JP4521801B2 - Organic solvent-dispersed titanium oxide sol and method for producing the same - Google Patents

Organic solvent-dispersed titanium oxide sol and method for producing the same Download PDF

Info

Publication number
JP4521801B2
JP4521801B2 JP2001292199A JP2001292199A JP4521801B2 JP 4521801 B2 JP4521801 B2 JP 4521801B2 JP 2001292199 A JP2001292199 A JP 2001292199A JP 2001292199 A JP2001292199 A JP 2001292199A JP 4521801 B2 JP4521801 B2 JP 4521801B2
Authority
JP
Japan
Prior art keywords
titanium oxide
organic solvent
sol
oxide sol
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001292199A
Other languages
Japanese (ja)
Other versions
JP2003095657A (en
Inventor
寛之 守屋
伸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Kasei Co Ltd
Original Assignee
Taki Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Kasei Co Ltd filed Critical Taki Kasei Co Ltd
Priority to JP2001292199A priority Critical patent/JP4521801B2/en
Publication of JP2003095657A publication Critical patent/JP2003095657A/en
Application granted granted Critical
Publication of JP4521801B2 publication Critical patent/JP4521801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Colloid Chemistry (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は有機溶媒分散型酸化チタンゾル及びその製造方法に関し、殊に親水性有機溶媒あるいは親水性有機溶媒系ポリマーとの相溶性と液安定性に優れ、薄膜を作成する際に膜の厚膜化が容易で、各種材料への機能向上に有用な酸化チタンゾルを提供するものである。
【0002】
【従来の技術】
白色顔料として知られている酸化チタンは、屈折率及び誘電率が大きく、紫外線で励起しやすい特性を有しており、その性質を利用して、紫外線吸収剤、光学材料、電気・電子材料、光触媒、装飾材料、映像表示材料、吸着材料、化粧材料、グレッチェル型色素増感太陽電池あるいは画像記憶材料等にも利用されている。この様な用途に用いる酸化チタンの形態は、膜であることが多く、そのような膜はチタンアルコキシドや有機チタン化合物などの酸化チタン前駆体を基材に焼き付ける方法、酸化チタンゾルをバインダー成分と混合して成膜する方法などが知られている。
前者は、ゾルゲル法、アルコキシド法とも呼ばれ、酸化チタンのみからなる薄膜を形成できるが、焼き付け時の応力により膜が崩壊しやすく、一般に数マイクロメートル以上の膜の形成は困難である。
一方、後者はバインダーを選ぶことにより厚膜化も可能である上、前駆体ではなく酸化チタン微粒子を用いるために、より低温の処理で所望の膜が得られる。また、酸化チタンゾルは酸化チタン前駆体よりも安定で、工業的利用に適している。
【0003】
高温で焼結させた場合を除き一般に酸化チタンは、粒子表面に水酸基を有しており親水性であるため、水分散型のゾルとして使用されることが一般的である。水分散型のチタンゾルは、エタノールのような親水性溶媒とは、ある一定の範囲内で混和することが可能であるが、混和する有機溶媒量が多くなるとゾルの形態が壊れ、ゲル化したり、沈殿が発生したりする。
更に、バインダー等の成分の含有量が増加すると相分離を起こしたりすることがあり、有機溶媒型の安定な酸化チタンゾルが望まれている。
【0004】
無機酸化物ゾルの内、シリカゾルは表面をエステル化させ易いことから、アルコール分散型のシリカゾルを容易に製造することができ、このようなシリカゾルは各種用途に利用されている。
また、酸化スズゾルは特公平5−87445号公報あるは特公平6−19074号公報には、親水性溶媒(エタノール、エチレングリコールなどのアルコール類、メチルセロソルブなどのエーテル類、メタノールアミンなどのアミン類及びジメチルホルムアミドなどのアミド類)に分散させることが可能であると記載されている。
【0005】
ところで、酸化チタンゾルに関しても各種の技術が開示されている。
特開昭63−215520号公報には、オキシカルボン酸を含む中性チタニアゾルが開示されているが、この様なゾルは厚膜化には適さず使用できない。
特開平3−257758号公報には、プロピレングリコール型金属酸化物ゾルが開示されているが、このゾルは塗膜の濡れ性を改善するために、水溶性ゾルに水溶性のプロピレングルコールを混合したに過ぎない。
特公平6−74204号公報には、水溶性多価アルコールを安定化剤として使用するメタチタン酸の微粒子からなる日焼け止め化粧料に使用する水性ゾルが記載されている。
特開平10−167727号公報には、相間移動活性を有する化合物として、クラウンエーテル類、ポリエチレングリコール類、ポリプロピレングリコール類等の化合物で処理した変性酸化チタンゾルが記載されている。
また、特開平9−248467号公報や特開平9−100124号公報には、安定化剤或いは原料としてチタンアルコキシドを使用してゾルを製造する方法が記載されている。
特公平7−100611号公報には、水溶性酸化チタンゾルの水をイソプロピルアルコールで置換したアルコール分散型チタンゾルが記載されている。
しかし、イソプロピルアルコールのような低級アルコールは、その溶媒の蒸気圧が高く薄膜の作成には問題ないが、厚膜を作成にしようとした場合には、乾燥性が高すぎるため厚膜に出来ないという問題がある。
【0006】
【発明が解決しようとする課題】
そこで、本発明者らは酸化チタンの厚膜を容易に得ることができる、有機溶媒に対して安定な酸化チタンゾルについて鋭意検討を重ねた結果、以下に詳記する本発明を完成したものである。
【0007】
【課題を解決するための手段】
即ち、本発明はオキシカルボン酸をオキシカルボン酸/酸化チタン(モル比)=0.03〜3.0の範囲及び第1〜3級アミン系カチオン型界面活性剤及び4級アンモニウム塩系カチオン型界面活性剤から選ばれたカチオン型界面活性剤をカチオン型界面活性剤/酸化チタン(モル比)=0.05〜0.2の範囲で含有してなる有機溶媒分散型酸化チタンゾルに関する。更に、本発明はオキシカルボン酸で安定化された水分散型酸化チタンゾルの存在下に、カチオン型界面活性剤を添加した後、水溶媒を有機溶媒で置換することからなるオキシカルボン酸をオキシカルボン酸/酸化チタン(モル比)=0.03〜3.0の範囲及びカチオン型界面活性剤をカチオン型界面活性剤/酸化チタン(モル比)=0.05〜0.2の範囲で含有してなる有機溶媒分散型酸化チタンゾルの製造方法に関する。
【0008】
【発明の実施の形態】
本発明の有機溶媒分散型酸化チタンゾルをその製造方法に基づき説明をする。本発明の酸化チタンゾルは、無定形酸化チタンゾル或いは結晶質酸化チタンゾルのいずれでもよい。しかしながら、酸化チタンの厚膜生成等に使用するときは、本発明の酸化チタンゾル濃度を高濃度に出来ること、また無定形酸化チタンに比べて乾燥時の収縮が少ないこと等の理由から、アナターゼ型の結晶質酸化チタンゾルの使用が望ましい。
【0009】
アナターゼ型結晶質酸化チタンゾルは、市販品、例えば商品名「タイノック」(多木化学(株)製)を利用することもできるし、塩化チタン、硫酸チタンのような水溶性チタンのチタン水溶液にアルカリ金属の水酸化物、アンモニウム化合物などのアルカリ性化合物を加え、チタンのゲルを生成させ、これにオキシカルボン酸を加え、これを100℃以上で水熱処理し、アナターゼ型結晶質酸化チタンゾルを製造することもできる。
また、アナターゼ型酸化チタンの粉末やスラリーにオキシカルボン酸を添加して湿式粉砕することによっても製造することができる。
これらの水分散媒酸化チタンゾルを有機溶媒に分散させることについて云えば、水を分散媒とした酸化チタンゾルに、例えばアルコール等の親水性有機溶媒をある程度まで混合することは可能であり、また、酸化チタンゾルの濃度が低い程、有機溶媒を多含させることはできる。
【0010】
しかしながら、このようなゾル液を用いて成膜すると、ゾル成分が凝集して、膜が白濁したり平滑な膜が得られなかったりする。当然の事ながら、酸化チタンゾルの濃度が低い場合は、仮にうまく成膜できても、所望の膜厚が得られないため、繰り返し成膜する必要があり実用的でない。
このため、実質的に有機溶媒に分散できる高濃度の酸化チタンゾルが必要であった。当初、各種の有機溶媒に分散されて市販されているシリカゾルに着目し、シリカゾルを酸化チタンゾルに混合して有機溶媒への分散を試みたが、単に両者を混合するだけでは分散性は向上しなかった。
【0011】
そこで、酸化チタンゾルの分散性向上について鋭意検討を行った結果、オキシカルボン酸で安定化された水分散型酸化チタンゾルの存在下に、カチオン型界面活性剤を添加することにより、実質的に有機溶媒に分散化可能となることを見出した。
【0012】
本発明で使用するオキシカルボン酸で安定化された水分散型酸化チタンゾルは、前述のような酸化チタンゾルをオキシカルボン酸の添加によって安定化させたものである。
本発明で使用するオキシカルボン酸の種類としては、乳酸、クエン酸、グリコール酸、リンゴ酸、酒石酸、グリセリン酸、α-オキシ酪酸、マンデル酸、トロパ酸等が挙げられるが、これらの内、リンゴ酸、酒石酸、クエン酸の使用が最も望ましい。即ち、後述する親水性有機溶媒との関係で、ゾル組成物の液安定性とその組成物を使用した場合に於ける厚膜化の点から当該オキシカルボン酸の使用が望ましい。
【0013】
また、オキシカルボン酸の使用量に関して云えば、オキシカルボン酸/酸化チタン(モル比)が0.03〜3.0の範囲となるように使用する。このモル比が0.03を下廻ると、酸化チタンゾルの液安定性が悪くなり、経時と共に沈降物が生成し、これを使用して膜を作成すると不均一な膜質となる。また、モル比が3.0を上廻りオキシカルボン酸量が多くなると、このゾル溶液を使用して作成した膜の膜質は著しく悪くなる。
なお、オキシカルボン酸に代えて、塩酸、硝酸などの鉱酸を使用することによっても同様の、酸化チタンゾルを得ることが出来るが、ゾルの粘度が高くなり過ぎることから、後述の高濃度のカチオン型界面活性剤により表面処理された酸化チタンゾルを得ることができず、本発明の用途に適さない。
【0014】
次に、上記の如くして製造したオキシカルボン酸を含有した水分散の酸化チタンゾルに、カチオン型界面活性剤を添加して酸化チタンの沈殿物を得る。
次いで、この沈殿物を洗浄後、ろ過することによってウェットケーキとする。
これに親水性有機溶媒を添加し、溶液を加熱濃縮することによって脱水し、本発明の有機溶媒分散型酸化チタンゾルを得る。
また別の方法として、上記ウェットケーキを乾燥し、これを有機溶媒に再分散させることによっても、本発明の有機溶媒分散型酸化チタンゾルを得ることができる。
更に別の方法として、水への溶解度の低い有機溶媒を使用する場合は、前記チタンスラリーに有機溶媒を添加し、有機溶媒相へ酸化チタンを抽出することによっても、本発明の有機溶媒分散型チタンゾルを得ることができる。
【0015】
使用するカチオン型界面活性剤の種類としては、オクタデシルアミン酢酸塩のような1級アミン系カチオン型界面活性剤、オキシエチレンドデシルアミンのような2級アミン系カチオン界面活性剤、ポリオキシエチレンドデシルアミンのような3級アミン系カチオン型界面活性剤およびジアルキルジメチルアンモニウムクロライドのような4級アンモニウム塩系カチオン型界面活性剤を例示できるが、これらのうち4級アンモニウム塩系カチオン型界面活性剤の使用が溶解性の点から最も好ましい。
特に好ましい4級アンモニウム塩系カチオン型界面活性剤としては、ジアルキルジメチルアンモニウムクロライド、アルキルトリメチルアンモニウムクロライドおよびアルキルジメチルベンジルアンモニウムクロライド等を例示できるが、これらに限定されるものではない。
【0016】
カチオン型界面活性剤の使用量に関しては云えば、酸化チタンゾルの粒子径が大きくなる程、カチオン型界面活性剤の使用量は少量でよく、また、反対に粒子径が小さくなる程、カチオン型界面活性剤の使用量は多くなる。その使用量は、酸化チタンのTiO量に対してモル比0.05〜0.27の範囲である。
この界面活性剤の使用量がこの範囲を逸脱し、0.05を下廻るとゾルの分散性が著しく低下する。また、反対に界面活性剤の使用量が0.27を上廻ると、ゾルの安定性は悪くなる。
【0017】
本発明で使用できる有機溶媒はメタノール、エタノール、1−プロパノール、2−ブタノール、ヘキサノール、ブチルカルビトール、1−メトキシ−2−プロパノール、2−ブトキシエタノール等のアルコール類、メチルエチルケトン等のケトン類、4−ブチロラクトン等のエステル類を例示することができる。
【0018】
界面活性剤を含有する酸化チタンゾルの有機溶媒中の水分量に関しては、10質量%以下とすることが望ましい。
【0019】
酸化チタンゾルの濃度が低いと、酸化チタン膜の厚膜化が困難となる。従来のゾルでは、酸化チタン濃度が、例えばTiOとして15質量%以上になると、液が増粘、ゲル化するため分散媒中の水分量を17質量%以下にすることが出来なかった。
しかし、本発明の有機溶媒分散型酸化チタンゾルは、分散媒中の水分量を10質量%以下とすることが可能である。このようなことは、例えば以下のような方法によって可能となる。
即ち、オキシカルボン酸で安定化させた水分散酸化チタンゾルにカチオン型界面活性剤を添加して、界面活性剤と酸化チタンゾルを充分に反応させた後、有機溶媒として例えば蒸気圧の高い4−ブチロラクトンを使用するような場合には、4−ブチロラクトンを添加した後、このゾル溶液を加熱することによって脱水を行う。
加熱時に、界面活性剤含有酸化チタンゾル溶液の液温が100℃までは、水が優先的に蒸発するが、液温での有機溶媒の蒸気圧に相当する量の有機溶媒も蒸発する。そして実質的に水の蒸発が終了すれば、外部加熱温度に近い温度まで液温は上昇する。従って、例えば、140℃で外部加熱を行った場合、液温が120℃になれば加熱を終了する。液温が120℃にもなれば、脱水は完了している。120℃以上で長時間加熱を行っても、有機溶媒の蒸発量が多くなるだけで経済的でない。このようなことから、加熱時間については特段制約はない。
尚、この加熱脱水による方法に於いて、常圧蒸留に代えて減圧蒸留によるときは80℃以下で行うことが好ましい。
【0020】
本発明のゾル組成物のチタン(TiO)濃度について云えば、5〜40質量%、更に好ましくは10〜30質量%の範囲である。5質量%以下では、先にも記載したように、比較的容易に有機溶媒分散チタンゾルを得ることができるので、本発明のような作業を行う必要はない。一方、40質量%以上になると、組成を工夫しても粘度が高くなりすぎてゾルの安定性が悪くなる。
【0021】
この様にして得られる本発明の有機溶媒分散型酸化チタンゾルは、有機溶媒あるいは有機溶媒系ポリマーとの相溶性と安定性に優れ、とりわけ厚膜化を始め、水を好まない各種用途に好適な材料である。ところで、本発明の有機溶媒分散型酸化チタンゾルに、必要に応じて使用する有機溶媒と混合可能な無機バインダー、有機バインダーあるいは有機無機複合バインダーを添加混合することもできる。
このようなバインダーとしては、例えば光硬化性樹脂あるいはこれらを含む複合バインダー等を好例として挙げることができる。
【0022】
【実施例】
以下に本発明の実施例を掲げて更に説明を行う。尚、%は特に断らない限り全て質量%を示す。
【0023】
[実施例1]
オキシ塩化チタン水溶液(TiO=2%)2000gに、アンモニア水(NH=2%)2212g(NH/Cl当量比=1.3)を常温攪拌下で徐々に添加し、水酸化チタンゲルを生成させた。これをろ液中の塩素イオンがチタンゲル(TiO)に対して100ppm以下になるまでろ過水洗し、TiO=10%、NH=0.3%のゲルを得た。
このゲル400gに、リンゴ酸/TiO(モル比)=0.8となるようにリンゴ酸54gを添加し、これをオートクレーブに入れ、120℃で6時間の水熱処理を行い、結晶性酸化チタンゾル(TiO=6.5%)を得た。X線回折法によりこのゾルを分析した結果、アナターゼ型の酸化チタンのピークが見られ、その第1ピークを用いて、デバイ・シェーラーの式から求めた結晶子サイズは6nmであった。
得られたゾルを限外ろ過装置を用いて洗浄し、過剰のリンゴ酸を充分除去して得られた酸化チタンゾルは、リンゴ酸/TiO(モル比)=0.3であった。
次に、この酸化チタンゾル(TiO=15%、リンゴ酸=7.6%、pH=2.5)100gにイオン交換水2900g、アルキルジメチルベンジルアンモニウムクロライド10%水溶液(日本油脂社製カチオンF2)65.9gを加えて1時間保持した後、吸引濾過によりウェットケーキを得た。このウェットケーキに4−ブチロラクトン72gを加えて、エバポレーターを用いて、液温60℃で減圧蒸留を行い脱水を行った。留出がなくなるまで蒸留を行うことにより本発明のカチオン型界面活性剤含有酸化チタンゾルを得た。このゾルを分析に供した結果、TiO=15%、界面活性剤=5%、リンゴ酸=7.6%、(界面活性剤/TiO(モル比)=0.08、リンゴ酸/TiO(モル比)=0.3、4−ブチロラクトン/TiO(モル比)=4.4)であり、分散媒中の水分量は2.0%であった。
【0024】
この得られた本発明の有機溶媒分散型酸化チタンゾルを用いて樹脂塗膜形成試験を行った。
本発明のゾル35gを、4−ブチロラクトンに溶解させた感光性ポリマー(40%メタクリル酸、30%メチルメタクリレート、30%スチレンからなる共重合体、濃度35%,重量平均分子量43000、酸価95)溶液10gに添加し、更にこれに光重合開始剤(チバガイギー社製IC-369)3gを添加し、粘度10万mPa/sに液を調製した。これを用い、ガラス板上にスクリーン印刷で膜厚150μmのパターンを作製したのち、これを高圧水銀灯で露光させてパターンを硬化成形した。
その後、成形体を550℃で焼成して酸化チタン厚膜を得た。焼成により、膜厚は収縮して初期膜厚の70%になったが、クラックも見られず良好なパターンが得られた。
【0025】
[実施例2]
オキシ塩化チタン水溶液(TiO=2%)2000gに、アンモニア水(NH=2%)1700g(NH/Cl当量比=1.0)を常温攪拌下で徐々に添加し、水酸化チタンゲルを生成させた。これをろ過水洗し、TiO=5%、NH=0.1%、Cl=0.1%のゲルを得た。
このゲル400gに、クエン酸/TiO(モル比)=0.3となるようにクエン酸・1水和物15.8gを添加し、60℃の恒温槽にいれて、24時間保持し、酸化チタンゾルを得た。得られたゾルを限外ろ過装置を用いて洗浄し、過剰のクエン酸を充分除去した。X線回折法によりこのゾルを分析した結果、アナターゼ型の酸化チタンの明確なピークは見られず、このゾルは無定形酸化チタンゾル(TiO=4.8%、クエン酸=1.1%、pH=3)であった。
次に、この酸化チタンゾル200gにイオン交換水760g、ジデシルジメチルアンモニウムクロライド10%水溶液(日本油脂社製カチオン2DB‐500E)43.5gを加え1時間保持した後、吸引濾過を行いウェットケーキを得た。このウェットケーキを60℃で乾燥することによりカチオン型界面活性剤含有酸化チタン粉末を得た。これに4−ブチロラクトン30gを加え、分散させることにより本発明の有機溶媒分散型有酸化チタンゾル(TiO=20%)を得た。このゾルを分析に供した結果、TiO=20%、クエン酸=4.6%、カチオン型界面活性剤=8.3%、(カチオン型界面活性剤/TiO(モル比)=0.09、クエン酸/TiO(モル比)=0.1であり、分散媒中の水分量は4.6%であった。また、このゾルはイソプロピルアルコールで任意に希釈することができ、混合溶媒でも問題なく、有機溶媒に対して安定であることが分かった。
【0026】
[実施例3]
硫酸酸性の硫酸チタン水溶液(TiO=2%、SO=8%)5000gに、水酸化ナトリウム水溶液(NaO=4%)6500gを攪拌下で添加し、チタンゲルを生成させた。
これをろ過水洗し、ろ液の電気伝導度(mS/cm)が反応母液の1/500以下になるまで良く洗浄し、TiO=8%のゲルを得た。このゲルを乾燥させ、300℃で1時間熱処理し、アナターゼ型酸化チタン粉末110g(TiO=90%)を得た。
この酸化チタン粉末60gに酒石酸 10g、イオン交換水230gを添加し、湿式粉砕したのち、4000Gの遠心力で遠心分離機で処理し、上澄み液を分取した。この上澄み液は、TiO=15%、酒石酸=3.6%、平均粒子径0.2μmの酸化チタンゾルであった。
この水分散ゾル200gにテトラデシルジメチルベンジルアンモニウムクロライド10%水溶液(日本油脂社製カチオンM2)50gを加え1時間保持し、洗浄後吸引濾過し、60℃で乾燥を行うことによりカチオン型界面活性剤含有酸化チタン粉末を得た。これにエタノール106gを加え、分散させることにより本発明の有機溶媒分散型酸化チタンゾル(TiO=20%)を得た。このゾルを分析に供した結果、TiO=20%、酒石酸=4.8%、カチオン型界面活性剤=2.5%、(カチオン型界面活性剤/TiO(モル比)=0.03、酒石酸/TiO(モル比)=0.1であり、分散媒中の水分量は2.0%であった。
【0027】
[実施例4]
実施例1と同様の方法で得た酸化チタンゲル(TiO=10%、NH=0.3%)400gに、グリコール酸/TiO(モル比)=0.5となるように70%グリコール酸(和光純薬工業社製)27.2gを添加し、これをオートクレーブに入れ、120℃で6時間の水熱処理を行い、結晶性酸化チタンゾル(TiO=9.4%)を得た。
次に、このゾル100gにイオン交換水840g、アルキルジメチルベンジルアンモニウムクロライド10%水溶液(日本油脂社製カチオンF2)41.3gを加え1時間保持した後、イソブチルアルコール40gで抽出を行うことにより、本発明の有機溶媒分散型酸化チタンゾルを得た。このゾルを分析に供した結果、TiO=15%、カチオン型界面活性剤=6.4%、グリコール酸=7.1%、(カチオン型界面活性剤/TiO(モル比)=0.1、グリコール酸/TiO(モル比)=0.5であり、分散媒中の水分量は10%であった。
【0028】
比較例として、上記の酸化チタンゲル(TiO=10%、NH=0.3%)400gに、硝酸/TiO(モル比)=0.3となるように60%硝酸15.8gとイオン交換水38.1gを添加し、40℃の恒温器に3日間入れて、無定型酸化チタンゾル(TiO=6.5%)を得た。次に、このゾル145gにイオン交換水800g、アルキルジメチルベンジルアンモニウムクロライド10%水溶液40gを加えたが、沈殿物は生成せず反応は進行しなかった。
【0029】
【発明の効果】
本発明の有機溶媒分散型酸化チタンゾルは、殊に親水性有機溶媒あるいは親水性有機溶媒系ポリマーとの相溶性と液安定性に優れ、薄膜を作成する際に膜の厚膜化が容易で、各種材料への機能向上に有用であり、水を好まない各種用途に好適な材料である。例えば、誘電体、光電変換材料、紫外線カット材、高屈折率材、触媒、ハードコート材等に、優れた機能付与が可能であり工業的に有益である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic solvent-dispersed titanium oxide sol and a method for producing the same, and in particular, has excellent compatibility with a hydrophilic organic solvent or a hydrophilic organic solvent-based polymer and liquid stability, and increases the thickness of a film when forming a thin film. Therefore, it is an object of the present invention to provide a titanium oxide sol that is easy to use and useful for improving the functions of various materials.
[0002]
[Prior art]
Titanium oxide, known as a white pigment, has a large refractive index and dielectric constant, and has the property of being easily excited by ultraviolet rays. Utilizing these properties, ultraviolet absorbers, optical materials, electrical / electronic materials, It is also used for photocatalysts, decorative materials, video display materials, adsorbing materials, cosmetic materials, Gretchel dye-sensitized solar cells, image storage materials, and the like. The form of titanium oxide used for such applications is often a film. Such a film is a method in which a titanium oxide precursor such as titanium alkoxide or an organic titanium compound is baked on a substrate, and a titanium oxide sol is mixed with a binder component. Then, a method of forming a film is known.
The former is also called a sol-gel method or an alkoxide method, and can form a thin film made of only titanium oxide. However, the film tends to collapse due to stress during baking, and it is generally difficult to form a film of several micrometers or more.
On the other hand, the latter can be thickened by selecting a binder, and since titanium oxide fine particles are used instead of the precursor, a desired film can be obtained at a lower temperature. Titanium oxide sol is more stable than titanium oxide precursor and is suitable for industrial use.
[0003]
Except when sintered at high temperature, titanium oxide generally has a hydroxyl group on the particle surface and is hydrophilic, so it is generally used as a water-dispersed sol. The water-dispersed titanium sol can be mixed with a hydrophilic solvent such as ethanol within a certain range, but when the amount of the organic solvent to be mixed increases, the form of the sol breaks and gels, Precipitation may occur.
Furthermore, when the content of components such as a binder increases, phase separation may occur, and an organic solvent-type stable titanium oxide sol is desired.
[0004]
Among inorganic oxide sols, silica sols can easily be esterified on the surface, and therefore, alcohol-dispersed silica sols can be easily produced. Such silica sols are used in various applications.
Further, tin oxide sols are disclosed in JP-B-5-87445 and JP-B-6-19074 in hydrophilic solvents (alcohols such as ethanol and ethylene glycol, ethers such as methyl cellosolve, and amines such as methanolamine). And amides such as dimethylformamide).
[0005]
By the way, various techniques are also disclosed regarding the titanium oxide sol.
JP-A-63-215520 discloses a neutral titania sol containing an oxycarboxylic acid, but such a sol is not suitable for thickening and cannot be used.
JP-A-3-257758 discloses a propylene glycol-type metal oxide sol. In order to improve the wettability of the coating film, this sol is mixed with water-soluble propylene glycol in the water-soluble sol. It was only done.
Japanese Examined Patent Publication No. 6-74204 describes an aqueous sol used for sunscreen cosmetics composed of fine particles of metatitanic acid using a water-soluble polyhydric alcohol as a stabilizer.
JP-A-10-167727 discloses a modified titanium oxide sol treated with a compound such as crown ethers, polyethylene glycols, or polypropylene glycols as a compound having phase transfer activity.
JP-A-9-248467 and JP-A-9-100124 describe a method for producing a sol using titanium alkoxide as a stabilizer or a raw material.
Japanese Patent Publication No. 7-100611 describes an alcohol-dispersed titanium sol in which water of a water-soluble titanium oxide sol is replaced with isopropyl alcohol.
However, a lower alcohol such as isopropyl alcohol has a high vapor pressure of the solvent, and there is no problem in the production of a thin film. However, when a thick film is to be produced, it cannot be formed into a thick film because it is too dry. There is a problem.
[0006]
[Problems to be solved by the invention]
Therefore, the present inventors have completed the present invention described in detail below as a result of intensive studies on a titanium oxide sol that is stable against an organic solvent and can easily obtain a thick film of titanium oxide. .
[0007]
[Means for Solving the Problems]
That is, in the present invention, the oxycarboxylic acid is in the range of oxycarboxylic acid / titanium oxide (molar ratio) = 0.03 to 3.0 and primary to tertiary amine cationic surfactants and quaternary ammonium salt cationic types. The present invention relates to an organic solvent-dispersed titanium oxide sol containing a cationic surfactant selected from surfactants in a range of cationic surfactant / titanium oxide (molar ratio) = 0.05 to 0.2. Furthermore, the present invention provides an oxycarboxylic acid obtained by adding a cationic surfactant in the presence of a water-dispersed titanium oxide sol stabilized with an oxycarboxylic acid and then substituting the aqueous solvent with an organic solvent. Acid / titanium oxide (molar ratio) = 0.03 to 3.0 and a cationic surfactant in a range of cationic surfactant / titanium oxide (molar ratio) = 0.05 to 0.2 The present invention relates to a method for producing an organic solvent-dispersed titanium oxide sol.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The organic solvent-dispersed titanium oxide sol of the present invention will be described based on its production method. The titanium oxide sol of the present invention may be either an amorphous titanium oxide sol or a crystalline titanium oxide sol. However, when used for the production of a thick film of titanium oxide, the anatase type because the titanium oxide sol concentration of the present invention can be made high, and the shrinkage during drying is less than that of amorphous titanium oxide. It is desirable to use a crystalline titanium oxide sol.
[0009]
The anatase type crystalline titanium oxide sol can be a commercially available product, for example, trade name “Tynoch” (manufactured by Taki Chemical Co., Ltd.), or an alkaline aqueous solution of a water-soluble titanium such as titanium chloride or titanium sulfate. An alkaline compound such as a metal hydroxide or an ammonium compound is added to form a titanium gel, an oxycarboxylic acid is added thereto, and this is hydrothermally treated at 100 ° C. or higher to produce anatase type crystalline titanium oxide sol. You can also.
Moreover, it can manufacture also by adding oxycarboxylic acid to the powder and slurry of anatase type titanium oxide, and carrying out wet grinding.
Regarding dispersion of these aqueous dispersion medium titanium oxide sols in an organic solvent, it is possible to mix a hydrophilic organic solvent such as alcohol to some extent with the titanium oxide sol using water as a dispersion medium. The lower the concentration of titanium sol, the more organic solvent can be contained.
[0010]
However, when a film is formed using such a sol solution, the sol component aggregates and the film becomes cloudy or a smooth film cannot be obtained. As a matter of course, when the concentration of the titanium oxide sol is low, a desired film thickness cannot be obtained even if the film can be successfully formed.
For this reason, a high-concentration titanium oxide sol that can be substantially dispersed in an organic solvent is required. At first, we focused on silica sols that are commercially available after being dispersed in various organic solvents, and tried to disperse silica sol in titanium oxide sol and disperse it in organic solvent. However, simply mixing both does not improve the dispersibility. It was.
[0011]
Therefore, as a result of intensive investigations on the improvement of dispersibility of titanium oxide sol, by adding a cationic surfactant in the presence of a water-dispersed titanium oxide sol stabilized with oxycarboxylic acid, a substantially organic solvent can be obtained. It was found that it can be dispersed.
[0012]
The water-dispersed titanium oxide sol stabilized with oxycarboxylic acid used in the present invention is obtained by stabilizing the above-described titanium oxide sol by adding oxycarboxylic acid.
Examples of the oxycarboxylic acid used in the present invention include lactic acid, citric acid, glycolic acid, malic acid, tartaric acid, glyceric acid, α-oxybutyric acid, mandelic acid, tropic acid and the like. Among these, apple Most preferred is the use of acids, tartaric acid, and citric acid. That is, the use of the oxycarboxylic acid is desirable from the viewpoint of the liquid stability of the sol composition and the thickening of the film when the composition is used in relation to the hydrophilic organic solvent described later.
[0013]
Regarding the amount of oxycarboxylic acid used, the oxycarboxylic acid / titanium oxide (molar ratio) is used in a range of 0.03 to 3.0. When this molar ratio is less than 0.03, the liquid stability of the titanium oxide sol deteriorates, and a precipitate is formed with time. When a film is formed using this, a non-uniform film quality is obtained. Further, when the molar ratio exceeds 3.0 and the amount of oxycarboxylic acid increases, the film quality of the film prepared using this sol solution is remarkably deteriorated.
A similar titanium oxide sol can be obtained by using a mineral acid such as hydrochloric acid or nitric acid instead of oxycarboxylic acid. However, since the viscosity of the sol becomes too high, a high concentration cation described later is used. A titanium oxide sol surface-treated with a type surfactant cannot be obtained, and is not suitable for the use of the present invention.
[0014]
Next, a cationic surfactant is added to the water-dispersed titanium oxide sol containing the oxycarboxylic acid produced as described above to obtain a precipitate of titanium oxide.
Next, the precipitate is washed and filtered to obtain a wet cake.
A hydrophilic organic solvent is added thereto, and the solution is dehydrated by heating and concentrating to obtain the organic solvent-dispersed titanium oxide sol of the present invention.
As another method, the organic solvent-dispersed titanium oxide sol of the present invention can also be obtained by drying the wet cake and redispersing it in an organic solvent.
As another method, when using an organic solvent having low solubility in water, the organic solvent dispersed type of the present invention can also be obtained by adding an organic solvent to the titanium slurry and extracting titanium oxide into the organic solvent phase. A titanium sol can be obtained.
[0015]
The types of cationic surfactants used are primary amine cationic surfactants such as octadecylamine acetate, secondary amine cationic surfactants such as oxyethylene dodecylamine, and polyoxyethylene dodecylamine. And tertiary amine cationic surfactants and quaternary ammonium salt cationic surfactants such as dialkyldimethylammonium chloride. Among these, use of quaternary ammonium salt cationic surfactants Is most preferable from the viewpoint of solubility.
Particularly preferred quaternary ammonium salt cationic surfactants include, but are not limited to, dialkyldimethylammonium chloride, alkyltrimethylammonium chloride, and alkyldimethylbenzylammonium chloride.
[0016]
Regarding the amount of the cationic surfactant used, the larger the particle size of the titanium oxide sol, the smaller the amount of the cationic surfactant used. Conversely, the smaller the particle size, the smaller the cationic interface. The amount of active agent used is increased. The amount used is in the range of 0.05 to 0.27 molar ratio to the amount of TiO 2 in titanium oxide.
When the amount of the surfactant used deviates from this range and is less than 0.05, the dispersibility of the sol is significantly lowered. On the other hand, when the amount of the surfactant used exceeds 0.27, the stability of the sol is deteriorated.
[0017]
Organic solvents that can be used in the present invention are alcohols such as methanol, ethanol, 1-propanol, 2-butanol, hexanol, butyl carbitol, 1-methoxy-2-propanol, 2-butoxyethanol, ketones such as methyl ethyl ketone, 4 -Esters such as butyrolactone can be exemplified.
[0018]
The water content in the organic solvent of the titanium oxide sol containing the surfactant is desirably 10% by mass or less.
[0019]
When the concentration of the titanium oxide sol is low, it is difficult to increase the thickness of the titanium oxide film. In the conventional sol, when the titanium oxide concentration is, for example, 15% by mass or more as TiO 2 , the liquid thickens and gels, so that the water content in the dispersion medium cannot be reduced to 17% by mass or less.
However, in the organic solvent-dispersed titanium oxide sol of the present invention, the amount of water in the dispersion medium can be 10% by mass or less. Such a thing becomes possible by the following methods, for example.
That is, a cationic surfactant is added to a water-dispersed titanium oxide sol stabilized with oxycarboxylic acid, and after sufficiently reacting the surfactant with the titanium oxide sol, 4-butyrolactone having a high vapor pressure is used as an organic solvent. When 4-butyrolactone is added, dehydration is performed by heating the sol solution.
At the time of heating, water preferentially evaporates until the liquid temperature of the surfactant-containing titanium oxide sol solution reaches 100 ° C., but an amount of the organic solvent corresponding to the vapor pressure of the organic solvent at the liquid temperature also evaporates. When the evaporation of water is substantially completed, the liquid temperature rises to a temperature close to the external heating temperature. Therefore, for example, when external heating is performed at 140 ° C., the heating is terminated when the liquid temperature reaches 120 ° C. Dehydration is complete when the liquid temperature reaches 120 ° C. Even if heating is performed at 120 ° C. or higher for a long time, the amount of evaporation of the organic solvent increases, which is not economical. For this reason, there is no particular limitation on the heating time.
In this heating dehydration method, it is preferable to carry out at 80 ° C. or lower when using vacuum distillation instead of atmospheric distillation.
[0020]
The titanium (TiO 2 ) concentration of the sol composition of the present invention is in the range of 5 to 40% by mass, more preferably 10 to 30% by mass. When the amount is 5% by mass or less, as described above, the organic solvent-dispersed titanium sol can be obtained relatively easily. Therefore, it is not necessary to perform the operation as in the present invention. On the other hand, when it is 40% by mass or more, even if the composition is devised, the viscosity becomes too high and the sol stability is deteriorated.
[0021]
The organic solvent-dispersed titanium oxide sol of the present invention thus obtained is excellent in compatibility and stability with an organic solvent or an organic solvent-based polymer, and is particularly suitable for various uses that do not like water, such as thickening. Material. By the way, an inorganic binder, an organic binder, or an organic-inorganic composite binder that can be mixed with the organic solvent to be used can be added to and mixed with the organic solvent-dispersed titanium oxide sol of the present invention.
As such a binder, for example, a photocurable resin or a composite binder containing them can be cited as a good example.
[0022]
【Example】
The present invention will be further described with reference to the following examples. In addition, unless otherwise indicated,% shows the mass% altogether.
[0023]
[Example 1]
Ammonium water (NH 3 = 2%) 2212 g (NH 3 / Cl equivalent ratio = 1.3) is gradually added to 2000 g of titanium oxychloride aqueous solution (TiO 2 = 2%) under normal temperature stirring to form titanium hydroxide gel. It was. This was washed with filtered water until the chlorine ions in the filtrate became 100 ppm or less with respect to the titanium gel (TiO 2 ) to obtain a gel with TiO 2 = 10% and NH 3 = 0.3%.
To 400 g of this gel, 54 g of malic acid was added so that malic acid / TiO 2 (molar ratio) = 0.8, and this was put in an autoclave and hydrothermally treated at 120 ° C. for 6 hours to obtain crystalline titanium oxide sol (TiO 2 2 = 6.5%). As a result of analyzing this sol by X-ray diffraction, an anatase-type titanium oxide peak was observed, and the crystallite size obtained from the Debye-Scherrer equation using the first peak was 6 nm.
The obtained sol was washed using an ultrafiltration device to sufficiently remove excess malic acid, and the titanium oxide sol obtained was malic acid / TiO 2 (molar ratio) = 0.3.
Next, to this titanium oxide sol (TiO 2 = 15%, malic acid = 7.6%, pH = 2.5), ion-exchanged water 2900g and alkyldimethylbenzylammonium chloride 10% aqueous solution (cation F2 manufactured by NOF Corporation) were added. And kept for 1 hour, and then a wet cake was obtained by suction filtration. To this wet cake, 72 g of 4-butyrolactone was added, and dehydration was performed by distillation under reduced pressure at a liquid temperature of 60 ° C. using an evaporator. Distillation was performed until no distillation occurred, whereby the cationic surfactant-containing titanium oxide sol of the present invention was obtained. As a result of subjecting this sol to analysis, TiO 2 = 15%, surfactant = 5%, malic acid = 7.6%, (surfactant / TiO 2 (molar ratio) = 0.08, malic acid / TiO 2 (molar ratio) ) = 0.3, 4-butyrolactone / TiO 2 (molar ratio) = 4.4), and the water content in the dispersion medium was 2.0%.
[0024]
A resin coating film formation test was conducted using the obtained organic solvent-dispersed titanium oxide sol of the present invention.
Photosensitive polymer (40% methacrylic acid, 30% methyl methacrylate, 30% styrene copolymer, concentration 35%, weight average molecular weight 43000, acid value 95) obtained by dissolving 35 g of the sol of the present invention in 4-butyrolactone The solution was added to 10 g of the solution, and further 3 g of a photopolymerization initiator (IC-369 manufactured by Ciba Geigy Co.) was added thereto to prepare a liquid having a viscosity of 100,000 mPa / s. Using this, a pattern having a thickness of 150 μm was produced on a glass plate by screen printing, and then the pattern was cured by being exposed to a high-pressure mercury lamp.
Thereafter, the compact was fired at 550 ° C. to obtain a titanium oxide thick film. By baking, the film thickness contracted to 70% of the initial film thickness, but no cracks were observed and a good pattern was obtained.
[0025]
[Example 2]
1700 g of ammonia water (NH 3 = 2%) (NH 3 / Cl equivalent ratio = 1.0) is gradually added to 2000 g of titanium oxychloride aqueous solution (TiO 2 = 2%) to produce titanium hydroxide gel. It was. This was washed with filtered water to obtain a gel with TiO 2 = 5%, NH 3 = 0.1%, and Cl = 0.1%.
Add 15.8 g of citric acid / monohydrate to 400 g of this gel so that the citric acid / TiO 2 (molar ratio) = 0.3, put it in a thermostatic bath at 60 ° C., hold it for 24 hours, Obtained. The obtained sol was washed using an ultrafiltration device to sufficiently remove excess citric acid. As a result of analyzing this sol by X-ray diffraction method, a clear peak of anatase-type titanium oxide was not seen, and this sol was an amorphous titanium oxide sol (TiO 2 = 4.8%, citric acid = 1.1%, pH = 3) Met.
Next, 760 g of ion-exchanged water and 43.5 g of didecyldimethylammonium chloride 10% aqueous solution (cation 2DB-500E manufactured by NOF Corporation) were added to 200 g of this titanium oxide sol and held for 1 hour, followed by suction filtration to obtain a wet cake. . The wet cake was dried at 60 ° C. to obtain a titanium oxide powder containing a cationic surfactant. To this, 30 g of 4-butyrolactone was added and dispersed to obtain an organic solvent-dispersed titanium oxide sol (TiO 2 = 20%) of the present invention. As a result of subjecting this sol to analysis, TiO 2 = 20%, citric acid = 4.6%, cationic surfactant = 8.3%, (cationic surfactant / TiO 2 (molar ratio) = 0.09, citric acid / TiO 2 2 (molar ratio) = 0.1, and the water content in the dispersion medium was 4.6%, and this sol can be arbitrarily diluted with isopropyl alcohol, and there is no problem with a mixed solvent. It was found to be stable.
[0026]
[Example 3]
To 5000 g of sulfuric acid aqueous titanium sulfate solution (TiO 2 = 2%, SO 4 = 8%), 6500 g of sodium hydroxide aqueous solution (Na 2 O = 4%) was added with stirring to produce a titanium gel.
This was washed with filtered water and washed well until the electric conductivity (mS / cm 2 ) of the filtrate was 1/500 or less of the reaction mother liquor, and a TiO 2 = 8% gel was obtained. This gel was dried and heat-treated at 300 ° C. for 1 hour to obtain 110 g of anatase-type titanium oxide powder (TiO 2 = 90%).
To 60 g of this titanium oxide powder, 10 g of tartaric acid and 230 g of ion-exchanged water were added and wet-pulverized, followed by processing with a centrifugal separator with a centrifugal force of 4000 G, and the supernatant was separated. The supernatant was a titanium oxide sol having TiO 2 = 15%, tartaric acid = 3.6%, and an average particle size of 0.2 μm.
A cationic surfactant is obtained by adding 50 g of tetradecyldimethylbenzylammonium chloride 10% aqueous solution (cation M2 manufactured by NOF Corporation) to 200 g of this water-dispersed sol, holding it for 1 hour, washing, filtering with suction, and drying at 60 ° C. A titanium oxide powder was obtained. 106 g of ethanol was added thereto and dispersed to obtain an organic solvent-dispersed titanium oxide sol (TiO 2 = 20%) of the present invention. As a result of subjecting this sol to analysis, TiO 2 = 20%, tartaric acid = 4.8%, cationic surfactant = 2.5%, (cationic surfactant / TiO 2 (molar ratio) = 0.03, tartaric acid / TiO 2 ( Molar ratio) = 0.1, and the amount of water in the dispersion medium was 2.0%.
[0027]
[Example 4]
To 400 g of titanium oxide gel (TiO 2 = 10%, NH 3 = 0.3%) obtained by the same method as in Example 1, 70% glycolic acid (Wako Pure Chemical Industries) was used so that glycolic acid / TiO 2 (molar ratio) = 0.5. 27.2 g (manufactured by Yakuhin Kogyo Co., Ltd.) was added, and this was put in an autoclave and hydrothermally treated at 120 ° C. for 6 hours to obtain a crystalline titanium oxide sol (TiO 2 = 9.4%).
Next, 840 g of ion-exchanged water and 41.3 g of 10% aqueous solution of alkyldimethylbenzylammonium chloride (Cation F2 manufactured by NOF Corporation) were added to 100 g of this sol and held for 1 hour, followed by extraction with 40 g of isobutyl alcohol. An organic solvent-dispersed titanium oxide sol was obtained. As a result of subjecting this sol to analysis, TiO 2 = 15%, cationic surfactant = 6.4%, glycolic acid = 7.1%, (cationic surfactant / TiO 2 (molar ratio) = 0.1, glycolic acid / TiO 2 2 (molar ratio) = 0.5, and the water content in the dispersion medium was 10%.
[0028]
As a comparative example, 15.8 g of 60% nitric acid and 38.1 g of ion-exchanged water were added to 400 g of the above titanium oxide gel (TiO 2 = 10%, NH 3 = 0.3%) so that nitric acid / TiO 2 (molar ratio) = 0.3. It was added and placed in a 40 ° C. incubator for 3 days to obtain amorphous titanium oxide sol (TiO 2 = 6.5%). Next, 800 g of ion-exchanged water and 40 g of a 10% aqueous solution of alkyldimethylbenzylammonium chloride were added to 145 g of this sol, but no precipitate was formed and the reaction did not proceed.
[0029]
【The invention's effect】
The organic solvent-dispersed titanium oxide sol of the present invention is particularly excellent in compatibility with a hydrophilic organic solvent or a hydrophilic organic solvent-based polymer and liquid stability, and it is easy to increase the film thickness when forming a thin film. It is useful for improving the function of various materials, and is a material suitable for various applications that do not like water. For example, an excellent function can be imparted to a dielectric, a photoelectric conversion material, an ultraviolet cut material, a high refractive index material, a catalyst, a hard coat material, and the like, which is industrially beneficial.

Claims (6)

オキシカルボン酸をオキシカルボン酸/酸化チタン(モル比)=0.03〜3.0の範囲及び第1〜3級アミン系カチオン型界面活性剤及び4級アンモニウム塩系カチオン型界面活性剤から選ばれたカチオン型界面活性剤をカチオン型界面活性剤/酸化チタン(モル比)=0.05〜0.2の範囲で含有してなる有機溶媒分散型酸化チタンゾル。The oxycarboxylic acid is selected from the range of oxycarboxylic acid / titanium oxide (molar ratio) = 0.03 to 3.0 and primary to tertiary amine cationic surfactants and quaternary ammonium salt cationic surfactants. An organic solvent-dispersed titanium oxide sol containing the cationic surfactant in a range of cationic surfactant / titanium oxide (molar ratio) = 0.05 to 0.2. オキシカルボン酸がリンゴ酸、酒石酸またはクエン酸である請求項1記載の有機溶媒分散型酸化チタンゾル。 The organic solvent-dispersed titanium oxide sol according to claim 1, wherein the oxycarboxylic acid is malic acid, tartaric acid or citric acid. カチオン型界面活性剤が4級アンモニウム塩系カチオン型界面活性剤である請求項1または2記載の有機溶媒分散型酸化チタンゾル。 The organic solvent-dispersed titanium oxide sol according to claim 1 or 2, wherein the cationic surfactant is a quaternary ammonium salt cationic surfactant. オキシカルボン酸で安定化された水分散型酸化チタンゾルの存在下に、カチオン型界面活性剤を添加した後、水溶媒を有機溶媒で置換することからなる請求項1記載の有機溶媒分散型酸化チタンゾルの製造方法。 2. The organic solvent-dispersed titanium oxide sol according to claim 1, which comprises adding a cationic surfactant in the presence of a water-dispersed titanium oxide sol stabilized with oxycarboxylic acid and then replacing the aqueous solvent with an organic solvent. Manufacturing method. オキシカルボン酸で安定化された水分散型酸化チタンゾルのオキシカルボン酸含量が、オキシカルボン酸/酸化チタン(モル比)=0.03〜3.0の範囲である請求項4記載の有機溶媒分散型酸化チタンゾルの製造方法。 The organic solvent dispersion according to claim 4, wherein the oxycarboxylic acid content of the water-dispersed titanium oxide sol stabilized with oxycarboxylic acid is in the range of oxycarboxylic acid / titanium oxide (molar ratio) = 0.03 to 3.0. Of manufacturing type titanium oxide sol. カチオン型界面活性剤の添加量が、界面活性剤/酸化チタン(モル比)=0.05〜0.27の範囲である請求項4または5記載の有機溶媒分散型酸化チタンゾルの製造方法。 The method for producing an organic solvent-dispersed titanium oxide sol according to claim 4 or 5, wherein the addition amount of the cationic surfactant is in the range of surfactant / titanium oxide (molar ratio) = 0.05 to 0.27.
JP2001292199A 2001-09-25 2001-09-25 Organic solvent-dispersed titanium oxide sol and method for producing the same Expired - Lifetime JP4521801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001292199A JP4521801B2 (en) 2001-09-25 2001-09-25 Organic solvent-dispersed titanium oxide sol and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001292199A JP4521801B2 (en) 2001-09-25 2001-09-25 Organic solvent-dispersed titanium oxide sol and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003095657A JP2003095657A (en) 2003-04-03
JP4521801B2 true JP4521801B2 (en) 2010-08-11

Family

ID=19114210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001292199A Expired - Lifetime JP4521801B2 (en) 2001-09-25 2001-09-25 Organic solvent-dispersed titanium oxide sol and method for producing the same

Country Status (1)

Country Link
JP (1) JP4521801B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023137071A1 (en) * 2022-01-13 2023-07-20 Meta Platforms Technologies, Llc Stabilization of titanium oxide films for highly transparent coatings

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741773B2 (en) 2004-04-09 2010-06-22 Ifire Ip Corporation Thick film dielectric structure for thick dielectric electroluminescent displays
KR100625252B1 (en) * 2004-09-14 2006-09-20 (주)선한엠엔티 A neutral TiO2 colloid solution for preparing the mesoporous TiO2 thin film and A preparation method thereof
JP4646055B2 (en) * 2004-10-20 2011-03-09 多木化学株式会社 Tantalum oxide sol and method for producing the same
KR100822439B1 (en) * 2005-02-16 2008-04-24 (주)선한엠엔티 A panel having a mesoporous TiO2 thin film and a preparation method thereof
EP2366667B1 (en) * 2008-11-12 2016-12-07 Nissan Chemical Industries, Ltd. Titanium oxide sol manufacturing method
JP6631656B2 (en) 2018-05-28 2020-01-15 東洋インキScホールディングス株式会社 Inorganic oxide dispersion with high transparency

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215520A (en) * 1987-03-03 1988-09-08 Ishihara Sangyo Kaisha Ltd Neutral titania and production thereof
JPH03257758A (en) * 1990-03-08 1991-11-18 Toshiba Battery Co Ltd Organic solvent cell
JPH0587445B2 (en) * 1986-04-01 1993-12-16 Catalysts & Chem Ind Co
JPH0619074B2 (en) * 1986-08-12 1994-03-16 触媒化成工業株式会社 Conductive paint
JPH0674204B2 (en) * 1987-04-28 1994-09-21 鐘紡株式会社 Sunscreen cosmetics
JPH07100611B2 (en) * 1986-09-26 1995-11-01 触媒化成工業株式会社 Method for producing modified titania sol
JPH09100124A (en) * 1995-09-29 1997-04-15 Riken Corp Production of titania
JPH09248467A (en) * 1996-03-14 1997-09-22 Nippon Soda Co Ltd Composition for forming titanaium oxide membrane and photocatalyst structure using the same
JPH10167727A (en) * 1995-10-26 1998-06-23 Matsumoto Seiyaku Kogyo Kk Modified titanium oxide sol, photocatalyst composition and its forming agent
JPH11278843A (en) * 1998-01-27 1999-10-12 Nippon Parkerizing Co Ltd Titanium dioxide sol and its preparation
JPH11292537A (en) * 1998-04-10 1999-10-26 Murata Mfg Co Ltd Preparation of transparent tio2 sol
JP2000119019A (en) * 1998-01-27 2000-04-25 Nippon Parkerizing Co Ltd Production of titanium oxide sol

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587445B2 (en) * 1986-04-01 1993-12-16 Catalysts & Chem Ind Co
JPH0619074B2 (en) * 1986-08-12 1994-03-16 触媒化成工業株式会社 Conductive paint
JPH07100611B2 (en) * 1986-09-26 1995-11-01 触媒化成工業株式会社 Method for producing modified titania sol
JPS63215520A (en) * 1987-03-03 1988-09-08 Ishihara Sangyo Kaisha Ltd Neutral titania and production thereof
JPH0674204B2 (en) * 1987-04-28 1994-09-21 鐘紡株式会社 Sunscreen cosmetics
JPH03257758A (en) * 1990-03-08 1991-11-18 Toshiba Battery Co Ltd Organic solvent cell
JPH09100124A (en) * 1995-09-29 1997-04-15 Riken Corp Production of titania
JPH10167727A (en) * 1995-10-26 1998-06-23 Matsumoto Seiyaku Kogyo Kk Modified titanium oxide sol, photocatalyst composition and its forming agent
JPH09248467A (en) * 1996-03-14 1997-09-22 Nippon Soda Co Ltd Composition for forming titanaium oxide membrane and photocatalyst structure using the same
JPH11278843A (en) * 1998-01-27 1999-10-12 Nippon Parkerizing Co Ltd Titanium dioxide sol and its preparation
JP2000119019A (en) * 1998-01-27 2000-04-25 Nippon Parkerizing Co Ltd Production of titanium oxide sol
JPH11292537A (en) * 1998-04-10 1999-10-26 Murata Mfg Co Ltd Preparation of transparent tio2 sol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023137071A1 (en) * 2022-01-13 2023-07-20 Meta Platforms Technologies, Llc Stabilization of titanium oxide films for highly transparent coatings

Also Published As

Publication number Publication date
JP2003095657A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
TWI464119B (en) Method for producing titanium oxide sol
EP0774443B1 (en) Nanodisperse titanium dioxide, process for its preparation and its use
JP5019826B2 (en) Zirconia sol and method for producing the same
JP4093744B2 (en) Method for producing tubular titanium oxide particles and tubular titanium oxide particles
KR102466600B1 (en) Dispersion of titanium oxide particles in organic solvent and method for producing the same
US20080242745A1 (en) Aqueous dispersion of metal oxide fine particles and method for producing the same
WO2016035689A1 (en) Organic solvent dispersion of zirconium oxide particles and method for producing same
EP3263527B1 (en) Method for producing organic solvent dispersion of titanium oxide particles
KR102381148B1 (en) Titanium dioxide sol, method for preparing same and product obtained therefrom
JPH10158015A (en) Production of surface-treated titanium dioxide sol
JP4521801B2 (en) Organic solvent-dispersed titanium oxide sol and method for producing the same
JP3970603B2 (en) Method for producing organic solvent-dispersed titanium oxide sol
JP6214412B2 (en) Core-shell type oxide fine particle dispersion, method for producing the same, and use thereof
JP6025253B2 (en) Process for producing transition metal-supported alkaline rutile titanium oxide sol
CN104909405B (en) Spindle nano titanium oxide based on cellulose base template and preparation method thereof
JP4521795B2 (en) Titanium oxide sol composition
JP5317486B2 (en) Method for producing rutile type titanium oxide fine particles
JP2010534609A (en) Solutions of particles containing titanium dioxide and peroxotitanium complexes and their preparation
TWI635048B (en) Process for producing barium titanate poweder
JP6300313B2 (en) Rutile-type titanium oxide sol and method for producing the same
JP5995009B2 (en) Method for producing rutile type titanium oxide sol
JP2002356320A (en) Silica-titanium oxide complex sol composition and its producing method
JP5897995B2 (en) Alkaline anatase titania sol and method for producing the same
JP2020164410A (en) Titanium oxide organic solvent dispersion
SE543125C2 (en) Manufacture of a titanium compound structure and a structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4521801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160604

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250