layer 25 are shown in [Table 1], and the emission characteristics are shown in [Table 2].

(実施例7)
電子注入層25にアルカリ金属化合物のドーパントとして水酸化ナトリウムを用いた以外は実施例2と同様の方法で素子を作製し、実施例1と同様の方法で分析して電子注入層中のナトリウムとしての濃度が0.81重量%であることを確認した。さらに実施例2と同様の方法で発光特性を調べた。電子注入層25の作製条件を[表1]、発光特性を[表2]に示す。
(Example 7)
A device was prepared by the same method as in Example 2 except that sodium hydroxide was used as the dopant for the alkali metal compound in the electron injection layer 25, and analyzed by the same method as in Example 1 to obtain sodium in the electron injection layer. It was confirmed that the concentration of was 0.81% by weight. Further, the light emission characteristics were examined in the same manner as in Example 2. The production conditions of the electron injection layer 25 are shown in [Table 1], and the emission characteristics are shown in [Table 2].

以上のように、本発明のアルカリ金属をドーピングした電子注入層はトップエミッション型素子へも好適に用いることができる。   As described above, the electron injection layer doped with an alkali metal of the present invention can be suitably used for a top emission type device.

(比較例3)
実施例2と同様な条件にて、電子注入層25にドーパントを混合せず、化学式2で表されるフェナントロリン化合物のみで成膜することを除いては実施例2と同様の方法で素子を作製した。さらに実施例2と同様の方法で発光特性を調べた。電子注入層25の作製条件を[表1]、発光特性を[表2]に示す。
(Comparative Example 3)
A device was fabricated in the same manner as in Example 2, except that the dopant was not mixed in the electron injection layer 25 under the same conditions as in Example 2, but only the phenanthroline compound represented by Chemical Formula 2 was used. did. Further, the light emission characteristics were examined in the same manner as in Example 2. The production conditions of the electron injection layer 25 are shown in [Table 1], and the emission characteristics are shown in [Table 2].

上記本発明の実施例および比較例の結果を[表1]にまとめた。本発明の有機発光素子で使用するドーパントは大気中での取り扱いが容易であった。本発明の有機発光素子は、光取り出し電極が陽極である素子構成と陰極である素子構成の両方の構成において高効率であり、本発明のアルカリ金属のドーピング量やドーピング方法が、アルカリ金属化合物をドーパントとして用いた場合に見られる経時的な発光効率の低下をほとんど無くすことが示された。   The results of Examples and Comparative Examples of the present invention are summarized in [Table 1]. The dopant used in the organic light emitting device of the present invention was easy to handle in the atmosphere. The organic light-emitting device of the present invention is highly efficient in both the device configuration in which the light extraction electrode is an anode and the device configuration in which the cathode is a cathode, and the alkali metal doping amount and the doping method of the present invention include an alkali metal compound. It has been shown that the decrease in light emission efficiency over time seen when used as a dopant is almost eliminated.

Figure 2005063910
Figure 2005063910

Figure 2005063910
Figure 2005063910

なお、本発明の有機発光素子は真空蒸着法以外の、例えばインクジェット法やスピンコート法などの成膜方法によって作製することも可能である。また、本発明の有機発光素子で使用されるアルカリ金属化合物は他のドーパントと組み合わせて使用することも可能であり、組み合わせて使用されるドーパントは本発明で使用される他のアルカリ金属化合物でもよく、本発明で使用されるアルカリ金属化合物ではなくてもよい。   The organic light emitting device of the present invention can also be produced by a film forming method such as an ink jet method or a spin coat method other than the vacuum vapor deposition method. In addition, the alkali metal compound used in the organic light emitting device of the present invention can be used in combination with another dopant, and the dopant used in combination may be another alkali metal compound used in the present invention. The alkali metal compound used in the present invention may not be used.

一般的な発光素子の積層構造例を示す模式図である。It is a schematic diagram which shows the example of a laminated structure of a common light emitting element. 本発明および比較例の発光素子の積層構造例を示す模式図である。It is a schematic diagram which shows the laminated structure example of the light emitting element of this invention and a comparative example. 本発明および比較例の発光素子の積層構造例を示す模式図である。It is a schematic diagram which shows the laminated structure example of the light emitting element of this invention and a comparative example.

符号の説明Explanation of symbols

1 基板
2 陽極
3 正孔輸送層
4 発光層
5 電子輸送層
6 電子注入層
7 陰極
10 透明基板
11 陽極透明電極(ITO)
12 正孔輸送層
13 発光層
14 電子輸送層
15 電子注入層
16 陰極(アルミニウム)
20 基板
21 陽極(クロム)
22 正孔輸送層
23 発光層
24 電子輸送層
25 電子注入層
26 陰極透明電極(ITO)
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole transport layer 4 Light emitting layer 5 Electron transport layer 6 Electron injection layer 7 Cathode 10 Transparent substrate 11 Anode transparent electrode (ITO)
12 hole transport layer 13 light emitting layer 14 electron transport layer 15 electron injection layer 16 cathode (aluminum)
20 Substrate 21 Anode (chrome)
22 hole transport layer 23 light emitting layer 24 electron transport layer 25 electron injection layer 26 cathode transparent electrode (ITO)

Claims (9)

陽極及び陰極からなる一対の電極間に挟持された発光層と電子注入層を少なくとも有する有機発光素子において、前記陰極と電気的に接している前記電子注入層が少なくとも有機化合物とアルカリ金属化合物とから構成され、前記電子注入層中の前記アルカリ金属化合物の濃度がアルカリ金属として8重量%以下であることを特徴とする有機発光素子。 In an organic light emitting device having at least a light emitting layer and an electron injection layer sandwiched between a pair of electrodes consisting of an anode and a cathode, the electron injection layer in electrical contact with the cathode comprises at least an organic compound and an alkali metal compound. An organic light emitting device comprising: an alkali metal compound having a concentration of 8% by weight or less as an alkali metal. 前記発光層と前記電子注入層の間に有機化合物のみから成る電子輸送層を有することを特徴とする請求項1に記載の有機発光素子。 The organic light-emitting device according to claim 1, further comprising an electron transport layer made of only an organic compound between the light-emitting layer and the electron injection layer. 前記アルカリ金属化合物がセシウム化合物であることを特徴とする請求項1に記載の有機発光素子。 The organic light-emitting element according to claim 1, wherein the alkali metal compound is a cesium compound. 前記セシウム化合物が炭酸セシウムであることを特徴とする請求項3に記載の有機発光素子。 The organic light-emitting device according to claim 3, wherein the cesium compound is cesium carbonate. 陽極及び陰極からなる一対の電極間に挟持された発光層と電子注入層を少なくとも有する有機発光素子の製造方法において、前記陰極と電気的に接している前記電子注入層を少なくとも有機化合物とアルカリ金属化合物とから形成する電子注入層形成工程を有し、前記電子注入層形成工程は前記アルカリ金属化合物を400℃以下の加熱温度で蒸着する工程を有し、そして前記発光層を形成する発光層形成工程を有することを特徴とする有機発光素子の製造方法。 In a method for manufacturing an organic light emitting device having at least a light emitting layer and an electron injection layer sandwiched between a pair of electrodes consisting of an anode and a cathode, the electron injection layer in electrical contact with the cathode includes at least an organic compound and an alkali metal. A step of forming an electron injection layer formed from the compound, the step of forming the electron injection layer includes a step of depositing the alkali metal compound at a heating temperature of 400 ° C. or less, and forming a light emitting layer for forming the light emitting layer The manufacturing method of the organic light emitting element characterized by having a process. 陽極及び陰極からなる一対の電極間に挟持された発光層と電子注入層を少なくとも有する有機発光素子の製造方法において、前記陰極と電気的に接している前記電子注入層を少なくとも有機化合物とアルカリ金属化合物とから形成する電子注入層形成工程を有し、前記電子注入層形成工程は前記アルカリ金属化合物を毎秒0.1Å以下の成膜レートで蒸着する工程を有し、そして前記発光層を形成する発光層形成工程を有することを特徴とする有機発光素子の製造方法。 In a method for manufacturing an organic light emitting device having at least a light emitting layer and an electron injection layer sandwiched between a pair of electrodes consisting of an anode and a cathode, the electron injection layer in electrical contact with the cathode includes at least an organic compound and an alkali metal. Forming an electron injection layer formed from the compound, wherein the electron injection layer forming step includes a step of depositing the alkali metal compound at a film formation rate of 0.1 liter per second or less, and forming the light emitting layer. The manufacturing method of the organic light emitting element characterized by having a light emitting layer formation process. 前記発光層と前記電子注入層の間に有機化合物のみから成る電子輸送層を形成する電子輸送層形成工程を有することを特徴とする請求項5乃至6の何れかに記載の有機発光素子の製造方法。 The organic light-emitting device according to claim 5, further comprising an electron transport layer forming step of forming an electron transport layer made of only an organic compound between the light emitting layer and the electron injection layer. Method. 前記アルカリ金属化合物がセシウム化合物であることを特徴とする請求項5乃至6のいずれかにに記載の有機発光素子の製造方法。 The method for producing an organic light-emitting element according to claim 5, wherein the alkali metal compound is a cesium compound. 前記セシウム化合物が炭酸セシウムであることを特徴とする請求項8に記載の有機発光素子の製造方法。 The method of manufacturing an organic light-emitting element according to claim 8, wherein the cesium compound is cesium carbonate.
JP2003295976A 2003-08-20 2003-08-20 Organic light emitting element and its manufacturing method Withdrawn JP2005063910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295976A JP2005063910A (en) 2003-08-20 2003-08-20 Organic light emitting element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003295976A JP2005063910A (en) 2003-08-20 2003-08-20 Organic light emitting element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005063910A true JP2005063910A (en) 2005-03-10

Family

ID=34372028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295976A Withdrawn JP2005063910A (en) 2003-08-20 2003-08-20 Organic light emitting element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005063910A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319070A (en) * 2005-05-11 2006-11-24 Matsushita Electric Works Ltd Organic electroluminescence element
WO2007111192A1 (en) * 2006-03-24 2007-10-04 Konica Minolta Holdings, Inc. Organic electroluminescent element, and organic electroluminescent display
JP2007281039A (en) * 2006-04-03 2007-10-25 Seiko Epson Corp Organic-inorganic compound semiconductor material, liquefied material, organic light emitting element, its manufacturing method, light emitting device, and electronic appliance
JP2008028371A (en) * 2006-06-23 2008-02-07 Canon Inc Organic light emitting device
KR100811120B1 (en) 2005-10-21 2008-03-06 세이코 엡슨 가부시키가이샤 Organic light-emitting element, method of manufacturing organic light-emitting element, light-emitting device, and electronic apparatus
JP2008305735A (en) * 2007-06-11 2008-12-18 Canon Inc Method of manufacturing organic electroluminescent element and vapor deposition apparatus
WO2009107187A1 (en) * 2008-02-25 2009-09-03 パイオニア株式会社 Organic electroluminescent element
US7605532B2 (en) 2006-03-31 2009-10-20 Canon Kabushiki Kaisha Organic light emitting device
JP2010123512A (en) * 2008-11-21 2010-06-03 Fujifilm Corp Organic electroluminescent element and its manufacturing method
JP2010182633A (en) * 2009-02-09 2010-08-19 Seiko Epson Corp Organic electroluminescent device, manufacturing method for same, and electronic apparatus
KR20120085749A (en) 2009-08-18 2012-08-01 다이덴 가부시키가이샤 Organic electroluminescent element and novel alcohol-soluble phosphorescent material
KR20190024992A (en) 2016-07-29 2019-03-08 다이덴 가부시키가이샤 Metal complexes and electron transport materials using the same
KR20220070298A (en) 2019-10-02 2022-05-30 다이덴 가부시키가이샤 Metal complex and electron transport material using same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314545B2 (en) 2005-05-11 2012-11-20 Panasonic Corporation Organic electroluminescence element
JP2006319070A (en) * 2005-05-11 2006-11-24 Matsushita Electric Works Ltd Organic electroluminescence element
KR100811120B1 (en) 2005-10-21 2008-03-06 세이코 엡슨 가부시키가이샤 Organic light-emitting element, method of manufacturing organic light-emitting element, light-emitting device, and electronic apparatus
WO2007111192A1 (en) * 2006-03-24 2007-10-04 Konica Minolta Holdings, Inc. Organic electroluminescent element, and organic electroluminescent display
US7605532B2 (en) 2006-03-31 2009-10-20 Canon Kabushiki Kaisha Organic light emitting device
JP2007281039A (en) * 2006-04-03 2007-10-25 Seiko Epson Corp Organic-inorganic compound semiconductor material, liquefied material, organic light emitting element, its manufacturing method, light emitting device, and electronic appliance
JP2008028371A (en) * 2006-06-23 2008-02-07 Canon Inc Organic light emitting device
JP2008305735A (en) * 2007-06-11 2008-12-18 Canon Inc Method of manufacturing organic electroluminescent element and vapor deposition apparatus
WO2009107187A1 (en) * 2008-02-25 2009-09-03 パイオニア株式会社 Organic electroluminescent element
JP2010123512A (en) * 2008-11-21 2010-06-03 Fujifilm Corp Organic electroluminescent element and its manufacturing method
JP2010182633A (en) * 2009-02-09 2010-08-19 Seiko Epson Corp Organic electroluminescent device, manufacturing method for same, and electronic apparatus
KR20120085749A (en) 2009-08-18 2012-08-01 다이덴 가부시키가이샤 Organic electroluminescent element and novel alcohol-soluble phosphorescent material
KR20190024992A (en) 2016-07-29 2019-03-08 다이덴 가부시키가이샤 Metal complexes and electron transport materials using the same
KR20200110819A (en) 2016-07-29 2020-09-25 다이덴 가부시키가이샤 Metal complex and electron-transporting material using same
KR20220070298A (en) 2019-10-02 2022-05-30 다이덴 가부시키가이샤 Metal complex and electron transport material using same

Similar Documents

Publication Publication Date Title
US6551725B2 (en) Inorganic buffer structure for organic light-emitting diode devices
TWI408995B (en) Organic light emitting display
JP4350745B2 (en) Nitrogen plasma treated ITO film and organic light emitting device using the same as anode
KR100865445B1 (en) Fabrication method for organic electronic device and organic electronic device fabricated by the same method
WO2017211100A1 (en) Organic light-emitting device
KR100844788B1 (en) Fabrication method for organic light emitting device and organic light emitting device fabricated by the same method
JP2005063910A (en) Organic light emitting element and its manufacturing method
US7501755B2 (en) Electron injection layer material for organic electroluminescence device
CN101222027A (en) Organic light-emitting device and method for producing the same
KR100615221B1 (en) An organic electro luminescent display device and a method for preparing the same
JP2007299828A (en) Organic light emitting element
KR100787460B1 (en) Method for preparing organic luminescence device and organic luminescence device prepared by the method
JP3849937B2 (en) Organic EL device and method for manufacturing the same
JP2004335137A (en) Light emitting element
US20050175770A1 (en) Fabricating an electrode for use in organic electronic devices
JP4314059B2 (en) Organic light emitting device
KR100964228B1 (en) Organic light-emitting device and manufacturing method thereof
JP4824776B2 (en) Organic light emitting device manufacturing method and organic light emitting device manufactured thereby
JP2003234194A (en) Organic el element and its manufacturing method
JP4770575B2 (en) Organic EL device and manufacturing method thereof
JP2005310637A (en) Organic el element
JP2005322465A (en) Organic el device
JP2004335136A (en) Organic light-emitting element
JP2003178886A (en) Organic el element and its manufacturing method
JP2006140275A (en) Organic el device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107