KR102182078B1 - 박테리아에서의 고품질 재조합 단백질 생산을 위해 전사 완료 후 번역이 개시되는 유전자 발현 카세트 - Google Patents

박테리아에서의 고품질 재조합 단백질 생산을 위해 전사 완료 후 번역이 개시되는 유전자 발현 카세트 Download PDF

Info

Publication number
KR102182078B1
KR102182078B1 KR1020180070484A KR20180070484A KR102182078B1 KR 102182078 B1 KR102182078 B1 KR 102182078B1 KR 1020180070484 A KR1020180070484 A KR 1020180070484A KR 20180070484 A KR20180070484 A KR 20180070484A KR 102182078 B1 KR102182078 B1 KR 102182078B1
Authority
KR
South Korea
Prior art keywords
translation
sequence
mrna
switch
sfgfp
Prior art date
Application number
KR1020180070484A
Other languages
English (en)
Other versions
KR20190143037A (ko
Inventor
서상우
양진아
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to US17/253,401 priority Critical patent/US20210340551A1/en
Priority to KR1020180070484A priority patent/KR102182078B1/ko
Publication of KR20190143037A publication Critical patent/KR20190143037A/ko
Application granted granted Critical
Publication of KR102182078B1 publication Critical patent/KR102182078B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/55Vectors comprising a special translation-regulating system from bacteria

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 박테리아에서의 고품질 재조합 단백질 생산을 위해 전사 완료 후 번역이 개시되는 유전자 발현 카세트에 관한 것으로, 상세하게는, 박테리아에 내재된 전사-번역 동조 시스템을 재구성하여 완전한 길이의 mRNA 주형으로부터만 번역이 개시되도록 번역 개시를 막는 스위치와 해당 스위치로부터 번역 개시를 활성화시킬 수 있는 Trigger 시스템으로 구성된 유전자 발현 카세트에 관한 것이다. 본 발명에 의하면, 전사-번역이 동조화된 자연계의 5'UTR을 스위치로 교체하여 스위치로부터 번역개시를 활성화시키는 트리거(Trigger) 서열을 목적 재조합 유전자의 하류(3’말단)에 삽입하면, 박테리아의 전사 단계와 번역 단계를 비동조화시킬 수 있다. 또한, 본 발명에 의하면, 완전한 길이의 고품질 재조합 단백질 생산성을 높이면서도 정제과정의 비용의 부담을 줄일 수 있고, 생산한 재조합 단백질을 의약품, 항체부터 기능성 화장품의 원료, 세제, 비료, 가축의 사료에 이르기까지 다양한 산업에 적용할 수 있다.

Description

박테리아에서의 고품질 재조합 단백질 생산을 위해 전사 완료 후 번역이 개시되는 유전자 발현 카세트{Gene expression cassette in which transcription and translation is decoupled for production of high quality recombinant proteins in bacteria}
본 발명은 미생물을 배양하여 재조합 단백질을 생산하는 공정에서 완전한 길이의 재조합 단백질 생산성을 높이기 위한 유전자 발현 카세트에 관한 것으로, 상세하게는 생물체에 내재된 전사, 번역 시스템을 재구성하여 말단이 손상되지 않은 완전한 길이의 mRNA만을 주형으로 번역이 개시되도록 제어하는데 스위치와 트리거(Trigger)를 활용하는 유전자 발현 카세트에 관한 것이다.
박테리아에서는 자연적으로 전사 단계 진행 중 번역 개시 서열이 노출되면 동시에 번역 개시 단계가 진행되며, 이를 전사-번역 동조(transcription translation coupling) 혹은 동시 전사 번역(cotranscriptional translation)이라고 한다. 박테리아에서는 전사의 조기 종결 및 mRNA의 쪼개짐 현상으로 인해 세포내 mRNA의 ~4% 정도가 종결 코돈 없이 존재하는데, 동시 전사 번역이 일어나게 되면 전사가 완료되지 못한 채 조기 종료된 mRNA로부터도 번역이 개시된다. 조기 종료된 mRNA를 주형으로 번역이 진행되면서 기능이 없는 폴리펩티드가 만들어지고 아미노산, ATP 등의 세포 자원이 낭비되는 문제가 일어나게 된다.
상기와 같은 문제로 인해, 박테리아는 트랜스-트랜스레이션(trans-translation)을 매개하는 tmRNA, 리보솜 해방인자를 유도하는 ArfA-Release factor2 등의 리보솜 회복 시스템을 보유하고 있지만, 세포에 내재하는 시스템만으로는 이러한 문제를 해결하기 어렵다. 게다가, 재조합 단백질을 과발현시키는 경우 조기 종료된 mRNA가 누적되어 종결코돈 미보유 mRNA들을 해결하기 어려워지게 된다.
한편, 고분자 및 대부분 고기능성 제품을 목적으로 하는 재조합 단백질을 생산하기 위해서는, 생산성과 최종 산물의 품질이 모두 중요하다. 이를 위한 기존 연구에서는 생산 균주의 단백질 분해효소를 제거하거나, 목적 단백질에 많이 들어있는 아미노산을 자체적으로 공급하도록 세포주를 개량하거나, 유전자의 복제수를 늘리거나, 프로모터 엔지니어링 및 5'UTR의 재설계를 통해 전사, 번역 효율을 개선하는 기술들을 개발하고 있다.
또한, 최근에는, 숙주에 맞춰 최적화된 코돈으로 유전자를 재구성하는 기술 및 코돈 빈도수 패턴을 유전자의 출처와 동질화시키는 연구가 리보솜 프로파일링 기술과 함께 시도되고 있고, 대량으로 발현된 단백질을 정제 후에 기능성 구조로 재접힘(refolding)시키는 기술 및 고처리능의 스크리닝 방법을 사용하여 재조합 단백질의 기능성 발현을 위한 신호 펩티드들이 개발되고 있다.
하지만, 현재까지 개발된 기술들은 주로 난발현 단백질의 수율 증대 및 기능성 구조로의 발현, 발현된 단백질의 정제를 목적으로 하는 기술들로, 고분자인 재조합 단백질이 동일한 효능을 유지하기 위해서는 정제 과정에서의 불순물이 제거되는 과정이 필요하며, 정제과정의 비용이 부담으로 발생하는 문제가 있다.
따라서, 손상되지 않으면서도 정제과정의 비용의 부담을 줄이고, 높은 생산성 및 고품질의 재조합 단백질을 생산할 수 있는 시스템을 개발하는 것이 필요한 실정이다.
대한민국 등록특허 제10-2013-0010873호 (공개일자: 2013.01.29.)에는, 빛에 작동하는 유전자 발현용 재조합 플라스미드, 형질전환체 및 이를 이용하여 유전자 발현을 조절하는 방법에 관한 것으로, 항시성 프로모터의 조절하에 2개의 전사성 억제인자 결합 부위, 리보좀 결합 부위, 및 목적 유전자의 융합 유전자를 포함하는 재조합 플라스미드로 형질전환된 미생물을 빛에 노출시킴에 따라, 유전자 발현이 조절되는 빛-스위치 유전자 발현 시스템에 관한 것이 기재되어 있다.
본 발명에서는 박테리아에 내재된 전사-번역 동조 시스템을 재구성하여 완전한 길이의 mRNA 주형으로부터만 번역이 개시되도록 번역 개시를 막는 스위치와 해당 스위치로부터 번역 개시를 활성화시킬 수 있는 트리거(Trigger) 시스템으로 구성된 유전자 발명 카세트를 제공하고자 한다. 또한, 완전한 길이의 고품질 재조합 단백질 생산성을 높이면서도, 정제과정의 비용의 부담을 줄이는 기술을 제공하고자 한다.
본 발명은 제1형태로, mRNA로 전사시 스템 루프 (stem loop) 구조를 형성할 수 있고, 상기 스템 루프 구조 내에 리보솜 결합 사이트가 위치하고 있는 DNA 분자에 있어서, 일부분 서열이 상기 스템 루프 구조 형성에 참여할 수 있도록 설계된 RNA 서열을 암호화하는 DNA서열(a); 상기 일부분 서열이 스템 루프 구조 형성에 참여할 수 있도록 설계된 RNA 서열에 상보적으로 결합하는 RNA 서열을 암호화하는 것으로, 종결코돈 뒤에 위치하는 DNA서열(b);을 포함하는 것을 특징으로 하는 DNA 분자를 제공한다.
본 발명 제1형태에 있어서, 상기 DNA 분자는, 바람직하게 리보솜 결합 사이트 뒤, DNA서열(b) 전에, 멀티플 클로닝 사이트 (mutiple cloning site)를 포함하는 것이 좋다.
본 발명은 제2형태로, 제1형태의 DNA 분자를 포함하는 벡터를 제공한다.
본 발명은 제3형태로, 스템 루프 (stem loop) 구조를 형성하고, 스템 루프 구조 내에 리보솜 결합 사이트가 위치한 mRNA에 있어서, 일부분 서열이 상기 스템 루프 구조에 참여하고 있는 RNA서열(a); 상기 RNA서열(a)에 결합할 수 있는 상보적 서열로 구성되어 있는 것으로, 종결코돈 뒤에 위치하는 RNA서열(b);을 포함하는 것을 특징으로 하는 mRNA를 제공한다.
본 발명의 제3형태에 있어서, 상기 mRNA는, 바람직하게 RNA서열(b)가 RNA서열(a)에 결합하면, 스템 루프 구조가 풀리면서 번역이 개시되는 것이 좋다. 이때, 상기 번역 개시는, 바람직하게 리보솜이 리보솜 결합 사이트에 결합함으로써 개시되는 것이 좋다.
본 발명에 의할 경우, 소위 스위치 (Switch) 서열과 트리거 (Trigger) 서열을 mRNA에 도입함으로써 전사 단계와 번역 단계를 비동조화였다. 이를 통해 전사가 목표한 3‘말단까지 진행되는 경우에만 번역이 개시되도록 하여, 완전한 길이의 고품질 재조합 단백질을 생산할 수 있었다.
한편, 본 발명을 이용할 경우, 생산한 재조합 단백질을 의약품, 항체부터 기능성 화장품의 원료, 세제, 비료, 가축의 사료에 이르기까지 다양한 산업에 적용할 수 있다.
도 1의 a)는 스위치로부터의 번역을 개시하는 트리거(Trigger) 서열이 동일한 mRNA에 위치하는 ProQC 유전자 발현 카세트의 작동 기작에 대한 모식도이고, b)는 스위치와 트리거(Trigger) 서열을 가지고 있는 mRNA와 스위치와 트리거(Trigger) 서열을 가지고 있지 않은 mRNA의 RBS(Ribosome binding site)에 대한 리보솜 결합 여부를 나타내는 모식도이다.
도 2는 스위치로부터의 번역을 개시하는 트리거(Trigger) 서열이 스위치와 동일한 mRNA에 위치하는 txtl-Cis-sfGFP 유전자 발현 카세트 모식도 및 트리거(Trigger)가 목적 유전자를 발현시키는 스위치와 별개의 플라스미드에 위치하는 자연적 유전자 발현 카세트(txtl-Trans-sfGFP) 모식도이다.
도 3은 ProQC 유전자 발현 카세트와 자연적 유전자 발현 카세트에서 리포터 단백질인 sfGFP를 발현시키고, 각 시스템에서의 단위 형광을 자연적 유전자 발현 카세트의 발현 값으로 표준화하여 비교한 그래프이다. (ProNC-sfGFP의 단위형광 = 1)
도 4는 ProQC 유전자 발현 카세트에서 전사된 mRNA의 스위치와 트리거(Trigger) 서열의 분자 내, 분자 간 상호작용 정도를 관찰하기 위한 유전자 회로도이다.
도 5는 sfGFP 단백질을 mRNA 분자 내 상호작용에 의한 번역개시 지표로 사용하여 ProIntra 세포의 단위 형광의 비율을 나타낸 그래프이다.
도 6은 mCherry_lacZ_gfp (MLG) 융합 단백질 제작 방법 및 MLG 단백질을 발현하는 ProQC-MLG 플라스미드, ProNC-MLG 유전자 회로도이다.
도 7의 a)는 ProQC-MLG 균주 및 ProNC-MLG 균주 각각의 MLG 융합단백질의 아미노 말단과 카르복시 말단 양을 나타내는 그래프이며, mCherry, sfGFP 형광을 600nm 파장의 흡광도로 나눠 세포당 형광을 계산하고, 세포당 형광을 각 형광단백질의 양으로 환산한 후 mCherry의 양으로 표준화한 것이다. b)는 ProQC-MLG와 ProNC-MLG에서의 단위 세포의 융합단백질 생산성을 확인하기 위해 완전한 길이의 단백질(카르복시 말단의 sfGFP를 기준으로 함)양 발현량을 ProNC-MLG의 발현량을 1로 표준화 하여 비교한 그래프이다.
도 8은 ProQC-MLG 균주 및 ProNC-MLG (대조군) 균주로부터 발현된 단백질의 SDS-PAGE 결과이며, Full-length는 완전한 길이의 마커로서 카르복시 말단의 히스티딘 태그를 사용하여 정제한 융합단백질을 나타낸다.
본 발명은 박테리아의 전사-번역 동조화를 해제하고, 전사가 완료된 mRNA 가닥에서만 번역이 개시되도록 하는 유전자 발현 카세트를 제공한다. 즉, 본 발명은 불완전한 길이로 전사된 mRNA 주형에서는 번역이 개시되지 않도록 번역 개시를 막고 있는 핵산서열(본 발명에서는 소위 '스위치(Switch)'라 칭하기로 함)과 완전한 길이로 전사되면 상기 스위치에 결합하여 번역 개시를 활성화시킬 수 있는 핵산서열(본 발명에서는 소위 '트리거(Trigger)'라 칭하기로 함)을 포함하는 유전자 발현 카세트를 제공한다. 더욱 상세하게는, 전사가 완전히 종결되어 mRNA의 3' 말단에 있는 트리거(Trigger) 핵산서열이 mRNA 상에 노출되고, mRNA의 5'UTR에 있는 스위치 서열과 상보적으로 결합하면, 스위치 서열이 참여하고 있는 스템 루프 (stem loop) 구조를 풀게 되어 번역이 개시되게 하는 것이다. 이와 같은 본 발명의 전사 번역 비동조화 시스템을 통해 박테리아 내에서 완전한 길이의 고품질 재조합 단백질을 생산할 수 있다.
본 발명의 유전자 발현 카세트에 대한 모식도를 도 1에 도식화하였다. 박테리아 상에서 DNA로부터 전사되어 나온 mRNA 분자 위에는 리보솜과 결합할 수 있는 서열, 즉 리보솜 결합 사이트(ribosome binding site, RBS)를 가지고 있다. 이 리보솜 결합 사이트에 리보솜이 결합하게 될 때, 번역이 개시될 수 있다. 그런데, 본 발명에서는 번역이 개시되는 시점을 소위 본 발명의 '스위치-트리거 시스템'을 통해 조절하고자 하였다.
도 1의 모식도를 구체적으로 기술하면, 소위 본 발명의 스위치 서열(본 발명에서 RNA서열(a))과 트리거(Trigger) 서열(본 발명의 RNA서열(b))는 동일한 mRNA 가닥에 존재한다.
스위치 서열(본 발명에서 'RNA서열(a)'로 지칭함)은 그 서열 중 일부가 RBS를 포함하는 스템 루프 구조의 형성에 참여하고 있는 서열을 의미한다. 서열 일부가 RBS를 포함하는 스템 루프 구조의 형성에 참여하고 있다면, 특별히 그 길이에 한정되는 것은 아니다.
트리거(Trigger) 서열(본 발명에서 'RNA서열(b)'로 지칭함)은 상기 스위치 서열이 존재하고 있는 것과 동일한 mRNA의 3' 말단에 위치하는데, 바람직하게는 종결코돈 뒤에 위치하게 된다. 트리거 서열은 상기 스위치 서열과 상보적으로 결합할 수 있는 서열로 구성된다.
스템 루프 구조가 형성되어 있으면 번역이 개시되지 않는데, 온전히 전사가 종결된 mRNA의 경우 트리거 서열이 mRNA 상에 노출되고, 노출된 트리거 서열은 상보적 서열인 스위치 서열에 결합하여 스템 루프 구조를 해제하면서 번역이 개시된다. 즉, 스위치로부터의 번역을 개시하는 트리거(Trigger) 서열은 스위치 서열이 위치한 것과 동일한 mRNA 상 3' 말단에 위치하는데, 도 1의 a)와 같이, mRNA 3' 말단에 있는 트리거(Trigger) 서열이 완전한 전사 과정을 통해 mRNA 상에 노출되면 5'UTR 상에 위치하는 스위치 서열과 짝을 이루어 상보적으로 결합하면서 번역을 개시(turn on)할 신호가 되는 것이다.
스위치-트리거(Trigger) 서열이 상보적으로 결합하여 스템 루프 구조가 풀린 상태에서, 리보솜 결합 사이트에 리보솜이 결합하면, 번역이 정상적으로 개시되게 되고, 트리거(Trigger) 서열 앞에 위치하는 종결코돈에 의해 번역이 종결될 때, 3' 말단이 손실되지 않은 완전한 mRNA 주형으로부터 완전한 단백질을 생산할 수 있게 되는 것이다.
본 발명의 유전자 발현 카세트를 사용하면, 도 1의 b)에서 보는 바와 같이, 스위치-트리거(Trigger) 시스템을 가지고 있지 않은 mRNA의 리보솜 결합 사이트에는 리보솜이 결합하지 못해서 번역이 개시될 수 없음에 반하여, 스위치-트리거(Trigger) 시스템을 가지고 있는 본 발명의 mRNA 리보솜 결합 사이트에만 리보솜이 결합되어 번역이 개시되는 것을 확인할 수 있다.
한편, 본 발명에서 스위치 서열은 그 서열의 '일부'가 스템 루프 구조의 형성에 참여하는 것이 좋다. 만약 스위치 서열의 전부가 스템 루프 구조 형성에 참여하면, 트리거(Trigger) 서열이 스위치 서열에 상보적으로 결합한다 하더라도, 스템 루프 구조 형성에 참여하고 있는 결합력과 트리거(Trigger) 서열과의 결합력이 서로 같게 되어 스템 루프 구조 형성의 해소가 용이하지 않기 때문이다.
한편, 본 발명은, mRNA로 전사시 스템 루프 (stem loop) 구조를 형성할 수 있고, 상기 스템 루프 구조 내에 리보솜 결합 사이트가 위치하고 있는 DNA 분자에 있어서, 일부분 서열이 상기 스템 루프 구조 형성에 참여할 수 있도록 설계된 RNA 서열을 암호화하는 DNA서열(a); 상기 일부분 서열이 스템 루프 구조 형성에 참여할 수 있도록 설계된 RNA 서열에 상보적으로 결합하는 RNA 서열을 암호화하는 것으로, 종결코돈 뒤에 위치하는 DNA서열(b);을 포함하는 것을 특징으로 하는 DNA 분자 및 이 DNA 분자를 포함하는 벡터를 제공한다.
상기 DNA 분자 형태의 본 발명은 mRNA 수준에서 이루어지는 스위치-트리거(Trigger) 시스템을 DNA 상에서 구현한 것으로, 본 발명의 DNA는 목적 단백질의 고효율 발현을 담보하는 유전자 발현 카세트 시스템으로서의 역할을 수행하게 되고, 본 발명의 DNA 분자를 포함하는 벡터는 이 발현 시스템을 수송하는 역할을 수행하게 된다. 이러한 본 발명의 벡터로 형질전환된 박테리아는 상기 본 발명에서 기술한 바와 같이 온전한 형태의 목적 단백질을 생산할 수 있어, 고효율로 재조합 목적 단백질을 생산할 수 있게 된다.
한편, 본 발명에서는 발현의 개시 및 종결에 필요한 프로모터 및 터미네이터를 다양하게 구성할 수 있는데, 프로모터의 세기 조절에 따라 목적 단백질의 양을 조절할 수 있다.
한편, 본 발명에서는 리보솜 결합 사이트 뒤, DNA서열(b) (소위 '트리거(Trigger)' 서열) 전에, 멀티플 클로닝 사이트 (mutiple cloning site)를 포함하는데, 멀티플 클로닝 사이트에는 다양한 목적 단백질을 코딩하는 유전자가 삽입될 수 있다.
이하, 본 발명의 내용을 하기 실시예를 통해 더욱 상세히 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니고, 그와 등가의 기술적 사상의 변형까지를 포함한다.
[실시예 1: 전사-번역 비동조화 유전자 발현 카세트 제작]
박테리아에서 전사가 완료된 mRNA 가닥에서만 번역이 개시되도록 하는 합성 유전자 발현 카세트(ProQC 유전자 발현 카세트)를 제작하기 위해 재조합 단백질 생산에 널리 사용되는 강한 프로모터인 T7 프로모터를 사용하였다. 실시예에서 클로닝 수행시에는 모두 Mach-T1R 균주가 사용되었다.
먼저, 벡터에서 불필요한 제한 효소 자리를 제거하기 위해 pACYC_Duet 플라스미드를 주형으로 표 2의 EcoNI-PT7-NheI-TT7-F/SpeI-pACYC-R 프라이머 세트를 이용하여 클로람페니콜(Chloramphenicol) 내성 유전자(CamR)를 포함하는 벡터 구간을 증폭하였다. pACYC_Duet 플라스미드는 EcoNI과 NheI, 증폭한 PCR 산물은 EcoNI과 SpeI 제한 효소를 각각 사용하여 클로닝함으로써 기존 플라스미드의 NheI 제한 효소 서열을 제거하고, T7 프로모터와 T7 터미네이터 서열 사이에 유전자 발현 카세트가 들어갈 수 있는 클로닝 사이트가 삽입된 pACYC*를 제작하였다.
기존의 번역개시 제어를 위한 스위치, 트리거(Trigger) 시스템은 트리거(Trigger) 서열을 높은 복제수를 가지는 플라스미드, 혹은 상대적으로 강한 프로모터로부터 전사시켜 트리거(Trigger)가 존재할 때 번역 개시가 원활히 일어나도록 하였다. 그런데, 본 실시예에서는 번역 개시를 위한 스위치 1개 당 트리거(Trigger) 분자 1개로 동일한 비율로 존재하게 한 후, 트리거(Trigger) 분자가 많지 않은 조건에서도 번역 개시가 원활하게 일어나는지 검증하기 위해 도 2와 같이, 녹색형광단백질(sfGFP)를 리포터로 사용하여 유전자 회로를 제작하였다.
다음으로, pBR322-J23100-sfGFP 플라스미드를 주형으로 표 2의 Swit-sfGFP-F1/SpeI-SacI-sfGFP-R 프라이머 세트를 이용하여 sfGFP를 1차로 증폭한 후 BsaI-Swit-sfGFP-F2/BsaI-Trig-R2 프라이머 세트로 증폭하여 sfGFP의5' 말단에 toehold switch를, 3' 말단에 Trigger 서열을 달아주었다. pACYC* 벡터를 BsaI과 NheI 제한 효소로 자른 후 증폭 산물을 BsaI 제한 효소 서열을 사용하여 클로닝하여 txtl-Cis-sfGFP 플라스미드를, BsaI과 SpeI 제한 효소 서열을 사용하여 클로닝하여 txtl-Trans-sfGFP 플라스미드를 각각 제작하였다. 추가적으로 txtl-Trans-sfGFP 플라스미드의 유전자 발현을 위해 트리거(Trigger)를 전사시키기 위한 플라스미드를 제작하였다.
pACYC*의 T7 프로모터로부터 T7 터미네이터까지의 서열을 EcoNI과 Bsu36I 제한 효소 서열을 사용하여 pCDF_Duet 벡터에 클로닝 하여 pCDF-Term 플라스미드를 제작하였고, 표 2의 BsaI-Trigger#3-F/BsaI- Trig-R2 프라이머 세트를 이용해 증폭한 Trigger 서열을 BsaI 제한 효소로 자른 후, BsaI과 NheI 제한 효소로 자른 pCDF-Term 벡터에 클로닝 하여 pCDF-Trigger 플라스미드를 제작하였다.
상기 pCDF-Trigger 플라스미드는 세포당 약 40카피로, 세포당 약 12~15 카피인 pACYC_Duet 플라스미드보다 높은 복제수를 가지며 지속적으로 공급되기 때문에 자연적 유전자 발현 카세트로부터는 sfGFP의 전사 종결에 비의존적으로 번역이 개시된다.
[실험예 1: ProQC 유전자 발현 카세트 효율 확인]
제작된 ProQC 유전자 발현 카세트로부터의 번역개시효율을 자연적 유전자 발현 카세트와 비교하기 위해, 재조합 단백질 생산에 널리 쓰이는 Escherichia coli BL21(DE3)에 txtl-Cis-sfGFP 플라스미드와 pCDF-Term 플라스미드 쌍을, txtl-Trans-sfGFP 플라스미드와 pCDF-Trigger 플라스미드를 쌍을 각각 형질전환시켰다.
플라스미드 유지를 위해 스펙티노마이신(Spectinomycine, Spec, 50 ug/mL), 클로람페니콜(Chloramphenicol, Cam, 34 ug/mL) 항생제가 첨가된 플레이트에서 선별하였고, 형성된 콜로니를 Spec, Cam이 첨가된 액상 LB(Lysogeny broth) 배지에 접종하여 밤새 키운 뒤 UV-1700 스펙트로포토미터(Spectrophotometer)를 이용하여 흡광도를 측정하였다.
초기 흡광도(OD600;opticaldensityat600nm)를 0.05로 희석한 뒤 OD600=0.8에 도달할 때까지 배양한 후 0.2 mM IPTG로 인덕션시켰고, 4시간째에 세포들의 일정 부피를 수확하여 PBS 버퍼(Phosphate buffered saline)로 세척하였고, 하이덱스(Hidex)를 사용하여 486 nm/535 nm 파장의 필터로 형광을 측정하였다. 상기의 형광을 측정하는 실험은 3반복 수행되었으며 멀티플레이트 리더(multiplate reader)에서 측정된 값은 각 샘플의 OD600으로 나눠 줌으로써 세포당 형광으로 전환하였다.
그 결과, 도 3과 같이, 자연적 유전자 발현 시스템에서의 형광을 1로 놓았을 때 상대적 형광은 ProQC 유전자 발현카세트(ProQC-sfGFP)에서의 번역개시 효율이 자연적 유전자 발현 시스템(ProNC-sfGFP)과 거의 유사하게 나타났다.
[실험예 2: mRNA의 스위치와 트리거(Trigger) 서열의 분자 내, 분자 간 상호작용 측정을 위한 유전자 회로 제작 및 mRNA 분자 내 , 분자 간 상호작용 측정]
세포 내부는 다양한 분자들이 존재하여, 특히 강한 세기를 가지는 T7 프로모터로부터 많은 mRNA가 전사되면 다른 mRNA의 3’말단의 트리거(Trigger)에 의한 분자 간 상호작용에 의해 트리거(Trigger)가 없는 mRNA가닥의 스위치로부터도 번역이 개시될 수 있다.
전사가 종결되는 시점에 노출되는 3’말단의 트리거(Trigger)에 의해 번역이 개시되도록 제어함으로써, 손상되지 않은 완전한 길이의 mRNA로부터 번역이 개시되도록 하는 시스템이 충족되기 위해서는 mRNA 분자 간 상호작용보다 동일 mRNA 분자 내 상호작용이 우세해야 한다.
따라서, 이를 검증하기 위해 동일한 스위치에 서로 다른 리포터 단백질을 도입하되, 하나의 리포터 단백질의 mRNA에는 트리거(Trigger)를 제외함으로써 해당 mRNA만으로는 번역이 개시되지 않는 유전자 회로를 설계, 제작하였다.
기존의 mCherry서열은 아미노말단에 의도치 않은 번역개시 서열이 존재하므로 온전히 스위치의 제어를 받도록 하기 위해, 상기 번역개시 서열을 제거하고자 했고, pET28a-mCherry 플라스미드를 주형으로 표 2의 BsaI-Trc-mcherry-F/SpeI-mCherry-R 프라이머 세트를 이용해 N 말단의 8개 아미노산 서열을 제외하고 mCherry 유전자를 증폭한 뒤 BsaI과 SpeI (벡터는 BsaI과 NheI 제한 효소를 사용함) 제한 효소 서열을 사용하여 pACYC*벡터에 삽입한 뒤, 다시 EcoNI과 Bsu36I 제한 효소 서열을 사용하여 T7 프로모터로부터 T7 터미네이터까지의 서열을 pCDF_Duet 벡터에 클로닝함으로써 스위치의 제어는 받지만 트리거(Trigger)가 없는 mRNA가 전사되도록 하는 유전자 회로를 제작하였다(도 4).
다음으로, BL21(DE3)를 txtl-Cis-sfGFP와 pCDF-txtl-Trans-mCherry 플라스미드로 형질전환 후 세포의 GFP와 mCherry 형광을 측정하였다.
그 결과, 도 5와 같이, mRNA 분자 간 상호작용에 의해 txtl-Cis-sfGFP의 3’말단 트리거(Trigger) 서열이 pCDF-txtl-Trans-mCherry의 스위치로부터 번역개시를 일으키는 비율은 6.3%, mRNA 분자 내 상호작용에 의해 스위치로부터 번역개시를 일으키는 비율은 93.7%로 나타났다. 즉, 동일한 스위치가 서로 다른 mRNA 가닥에 있더라도 동일 mRNA 가닥에 트리거(Trigger)가 있는, 분자 내 상호작용에 의한 번역 개시 효율이 우세하였다.
[실험예 3: ProQC 유전자 발현 카세트로부터 생산된 단백질 품질 비교]
긴 단백질을 코딩하고 있는 긴 mRNA는 전사 도중 손상될 위험이 높으므로, 상기 실시예 1에서 제작한 ProQC 유전자 발현 카세트를 사용할 때 긴 단백질의 생산성이 향상되는지를 확인하고자 하였다.
모델시스템으로서 4581bp 길이의 mCherry, lacZ, sfGFP (MLG) 융합단백질을 제작하기 위해 먼저, pET28a 플라스미드를 주형으로 표 2의 BsaI-Trc-mcherry-F/KpnI-Lnk-M-R/Lnk-M-R 프라이머 세트를 이용하여 mCherry의 종결코돈을 제거하고 링커(linker)를 부착한 증폭 산물 BL21(DE3), 크로모좀을 주형으로 KpnI-lacZ-F/BsaI-lacZ-R 프라이머 세트를 이용하여 개시코돈 및 종결코돈이 제거된 lacZ 유전자 증폭 산물, pBR322-J23100-sfGFP 플라스미드를 주형으로 BsaI-Lnk-sfGFP-F/SpeI-sfGFP-R 프라이머 세트를 이용하여 아미노 말단에 링커(linker)를 부착한 sfGFP 유전자 증폭 산물을 준비하였다. 상기의 증폭 산물 3가지는 각각 mCherry는 BsaI과 KpnI 제한 효소, lacZ는 KpnI과BsaI 제한 효소, sfGFP는 BsaI과 SpeI 제한 효소로 잘라준 뒤 정제하여 하나의 튜브에서 라이게이션 시킨 뒤 최종적으로 BsaI-Trc-mcherry-F/SpeI-sfGFP-R 프라이머 세트로 증폭하여 3개의 유전자가 순서대로 연결된 가닥을 증폭한 뒤 TA 클로닝을 수행하였다.
pMD19-MLG 플라스미드를 주형으로 BsaI-his-M-F/SpeI-SacI-sfGFP-R 프라이머 세트를 이용하여 MLG를 증폭한 후, txtl-Cis-sfGFP 플라스미드를 주형으로 BsaI-Swit#3-R/SpeI-Trig-F 프라이머 세트를 이용하여 벡터 서열을 증폭한 뒤 BsaI과 SpeI 제한 효소 서열을 사용하여 클로닝하여 txtl-Cis-MLG_NH 플라스미드를, BsaI과 NheI 제한 효소 서열을 사용하여 클로닝하여 txtl-Trans-MLG_NH 플라스미드를 각각 제작하였다(도 6).
상기 과정을 통해 제작된 mCherry, lacZ, sfGFP (MLG) 융합단백질은 아미노 말단 (5’말단)에 mCherry 형광 단백질을, 카르복시 말단 (3’말단)에 sfGFP 형광단백질을 가지고 있기 때문에 개별 세포의 mCherry, sfGFP 형광의 비율을 측정하면 세포내 생산된 긴 단백질의 양 말단이 손실되었는지 확인할 수 있다.
다음으로, 세포에서 방출하는 두 종류의 형광을 분자 수로 환산하기 위해 단위 형광을 계산하고자 하였고, 이를 위해 sfGFP 유전자의 경우에는, txtl-Trans-sfGFP 플라스미드를 주형으로 표 2의 Duet-F/His-G-R 프라이머 세트로 증폭하여 sfGFP의 카르복시 말단에 6개의 반복된 히스티딘 태그(6XHis)를 달아준 뒤 EcoNI과 SacI 제한 효소 서열을 사용하여 pACYC* 벡터에 클로닝함으로써 txtl-Trans-sfGFP_CH 플라스미드를 제작하였다. mCherry 유전자의 경우에는, pCDF-txtl-Trans-mCherry 플라스미드를 주형으로 표 2의 Duet-F/His-M-R 프라이머 세트로 증폭하여 mCherry의 카르복시 말단에 히스티딘 태그(6XHis)를 달아준 뒤 EcoNI과 SacI 제한 효소 서열을 사용하여 pACYC* 벡터에 클로닝함으로써 txtl-Trans-mCherry_CH 플라스미드를 제작하였다.
또한, 형광단백질의 질량당 형광을 계산하기 위해 txtl-Trans-sfGFP 플라스미드와 pCDF-Trigger 플라스미 쌍을 BL21(DE3)에 형질전환시킨 Unit-sfGFP, txtl-Trans-mCherry-CH 플라스미드와 pCDF-Trigger 플라스미드 쌍을 BL21(DE3)에 형질전환시킨 Unit-mCherry를 제작하였다. Unit-sfGFP와 Unit-mCherry를 상기 실험예 1에서 수행한 대로 형광단백질을 발현시켜 4시간 후 세포를 수확하였다. 수확한 세포로부터 히스티딘 태그를 활용한 단백질 정제 방법인 Ni-NTA 정제를 수행하여 sfGFP, mCherry 각각을 정제한 후 단백질 양과 형광세기와의 상관관계를 도출하였다. 이 때, 단백질 양은 브래드포드 어세이(Bradford assay)를 수행하여 측정하였으며 형광은 다양한 비율로 PBS 버퍼로 희석시킨 정제된 시료의 형광을 측정하여 sfGFP, mCherry 각각의 단백질 양과 형광 세기에 관한 식을 세웠다. (하이덱스(Hidex)로 측정하는 경우 그람 단백질당 형광 세기에 관한 수식을 세움)
다음으로, BL21(DE3)가 가지고 있는 lacZ가 MLG 융합단백질과 같이 정제되거나 결합하는 것을 방지하기 위해 크로모좀에서 lacZ 유전자를 제거시키고자 했고, 이 때, 유전자 제거는 전통적으로 사용되는 상동성을 이용한 유전자 재조합 방법을 사용하였다.
이를 위해 pFRT72 플라스미드를 주형으로 표 2의 lacZ-Del-F1/lacZ-Del-R1/lacZ-Del-F2/lacZ-Del-R2 프라이머 세트를 이용해 FRT- Kan-FRT 증폭한 후 DpnI 제한 효소를 처리하여 주형 플라스미드를 제거하였다. 상기 증폭 산물은 PCR 정제 및 에탄올 농축을 수행하여 재조합 효소를 발현시켜 둔 BL21(DE3)/pKD46 균주를 형질전환시켰다. 그리고, FRT-Kan-FRT 서열이 lacZ 유전자를 대체하여 삽입된 것을 lacZ-check-F/lacZ-check-R 프라이머 세트로 콜로니 PCR을 수행하여 확인한 뒤, pCP20 플라스미드로 형질전환시켰고, FLP 재조합효소를 발현시켜 카나마이신(Kanamycin) 내성 유전자(KanR)를 제거하여 BL21(DE3)△lacZ 균주를 제작하였다.
상기 BL21(DE3)△lacZ에 txtl-Cis-MLG/pCDF-Term 플라스미드 쌍을 형질전환 시켜 ProQC-MLG 균주를, txtl-Trans-MLG/pCDF-Trigger 플라스미드 쌍을 형질전환시켜 ProNC-MLG 균주를 제작하였다.
상기 ProQC-MLG, ProNC-MLG 균주를 Spec, Cam 항생제가 들어있는 LB(Lysogeny broth) 배지에서 밤새 배양한 후 OD600=0.05로 희석하여 OD600=0.8에 도달하였을 때 0.2 mM IPTG로 인덕션하여 재조합 단백질이 발현되도록 하였다. 4시간 후 세포의 sfGFP, mCherry 각각의 형광을 측정하여 단위 형광으로 나누어 세포 내 MLG 융합단백질의 아미노 말단, 카르복시 말단의 양으로 환산한 후, 각 시스템에서의 mCherry 양으로 표준화 시킨 값을 보면 도 7의 a)와 같이, ProQC 유전자 발현 카세트에서 카르복시 말단 (sfGFP)까지 포함하는 완전한 길이의 단백질의 비율이 자연적 유전자 발현 카세트와 비교할 시 훨씬 높은 것을 확인하였다.
또한, ProQC-MLG와 ProNC-MLG에서의 단위 세포의 융합 단백질 생산성을 확인하기 위해, 카르복시 말단 (sfGFP)까지 포함하는 완전한 길이의 단백질의 발현량을 확인한 결과, 도 7의 b)와 같이, ProNC-MLG의 발현량을 1로 표준화하였을 때, 개별 세포에서의 완전한 길이의 MLG 융합단백질의 양 또한 ProQC 유전자 발현 카세트를 적용하였을 때 ProNC-MLG에 비해 1.7배 많은 것을 확인하였다.
다음으로, 실제 세포 내에서 생산된 MLG 융합단백질의 길이 분포를 확인하기 위해, ProQC-MLG와 ProNC-MLG 각 균주로부터 발현된 MLG 융합단백질을 Ni-NTA 방법을 통해 아미노 말단의 6X 히스티딘 태그를 이용하여 정제하였다. 아미노 말단의 태그를 사용하면 해당 발현 카세트에서 합성된 펩티드를 구분 없이 회수할 수 있으며, 이때 조기종결 되거나, mRNA의 분해로 인해 종결코돈까지 번역이 진행되지 못한 펩티드들도 같이 정제된다. 해당 실험군의 대조군으로는 BL21(DE3)△lacZ에 txtl-Cis-MLF_ CH 플라스미드를 형질전환시킨 후 카르복시 말단의 히스티딘 태그로 정제하며, 말단까지 완전히 번역이 진행된 MLG 융합단백질을 정제하였고, Full-length로 표기하였다.
SDS-PAGE 젤에서의 구분을 위해 ProQC, ProNC에서 정제된 단백질은 브래드포드 어세이(Bradford assay)를 통해 농도를 측정하여 동일한 양의 단백질을 한 칸에 주입하였다. 단백질의 SDS-PAGE 결과, 도 8과 같이, ProQC로부터 정제한 단백질이 ProNC로부터 정제한 단백질에 비해 상대적으로 완전한 길이의 단백질이 많고, 짧아진 단백질의 양이 적음을 알 수 있고, 이는 Full-length와 비교할 시 뚜렷하게 구분되었다.
한편, 상기 실시예 및 실험예에서 사용된 서열, 균주, 플라스미드 및 프라이머 서열을 하기 표 1 내지 3에 기재하였다.
사용한 균주 및 플라스미드
균주이름 관련특징 출처
Mach-T1R E. coliF- 80(lacZ)ΔM15 ΔlacX74 hsdR(rK-mK+)ΔrecA1398 endA1 tonA Invitrogen
BL21(DE3) E. colistr. B F- ompT gal dcm lon hsdSB(rB-mB-)λ(DE3
[lacI lacUV5-T7p07 ind1 sam7 nin5])[malB+]K-12(λS)
선행연구
BL21(DE3)△lacZ BL21(DE3)△lacZ 본발명
BL21(DE3)-NC BL21(DE3)/pACYC_Duet/pCDF-Term 본발명
ProQC-sfGFP BL21(DE3)/txtl-Cis-sfGFP/ pCDF-Term 본발명
ProNC-sfGFP BL21(DE3)/txtl-Trans-sfGFP/ pCDF-Trigger 본발명
ProIntra BL21(DE3)/txtl-Cis-sfGFP/pCDF-txtl-Trans-mCherry 본발명
Unit-sfGFP BL21(DE3)/txtl-Trans-sfGFP_NH/ pCDF-Trigger 본발명
Unit-mCherry BL21(DE3)/txtl-Trans-mCherry_NH/ pCDF-Trigger 본발명
BL21(DE3)△lacZ-NC BL21(DE3)△lacZ/pACYC_Duet/pCDF-Term 본발명
ProQC-MLG BL21(DE3)△lacZ/txtl-Cis-MLG_NH/ pCDF-Term 본발명
ProNC-MLG BL21(DE3)△lacZ/txtl-Trans-MLG_NH/ pCDF-Trigger 본발명
플라스미드이름 관련특징 출처
pACYC_Duet Expression vector, CmR,p15Aori Novagen
pACYC* pACYC_Duet△NheI/PT7-BsaI-NheI-TT7 본발명
pCDF_Duet Expression vector, SmR,cloDF13ori Novagen
pBR322-J23100-sfGFP pBR322/BBaJ23100-UTR-sfGFP 선행연구
pET28a-mCherry pET28a-BBaJ23100-UTR-mCherry 선행연구
pMD19 TA cloning vector TaKaRa
txtl-Cis-sfGFP pACYC*/PT7-Switch#3-sfGFP-Trigger-TT7 본발명
txtl-Trans-sfGFP pACYC*/PT7-Switch#3-sfGFP-TT7 본발명
pCDF-Term pCDF_Duet/PT7-BsaI-NheI-TT7 본발명
pCDF-Trigger pCDF_Duet/PT7-Trigger-TT7 본발명
pCDF-txtl-Trans-mCherry pCDF_Duet/PT7-Switch#3-mCherryTrc-TT7 본발명
txtl-Trans-sfGFP_CH pACYC*/PT7-Switch#3-sfGFP_6XHis-TT7 본발명
txtl-Trans-mCherry_CH pACYC*/PT7-Switch#3-mCherryTrc_6XHis-TT7 본발명
pMD19-MLG pMD19/PT7-Switch#3-mCherryTrc_lacZ_sfGFP-Trigger-TT7 본발명
txtl-Cis-MLG_NH pACYC*/PT7-Switch#3-6XHis_mCherryTrc_lacZ_sfGFP-Trigger-TT7 본발명
txtl-Trans-MLG_NH pACYC*/PT7-Switch#3-6XHis_MLG-TT7 본발명
txtl-Cis-MLG_CH pACYC*/PT7-Switch#3-MLG_6XHis-Trigger-TT7 본발명
txtl-Trans-MLG_CH pACYC*/PT7-Switch#3-MLG_6XHis-TT7 본발명
pKD46 Red recombinase expression vector, AmpR 선행연구
pFRT72 pGEM-FRT-Kan-FRT variant 선행연구
pCP20 FLP recombinase expression vecotor, AmpR,CmR 선행연구
사용한 프라이머 서열
프라이머이름 서열
EcoNI-PT7-NheI-TT7-F ACTCCTGCATTAGGAAATTAATACGACTCACTATAggagaccCGCAGCGcTAGCATAACCC
CTTGGGGC
SpeI-pACYC-R ACCACTAGTGCTGATGTCCGGCG
BsaI-Swit-sfGFP-F2 cccGGTCTCCTATAGGGATCTATTACTACTTACCATTGTCTTGCTCTATacagaaacagag
gagatATAGAatgAGACAATGGAACCTGGCGGCAGCGCAAAAG
Swit-sfGFP-F1 AGGAGATATAGAATGAGACAATGGAACCTGGCGGCAGCGCAAAAGGCTAGCAAGGGCGAGG
AGC
SpeI-SacI-sfGFP-R GGGACATCGGAATGTCCCATCAGACTAGTCAATACGATTACTTTCTGTGAGCTCACTTGTA
CAGCTCGTCCATGC
BsaI-Trig-R2 TATggtctctCTAgCTTATCTATTACTACTTACCATTGTCTTGCTCTTATTGATGGGACAT
CGGAATGTCCCATC
BsaI-Trigger#3-F cccGGTCTCCTATAGGGTGATGGGACATTCCGATGTCC
BsaI-Trc-mcherry-F ACAGGTCTCTCTAGCGCTATCATTAAAGAGTTCATGCG
SpeI-mCherry-R CAGACTAGTCAATACGATTACTTTCTGTGAGCTCATTTGTACAGCTCATCCATGC
Duet-F CGGGATCTCGACGCTCTCC
His-G-R TGTACTAGTGAGCTCATTAGTGATGGTGATGGTGATGCTTGTACAGCTCGTCCATGCCGAG
His-M-R TGTACTAGTGAGCTCATTAGTGATGGTGATGGTGATGTTTGTACAGCTCATCCATG
lacZ-Del-F1 GCCGTTCGACGATTCTCCATATGGGAGTACTCGCGGTTGACTGAG
lacZ-Del-R1 CTAGCAAGAATCATATGGAGAGCGAGTGCTGGAGCGAACTGCGAAG
lacZ-Del-F2 GCAGACATGGCCTGCCCGGTTATTATTATTTTTGACACCAGAGCCGTTCGACGATTCTCCA
TATG
lacZ-Del-R2 GGCTCGTATGTTGTGTGAAATTGTGAGCGGATAACAATTTCACACACTAGCAAGAATCATA
TGGAGAGCG
lacZ-check-F TCACTTTTGCTGATATGGTTGATGTC
lacZ-check-R CGACTGGAAAGCGGGCAGTGAG
KpnI-Lnk-M-R ACGGTCTCCATGGTACCAGCACTACCAGCAC
Lnk-M-R CTTGCTAGCACCAGCACTACCAGCACTACCAGCACTATCTTTGTACAGCTCATCCATG
KpnI-lacZ-F AGTGGTCTCACCATGATTACGGATTCACTG
BsaI-lacZ-R ACCGGTCTCTGAATCTTTTTGACACCAGACCAAC
BsaI-Lnk-sfGFP-F AGCGGTCTCGATTCAGCAGGCTCAGCAGGCTCAGCAGGCGCTAGCAAGGGCGAGG
SpeI-sfGFP-R CAGACTAGTCAATACGATTACTTTCTGTGAGCTC
BsaI-Swit#3-R ATTGGTCTCTCTAGCCTTTTGCGCTGCCGCCAGG
SpeI-Trig-F TGACTAGTCTGATGGGACATTCCGATGTCCCATCAATAAGAGCAAGACAATGGTAAGTAG
BsaI-his-M-F AAGGGTCTCACTAGCCATCACCATCACCATCACGCTATCATTAAAGAGTTCATGCG
사용한 toehold switch 및 유전자 서열
Toehold switch 비고
switch#3 (DNA서열) 서열번호1
switch#3 (RNA서열) 서열번호2
Trigger#3 (DNA서열) 서열번호3
Trigger#3 (RNA서열) 서열번호4
유전자 비고
mCherryTrc 서열번호5
sfGFP 서열번호6
mcherry_lacZ_sfGFP 서열번호7
<110> Seoul National University R&DB Foundation <120> Gene expression cassette in which transcription and translation is decoupled for production of high quality recombinant proteins in bacteria <130> YP-18-112 <160> 7 <170> KoPatentIn 3.0 <210> 1 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> switch#3 DNA <400> 1 gggatctatt actacttacc attgtcttgc tctatacaga aacagaggag atatagaatg 60 agacaatgga acctggcggc agcgcaaaag 90 <210> 2 <211> 90 <212> RNA <213> Artificial Sequence <220> <223> switch#3 RNA <400> 2 gggaucuauu acuacuuacc auugucuugc ucuauacaga aacagaggag auauagaaug 60 agacaaugga accuggcggc agcgcaaaag 90 <210> 3 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> trigger#3 DNA <400> 3 tgatgggaca ttccgatgtc ccatcaataa gagcaagaca atggtaagta gtaatagata 60 ag 62 <210> 4 <211> 62 <212> RNA <213> Artificial Sequence <220> <223> trigger#3 RNA <400> 4 ugaugggaca uuccgauguc ccaucaauaa gagcaagaca augguaagua guaauagaua 60 ag 62 <210> 5 <211> 690 <212> DNA <213> sea anemone <400> 5 atggctagcg ctatcattaa agagttcatg cgcttcaaag ttcacatgga gggttctgtt 60 aacggtcacg agttcgagat cgaaggcgaa ggtgagggcc gtccgtatga aggcacccag 120 accgccaaac tgaaagtgac taaaggcggc ccgctgcctt ttgcgtggga catcctgagc 180 ccgcaattta tgtacggttc taaagcttat gttaaacacc cagcggatat cccggactat 240 ctgaagctgt cttttccgga aggtttcaag tgggaacgcg taatgaattt tgaagatggt 300 ggtgtcgtga ccgtcactca ggactcctcc ctgcaggatg gcgagttcat ctataaagtt 360 aaactgcgtg gtactaattt tccatctgat ggcccggtga tgcagaagaa gacgatgggt 420 tgggaggcgt ctagcgaacg catgtacccg gaagatggtg cgctgaaagg cgaaattaaa 480 cagcgcctga aactgaaaga tggcggccat tatgacgctg aagtgaaaac cacgtacaaa 540 gccaagaaac ctgtgcagct gcctggcgcg tacaatgtga atattaaact ggacatcacc 600 tctcataatg aagattatac gatcgtagag caatatgagc gcgcggaggg tcgtcattct 660 accggtggca tggatgagct gtacaaatga 690 <210> 6 <211> 720 <212> DNA <213> Aequorea victoria <400> 6 atggctagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60 ggcgacgtaa acggccacaa gttcagcgtg cgcggcgagg gcgagggcga tgccaccaac 120 ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180 ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240 cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcagc 300 ttcaaggacg acggcaccta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360 gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420 aagctggagt acaacttcaa cagccacaac gtctatatca ccgccgacaa gcagaagaac 480 ggcatcaagg ccaacttcaa gatccgccac aacgtggagg acggcagcgt gcagctcgcc 540 gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600 tacctgagca cccagtccgt gctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660 ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct gtacaagtga 720 720 <210> 7 <211> 4527 <212> DNA <213> Escherichia coli <400> 7 atggctatca ttaaagagtt catgcgcttc aaagttcaca tggagggttc tgttaacggt 60 cacgagttcg agatcgaagg cgaaggtgag ggccgtccgt atgaaggcac ccagaccgcc 120 aaactgaaag tgactaaagg cggcccgctg ccttttgcgt gggacatcct gagcccgcaa 180 tttatgtacg gttctaaagc ttatgttaaa cacccagcgg atatcccgga ctatctgaag 240 ctgtcttttc cggaaggttt caagtgggaa cgcgtaatga attttgaaga tggtggtgtc 300 gtgaccgtca ctcaggactc ctccctgcag gatggcgagt tcatctataa agttaaactg 360 cgtggtacta attttccatc tgatggcccg gtgatgcaga agaagacgat gggttgggag 420 gcgtctagcg aacgcatgta cccggaagat ggtgcgctga aaggcgaaat taaacagcgc 480 ctgaaactga aagatggcgg ccattatgac gctgaagtga aaaccacgta caaagccaag 540 aaacctgtgc agctgcctgg cgcgtacaat gtgaatatta aactggacat cacctctcat 600 aatgaagatt atacgatcgt agagcaatat gagcgcgcgg agggtcgtca ttctaccggt 660 ggcatggatg agctgtacaa agatagtgct ggtagtgctg gtagtgctgg taccatgatt 720 tcggattcac tggccgtcgt tttacaacgt cgtgactggg aaaaccctgg cgttacccaa 780 cttaatcgcc ttgcagcaca tccccctttc gccagctggc gtaatagcga agaggcccgc 840 accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg aatggcgctt tgcctggttt 900 ccggcaccag aagcggtgcc ggaaagctgg ctggagtgcg atcttcctga ggccgatact 960 gtcgtcgtcc cctcaaactg gcagatgcac ggttacgatg cgcccatcta caccaacgtg 1020 acctatccca ttacggtcaa tccgccgttt gttcccacgg agaatccgac gggttgttac 1080 tcgctcacat ttaatgttga tgaaagctgg ctacaggaag gccagacgcg aattattttt 1140 gatggcgtta actcggcgtt tcatctgtgg tgcaacgggc gctgggtcgg ttacggccag 1200 gacagtcgtt tgccgtctga atttgacctg agcgcatttt tacgcgccgg agaaaaccgc 1260 ctcgcggtga tggtgctgcg ctggagtgac ggcagttatc tggaagatca ggatatgtgg 1320 cggatgagcg gcattttccg tgacgtctcg ttgctgcata aaccgactac acaaatcagc 1380 gatttccatg ttgccactcg ctttaatgat gatttcagcc gcgctgtact ggaggctgaa 1440 gttcagatgt gcggcgagtt gcgtgactac ctacgggtaa cagtttcttt atggcagggt 1500 gaaacgcagg tcgccagcgg caccgcgcct ttcggcggtg aaattatcga tgagcgtggt 1560 ggttatgccg atcgcgtcac actacgtctg aacgtcgaaa acccgaaact gtggagcgcc 1620 gaaatcccga atctctatcg tgcggtggtt gaactgcaca ccgccgacgg cacgctgatt 1680 gaagcagaag cctgcgatgt cggtttccgc gaggtgcgga ttgaaaatgg tctgctgctg 1740 ctgaacggca agccgttgct gattcgaggc gttaaccgtc acgagcatca tcctctgcat 1800 ggtcaggtca tggatgagca gacgatggtg caggatatcc tgctgatgaa gcagaacaac 1860 tttaacgccg tgcgctgttc gcattatccg aaccatccgc tgtggtacac gctgtgcgac 1920 cgctacggcc tgtatgtggt ggatgaagcc aatattgaaa cccacggcat ggtgccaatg 1980 aatcgtctga ccgatgatcc gcgctggcta ccggcgatga gcgaacgcgt aacgcgaatg 2040 gtgcagcgcg atcgtaatca cccgagtgtg atcatctggt cgctggggaa tgaatcaggc 2100 cacggcgcta atcacgacgc gctgtatcgc tggatcaaat ctgtcgatcc ttcccgcccg 2160 gtgcagtatg aaggcggcgg agccgacacc acggccaccg atattatttg cccgatgtac 2220 gcgcgcgtgg atgaagacca gcccttcccg gctgtgccga aatggtccat caaaaaatgg 2280 ctttcgctac ctggagagac gcgcccgctg atcctttgcg aatacgccca cgcgatgggt 2340 aacagtcttg gcggtttcgc taaatactgg caggcgtttc gtcagtatcc ccgtttacag 2400 ggcggcttcg tctgggactg ggtggatcag tcgctgatta aatatgatga aaacggcaac 2460 ccgtggtcgg cttacggcgg tgattttggc gatacgccga acgatcgcca gttctgtatg 2520 aacggtctgg tctttgccga ccgcacgccg catccagcgc tgacggaagc aaaacaccag 2580 cagcagtttt tccagttccg tttatccggg caaaccatcg aagtgaccag cgaatacctg 2640 ttccgtcata gcgataacga gctcctgcac tggatggtgg cgctggatgg taagccgctg 2700 gcaagcggtg aagtgcctct ggatgtcgct ccacaaggta aacagttgat tgaactgcct 2760 gaactaccgc agccggagag cgccgggcaa ctctggctca cagtacgcgt agtgcaaccg 2820 aacgcgaccg catggtcaga agccgggcac atcagcgcct ggcagcagtg gcgtctggcg 2880 gaaaacctca gtgtgacgct ccccgccgcg tcccacgcca tcccgcatct gaccaccagc 2940 gaaatggatt tttgcatcga gctgggtaat aagcgttggc aatttaaccg ccagtcaggc 3000 tttctttcac agatgtggat tggcgataaa aaacaactgc tgacgccgct gcgcgatcag 3060 ttcacccgtg caccgctgga taacgacatt ggcgtaagtg aagcgacccg cattgaccct 3120 aacgcctggg tcgaacgctg gaaggcggcg ggccattacc aggccgaagc agcgttgttg 3180 cagtgcacgg cagatacact tgctgatgcg gtgctgatta cgaccgctca cgcgtggcag 3240 catcagggga aaaccttatt tatcagccgg aaaacctacc ggattgatgg tagtggtcaa 3300 atggcgatta ccgttgatgt tgaagtggcg agcgatacac cgcatccggc gcggattggc 3360 ctgaactgcc agctggcgca ggtagcagag cgggtaaact ggctcggatt agggccgcaa 3420 gaaaactatc ccgaccgcct tactgccgcc tgttttgacc gctgggatct gccattgtca 3480 gacatgtata ccccgtacgt cttcccgagc gaaaacggtc tgcgctgcgg gacgcgcgaa 3540 ttgaattatg gcccacacca gtggcgcggc gacttccagt tcaacatcag ccgctacagt 3600 caacagcaac tgatggaaac cagccatcgc catctgctgc acgcggaaga aggcacatgg 3660 ctgaatatcg acggtttcca tatggggatt ggtggcgacg actcctggag cccgtcagta 3720 tcggcggaat tccagctgag cgccggtcgc taccattacc agttggtctg gtgtcaaaaa 3780 gattcagcag gctcagcagg ctcagcaggc gctagcaagg gcgaggagct gttcaccggg 3840 gtggtgccca tcctggtcga gctggacggc gacgtaaacg gccacaagtt cagcgtgcgc 3900 ggcgagggcg agggcgatgc caccaacggc aagctgaccc tgaagttcat ctgcaccacc 3960 ggcaagctgc ccgtgccctg gcccaccctc gtgaccaccc tgacctacgg cgtgcagtgc 4020 ttcagccgct accccgacca catgaagcag cacgacttct tcaagtccgc catgcccgaa 4080 ggctacgtcc aggagcgcac catcagcttc aaggacgacg gcacctacaa gacccgcgcc 4140 gaggtgaagt tcgagggcga caccctggtg aaccgcatcg agctgaaggg catcgacttc 4200 aaggaggacg gcaacatcct ggggcacaag ctggagtaca acttcaacag ccacaacgtc 4260 tatatcaccg ccgacaagca gaagaacggc atcaaggcca acttcaagat ccgccacaac 4320 gtggaggacg gcagcgtgca gctcgccgac cactaccagc agaacacccc catcggcgac 4380 ggccccgtgc tgctgcccga caaccactac ctgagcaccc agtccgtgct gagcaaagac 4440 cccaacgaga agcgcgatca catggtcctg ctggagttcg tgaccgccgc cgggatcact 4500 ctcggcatgg acgagctgta caagtga 4527

Claims (6)

  1. mRNA로 전사시 스템 루프 (stem loop) 구조를 형성할 수 있고, 상기 스템 루프 구조 내에 리보솜 결합 사이트가 위치하고 있는 DNA 분자에 있어서,
    일부분 서열이 상기 스템 루프 구조 형성에 참여할 수 있도록 설계된 RNA 서열을 암호화하는 DNA서열(a);
    상기 일부분 서열이 스템 루프 구조 형성에 참여할 수 있도록 설계된 RNA 서열에 상보적으로 결합하는 RNA 서열을 암호화하는 것으로, 종결코돈 뒤에 위치하는 DNA서열(b);을 포함하되,
    상기 일부분 서열이 상기 스템 루프 구조 형성에 참여할 수 있도록 설계된 RNA 서열 및 상기 일부분 서열이 스템 루프 구조 형성에 참여할 수 있도록 설계된 RNA 서열에 상보적으로 결합하는 RNA 서열은 동일한 mRNA 가닥에 위치하는 것을 특징으로 하는 DNA 분자.
  2. 제1항에 있어서,
    상기 DNA 분자는,
    리보솜 결합 사이트 뒤, DNA서열(b) 전에,
    멀티플 클로닝 사이트 (mutiple cloning site)를 포함하는 것을 특징으로 하는 DNA 분자.
  3. 제1항의 DNA 분자를 포함하는 벡터.
  4. 스템 루프 (stem loop) 구조를 형성하고, 스템 루프 구조 내에 리보솜 결합 사이트가 위치한 mRNA에 있어서,
    일부분 서열이 상기 스템 루프 구조에 참여하고 있는 RNA서열(a);
    상기 RNA서열(a)에 결합할 수 있는 상보적 서열로 구성되어 있는 것으로, 종결코돈 뒤에 위치하는 RNA서열(b);을 포함하되,
    상기 RNA서열(a) 및 상기 RNA서열(b)는 동일한 mRNA 가닥에 위치하는 것을 특징으로 하는 mRNA.
  5. 제4항에 있어서 ,
    상기 mRNA는,
    RNA서열(b)가 RNA서열(a)에 결합하면, 스템 루프 구조가 풀리면서 번역이 개시되는 것을 특징으로 하는 mRNA.
  6. 제5항에 있어서,
    상기 번역 개시는,
    리보솜이 리보솜 결합 사이트에 결합함으로써 개시되는 것을 특징으로 하는 mRNA.

KR1020180070484A 2018-06-19 2018-06-19 박테리아에서의 고품질 재조합 단백질 생산을 위해 전사 완료 후 번역이 개시되는 유전자 발현 카세트 KR102182078B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/253,401 US20210340551A1 (en) 2018-06-19 2018-06-19 Gene expression cassette capable of initiating translation after completion of transcription for producing high-quality recombinant protein in bacteria
KR1020180070484A KR102182078B1 (ko) 2018-06-19 2018-06-19 박테리아에서의 고품질 재조합 단백질 생산을 위해 전사 완료 후 번역이 개시되는 유전자 발현 카세트

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180070484A KR102182078B1 (ko) 2018-06-19 2018-06-19 박테리아에서의 고품질 재조합 단백질 생산을 위해 전사 완료 후 번역이 개시되는 유전자 발현 카세트

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020200021711A Division KR20200021501A (ko) 2020-02-21 2020-02-21 박테리아에서의 고품질 재조합 단백질 생산을 위해 전사 완료 후 번역이 개시되는 유전자 발현 카세트

Publications (2)

Publication Number Publication Date
KR20190143037A KR20190143037A (ko) 2019-12-30
KR102182078B1 true KR102182078B1 (ko) 2020-11-23

Family

ID=69103304

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180070484A KR102182078B1 (ko) 2018-06-19 2018-06-19 박테리아에서의 고품질 재조합 단백질 생산을 위해 전사 완료 후 번역이 개시되는 유전자 발현 카세트

Country Status (1)

Country Link
KR (1) KR102182078B1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183068A (ja) 2002-09-20 2012-09-27 Yale Univ リボスイッチ、その使用方法、ならびにリボスイッチとともに用いるための組成物
WO2017040829A1 (en) 2015-09-02 2017-03-09 President And Fellows Of Harvard College Riboregulators regulated by external stimuli and methods of use thereof
WO2017147585A1 (en) 2016-02-26 2017-08-31 Arizona Board Of Regents On Behalf Of Arizona State University Synthetic translation-sensing riboswitches and uses thereof
WO2018026765A1 (en) 2016-08-01 2018-02-08 Arizona Board Of Regents On Behalf Of Arizona State University Synthetic near-threshold translational repressors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101350355B1 (ko) 2011-07-19 2014-01-14 국립대학법인 울산과학기술대학교 산학협력단 빛에 작동하는 유전자 발현용 재조합 플라스미드, 형질전환체 및 이를 이용하여 유전자 발현을 조절하는 방법
KR20150083115A (ko) * 2012-11-06 2015-07-16 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 리보조절인자 조성물 및 사용 방법
WO2016156335A1 (en) * 2015-04-01 2016-10-06 Universität Wien Novel expression regulating rna-molecules and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183068A (ja) 2002-09-20 2012-09-27 Yale Univ リボスイッチ、その使用方法、ならびにリボスイッチとともに用いるための組成物
WO2017040829A1 (en) 2015-09-02 2017-03-09 President And Fellows Of Harvard College Riboregulators regulated by external stimuli and methods of use thereof
WO2017147585A1 (en) 2016-02-26 2017-08-31 Arizona Board Of Regents On Behalf Of Arizona State University Synthetic translation-sensing riboswitches and uses thereof
WO2018026765A1 (en) 2016-08-01 2018-02-08 Arizona Board Of Regents On Behalf Of Arizona State University Synthetic near-threshold translational repressors

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Briefings in Functional Genomics (2009) 8(6):482-492
Current Opinion in Chemical Biology (2015) 28:47-56
FEMS Microbiology Letters (1995) 133:155-161
Journal of Moleclar Biology (1995) 247:859-873
PLoS Genetics (2013) 9(12):e1004001*
RNA Biology (2010) 7(1):67-76
Sensors (2017) 17:1990

Also Published As

Publication number Publication date
KR20190143037A (ko) 2019-12-30

Similar Documents

Publication Publication Date Title
EP1328628B1 (de) Verfahren zur exposition von peptiden und polypeptiden auf der zelloberfläche von bakterien
JP3730255B2 (ja) イーストにおいて発現されたn末端に伸長した蛋白質
JP4243104B2 (ja) 重要なタンパク質の細菌培養上清中への分泌のための融合タンパク質
EP0293443A1 (en) Construction of synthetic dna and its use in large polypeptide synthesis
US20060063232A1 (en) Host-vector system for antibiotic-free CoIE1 plasmid propagation
JPH05501799A (ja) 融合タンパク質、その調製及び用途
US10253321B2 (en) Methods, compositions and kits for a one-step DNA cloning system
WO1998010063A1 (en) Methods for preparing synthetic repetitive dna
JP4199543B2 (ja) 酵母による分泌を介して組換えタンパク質を生産するためのn−末端部分がヒルジン誘導体である融合タンパク質の使用
JPH0376580A (ja) 大腸菌発現ベクターとそれを利用した抗ウイルス性タンパク質の製造方法
JP2006187295A (ja) 遺伝子発現用プロモーター
JP2019195327A (ja) 枯草菌(bacillus subtilis)において真正で生物活性を有する塩基性線維芽細胞増殖因子を発現させる方法及び手段
EP1924693B1 (en) Hybrid portable origin of replication plasmids
US6861237B2 (en) Production of heterologous polypeptides in yeast
KR102182078B1 (ko) 박테리아에서의 고품질 재조합 단백질 생산을 위해 전사 완료 후 번역이 개시되는 유전자 발현 카세트
KR20200021501A (ko) 박테리아에서의 고품질 재조합 단백질 생산을 위해 전사 완료 후 번역이 개시되는 유전자 발현 카세트
EP0130074B1 (en) Portable inducible control system, expression vectors containing them, microorganisms transformed with them, and their use in expressing exogenous protein
JP5415763B2 (ja) 新規選択系
US20230167435A1 (en) Autoinducer-2 (ai-2) molecular response-based starting element and escherichia coli (e. coli) dynamic regulation system and method constructed thereby
JPS5951793A (ja) 新規クロ−ニングビヒクル
HRP940770A2 (en) Process for the production of stranger protein in streptomycetes
US4912046A (en) Portable inducible control system
US20210340551A1 (en) Gene expression cassette capable of initiating translation after completion of transcription for producing high-quality recombinant protein in bacteria
CN109811010B (zh) 一种增强放线菌基因编辑效率的方法及其应用
PL208884B1 (pl) Wektor do wytwarzania polipeptydu heterologicznego oraz sposoby zwiększania wytwarzania pełnej długości polipeptydu heterologicznego

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2020101000565; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20200221

Effective date: 20201027

GRNO Decision to grant (after opposition)
GRNT Written decision to grant