KR102164892B1 - Titanium dioxide with worm-like structure, method for manufacturing the same and use thereof - Google Patents

Titanium dioxide with worm-like structure, method for manufacturing the same and use thereof Download PDF

Info

Publication number
KR102164892B1
KR102164892B1 KR1020180170211A KR20180170211A KR102164892B1 KR 102164892 B1 KR102164892 B1 KR 102164892B1 KR 1020180170211 A KR1020180170211 A KR 1020180170211A KR 20180170211 A KR20180170211 A KR 20180170211A KR 102164892 B1 KR102164892 B1 KR 102164892B1
Authority
KR
South Korea
Prior art keywords
titanium dioxide
acid
alcohol
worm
producing
Prior art date
Application number
KR1020180170211A
Other languages
Korean (ko)
Other versions
KR20200080600A (en
Inventor
노동규
김대성
김희정
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020180170211A priority Critical patent/KR102164892B1/en
Publication of KR20200080600A publication Critical patent/KR20200080600A/en
Application granted granted Critical
Publication of KR102164892B1 publication Critical patent/KR102164892B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/002Catalysts characterised by their physical properties
    • B01J35/004Photocatalysts
    • B01J35/39
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

본 발명은 1차 입자의 크기가 10nm 이하이고, 웜-라이크(worm-like) 구조에 의한 높은 비표면적을 가짐으로써 우수한 전자 전달 능력을 갖는 아나타제 결정상의 이산화티타늄 및 이의 이용에 관한 것이다.The present invention relates to titanium dioxide in an anatase crystal phase having excellent electron transfer ability by having a primary particle size of 10 nm or less and a high specific surface area due to a worm-like structure, and its use.

Description

웜-라이크 구조를 갖는 이산화티타늄, 이의 제조방법 및 용도{Titanium dioxide with worm-like structure, method for manufacturing the same and use thereof}Titanium dioxide with worm-like structure, method for manufacturing the same and use thereof

본 발명은 웜-라이크(worm-like) 구조 및 높은 비표면적을 가짐으로써 우수한 전자 전달 능력을 갖는 이산화티타늄 및 이의 이용에 관한 것이다.The present invention relates to titanium dioxide and its use, which has a worm-like structure and a high specific surface area, thereby having excellent electron transfer capability.

일반적으로 이산화티타늄(TiO2)은 구형 또는 그와 유사한 형태의 다양한 크기의 나노입자들이 제조되고 판매되어지고 있다. In general, titanium dioxide (TiO 2 ) is manufactured and sold in various sizes of nanoparticles having a spherical or similar shape.

작은 크기인 나노크기의 이산화티타늄 입자들은 광촉매 및 광전자 전달 전극으로 제조시에 입자들간의 수많은 결정입계(grain-boundary)로 인해 전자 전달 능력이 감소하게 되며, 또한 작은 입자크기는 인체의 유해성 문제 및 회수의 문제가 발생할 수 있다.Nano-sized titanium dioxide particles having a small size decrease the electron transfer ability due to numerous grain-boundary between the particles when manufactured with a photocatalyst and a photoelectron transfer electrode, and the small particle size also causes harm to the human body. There may be a problem of recall.

반대로, 크기가 큰 수백나노 및 마이크론 사이즈의 이산화티타늄 입자들은 우수한 전자 전달 능력 및 인체 유해성에 있어서는 다소 유리하지만 비표면적이 급격하게 감소하는 문제가 발생할 수 있다.Conversely, titanium dioxide particles having a large size of hundreds of nanometers and microns are somewhat advantageous in terms of excellent electron transfer ability and harmfulness to the human body, but a problem in that the specific surface area is rapidly decreased may occur.

따라서, 인체에 무해하면서도 회수가 가능하고, 비표면적이 높아 전자 전달 능력이 우수한 이산화티타늄의 개발이 요구되고 있다.Accordingly, there is a need for development of titanium dioxide that is harmless to the human body and can be recovered and has a high specific surface area and excellent electron transfer capability.

[특허문헌 1] 한국특허공개공보 제10-2017-0135793호[Patent Document 1] Korean Patent Publication No. 10-2017-0135793 [특허문헌 2] 한국특허공개공보 제10-2006-0012020호[Patent Document 2] Korean Patent Publication No. 10-2006-0012020

본 발명의 목적은 웜-라이크 구조 및 높은 비표면적을 가짐으로써 우수한 전자 전달 능력을 갖는 이산화티타늄을 제공하는 것이다.An object of the present invention is to provide titanium dioxide having an excellent electron transfer ability by having a worm-like structure and a high specific surface area.

또한, 본 발명의 다른 목적은 본 발명의 이산화티타늄을 포함하는 광촉매를 제공하는 것이다.In addition, another object of the present invention is to provide a photocatalyst comprising titanium dioxide of the present invention.

또한, 본 발명의 또 다른 목적은 본 발명의 이산화티타늄을 포함하는 태양전지용 전극을 제공하는 것이다.In addition, another object of the present invention is to provide an electrode for a solar cell comprising titanium dioxide of the present invention.

상기 목적을 달성하기 위하여, 본 발명에 따른 이산화티타늄은 10nm 이하의 입경을 가지고, 웜-라이크(worm-like) 구조를 갖는 아나타제 결정상일 수 있다.In order to achieve the above object, titanium dioxide according to the present invention may have a particle diameter of 10 nm or less and may be an anatase crystal phase having a worm-like structure.

상기 이산화티타늄은 다음의 단계를 포함하는 제조방법에 의해 제조될 수 있다:The titanium dioxide can be prepared by a manufacturing method comprising the following steps:

(a) 가지형 공중합체 및 글루코오스를 각각의 용매에 용해시킨 후, 혼합하여 혼합 용액을 제조하는 단계;(a) dissolving the branched copolymer and glucose in each solvent, and then mixing to prepare a mixed solution;

(b) 상기 혼합 용액에 사염화티타늄, 산 및 알코올을 포함하는 사염화티타늄졸을 첨가한 후, 수열반응시켜 이산화티타늄을 수득하는 단계; 및(b) adding a titanium tetrachloride sol containing titanium tetrachloride, an acid and an alcohol to the mixed solution, followed by hydrothermal reaction to obtain titanium dioxide; And

(c) 상기 이산화티타늄을 고온 소결하는 단계.(c) sintering the titanium dioxide at high temperature.

상기 (a) 단계에서, 상기 가지형 공중합체는 할로겐화 고분자 화합물의 주쇄에 친수성 단량체가 그래프팅된 공중합체일 수 있다.In the step (a), the branched copolymer may be a copolymer in which a hydrophilic monomer is grafted onto the main chain of a halogenated polymer compound.

상기 (b) 단계에서, 상기 사염화티타늄을 포함하는 졸:상기 가지형 공중합체의 혼합비(v/w)는 1:0.05∼0.2일 수 있다.In the step (b), the mixing ratio (v/w) of the sol containing titanium tetrachloride: the branched copolymer may be 1:0.05 to 0.2.

상기 (b) 단계에서, 상기 사염화티타늄:산:알코올의 중량혼합비는 1:0.5∼1:1∼3일 수 있다.In the step (b), the weight mixing ratio of the titanium tetrachloride: acid: alcohol may be 1:0.5 to 1:1 to 3.

상기 (b) 단계에서, 상기 산은 염산, 황산 및 질산으로 이루어지는 군으로부터 선택될 수 있다.In the step (b), the acid may be selected from the group consisting of hydrochloric acid, sulfuric acid and nitric acid.

상기 (b) 단계에서, 상기 알코올은 에탄올, 메탄올, 이소프로필알코올 및 프로판올로 이루어지는 군으로부터 선택될 수 있다.In the step (b), the alcohol may be selected from the group consisting of ethanol, methanol, isopropyl alcohol and propanol.

상기 (b) 단계에서, 상기 알코올은 에탄올일 수 있다.In step (b), the alcohol may be ethanol.

상기 (b) 단계에서, 상기 수열반응은 100∼200℃에서 15∼24시간 동안 수행될 수 있고,In the step (b), the hydrothermal reaction may be performed at 100 to 200°C for 15 to 24 hours,

상기 (c) 단계에서, 상기 고온 소결은 400∼550℃에서 0.5시간∼3시간 동안 수행될 수 있다.In the step (c), the high-temperature sintering may be performed at 400 to 550° C. for 0.5 to 3 hours.

본 발명에서는 본 발명의 이산화티타늄을 포함하는 광촉매가 제공된다.In the present invention, a photocatalyst comprising titanium dioxide of the present invention is provided.

또한, 본 발명에서는 본 발명의 이산화티타늄을 포함하는 태양전지용 전극이 제공된다.In addition, the present invention provides an electrode for a solar cell including titanium dioxide of the present invention.

본 발명에 따른 이산화티타늄은 1차 입자가 10nm 이하의 작은 입경을 가지고, 웜-라이크(worm-like) 구조를 갖는 아나타제 결정상에 의한 높은 비표면적을 가짐으로써 우수한 전자 전달 능력의 효과를 갖는다.Titanium dioxide according to the present invention has a high specific surface area due to an anatase crystal phase in which the primary particles have a small particle diameter of 10 nm or less and have a worm-like structure, thereby having an excellent electron transfer ability effect.

본 발명에 따른 이산화티타늄은 광촉매, 태양전지용 전극과 같은 광전극 등의 다양한 용도에 적용될 수 있다.Titanium dioxide according to the present invention can be applied to various uses such as photocatalysts and photoelectrodes such as solar cell electrodes.

도 1은 실시예 1 및 비교예 1∼3의 이산화티타늄 입자의 SEM 이미지(a) 및 확대 이미지(b)를 나타낸 도면이다.
도 2는 실시예 1의 이산화티타늄 입자의 SEM의 고배율 이미지를 나타낸 도면이다.
도 3은 XRD 분석을 통하여, 실시예 1 및 비교예 1∼3의 이산화티타늄 입자의 결정 구조를 나타낸 그래프이다.
1 is a view showing SEM images (a) and enlarged images (b) of titanium dioxide particles of Example 1 and Comparative Examples 1 to 3;
FIG. 2 is a diagram showing a high magnification image of an SEM of titanium dioxide particles of Example 1. FIG.
3 is a graph showing the crystal structure of titanium dioxide particles of Example 1 and Comparative Examples 1 to 3 through XRD analysis.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 구체예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 구체예들에 한정되는 것이 아니라, 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 발명의 구체예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention, and a method of achieving them will become apparent with reference to specific examples described below in detail together with the accompanying drawings. However, the present invention is not limited to the specific examples disclosed below, but may be implemented in various different forms, and only the specific examples of the present invention make the disclosure of the present invention complete, and in the technical field to which the present invention pertains. It is provided to fully inform a person of ordinary skill in the scope of the invention, and the invention is only defined by the scope of the claims.

다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used as meanings that can be commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in a commonly used dictionary are not interpreted ideally or excessively unless explicitly defined specifically.

이하, 본 발명에 따른 이산화티타늄에 대하여 상세히 설명한다.Hereinafter, titanium dioxide according to the present invention will be described in detail.

본 발명에 따른 이산화티타늄은 1차 입자가 10nm 이하의 입경을 가지고, 웜-라이크(worm-like) 구조를 갖는 아나타제 결정상일 수 있다.Titanium dioxide according to the present invention may be an anatase crystal phase having a primary particle having a particle diameter of 10 nm or less and having a worm-like structure.

상기 이산화티타늄은 1차 입자의 크기가 10nm 이하의 입경을 가짐으로써 작은 입자와 기공으로 구성되어, 웜-라이크 구조를 형성하기가 용이하여 매우 높은 비표면적을 가질 수 있다.The titanium dioxide is composed of small particles and pores because the size of the primary particles is less than 10 nm, it is easy to form a worm-like structure, and thus can have a very high specific surface area.

본 발명의 이산화티타늄은 수나노의 1차 입자들이 모여 길게 연결된 구조체를 형성하며, 이 구조체는 웜-라이크(worm-like), 즉 와이어(wire) 또는 로드(rod)와 같은 2차원 구조의 다공성 아나타제계 결정 구조를 가짐으로써 비표면적이 매우 높고, 유기적으로 연결되어 있는 구조를 이루고 있기에 구형의 루타일계 이산화티타늄 입자 대비 광활성 특성이 높아 광촉매 또는 태양전지용 전극에 적용시에 우수한 광분해 특성과 전자 전달 능력을 발휘할 수 있고, 또한, 촉매로 사용할 경우, 필터에 의한 회수의 용이성을 가질 수 있다. 또한, 웜-라이크 구조체는 형상이 비정형으로 구부러져 있는 선형의 모양을 가지고 있기에 규칙적인 배열이 되지 않아 구조체들 사이에 커다란 2차 기공을 형성할 수 있다. 이를 이용하여 전극 또는 광촉매 필터를 제조시에 물질들의 침투 용이성이 증가할 수 있다. Titanium dioxide of the present invention forms a long-connected structure where the male nanoparticles of primary particles are gathered, and this structure is a worm-like, that is, a porosity of a two-dimensional structure such as a wire or a rod. Since it has an anatase-based crystal structure, it has a very high specific surface area and is an organically connected structure. The photoactive properties are high compared to the spherical rutile titanium dioxide particles, so when applied to a photocatalyst or solar cell electrode, excellent photolysis properties and electron transfer ability can be exhibited.In addition, when used as a catalyst, it can be easily recovered by a filter. . In addition, since the worm-like structure has a linear shape in which the shape is irregularly bent, it is not regularly arranged, and large secondary pores can be formed between the structures. By using this, when manufacturing an electrode or a photocatalytic filter, the ease of penetration of materials may increase.

본 발명에 따른 이산화티타늄은 다음의 단계를 포함하는 제조방법에 의해 제조될 수 있다:Titanium dioxide according to the present invention can be prepared by a manufacturing method comprising the following steps:

(a) 가지형 공중합체를 제1 용매에 용해시킨 용액 및 글루코오스를 제2 용매에 용해시킨 용액을 혼합하여 혼합 용액을 제조하는 단계;(a) preparing a mixed solution by mixing a solution in which the branched copolymer is dissolved in a first solvent and a solution in which glucose is dissolved in a second solvent;

(b) 상기 혼합 용액에 사염화티타늄, 산 및 알코올을 포함하는 사염화티타늄졸을 첨가한 후, 수열반응시켜 이산화티타늄을 수득하는 단계; 및(b) adding a titanium tetrachloride sol containing titanium tetrachloride, an acid and an alcohol to the mixed solution, followed by hydrothermal reaction to obtain titanium dioxide; And

(c) 상기 이산화티타늄을 고온 소결하는 단계.(c) sintering the titanium dioxide at high temperature.

상기 (a) 단계에서, 상기 가지형 공중합체는, 바람직하게는 할로겐화 고분자 화합물의 주쇄에 친수성 단량체가 그래프팅된 공중합체일 수 있으나, 이에 한정되지 않는다.In the step (a), the branched copolymer may be a copolymer in which a hydrophilic monomer is grafted onto the main chain of a halogenated polymer compound, but is not limited thereto.

더욱 바람직하게는, 상기 가지형 공중합체는 폴리비닐클로라이드(PVC에 폴리(에틸렌글리콜)메틸에테르(메타)아크릴레이트(POEM)를 그래프트시킨 공중합체)(PVC-g-POEM)일 수 있으며, 이는 하기 화학식 1로 표시될 수 있다.More preferably, the branched copolymer may be polyvinyl chloride (a copolymer obtained by grafting poly (ethylene glycol) methyl ether (meth) acrylate (POEM) to PVC) (PVC-g-POEM), which It may be represented by the following Formula 1.

[화학식 1][Formula 1]

Figure 112018130822368-pat00001
Figure 112018130822368-pat00001

상기 가지형 공중합체로 이루어지는 매트릭스는 소수성이고, 우수한 기계적 물성을 갖는 할로겐화 고분자 화합물 주사슬과, 사염화티타늄 전구체와 강한 상호작용을 가지는 폴리에틸렌글리콜을 가지사슬로 가지는 공중합체로, 이를 템플레이트로 알코올과 함께 사용할 경우, 웜-라이크 구조의 이산화티타늄 입자의 제조가 가능하다.The matrix made of the branched copolymer is a copolymer having a main chain of a halogenated polymer compound having excellent mechanical properties and having excellent mechanical properties and a branched chain of polyethylene glycol having a strong interaction with a titanium tetrachloride precursor. When used, it is possible to prepare titanium dioxide particles of a worm-like structure.

상기 (a) 단계에서, 상기 가지형 공중합체는, 바람직하게는 다음의 단계를 포함하는 제조방법에 의해 제조될 수 있다:In the step (a), the branched copolymer may be prepared by a manufacturing method preferably comprising the following steps:

(i) 할로겐화 고분자 화합물을 용매에 용해하여 할로겐화 고분자 화합물 용액을 제조하는 단계; 및(i) dissolving the halogenated polymer compound in a solvent to prepare a halogenated polymer compound solution; And

(ii) 상기 할로겐화 고분자 화합물 용액에 친수성 단량체를 포함하는 용액을 첨가하여 반응시켜 가지형 공중합체를 수득하는 단계.(ii) adding and reacting a solution containing a hydrophilic monomer to the halogenated polymer compound solution to obtain a branched copolymer.

상기 (i) 단계에서, 상기 할로겐화 고분자 화합물은, 특별히 한정이 없고, 예를 들어 폴리비닐리덴 플루오라이드-co-클로로트리플루오로에틸렌, 폴리비닐클로라이드, 폴리클로로트리플루오로에틸렌, 폴리디클로로디플루오로메탄, 폴리비닐리덴디클로라이드 및 이들의 공중합체로 이루어지는 군으로부터 선택되는 1종 이상일 수 있다.In the step (i), the halogenated polymer compound is not particularly limited, and for example, polyvinylidene fluoride-co-chlorotrifluoroethylene, polyvinyl chloride, polychlorotrifluoroethylene, polydichlorodifluoro It may be one or more selected from the group consisting of romethane, polyvinylidene dichloride, and copolymers thereof.

상기 (ii) 단계에서, 상기 친수성 단량체는, 특별히 한정이 없고, 예를 들어 폴리옥시에틸렌(메타)아크릴레이트, 폴리(에틸렌글리콜)메틸에테르(메타)아크릴레이트, 히드록시에틸(메타)아크릴레이트, 가수분해된 t-부틸(메타)아크릴레이트, 아크릴아미드, N-비닐피롤리돈, 아미노스티렌, 스티렌 설폰산, 메틸프로펜 설폰산, 설포프로필(메타)아크릴레이트, 설포에틸(메타)아크릴레이트 및 설포부틸(메타)아크릴레이트로 이루어지는 군으로부터 선택되는 1종 이상일 수 있다.In the step (ii), the hydrophilic monomer is not particularly limited, for example, polyoxyethylene (meth) acrylate, poly (ethylene glycol) methyl ether (meth) acrylate, hydroxyethyl (meth) acrylate , Hydrolyzed t-butyl (meth)acrylate, acrylamide, N-vinylpyrrolidone, aminostyrene, styrene sulfonic acid, methylpropene sulfonic acid, sulfopropyl (meth)acrylate, sulfoethyl (meth)acrylic It may be one or more selected from the group consisting of rate and sulfobutyl (meth)acrylate.

상기 (ii) 단계에서 할로겐화 고분자 화합물:친수성 단량체의 중량 혼합비는 1:9∼9:1인 것이 바람직하고, 3:7∼7:3인 것이 더 바람직할 수 있다.In step (ii), the weight mixing ratio of the halogenated polymer compound: the hydrophilic monomer is preferably 1:9 to 9:1, and more preferably 3:7 to 7:3.

상기 (ii) 단계의 반응시 촉매 및/또는 리간드를 더 첨가할 수 있으며, 상기 촉매는 특별히 한정이 없고, 예를 들어 CuCl, CuCl2 및 CuBr 으로부터 선택되는 1종 이상일 수 있으며, 상기 리간드는 특별히 한정이 없고, 예를 들어 1,1,4,7,10,10-헥사메틸트리에틸렌테트라아민, 트리스[2-(디메틸아미노)에틸]아민, 트리스(2-피리딜메틸)아민, N,N,N',N'-테트라키스(2-피리딜메틸)에틸렌디아민 및 2,2'-비피리딜로부터 선택되는 1종 이상일 수 있다.In the reaction of step (ii), a catalyst and/or a ligand may be further added, and the catalyst is not particularly limited, and may be, for example, at least one selected from CuCl, CuCl 2 and CuBr, and the ligand is specifically There is no limitation, for example, 1,1,4,7,10,10-hexamethyltriethylenetetraamine, tris[2-(dimethylamino)ethyl]amine, tris(2-pyridylmethyl)amine, N, It may be one or more selected from N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine and 2,2'-bipyridyl.

상기 (ii) 단계에서, 상기 반응은 원자 전달 라디칼 중합(atomic transfer radical polymerization, ATRP) 반응으로 수행하는 것이 바람직하다. 이는 제어된 자유 라디칼 반응(controlled free radical polymerization) 중 한 가지 방법으로, 자유 라디칼 농도를 낮게 유지하고 주로 고분자 주사슬 상에 집중시켜, 자유 라디칼 농도를 제어할 수 있고, 원하지 않는 수많은 부수적인 반응이 발생하는 것을 방지할 수 있다.In step (ii), the reaction is preferably performed by atomic transfer radical polymerization (ATRP). This is one method of controlled free radical polymerization, which keeps the free radical concentration low and concentrates it mainly on the polymer main chain, thereby controlling the concentration of free radicals, and many unwanted side reactions It can be prevented from occurring.

상기 (a) 단계에서 사용되는 제1 용매는 상기 가지형 공중합체가 용해되는 유기 용매라면 그 종류에 특별히 제한이 없으며, 바람직하게는 테트라하이드로퓨란 등을 사용할 수 있다.The first solvent used in step (a) is not particularly limited in its kind as long as it is an organic solvent in which the branched copolymer is dissolved, and tetrahydrofuran or the like may be preferably used.

상기 (a) 단계에서 사용되는 제2 용매는 상기 글루코오스가 용해되는 용매라면 그 종류에 특별히 제한이 없으며, 바람직하게는 물(H2O) 등을 사용할 수 있다.The second solvent used in step (a) is not particularly limited in its kind as long as it is a solvent in which glucose is dissolved, and water (H 2 O) may be preferably used.

상기 (a) 단계에서, 상기 글루코오스:상기 가지형 공중합체의 중량비는 1:0.01∼0.35인 것이 바람직한데, 상기 범위를 벗어나면 웜-라이크 입자가 제조되지 않고 구형의 입자가 생성될 수 있으며, 루타일계 결정구조가 생성될 수 있어 바람직하지 않다.In the step (a), the weight ratio of the glucose: the branched copolymer is preferably 1:0.01 to 0.35. If it is out of the above range, the worm-like particles are not produced and spherical particles may be produced, Rutile-based crystal structures may be produced, which is not preferable.

상기 (b) 단계에서, 상기 사염화티타늄을 포함하는 졸:상기 가지형 공중합체의 혼합비(v/w)는 1:0.05∼0.2인 것이 바람직하고, 1:0.1∼0.15인 것이 더욱 바람직한데, 상기 범위를 벗어나면 아나타제형의 좀 더 연결된 웜-라이크(worm-like) 구조의 이산화티타늄 입자를 얻지 못할 수 있어, 와이어(wire) 또는 로드(rod)와 같은 2차원 구조의 이산화티타늄이 가지는 우수한 전자 전달 능력을 가질 수 없다.In the step (b), the mixing ratio (v/w) of the sol containing titanium tetrachloride: the branched copolymer is preferably 1:0.05 to 0.2, more preferably 1:0.1 to 0.15. If it is out of range, it may not be possible to obtain more connected, worm-like structure of titanium dioxide particles of anatase type, so excellent electrons of titanium dioxide of two-dimensional structure such as wire or rod Cannot have the ability to deliver.

상기 (b) 단계에서, 상기 사염화티타늄:산:알코올의 중량혼합비는, 특별히 한정이 없고, 예를 들면 1:0.5∼1:1∼3, 바람직하게는 1:0.5:2일 수 있는데, 상기 범위 내이면, 입자들이 연결되면서 2차원 구조의 웜-라이크 구조가 형성될 수 있다.In the step (b), the weight mixing ratio of the titanium tetrachloride: acid: alcohol is not particularly limited, and may be, for example, 1:0.5 to 1:1 to 3, preferably 1:0.5:2. If it is within the range, a two-dimensional worm-like structure may be formed while the particles are connected.

상기 산은, 특별히 한정이 없고, 예를 들어 염산, 황산 및 질산 등으로 이루어지는 군으로부터 선택되는 1종 이상일 수 있고, 바람직하게는 염산 등이 있다.The acid is not particularly limited, and may be, for example, at least one selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, and the like, preferably hydrochloric acid.

상기 알코올은, 특별히 한정이 없고, 예를 들어 에탄올, 메탄올, 이소프로필알코올 및 프로판올 등으로 이루어지는 군으로부터 선택되는 1종 이상일 수 있고, 바람직하게는 에탄올이다.The alcohol is not particularly limited, and may be, for example, one or more selected from the group consisting of ethanol, methanol, isopropyl alcohol, propanol, and the like, preferably ethanol.

상기 (b) 단계에서, 상기 수열반응은 100∼200℃에서 15∼24시간 동안 수행되는 것이 바람직하고, 130∼170℃에서 17∼22시간 동안 수행되는 것이 더욱 바람직한데, 상기 수열반응 온도가 100℃ 미만이면 결정성 입자가 형성되기에 온도가 충분하지 않고, 아나타제상이 형성되지 않아 바람직하지 않고, 200℃를 초과하면 높은 온도에서 반응할 경우 과량의 에너지 소비가 발생하여 경제적으로 바람직하지 않고, 상기 수열반응 시간이 15시간 미만이면, 입자가 모양을 제어하는데 시간이 충분하지 않아 미반응 입자들이 함께 형성이 되어 바람직하지 않고, 24시간 이상 반응의 경우, 이미 웜-라이크의 입자들이 형성되어 필요 이상의 에너지 소비되어 바람직하지 않다.In the step (b), the hydrothermal reaction is preferably performed at 100 to 200°C for 15 to 24 hours, more preferably at 130 to 170°C for 17 to 22 hours, the hydrothermal reaction temperature is 100 If the temperature is less than °C, the temperature is not sufficient for the formation of crystalline particles, and the anatase phase is not formed, which is not preferable. If the temperature exceeds 200°C, excessive energy consumption occurs when reacting at a high temperature, which is not economically preferable. If the hydrothermal reaction time is less than 15 hours, unreacted particles are formed together because there is not enough time to control the shape of the particles, and in the case of reaction for more than 24 hours, warm-like particles have already formed and are more than necessary. Energy consumption is undesirable.

상기 수열반응은 밀폐된 반응기에서 수행될 수 있고, 바람직하게 수열합성반응기에서 수행될 수 있다.The hydrothermal reaction may be carried out in a sealed reactor, preferably in a hydrothermal synthesis reactor.

상기 (c) 단계에서, 상기 고온 소결은 400∼550℃에서 0.5시간∼3시간 동안 수행될 수 있다.In the step (c), the high-temperature sintering may be performed at 400 to 550° C. for 0.5 to 3 hours.

상기 (c) 단계에서, 상기 고온 소결은 400∼550℃에서 0.5시간∼3시간 동안 수행되는 것이 바람직하고, 400∼500℃에서 1시간∼2시간 동안 수행되는 것이 바람직한데, 상기 범위보다 낮은 온도와 시간에서는 유기 불순물이 모두 제거되지 않아 제조된 입자의 순도가 감소될 수 있어 바람직하지 않고, 상기 범위보다 높은 온도와 시간에서는 고온 처리로 인한 과량의 에너지 소비를 유발하고, 또한 불필요한 과잉 반응이기에 효과적이지 않아 바람직하지 않다.In the step (c), the high-temperature sintering is preferably performed at 400 to 550°C for 0.5 to 3 hours, preferably at 400 to 500°C for 1 to 2 hours, at a temperature lower than the above range. It is not preferable because the purity of the produced particles may be reduced because all organic impurities are not removed at and time, and at temperatures and times higher than the above range, excessive energy consumption due to high temperature treatment is caused, and it is effective because it is unnecessary excessive reaction. It is not desirable.

본 발명에 의하면, 상기 이산화티타늄을 포함하는 광촉매 또는 태양전지용 전극이 제공된다.According to the present invention, there is provided an electrode for a photocatalyst or solar cell containing the titanium dioxide.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are presented to aid in the understanding of the present invention, but the following examples are only illustrative of the present invention, and the scope of the present invention is not limited to the following examples.

실시예 및 비교예Examples and Comparative Examples

[재료][material]

하기 실시예 및 비교예에 사용되는 테트라하이드로퓨란(THF), 글루코오스, 사염화티타늄, 티타늄이소프로폭사이드, 염산, 테트라에틸오소실리케이트, 알루미늄이소프록폭사이드, 폴리비닐클로라이드(PVC, 노말-메틸피롤리돈(NMP), 폴리(에틸렌글리콜)메틸에테르(메타)아크릴레이트(POEM), 염화구리, 1,1,4,7,10,10-헥사메틸트리에틸렌테트라아민(HMTETA), 톨루엔 및 에탄올을 시그마-알드리치사에 구입하였고, 정제없이 사용하였다.Tetrahydrofuran (THF), glucose, titanium tetrachloride, titanium isopropoxide, hydrochloric acid, tetraethylorthosilicate, aluminum isopropoxide, polyvinyl chloride (PVC, normal-methylpi) used in the following Examples and Comparative Examples Rolidone (NMP), poly(ethylene glycol) methyl ether (meth) acrylate (POEM), copper chloride, 1,1,4,7,10,10-hexamethyltriethylenetetraamine (HMTETA), toluene and ethanol Was purchased from Sigma-Aldrich, and was used without purification.

<물성측정방법><Method of measuring properties>

1) 형상 분석1) shape analysis

실시예 1 및 비교예 1∼3의 이산화티타늄 입자의 형상 및 크기를 확인하기 위하여 전계방출형 주사전자현미경(FE-SEM, Transmission Electron Microscopy) 분석을 수행하였다.In order to confirm the shape and size of the titanium dioxide particles of Example 1 and Comparative Examples 1 to 3, a field emission scanning electron microscope (FE-SEM, Transmission Electron Microscopy) analysis was performed.

2) 결정성 평가2) Crystallinity evaluation

실시예 1 및 비교예 1∼3의 이산화티타늄 입자에 대해 결정성을 확인하기 위하여 X선 회절(XRD, x-ray diffraction) 분석을 수행하였다.In order to confirm the crystallinity of the titanium dioxide particles of Example 1 and Comparative Examples 1 to 3, X-ray diffraction (XRD, x-ray diffraction) analysis was performed.

<제조예: 가지형 공중합체의 제조><Production Example: Preparation of branched copolymer>

폴리비닐클로라이드(PVC) 6g을 노말-메틸피롤리돈(NMP) 50㎖에 완전히 용해시킨 다음, 폴리(에틸렌글리콜)메틸에테르(메타)아크릴레이트(POEM) 24㎖, CuCl 0.10g, 1,1,4,7,10,10-헥사메틸트리에틸렌테트라아민(HMTETA) 0.24㎖를 첨가하여 혼합교반하였다. 이를 교반하는 30분 동안 질소를 주입한 다음, 90℃에서 24시간 동안 교반기에서 반응시켰다. 반응이 종료된 혼합용액에 메탄올을 첨가하여 침전시키고 여과하여 PVC-g-POEM 가지형 공중합체를 회수하였다. 이때, 상기 공중합체의 합성과정은 원자 전달 라디칼 중합 (atomic transfer radical polymerization, ATRP) 방법으로 수행하였다. 이때, PVC:POEM의 중량 혼합비는 7:3이었다.6 g of polyvinyl chloride (PVC) was completely dissolved in 50 ml of normal-methylpyrrolidone (NMP), and then 24 ml of poly(ethylene glycol) methyl ether (meth) acrylate (POEM), 0.10 g of CuCl, 1,1 0.24 ml of ,4,7,10,10-hexamethyltriethylenetetraamine (HMTETA) was added, followed by mixing and stirring. Nitrogen was injected during stirring for 30 minutes, and then reacted in a stirrer at 90° C. for 24 hours. Methanol was added to the mixed solution after the reaction was completed, precipitated, and filtered to recover the PVC-g-POEM branched copolymer. At this time, the process of synthesizing the copolymer was carried out by an atomic transfer radical polymerization (ATRP) method. At this time, the weight mixing ratio of PVC:POEM was 7:3.

<실시예 1><Example 1>

하기 표 1에 나타낸 함량으로, 상기 제조예에서 얻어진 PVC-g-POEM 가지형 공중합체를 THF에 용해시키고, 별도로 글루코오스를 4ml의 탈이온수(DI water)에 용해시킨 다음, 상기 두 용액을 혼합하였다. 이어서, 얻어진 혼합용액에 사염화티타늄, 염산(HCl) 및 에탄올을 혼합하여 제조된 사염화티타늄을 포함하는 졸(이하, Ti 졸이라 칭하기도 함.)을 첨가 후, 상온에서 1시간 교반 후, 150℃에서 20시간 동안 수열반응기에서 반응시켰다. 그런 다음, 상기 제조된 이산화티타늄 입자는 세척하고, 건조 후, 500℃에서 1시간 열처리(고온 소결)를 하여 잔여 유기물을 제거하여, 이산화티타늄의 입경을 측정하였고, 그 결과를 하기 표 1에 나타내었으며, 상기 이산화티타늄 입자의 SEM 이미지를 도 1에 함께 나타내었다.In the contents shown in Table 1 below, the PVC-g-POEM branched copolymer obtained in Preparation Example was dissolved in THF, and glucose was separately dissolved in 4 ml of DI water, and the two solutions were then mixed. . Subsequently, a sol containing titanium tetrachloride prepared by mixing titanium tetrachloride, hydrochloric acid (HCl) and ethanol (hereinafter, also referred to as Ti sol) was added to the obtained mixed solution, followed by stirring at room temperature for 1 hour and then 150°C. It was reacted in a hydrothermal reactor for 20 hours. Then, the prepared titanium dioxide particles were washed, dried, and then heat treated at 500° C. for 1 hour (high temperature sintering) to remove residual organic matter, and the particle diameter of titanium dioxide was measured, and the results are shown in Table 1 below. And the SEM image of the titanium dioxide particles is also shown in FIG. 1.

<비교예 1><Comparative Example 1>

PVC-g-POEM 가지형 공중합체와 에탄올을 사용하지 않는 것을 제외하고는 실시예 1과 동일하게 이산화티타늄을 제조하여, 상기 이산화티타늄의 입경을 측정하였고, 그 결과를 하기 표 1에 나타내었으며, 상기 이산화티타늄 입자의 SEM 이미지를 도 1에 함께 나타내었다. Titanium dioxide was prepared in the same manner as in Example 1, except that the PVC-g-POEM branched copolymer and ethanol were not used, and the particle diameter of the titanium dioxide was measured, and the results are shown in Table 1 below, The SEM image of the titanium dioxide particles is also shown in FIG. 1.

<비교예 2><Comparative Example 2>

PVC-g-POEM 가지형 공중합체를 사용하지 않는 것을 제외하고는 실시예 1과 동일하게 이산화티타늄을 제조하여, 상기 이산화티타늄의 입경을 측정하였고, 그 결과를 하기 표 1에 나타내었으며, 상기 이산화티타늄 입자의 SEM 이미지를 도 1에 함께 나타내었다.Titanium dioxide was prepared in the same manner as in Example 1, except that the PVC-g-POEM branched copolymer was not used, and the particle diameter of the titanium dioxide was measured, and the results are shown in Table 1 below. The SEM image of the titanium particles is also shown in FIG. 1.

<비교예 3><Comparative Example 3>

PVC-g-POEM 가지형 공중합체의 함량을 0.2g 대신에 0.3g 사용한 것을 제외하고는 실시예 1과 동일하게 이산화티타늄을 제조하여, 상기 이산화티타늄의 입경을 측정하였고, 그 결과를 하기 표 1에 나타내었으며, 상기 이산화티타늄 입자의 SEM 이미지를 도 1에 함께 나타내었다.Titanium dioxide was prepared in the same manner as in Example 1, except that 0.3 g of the PVC-g-POEM branched copolymer was used instead of 0.2 g, and the particle diameter of the titanium dioxide was measured, and the results are shown in Table 1 below. And the SEM image of the titanium dioxide particles is also shown in FIG. 1.

THF
(ml)
THF
(ml)
PVC-POEM
(g)
PVC-POEM
(g)
글루코오스
(g)
Glucose
(g)
TiCl4
(ml)
TiCl 4
(ml)
염산
(HCl)
(ml)
Hydrochloric acid
(HCl)
(ml)
에탄올
(ml)
ethanol
(ml)
형상shape 결정상
(crystallinity)
Crystal phase
(crystallinity)
비표
면적
(㎡/g)
Secret
area
(㎡/g)
실시예1Example 1 3636 0.20.2 0.80.8 0.40.4 0.20.2 0.80.8 웜-라이크Worm-like 아나타제Anatase 약 90About 90 비교예1Comparative Example 1 3636 -- 0.80.8 0.40.4 0.20.2 -- 나노입자Nanoparticles 아나타제Anatase 약 60About 60 비교예2Comparative Example 2 3636 -- 0.80.8 0.40.4 0.20.2 0.80.8 비구형Non-spherical 아나타제Anatase 약 60About 60 비교예3Comparative Example 3 3636 0.30.3 0.80.8 0.40.4 0.20.2 0.80.8 웜라이크+구형Warm Like + Old 아나타제+루타일Anatase + Rutile 약 80About 80

상기 표 1에 나타낸 바와 같이, 실시예 1의 이산화티타늄은 웜-라이크 구조를 갖는 아나타제 결정상에 의해 90㎡/g 이상의 높은 비표면적을 갖는다. 이에 비하여, 비교예 1∼3의 이산화티타늄은 웜-라이크 구조가 아니며, 비표면적도 낮은 것을 알 수 있다.As shown in Table 1, the titanium dioxide of Example 1 has a high specific surface area of 90 m 2 /g or more due to the anatase crystal phase having a worm-like structure. In contrast, it can be seen that the titanium dioxide of Comparative Examples 1 to 3 does not have a worm-like structure and has a low specific surface area.

Claims (11)

다음의 단계들을 포함하는, 웜-라이크(worm-like) 구조를 갖는 아나타제 결정상의 이산화티타늄의 제조방법:
(a) 가지형 공중합체 및 글루코오스를 각각의 용매에 용해시킨 후, 혼합하여 혼합 용액을 제조하는 단계;
(b) 상기 혼합 용액에 사염화티타늄, 산 및 알코올을 포함하는 사염화티타늄졸을 첨가한 후, 100∼200℃에서 15∼24시간 동안 수열반응시켜 이산화티타늄을 수득하는 단계; 및
(c) 상기 이산화티타늄을 고온 소결하는 단계.
A method for producing titanium dioxide in anatase crystal phase having a worm-like structure, comprising the following steps:
(a) dissolving the branched copolymer and glucose in each solvent, and then mixing to prepare a mixed solution;
(b) adding a titanium tetrachloride sol containing titanium tetrachloride, an acid and an alcohol to the mixed solution, followed by hydrothermal reaction at 100 to 200°C for 15 to 24 hours to obtain titanium dioxide; And
(c) sintering the titanium dioxide at high temperature.
제1항에 있어서,
상기 이산화티타늄은 1차 입자가 10nm 이하의 입경을 가지는 이산화티타늄 의 제조방법.
The method of claim 1,
The titanium dioxide is a method for producing titanium dioxide having a primary particle diameter of 10 nm or less.
제1항에 있어서,
상기 (a) 단계에서, 상기 가지형 공중합체는 할로겐화 고분자 화합물의 주쇄에 친수성 단량체가 그래프팅된 공중합체인 이산화티타늄의 제조방법.
The method of claim 1,
In the step (a), the branched copolymer is a method of producing titanium dioxide, which is a copolymer in which a hydrophilic monomer is grafted onto a main chain of a halogenated polymer compound.
제1항에 있어서,
상기 (b) 단계에서, 상기 사염화티타늄을 포함하는 졸:상기 가지형 공중합체의 혼합비(v/w)는 1:0.05∼0.2인 이산화티타늄의 제조방법.
The method of claim 1,
In the step (b), the sol containing titanium tetrachloride: the mixing ratio (v/w) of the branched copolymer is 1:0.05 to 0.2.
제1항에 있어서,
상기 (b) 단계에서, 상기 사염화티타늄:산:알코올의 중량혼합비는 1:0.5∼1:1∼3인 이산화티타늄의 제조방법.
The method of claim 1,
In the step (b), the weight mixing ratio of the titanium tetrachloride: acid: alcohol is 1:0.5 to 1:1 to 3. The method for producing titanium dioxide.
제1항에 있어서,
상기 (b) 단계에서, 상기 산은 염산, 황산 및 질산으로 이루어지는 군으로부터 선택되는 이산화티타늄의 제조방법.
The method of claim 1,
In the step (b), the acid is a method for producing titanium dioxide selected from the group consisting of hydrochloric acid, sulfuric acid and nitric acid.
제1항에 있어서,
상기 (b) 단계에서, 상기 알코올은 에탄올, 메탄올, 이소프로필알코올 및 프로판올로 이루어지는 군으로부터 선택되는 이산화티타늄의 제조방법.
The method of claim 1,
In the step (b), the alcohol is a method for producing titanium dioxide selected from the group consisting of ethanol, methanol, isopropyl alcohol and propanol.
제1항에 있어서,
상기 (b) 단계에서, 상기 알코올은 에탄올인 이산화티타늄의 제조방법.
The method of claim 1,
In the step (b), the alcohol is ethanol, a method for producing titanium dioxide.
제1항에 있어서,
상기 (c) 단계에서, 상기 고온 소결은 400∼550℃에서 0.5시간∼3시간 동안 수행되는 이산화티타늄의 제조방법.
The method of claim 1,
In the step (c), the high-temperature sintering is performed at 400 to 550°C for 0.5 to 3 hours.
제1항 내지 제9항 중 어느 한 항에 있어서,
상기 이산화티타늄은 광촉매에 이용되는 것인, 이산화티타늄의 제조방법.
The method according to any one of claims 1 to 9,
The titanium dioxide is used in a photocatalyst, a method for producing titanium dioxide.
제1항 내지 제9항 중 어느 한 항에 있어서,
상기 이산화티타늄은 태양전지용 전극에 이용되는 것인, 이산화티타늄의 제조방법.
The method according to any one of claims 1 to 9,
The titanium dioxide is used in an electrode for a solar cell, a method for producing titanium dioxide.
KR1020180170211A 2018-12-27 2018-12-27 Titanium dioxide with worm-like structure, method for manufacturing the same and use thereof KR102164892B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180170211A KR102164892B1 (en) 2018-12-27 2018-12-27 Titanium dioxide with worm-like structure, method for manufacturing the same and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180170211A KR102164892B1 (en) 2018-12-27 2018-12-27 Titanium dioxide with worm-like structure, method for manufacturing the same and use thereof

Publications (2)

Publication Number Publication Date
KR20200080600A KR20200080600A (en) 2020-07-07
KR102164892B1 true KR102164892B1 (en) 2020-10-13

Family

ID=71603221

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180170211A KR102164892B1 (en) 2018-12-27 2018-12-27 Titanium dioxide with worm-like structure, method for manufacturing the same and use thereof

Country Status (1)

Country Link
KR (1) KR102164892B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114602418B (en) * 2022-04-02 2022-11-25 安徽芈源环保科技有限公司 Setaria viridis-shaped metal oxide nano material with bionic structure and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255831B2 (en) 2003-05-30 2007-08-14 Carrier Corporation Tungsten oxide/titanium dioxide photocatalyst for improving indoor air quality
KR101147453B1 (en) * 2009-12-09 2012-05-21 연세대학교 산학협력단 Preparation method of titanium dioxide mesoporous films using graft copolymer and it use in photo-electrode of dye-sensitized solar cells
KR101382532B1 (en) * 2012-03-29 2014-04-08 연세대학교 산학협력단 Preparation method of mesoporous TiO2 film using TiO2 nanoparticles and graft copolymer and dye sensitized solar cells using the same
KR20170135793A (en) 2017-11-28 2017-12-08 한국세라믹기술원 Composite for photocatalyst comprising basalt fiber, titanium dioxide and transition metal and method for preparation of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. MATER. CHEM. 2012 22 11079
JOURNAL OF POWER SOURCES 298 (2015) 14-22*

Also Published As

Publication number Publication date
KR20200080600A (en) 2020-07-07

Similar Documents

Publication Publication Date Title
Song et al. Mesocrystals—ordered nanoparticle superstructures
Naghibi et al. Application of the statistical Taguchi method to optimize TiO2 nanoparticles synthesis by the hydrothermal assisted sol–gel technique
Shang et al. New Bi2WO6 nanocages with high visible-light-driven photocatalytic activities prepared in refluxing EG
EP3617147B1 (en) Process for preparing titanic acid salt, titanic acid, and titanium oxide having controllable particle size and hierarchical structure
KR101954792B1 (en) Method of manufacturing metal-loaded TiO2/graphene composites through one-pot hydrothermal synthesis and the TiO2/graphene composites manufactured by the same
WO2008005055A2 (en) Nanoparticles containing titanium oxide
KR102164892B1 (en) Titanium dioxide with worm-like structure, method for manufacturing the same and use thereof
Tsotetsi et al. Sol-gel derived mesoporous TiO2: Effects of non-ionic co-polymers on the pore size, morphology, specific surface area and optical properties analysis
Luo et al. Templated synthesis of crystalline mesoporous CeO2 with organosilane-containing polymers: balancing porosity, crystallinity and catalytic activity
Razak et al. Effect of annealing temperature on silver doped titanium dioxide (Ag/tio2) thin film via sol-gel method
KR102117026B1 (en) High reflective material comprising titanium dioxide particles
KR101540971B1 (en) TiO2 nanosheets coated SnO2 nanoparticle, Dye-sensitized solar cells comprising the same and Method for Fabrication thereof
JP5707646B2 (en) NOVEL MANUFACTURING METHOD OF TITANIUM DIOXIDE PARTICLES AND TITANIUM DIOXIDE PARTICLES BY THE
KR100913622B1 (en) Method to synthesize mesoporous titania for photocatalytic hydrogen production
WO2013047951A1 (en) Bulk-type oxide-based nanoporous body, and method for manufacturing same
KR20090128838A (en) Method for synthesizing nanocrystalline/nanoporous transition metal oxides
JP5062988B2 (en) Novel titanium oxide and method for synthesizing novel titanium oxide
Liu et al. Fabrication and characteristics of three-dimensional flower-like titanate nanostructures
KR101577790B1 (en) Method of preparing meso-porous magnesium titanate and carbon dioxide separation membranes using graft copolymer and method of preparing the same
KR101906187B1 (en) Method for Preparing Composite Particles Using Water-in-oil Emulsion System
KR101752170B1 (en) Dispersion sol of rutile titanium dioxide and method for preparing the same
JP4521801B2 (en) Organic solvent-dispersed titanium oxide sol and method for producing the same
CN109019679B (en) Preparation method of mesoporous titanium dioxide
Kubo et al. Synthesis of Nano‐sized BaTiO3 Powders by the Rotary‐Hydrothermal Process
Razali et al. Basic concepts and processing of nanostructures materials

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant