KR102171786B1 - 노치 적응형 접촉 링 시일 및 시프 전극을 갖는 전기도금 장치 - Google Patents

노치 적응형 접촉 링 시일 및 시프 전극을 갖는 전기도금 장치 Download PDF

Info

Publication number
KR102171786B1
KR102171786B1 KR1020177023908A KR20177023908A KR102171786B1 KR 102171786 B1 KR102171786 B1 KR 102171786B1 KR 1020177023908 A KR1020177023908 A KR 1020177023908A KR 20177023908 A KR20177023908 A KR 20177023908A KR 102171786 B1 KR102171786 B1 KR 102171786B1
Authority
KR
South Korea
Prior art keywords
wafer
notch
seal
current
contact ring
Prior art date
Application number
KR1020177023908A
Other languages
English (en)
Other versions
KR20170107080A (ko
Inventor
그레고리 제이. 윌슨
폴 알. 맥휴
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20170107080A publication Critical patent/KR20170107080A/ko
Application granted granted Critical
Publication of KR102171786B1 publication Critical patent/KR102171786B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/005Contacting devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/007Current directing devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/004Sealing devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

전기-프로세싱 장치는, 웨이퍼 또는 작업물 상의 노치(또는 다른 불규칙성)에 의해 생성된 전기장 왜곡들을 보상할 수 있는 시일을 포함하는 접촉 링을 갖는다. 노치에서의 접촉 링의 형상은, 노치에서의 전류 몰림을 감소시키기 위해 변화된다. 형상의 변화는, 노치의 영역으로부터 끌어들여지는 시프 전극 전류를 증가시키기 위해, 시프 전극과 웨이퍼 에지 사이의 전류 경로의 저항을 변화시킨다. 결과적으로, 웨이퍼는, 더 균일한 두께를 갖는 필름으로 도금된다.

Description

노치 적응형 접촉 링 시일 및 시프 전극을 갖는 전기도금 장치
[0001] 반도체 집적 회로들 및 다른 마이크로-스케일 디바이스들의 제조는 전형적으로, 웨이퍼 또는 다른 기판 상에서의 다수의 금속 층들의 형성을 요구한다. 평탄화(planarizing), 에칭, 및 포토리소그래피(photolithography)와 같은 다른 단계들과 결합하여 금속들 층들을 전기도금함으로써, 마이크로-스케일 디바이스들을 형성하는 패턴화된 금속 층들이 생성된다.
[0002] 전기도금은, 액체 전해질의 욕조에서 기판 또는 기판의 일 측을 이용하여, 그리고 기판 표면 상의 전도성 층을 터칭하는(touching) 전기 컨택들(electrical contacts)을 이용하여 수행된다. 전류는 전해질 및 전도성 층을 통과한다. 전해질에 있는 금속 이온들은, 기판 상에 증착되거나 도금되어, 기판 상에 금속 필름을 형성한다. 금속 이온들은 또한, 전기 컨택들 상에도 도금되려는 경향이 있다. "플레이트-업(plate-up)"으로 지칭되는 이러한 영향은, 컨택들 주위의 전기장을 변화시켜 불-균일한 도금을 야기한다. 결과적으로, 전기 컨택들 상에 도금된 금속은 제거되어야 하며, 제조 프로세스의 복잡성 및 시간 요구 사항들을 증가시킨다.
[0003] 소위 건식(dry) 또는 폐쇄형(closed) 접촉 링들은 컨택들의 플레이트-업을 회피하기 위해 개발되었다. 이러한 설계들에서, 시일(seal)은, 전해질을 전기 컨택들로부터 밀봉한다. 시일은 전기 컨택들의 방사상 내측으로 기판 표면과 접촉하여, 이에 의해 컨택들은 전해질로부터 격리된 상태로 남는다. 밀봉된 접촉 링을 이용한 도금을 위한 산업 규격들은, 웨이퍼의 에지에서 시일에 의해 커버링되는 환형 밴드가 가능한 한 작아야만 한다는 것을 점점 더 필요로 하며, 현재는 약 1mm를 향한다. 웨이퍼의 에지에 노치(notch)를 갖는 웨이퍼들을 도금하기 위해(웨이퍼 재료의 특정 결정 배향을 나타내기 위해), 웨이퍼에 대한 연속적인 밀봉을 유지하도록 시일은 대응하여 노치에 내향 돌출부를 가져야만 한다. 전기도금 동안, 불규칙한 기하형상(geometry)으로 인해 전류는 노치에 몰려든다(crowded). 이는, 도금된 필름이 웨이퍼의 나머지 부분에서보다 노치 주위에서 더 두꺼워지게 한다. 따라서, 노치 주위의 더 두꺼운 도금된 필름이, 후속하는 프로세싱 단계들에 부정적인 영향을 줄 수 있기 때문에 웨이퍼의 수율이 감소될 수 있다.
[0004] 따라서, 노치와 같은 에지 불규칙성들을 갖는 웨이퍼들 및 유사한 작업물들(work pieces)을 전기도금하는 것에 공학적 난제들이 남아 있다.
[0005] 노치의 영역에서 더 두꺼운 도금을 초래하는 몰리는 전류는, 노치의 영역에서 전류 시프 전극(current thief electrode)의 영향을 증가시키는 것에 의해 감소되거나 제거된다. 리세스가 접촉 링에, 또는 접촉 링의 시일에, 또는 양자 모두에 제공될 수 있다. 리세스는, 웨이퍼 상의 노치의 영역으로부터 전해질을 통해 전류 시프 전극까지의 더 큰 유동 경로를 제공하여, 전류 시프 전극이, 웨이퍼의 나머지 부분에 비해, 노치의 영역으로부터 더 많은 전류를 끌어들이게 한다. 상기 리세스는 1 내지 15도의 원호에 대응(subtending)할 수 있다.
[0006] 제 1 설계에서, 전기-프로세싱 장치는, 웨이퍼 또는 작업물 상의 노치(또는 다른 불규칙성)에 의해 생성된 전기장 왜곡들(distortions)을 보상하기 위해, 시일을 갖는 접촉 링과 함께 동작하는 전류 시프 전극을 갖는다. 시일의 형상은, 시프 전극에 대해 더 큰 노출을 갖는 노치 주위에 국부화된 지역을 제공하도록 변화된다. 결과적으로 시프 전극은 노치의 영역으로부터 더 많은 전류를 우선적으로 끌어들여서, 도금 균일성을 개선한다. 제 1 양태에서, 접촉 링은, 노치에서 얇은 섹션을 갖는 시일을 갖는다. 노치에서의 시일의 형상은, 노치에 몰려드는 전류를 감소시키기 위해, 시일의 나머지 부분에 대해 변화된다. 노치에서의 시일의 형상의 변화는, 노치의 영역으로부터 끌어들여지는 시프 전극 전류를 증가시키기 위해, 시프 전극과 웨이퍼 에지 사이의 전류 경로의 저항을 감소시킨다. 결과적으로, 웨이퍼는, 더 균일한 두께를 갖는 필름으로 도금된다.
[0007] 도 1은 전기도금 장치의 개략도이다.
[0008] 도 2는, 도 1에 도시된 전기도금 장치의 접촉 링의 개략도이다.
[0009] 도 3은, 도 2에 도시된 접촉 링 상의 시일의 섹션의 상세 확대도이다.
[0010] 도 4는, 도 3의 시일의 팁(tip)의 추가적인 상세 확대도이다.
[0011] 도 5는, 도 4에 도시된 웨이퍼의 개략적인 사시도이다.
[0012] 도 6은, 도 2에 도시된 바와 같은 시일의 개략적인 사시도이다.
[0013] 도 7은, 도 5에 도시된 노치에서를 제외하고, 프로세싱 포지션에서의 시일의 모든 섹션들의 개략도이다.
[0014] 도 8은, 노치에서의, 도 6 및 7의 시일의 개략적인 단면도이다.
[0015] 도 9는, 대안적인 실시예의 개략적인 단면도이다.
[0016] 도 10은, 접촉 링의 사시도이다.
[0017] 도 11은, 척(chuck) 조립체에 대한 링 컨택 상의 접촉 핑거들(fingers)과 로터(rotor) 사이의 전기 연결의 상세 확대 단면도이다.
[0018] 도 12는, 도 11의 척 조립체를 로터로부터 클램핑 해제하는(unclamping) 것을 보여주는 단면도이다.
[0019] 각각의 웨이퍼로부터 디바이스들의 높은 수율을 달성하기 위해, 시일에 의해 접촉되는 에지 구역은 가능한 한 작아야만 한다. 과거에는, 2 또는 3mm의 에지 구역(즉, 디바이스들을 제조하는 데에 사용 가능하지 않은 웨이퍼 에지에서의 환형 링)이 일반적으로 수용 가능했었다. 현재의 산업 요건들의 경우, 에지 구역은 현재 1mm에 도달하고 있거나 이미 1mm에 있다. 잠깐 도 5를 참조하면, 일부 웨이퍼들(50)은 노치(52)(예시를 위해 확대됨)를 갖는다. 300mm 직경 웨이퍼(50) 상에서, 노치(52)는 1.5mm 연장된다. 따라서, 이러한 유형들의 웨이퍼들을 프로세싱하기 위해 사용되는 시일은, 노치를 통한 도금 유체 누출을 피하기 위해 노치에서 내향 돌출부를 갖는다. 결과적인 시일은 노치 주위에서 웨이퍼의 더 많은 부분을 커버링한다. 이는, 노치에 몰려드는 전류 때문에, 노치 주위의 영역의 전기장을 변화시켜, 노치 주위의 도금된 필름이 웨이퍼의 나머지 부분 상에 도금된 필름보다 더 두꺼워지게 한다.
[0020] 노치 근처에서의 균일성을 개선하는 한 방법은, 노치에서 링 접촉 핑거들을 제거하는 것이다. 이는, 도금된 필름이 얇을 때(<0.5미크론) 효과적이다. 0.5미크론 두께보다 더 큰 필름들의 경우에, 노치 영역은, 노치 근처의 핑거들이 제거될 때 여전히 우선적으로 도금한다. 도금 동안 웨이퍼가 회전하기 때문에, 웨이퍼와 함께 회전하지 않는, 도금 장치의 컴포넌트들에 대한 특별한 쉴딩 또는 기하형상 수정들은 실용적이지 않다.
[0021] 노치에 의해 제기되는 공학 난제들(또는 다른 에지 불규칙성)은, 노치에서 편평한 섹션을 갖는 시일로 충족될 수 있다. 노치에서의 시일의 형상은, 노치에 몰려드는 전류를 감소시키기 위해, 시일의 나머지 부분에 대해 변화된다. 시일 형상의 변화는, 시프 전극과 웨이퍼 에지 사이의 시프 전극 전류의 제약 또는 저항을 변화시킨다. 시프 전극 전류가 노치 근처의 전류 몰림 지역에 우선적으로 포커싱되어(focused), 필름 두께 균일성이 개선된다.
[0022] 노치에서의 균일성을 개선하기 위한 대안적인 또는 보조적인 설계 피처(feature)로서, 편평한 영역에서의 접촉 핑거들에 대한 분리된 접촉 채널이 사용될 수 있다. 이러한 채널은, 노치에서 도금되는 필름이 웨이퍼의 나머지 부분과 더 균일하도록, 약간 더 높은 전위로 구동될 수 있다. 부가적으로, 작은 외부 시프 전극이, 편평한 부분 근처의 시일의 외부 본체에 내장될(imbedded) 수 있다. 이러한 외부 시프 전극은 링의 나머지 부분과 동일한 전위로 제어될 수 있으며, 별도의 전력 공급 채널을 필요로 하지 않을 수 있다. 시빙(thieving) 영역은 편평한 부분에 몰려드는 전류를 감소시킨다. 외부 시프 전극은, 각각의 링 유지 단계 동안 도금이 제거될 수 있다(deplated).
[0023] 상기 설명된 기술들은, 노치에서 편평한 부분을 갖는 밀봉된 접촉 링을 이용하는 구리 다마신(damascene) 도금에 사용될 수 있다. 이들은 또한, 전기도금 장치가 에지 시프 전극을 갖는 경우에, WLP(wafer level packaging) 도금에 사용될 수 있다. 이러한 애플리케이션들에서, 웨이퍼 둘레의 부분들에서의 시일 형상은, 이러한 영역들에서의 더 많은 또는 더 적은 시빙을 허용하도록 변화될 수 있다. 예컨대, WLP 웨이퍼들이 노치를 갖지 않기 때문에, 이 웨이퍼들은 편평한 측을 갖는 시일을 필요로 하지 않을 수 있지만, 이 웨이퍼들은 웨이퍼의 에지 주위에 덜 개방된 지역(즉, 더 많은 포토레지스트 커버리지)의 영역들을 가질 수 있으며, 이는 전류 몰림 및 감소된 도금 균일성을 초래한다.
[0024] 많은 WLP 웨이퍼들은, 덜 개방된 지역에 의해 특징지어지는, 노치 근처의 스크라이브(scribe) 영역을 갖는다. 이러한 유형들의 웨이퍼들을 프로세싱할 때, 노치에서 더 작은 단면을 갖는 시일은, 시프 전극이 스크라이브 영역에서 우선적으로 동작하는 것을 허용하여, 전류 플럭스 균일성을 개선한다. 부분적인 다이(die)가 웨이퍼 상에 패턴화되지 않은 경우(즉, 더미 범프들이 없는 경우), 시프 전극이 다소 강하게 동작하게 하기 위해, 적절하게 변화하는 링 단면과 또한 매칭될 수 있는, 웨이퍼 주위의 연속적인 포토레지스트의 변화하는 영역들이 존재할 수 있다.
[0025] 이제 도면을 상세히 참조하면, 도 1에 도시된 바와 같이, 전기도금 장치(20)는 헤드(22)에 로터(24)를 갖는다. 로터(24)는 배킹 플레이트(26), 및 시일(80)을 갖는 접촉 링(30)을 포함한다. 접촉 링 액츄에이터들(34)은, 접촉 링(30)과 시일(80)을 웨이퍼 또는 기판(50)의 하향 표면 상에 맞물리게 하기 위해, 접촉 링(30)을 수직으로(도 1에서, 방향(T)으로) 이동시킨다. 벨로우즈(32)는 헤드의 내부 컴포넌트들을 밀봉하는 데에 사용될 수 있다.
[0026] 접촉 링은 전형적으로, 웨이퍼(50) 상의 전도성 층과 접촉하는 금속 핑거들(35)을 갖는다. 헤드(22)는, 베이스(36)의 용기(38)에 홀딩되는 액체 전해질의 욕조 내로 기판(50)을 위치시키도록 포지셔닝된다. 하나 또는 그 초과의 전극들은 액체 전해질과 접촉된다. 도 1은, 단일 외측 전극(42)에 의해 둘러싸인 중앙 전극(40)을 갖는 설계를 도시하지만, 다수의 동심 외측 전극들이 사용될 수 있다. 유전체 재료로 만들어진 전기장 성형 유닛(44)은 전극들과 웨이퍼 사이에서 용기에 포지셔닝될 수 있다.
[0027] 멤브레인(60)이 선택적으로 포함될 수 있는데, 멤브레인(60) 아래의 하부 챔버에 양극액(anolyte)이, 그리고 멤브레인 위의 상부 챔버에 음극액(catholyte)이 위치한다. 전류는, 전해질을 통해 전극들로부터 웨이퍼 상의 전도성 표면으로 지나간다. 헤드의 모터(28)는 전기도금 동안 웨이퍼를 회전시키는 데에 사용될 수 있다.
[0028] 도 2-4를 참조하면, 시일(80)은 전형적으로, 웨이퍼와 접촉하여 웨이퍼에 대해 시일을 형성하는 탄성중합체 팁(84)을 갖고, 팁(84)은, 빔-형(beam-like) 또는 캔틸레버 구조를 갖는 림(86) 상에 또는 림(86)의 일부 상에 지지된다. 전형적으로 가요성 금속 엘리먼트들인 접촉 핑거들(35)은 웨이퍼를 시일의 외부에 터칭시켜서, 이에 의해 접촉 핑거들(35)은 전해질에 노출되지 않는다. 종래의 시일들(80)은 일반적으로, 전체 둘레 주위에 균일한 단면을 갖는다.
[0029] 이제 도 6을 참조하면, 노치(52)에서의 전류 몰림을 보상하기 위해, 본 장치(20)는, 얇은 섹션(90)을 갖는 시일(80)을 가질 수 있다. 사용 시에, 웨이퍼(50)는, 노치(52)가 편평한 섹션(90)과 정렬된 상태로 장치(20) 내에 로딩된다. 프로세싱 동안 시일(80)이 웨이퍼(50)와 함께 회전할 때, 편평한 섹션(90)은 노치(52)와 여전히 정렬된 상태로 있는다. 산업 표준 노치를 갖는 300mm 직경 웨이퍼의 경우, 편평한 섹션은 25-33mm 또는 27-31mm의 폭(AA)을 가질 수 있다.
[0030] 도 7-9에서, 회색 지역들은 용기(38) 내의 액체 전해질(46)을 나타낸다. 백색 지역들(44)은 필드(field) 성형 유닛(44)의 고체 재료를 나타낸다. 도 7은, 편평한 섹션(90)에서를 제외하고, 전체 둘레 주위에서의 시일(80)의 단면을 도시한다. 특성 치수(characteristic dimension)(P1)를 갖는, 전해질(46)을 통하는 전류 유동 경로는 시일(80)의 바닥부 또는 하향 표면(82)과 필드 성형 유닛(44)의 정상부 표면(48) 사이에 형성된다.
[0031] 도 8은, 편평한 섹션(90)에서의 시일(80)의 단면을 도시한다. 편평한 섹션(90)에서, 시일(80)은, 시일(80)이 시일(80)의 둘레의 나머지 부분 너머로 초과하여 하향 돌출할 정도로 하향 돌출되지 않는다. 결과적으로, 편평한 섹션(90)에서 전해질(46)을 통하는 전류 유동 경로는 특성 치수(P2)를 가지며, P2는 P1보다 20-400% 또는 50-200% 더 크다. P2 경로의 저항이 P1보다 작기 때문에, 시프 전극(92)은 노치(52)에서의 전기장에 대해 더 강한 영향을 미쳐서, 노치(52)에서의 전류 몰림을 보상하는 것을 돕는다.
[0032] 도 9는, 제 2 또는 외측 전극(94)으로 이어지는 외측 전류 유동 경로(96)를 갖는 대안적인 설계를 도시한다. 전극들(92 및 94) 양자 모두가, 시빙 전류를 끌어들이는 시프 채널들에 연결될 수 있거나, 또는 전극(92)이 애노드로 동작하는 동안(접촉 핑거들은 캐소드로서 동작함) 전극(94)이 전류 시프로서 동작할 수 있다. 전극(92)이 부가적인 애노드로서 동작하고 전극(94)이 전류 시프로서 동작하면, 섹션(96)을 통하는 전류 유동이 증가되어, 웨이퍼 오프셋 및 노치 보정에 대한 더 양호한 보상이 허용된다. (전해질의 용적인) 섹션 또는 공간(96)의 길이 및 단면적은, 웨이퍼 에지로부터 시프 전극(94)으로 끌어당겨지는 전류의 양에 영향을 미친다. (도금 동안 리세스가 노치와 정렬된 상태로 있도록 웨이퍼와 함께 회전하는) 접촉 링에 국부 리세스를 제공함으로써 노치 주위에서 공간(96)의 단면적이 증가될 수 있다.
[0033] 이제 도 10, 11, 및 12를 참조하면, 특정의 더 새로운 웨이퍼 프로세싱 시스템들에서, 웨이퍼는, 시일(80)을 갖는 링 컨택(30)을 포함하는 척(100) 내에 위치된다. (웨이퍼가 밀폐된 상태인) 척은, 상이한 프로세싱 단계들을 수행하기 위해 다양한 장치 또는 챔버들의 어레이를 갖는 프로세싱 시스템을 통해 이동한다. 이러한 유형의 시스템에서, 상기 논의된 바와 같이 수정된 시일들은 특정 유형들의 웨이퍼들에 매칭될 수 있다. 예컨대, 웨이퍼들을 위한 척들의 일 세트 상의 시일은 스크라이브 근처에서 감소된 두께 영역들을 가질 수 있고, 다른 척들은, 더미 범프들을 갖는 웨이퍼들에 사용하기 위해 특별히 수정된 시일들을 가질 수 있다. 이러한 접근 방식에 의해, 다양한 웨이퍼들 및 웨이퍼 둘레 주위에서의 웨이퍼들의 고유의 도금 균일성 문제들을 처리하기 위해 전기도금 장치 자체에 대한 어떠한 변화들도 필요하지 않다.
[0034] 본원에서 사용되는 바와 같이, 웨이퍼는, 마이크로전자, 마이크로-기계 및/또는 마이크로-광학 디바이스들이 형성되는 기판, 예컨대, 실리콘 웨이퍼를 의미한다. 상기 설명된 기술들은, 스크라이브 영역들에 의해 야기되는 도금 편차들을 감소시키기 위해 유사하게 사용될 수 있다.

Claims (17)

  1. 전기도금 장치로서,
    전해질을 홀딩(holding)하기 위한 용기(vessel);
    상기 용기 내의 적어도 하나의 전류 시프 전극(current thief electrode) 및 적어도 하나의 애노드; 및
    노치(notch)를 갖는 웨이퍼를 홀딩하기 위한 접촉 링을 포함하는 로터를 갖는 헤드를 포함하고, 상기 접촉 링은 시일(seal)을 가지며, 상기 접촉 링은 상기 웨이퍼 상의 노치와 정렬되도록 이루어진 리세스(recess)를 갖고, 상기 리세스는, 도금 두께 균일성을 개선하기 위해, 상기 웨이퍼의 나머지 부분과 비교하여, 더 많은 전류가 상기 웨이퍼 상의 노치의 영역으로부터 상기 전류 시프 전극으로 유동하는 것을 허용하는,
    전기도금 장치.
  2. 제 1 항에 있어서,
    제 1 내측 전류 시프 전극 및 제 2 외측 전류 시프 전극을 포함하는,
    전기도금 장치.
  3. 제 2 항에 있어서,
    상기 제 2 전류 시프 전극은 상기 제 1 전류 시프 전극의 수직으로 위에 있는,
    전기도금 장치.
  4. 제 1 항에 있어서,
    상기 리세스는 1 내지 15도의 원호에 대응하는(subtending),
    전기도금 장치.
  5. 제 1 항에 있어서,
    상기 접촉 링은 원 상에 접촉 핑거들(fingers)의 제 1 및 제 2 그룹들을 가지며, 상기 접촉 핑거의 제 1 그룹은 상기 노치에 인접하고, 상기 접촉 핑거들의 제 1 그룹에 대한 제 1 전기 연결 및 상기 접촉 핑거들의 제 2 그룹에 대한 제 2 전기 연결을 가지며, 상기 제 1 전기 연결은 상기 제 2 전기 연결보다 더 높은 전압에 있는,
    전기도금 장치.
  6. 제 1 항에 있어서,
    상기 노치에서 상기 시일에 내장된 보조 전류 시프 전극을 더 포함하는,
    전기도금 장치.
  7. 제 1 항에 있어서,
    상기 시일은 상기 노치에서 편평한 부분을 갖는,
    전기도금 장치.
  8. 제 1 항에 있어서,
    상기 용기에 리세스를 더 포함하고, 상기 웨이퍼의 노치는 상기 리세스와 정렬되는,
    전기도금 장치.
  9. 제 1 항에 있어서,
    상기 시일은 상기 접촉 링의 유전체 재료 링 상에 지지되고, 상기 유전체 재료 링은 상기 웨이퍼의 노치와 정렬되는 리세스를 갖는,
    전기도금 장치.
  10. 전기도금 방법으로서,
    전기도금 장치의 접촉 링에, 에지 피처를 갖는 웨이퍼를 홀딩하는 단계;
    균일한 단면을 갖는 시일과 ― 상기 시일이 감소된 높이 세그먼트를 갖는 상기 에지 피처에서를 제외하고 ― 상기 웨이퍼를 접촉시키는 단계;
    상기 웨이퍼의 적어도 일 측을 도금 용액과 접촉하도록 위치시키고, 제 1 극성의 제 1 전류를 도금 용액을 통해, 상기 웨이퍼의 적어도 일 측 상의 전도성 필름을 통해, 그리고 상기 접촉 링 상의 전기 컨택들을 통해 통과시키는 단계;
    상기 에지 피처에서의 전류 몰림(current crowding)을 보상하기 위해, 상기 도금 용액과 접촉하는 시프 전극을 통해 제 2 극성의 전류를 통과시키는 단계 ― 상기 시프 전극은 상기 감소된 높이 세그먼트를 통해 상기 제 1 전류의 부분을 끌어당김 ― 를 포함하는,
    전기도금 방법.
  11. 제 10 항에 있어서,
    상기 에지 피처는 상기 웨이퍼의 에지에 있는 노치인,
    전기도금 방법.
  12. 웨이퍼를 프로세싱하기 위한 방법으로서,
    상기 웨이퍼 상의 적어도 하나의 불규칙성을 식별하는 단계;
    시일을 포함하는 접촉 링을 갖는 척 내에 상기 웨이퍼를 위치시키는 단계 ― 상기 접촉 링 및/또는 상기 시일은 상기 불규칙성에서의 전류 몰림을 감소시키도록 이루어진 수정(modification)을 가짐 ―;
    전기도금 장치 내로 상기 척을 이동시키는 단계; 및
    시프 전극을 통해 상기 불규칙성에서의 전류 몰림을 감소시킴으로써 상기 불규칙성을 보상하면서 상기 웨이퍼를 전기도금하는 단계를 포함하는,
    웨이퍼를 프로세싱하기 위한 방법.
  13. 제 12 항에 있어서,
    상기 불규칙성은 상기 웨이퍼의 에지에 있는 노치인,
    웨이퍼를 프로세싱하기 위한 방법.
  14. 제 12 항에 있어서,
    상기 불규칙성은 상기 웨이퍼 상의 스크라이브(scribe) 영역인,
    웨이퍼를 프로세싱하기 위한 방법.
  15. 제 12 항에 있어서,
    상기 웨이퍼는 제 1 및 제 2 불규칙성들을 갖고, 상기 시일은, 상기 제 1 및 제 2 불규칙성들과 정렬되는 제 1 및 제 2 감소된 높이 세그먼트들을 갖는,
    웨이퍼를 프로세싱하기 위한 방법.
  16. 제 12 항에 있어서,
    상기 수정은 상기 접촉 링의 리세스인,
    웨이퍼를 프로세싱하기 위한 방법.
  17. 제 12 항에 있어서,
    상기 수정은, 상기 시프 전극에 대해 상기 불규칙성의 노출을 증가시키는 상기 불규칙성에서의 상기 접촉 링의 형상의 변화인,
    웨이퍼를 프로세싱하기 위한 방법.
KR1020177023908A 2015-01-27 2016-01-20 노치 적응형 접촉 링 시일 및 시프 전극을 갖는 전기도금 장치 KR102171786B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/606,775 2015-01-27
US14/606,775 US9758897B2 (en) 2015-01-27 2015-01-27 Electroplating apparatus with notch adapted contact ring seal and thief electrode
PCT/US2016/014164 WO2016122948A1 (en) 2015-01-27 2016-01-20 Electroplating apparatus with notch adapted contact ring seal and thief electrode

Publications (2)

Publication Number Publication Date
KR20170107080A KR20170107080A (ko) 2017-09-22
KR102171786B1 true KR102171786B1 (ko) 2020-10-29

Family

ID=56432416

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177023908A KR102171786B1 (ko) 2015-01-27 2016-01-20 노치 적응형 접촉 링 시일 및 시프 전극을 갖는 전기도금 장치

Country Status (6)

Country Link
US (2) US9758897B2 (ko)
KR (1) KR102171786B1 (ko)
CN (1) CN107208299B (ko)
SG (1) SG11201705706VA (ko)
TW (1) TWI682073B (ko)
WO (1) WO2016122948A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689082B2 (en) * 2015-04-14 2017-06-27 Applied Materials, Inc. Electroplating wafers having a notch
KR20230141940A (ko) * 2016-10-12 2023-10-10 램 리써치 코포레이션 반도체 프로세싱용 웨이퍼 포지셔닝 페데스탈의 패드 상승 메커니즘
US10494731B2 (en) * 2017-12-11 2019-12-03 Applied Materials, Inc. Electroplating dynamic edge control
JP6963524B2 (ja) * 2018-03-20 2021-11-10 キオクシア株式会社 電解メッキ装置
CN110512248B (zh) * 2018-05-21 2022-04-12 盛美半导体设备(上海)股份有限公司 电镀设备及电镀方法
TWI700401B (zh) * 2018-08-21 2020-08-01 財團法人工業技術研究院 待電鍍的面板、使用其之電鍍製程、及以其製造之晶片
CN114729466A (zh) * 2019-11-27 2022-07-08 朗姆研究公司 用于穿透抗蚀剂镀覆的边缘去除
WO2021134794A1 (zh) * 2020-01-03 2021-07-08 京东方科技集团股份有限公司 阵列基板、其制备方法及背光模组
US11268208B2 (en) * 2020-05-08 2022-03-08 Applied Materials, Inc. Electroplating system
KR102407356B1 (ko) * 2021-03-10 2022-06-13 가부시키가이샤 에바라 세이사꾸쇼 도금 장치 및 기포 제거 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120258408A1 (en) 2008-11-07 2012-10-11 Mayer Steven T Electroplating apparatus for tailored uniformity profile
US20130062197A1 (en) 2008-12-10 2013-03-14 Zhian He Plating cup with contoured cup bottom
US20130146447A1 (en) 2011-12-07 2013-06-13 Applied Materials, Inc. Electro processor with shielded contact ring
US20140367264A1 (en) 2013-06-18 2014-12-18 Applied Materials, Inc. Automatic in-situ control of an electro-plating processor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761023A (en) 1996-04-25 1998-06-02 Applied Materials, Inc. Substrate support with pressure zones having reduced contact area and temperature feedback
US6228231B1 (en) 1997-05-29 2001-05-08 International Business Machines Corporation Electroplating workpiece fixture having liquid gap spacer
US6168693B1 (en) * 1998-01-22 2001-01-02 International Business Machines Corporation Apparatus for controlling the uniformity of an electroplated workpiece
US6579430B2 (en) 2001-11-02 2003-06-17 Innovative Technology Licensing, Llc Semiconductor wafer plating cathode assembly
US7247223B2 (en) * 2002-05-29 2007-07-24 Semitool, Inc. Method and apparatus for controlling vessel characteristics, including shape and thieving current for processing microfeature workpieces
DE10229005B4 (de) * 2002-06-28 2007-03-01 Advanced Micro Devices, Inc., Sunnyvale Vorrichtung und Verfahren zur elektrochemischen Metallabscheidung
JP4624873B2 (ja) 2005-06-28 2011-02-02 株式会社荏原製作所 めっき方法
US7725148B2 (en) * 2005-09-23 2010-05-25 Medtronic Minimed, Inc. Sensor with layered electrodes
JP2008297586A (ja) 2007-05-30 2008-12-11 Electroplating Eng Of Japan Co 電解めっき装置
US7985325B2 (en) 2007-10-30 2011-07-26 Novellus Systems, Inc. Closed contact electroplating cup assembly
US20130306465A1 (en) 2012-05-17 2013-11-21 Applied Materials, Inc. Seal rings in electrochemical processors
US9909228B2 (en) 2012-11-27 2018-03-06 Lam Research Corporation Method and apparatus for dynamic current distribution control during electroplating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120258408A1 (en) 2008-11-07 2012-10-11 Mayer Steven T Electroplating apparatus for tailored uniformity profile
US20130062197A1 (en) 2008-12-10 2013-03-14 Zhian He Plating cup with contoured cup bottom
US20130146447A1 (en) 2011-12-07 2013-06-13 Applied Materials, Inc. Electro processor with shielded contact ring
US20140367264A1 (en) 2013-06-18 2014-12-18 Applied Materials, Inc. Automatic in-situ control of an electro-plating processor

Also Published As

Publication number Publication date
TWI682073B (zh) 2020-01-11
US20160215409A1 (en) 2016-07-28
CN107208299A (zh) 2017-09-26
TW201634761A (zh) 2016-10-01
US20170335484A1 (en) 2017-11-23
US9758897B2 (en) 2017-09-12
US10364506B2 (en) 2019-07-30
KR20170107080A (ko) 2017-09-22
SG11201705706VA (en) 2017-08-30
CN107208299B (zh) 2019-04-30
WO2016122948A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
KR102171786B1 (ko) 노치 적응형 접촉 링 시일 및 시프 전극을 갖는 전기도금 장치
KR101415551B1 (ko) 정전척, 이의 제조 방법 및 이를 포함하는 기판 처리 장치
KR102150997B1 (ko) 전기화학적 프로세서들의 시일 링들
US10508356B2 (en) Electro-plating and apparatus for performing the same
US10570526B2 (en) Electroplating wafers having a pattern induced non-uniformity
US20160177466A1 (en) Methods and apparatuses for dynamically tunable wafer-edge electroplating
KR102194270B1 (ko) 반경방향으로 오프셋된 접촉 핑거들을 갖는 전기도금 접촉 링
KR102049961B1 (ko) 차폐된 컨택 링을 구비한 전해 프로세서
KR100268432B1 (ko) 플라즈마 에칭을 위한 장치
CN111466016B (zh) 电镀动态边缘控制
KR101892958B1 (ko) 플라즈마 처리 장치
US10081881B2 (en) Electroplating apparatus with membrane tube shield
KR101640488B1 (ko) 플라즈마 에칭장치용 일렉트로드의 결합구조 및 결합방법
US20090061617A1 (en) Edge bead removal process with ecmp technology
KR20050028586A (ko) 반도체 제조 설비의 건식식각장치
KR20100090560A (ko) 전류 억제구조를 구비한 존슨 라벡형 정전척 및 그 제조방법
KR20060021703A (ko) 반도체 제조설비

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right