KR102153501B1 - Silicon Carbide Deposition System by Chemical Vapor Deposition - Google Patents

Silicon Carbide Deposition System by Chemical Vapor Deposition Download PDF

Info

Publication number
KR102153501B1
KR102153501B1 KR1020190165315A KR20190165315A KR102153501B1 KR 102153501 B1 KR102153501 B1 KR 102153501B1 KR 1020190165315 A KR1020190165315 A KR 1020190165315A KR 20190165315 A KR20190165315 A KR 20190165315A KR 102153501 B1 KR102153501 B1 KR 102153501B1
Authority
KR
South Korea
Prior art keywords
gas
deposition
mts
silicon carbide
supply unit
Prior art date
Application number
KR1020190165315A
Other languages
Korean (ko)
Inventor
나기정
Original Assignee
(주)브이아이테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)브이아이테크 filed Critical (주)브이아이테크
Priority to KR1020190165315A priority Critical patent/KR102153501B1/en
Application granted granted Critical
Publication of KR102153501B1 publication Critical patent/KR102153501B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45572Cooled nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention relates to a silicon carbide deposition device by means of chemical vapor deposition, which provides an improved structure such that microparticulated MTS deposition gas is produced after the MTS of liquid is injected into an evaporator to be evaporated, before the microparticulated MTS gas generated thereby is injected into a structure of a gas pipe with a small amount of hydrogen functioning as a carrier, so that the MTS deposition gas is activated by the hydrogen gas additionally injected and is sprayed into a deposition chamber. Therefore, loss of MTS can be minimized to improve silicon carbide deposition efficiency per hour, and a large-capacity silicon carbide deposition facility can be constructed by using a low-capacity evaporator, thereby improving the efficiency of energy. To this end, the present invention comprises: a processing tank (A); an inner container (4); a product holding device (2); and a gas supply unit (100).

Description

화학적 기상증착에 의한 탄화규소 증착장치 {Silicon Carbide Deposition System by Chemical Vapor Deposition}Silicon carbide deposition system by chemical vapor deposition {Silicon Carbide Deposition System by Chemical Vapor Deposition}

본 발명은 화학적 기상증착(CVD:Chemical Vapor Deposition)에 의한 탄화규소 증착장치 및 이를 이용한 탄화규소 증착 방법에 관한 것으로, 액체의 MTS가 기화기로 주입되어 기화된 초 미립자화 된 MTS증착가스가 생성되고, 이렇게 생성된 MTS 초 미립자화 된 가스를 소량의 수소가 운반 역할을 하여 가스 배관의 구조물로 주입이된 후 추가로 주입되는 수소가스에 의해 MTS증착가스가 활성화되어 증착실 내부로 분사되도록 구조 개선됨에 따라 MTS의 손실이 최소화되면서 시간당 탄화규소 증착효율이 향상되고, 특히 저용량 기화기를 이용하여 대용량 탄화규소 증착설비를 구축할 수 있어 에너지효율 향상을 도모하는 화학적 기상증착에 의한 탄화규소 증착장치에 관한 것이다.The present invention relates to a silicon carbide deposition apparatus by chemical vapor deposition (CVD: Chemical Vapor Deposition) and a silicon carbide deposition method using the same, wherein liquid MTS is injected into a vaporizer to generate vaporized ultrafine MTS deposition gas. In this way, a small amount of hydrogen plays the role of transporting the generated MTS ultra-micronized gas, and the structure is improved so that the MTS deposition gas is activated by the additionally injected hydrogen gas after being injected into the structure of the gas pipe and injected into the deposition chamber. As a result, the loss of MTS is minimized and the efficiency of silicon carbide deposition per hour is improved, and in particular, a large-capacity silicon carbide deposition facility can be built using a low-capacity vaporizer, and thus, a silicon carbide deposition device by chemical vapor deposition aims to improve energy efficiency. will be.

종래의 화학적 기상증착에 의한 탄화규소 증착장치는 탄화규소막질을 생성하는데 필요한 MTS(Methyltrichlorosilane)을 버블 상태로 처리조에 공급하여 고온하에서 증착형성이 구현되게 하고 있으나, 버블러의 특성상 일정량을 지속적으로 공급하는 것에 한계가 있고, 또 버블러를 통하여 공급한 MTS소스는 기화정도가 균등하지 못해 처리조에서 반응할 때, 변수가 많아 증착형성의 정밀성이 떨어지고, 두터운 증착형성이 어려울 뿐 아니라, 처리조의 구동과 관리가 복잡하여 사용이 불편하고, 제조원가가 높아지는 흠결이 있었다.In the conventional silicon carbide deposition apparatus by chemical vapor deposition, MTS (Methyltrichlorosilane) required to generate a silicon carbide film is supplied to the treatment tank in a bubble state to form deposition under high temperature, but a certain amount is continuously supplied due to the nature of the bubbler. There is a limit to doing so, and when the MTS source supplied through the bubbler reacts in the treatment tank because the degree of vaporization is not uniform, there are many variables, so the precision of deposition formation is poor, and it is difficult to form a thick deposition, as well as driving the treatment tank. There was a flaw in which it was inconvenient to use and the manufacturing cost was high due to the complicated management and management.

(선행기술 1) 특허등록 제10-1593922호(Prior technology 1) Patent registration No. 10-1593922 (선행기술 2) 공개특허 제10-2005-0019572호(Prior technology 2) Patent Publication No. 10-2005-0019572

이에 따라 본 발명은 상기한 문제점을 해결하기 위해 착안 된 것으로서, 액체의 MTS가 기화기로 주입되어 기화된 초 미립자화 된 MTS증착가스가 생성되고, 이렇게 생성된 MTS 초 미립자화 된 가스를 소량의 수소가 운반 역할을 하여 가스 배관의 구조물로 주입이된 후 추가로 주입되는 수소가스에 의해 MTS증착가스가 활성화되어 증착실 내부로 분사되도록 구조 개선됨에 따라 MTS의 손실이 최소화되면서 시간당 탄화규소 증착효율이 향상되고, 특히 저용량 기화기를 이용하여 대용량 탄화규소 증착설비를 구축할 수 있어 에너지효율 향상을 도모하는 화학적 기상증착에 의한 탄화규소 증착장치을 제공하는 것에 그 목적이 있다.Accordingly, the present invention was conceived to solve the above problems, and liquid MTS is injected into a vaporizer to generate a vaporized ultra-fine MTS deposition gas, and the generated MTS ultra-micronized gas is converted into a small amount of hydrogen. As the structure is improved so that the MTS deposition gas is activated and injected into the deposition chamber by additionally injected hydrogen gas after being injected into the structure of the gas pipe as a transport role, the loss of MTS is minimized and the silicon carbide deposition efficiency per hour is improved. It is an object of the present invention to provide a silicon carbide deposition apparatus by chemical vapor deposition which is improved, and in particular, it is possible to construct a large-capacity silicon carbide deposition facility using a low-capacity vaporizer to improve energy efficiency.

이러한 목적을 달성하기 위해 본 발명의 특징은, 상, 하부 덮개(1a)(1b)에 의해 마감되어 증착실(1')을 형성하고, 내부에 전기발열체(3)가 설치되는 본체(1)와, 본체(1) 내부 진공도를 조성하는 진공펌프(11)와, 본체(1)에서 배기되는 가스를 여과하는 집진기로 이루어지는 처리조(가); 상기 전기발열체(3)와 본체(1) 내주면 사이에 설치되어 보온 내통(4); 상기 하부 덮개(1b)에서 처리조(가) 내부로 돌출되어 모터(2d)에 의해 회전되는 폴대(2a)와, 폴대(2a) 외주면에 그라파이트모재(2c)를 적층하는 다단거치부(2b)로 이루어지는 제품장치대(2); 상기 처리조(가) 및 보온 내통(4)을 관통하여 그라파이트모재(2c)와 대응하도록 설치되는 복수의 공급노즐(6)을 통하여 MTS증착가스, 수소가스, 퍼징가스 중 적어도 1종 이상의 가스를 투입하도록 구비되는 가스공급부(100);를 포함하여 이루어지고, In order to achieve this object, a feature of the present invention is that the body 1 is closed by the upper and lower covers 1a and 1b to form a deposition chamber 1 ′, and the electric heating element 3 is installed therein. And, a treatment tank consisting of a vacuum pump 11 for creating a vacuum degree inside the main body 1, and a dust collector for filtering the gas exhausted from the main body 1; An inner cylinder 4 installed between the electric heating element 3 and the inner circumferential surface of the main body 1 to keep warm; A multi-stage mounting portion (2b) in which a pole (2a) protruding from the lower cover (1b) into the treatment tank (a) and rotated by a motor (2d), and a graphite base material (2c) on the outer peripheral surface of the pole (2a) Product device stand (2) consisting of; At least one gas of MTS deposition gas, hydrogen gas, and purging gas is supplied through a plurality of supply nozzles 6 installed to correspond to the graphite base material 2c through the treatment tank (A) and the thermal insulation inner cylinder (4). Made including; a gas supply unit 100 provided to be injected,

상기 가스공급부(100)는, 상기 공급노즐(6)로 이동되는 가스 공급량을 제어하는 유량계(10)와, 유량계(10)에 연결되고, 기화기(8)를 통하여 기화된 MTS(Methyltrichlorosilane), 수소를 포함하는 MTS증착가스를 공급하는 증착가스공급부(20)와, 유량계(10)에 연결되고, 수소가스를 공급하는 수소가스공급부(30)와, 유량계(10)에 연결되고, 질소를 포함하는 퍼징가스를 공급하는 퍼징가스공급부(40)와, MTS증착가스공급부(20), 수소가스공급부(30) 및 퍼징가스공급부(40)를 제어하여 MTS증착가스, 수소가스, 퍼징가스 공급을 제어하는 제어부로 이루어지는 것을 특징으로 한다.The gas supply unit 100 includes a flow meter 10 for controlling the amount of gas supplied to the supply nozzle 6, and MTS (Methyltrichlorosilane) vaporized through the vaporizer 8, connected to the flow meter 10, and hydrogen. The deposition gas supply unit 20 for supplying the MTS deposition gas including, and connected to the flow meter 10, the hydrogen gas supply unit 30 for supplying hydrogen gas, and connected to the flow meter 10, containing nitrogen The purging gas supply unit 40 that supplies the purging gas, the MTS deposition gas supply unit 20, the hydrogen gas supply unit 30, and the purging gas supply unit 40 are controlled to control the supply of MTS deposition gas, hydrogen gas, and purging gas. It is characterized by consisting of a control unit.

이때, 상기 가스공급부(100)는 제품장치대(2)의 폴대(2a) 회전축 중심과 그라파이트모재(2c) 외주면 사이 영역(L)으로 MTS증착가스가 분사되도록 설치되는 것을 특징으로 한다.At this time, the gas supply unit 100 is characterized in that it is installed so that the MTS deposition gas is injected into the region L between the center of the rotation axis of the pole 2a of the product device 2 and the outer peripheral surface of the graphite base material 2c.

또한, 상기 수소가스공급부(30)는 제 1, 2분배관(31)(32)을 통하여 수소가 분배 이동량이 제어되고, 제 1분배관(31)은 기화기(8)에 연결되어 MTS와 혼합 기화된 MTS증착가스를 형성하며, 제 2분배관(32)은 유량계(10)에 연결되어 공급노즐(6)을 통한 MTS증착가스 분사압력을 조절하도록 구비되는 것을 특징으로 한다.In addition, the hydrogen gas supply unit 30 controls the amount of distribution and movement of hydrogen through the first and second distribution pipes 31 and 32, and the first distribution pipe 31 is connected to the vaporizer 8 and mixed with MTS. The vaporized MTS deposition gas is formed, and the second distribution pipe 32 is connected to the flow meter 10 to control the injection pressure of the MTS deposition gas through the supply nozzle 6.

또한, 상기 기화기(8)를 통하여 기화된 MTS증착가스는 복수의 분배관(9)을 통하여 공급노즐(6)로 분배 이동되고, 분배관(9)은 히터(9a)에 의해 가열되어 MTS증착가스 온도가 처리조(가) 내부온도와 일치되도록 구비되는 것을 특징으로 한다.In addition, the MTS deposition gas vaporized through the vaporizer 8 is distributed and moved to the supply nozzle 6 through a plurality of distribution pipes 9, and the distribution pipe 9 is heated by a heater 9a to deposit MTS. It is characterized in that the gas temperature is provided to match the internal temperature of the treatment tank.

또한, 상기 공급노즐(6)은, 단부에 분출구(6c)가 형성되는 가스 분사관(6b)과, 가스 분사관(6b) 외주면을 감싸도록 형성되고, 주입관(6e)과 배출관(6f)을 통하여 냉각수가 순환되는 냉각수저장실(6d)로 구성되는 것을 특징으로 한다.In addition, the supply nozzle 6 is formed to surround the outer circumferential surface of the gas injection pipe 6b, the gas injection pipe 6b, and the injection pipe 6e and the discharge pipe 6f, the gas injection pipe 6b formed at the end thereof. It is characterized by consisting of a cooling water storage chamber (6d) through which the cooling water is circulated.

또한, 상기 가스 분사관(6b) 분출구(6c) 외면에는 그라파이트로 형성되어 일정길이를 가지는 관형상의 보호캡(6g)이 설치되고, 상기 보호캡(6g) 선단부는 보온 내통(4) 내주면에서 내측방향으로 연장되어 돌출관부를 형성하도록 구비되는 것을 특징으로 한다.In addition, a tube-shaped protective cap (6g) formed of graphite and having a predetermined length is installed on the outer surface of the gas injection pipe (6b) ejection port (6c), and the tip of the protective cap (6g) is at the inner peripheral surface of the insulating inner cylinder (4). It is characterized in that it is provided to extend in the inward direction to form a protruding pipe portion.

또한, 상기 하부 덮개(1b)는 이동장치대(200)에 의해 하향 개방되어 수평 이동되도록 구비되고, 상기 이동장치대(200)는 하부 덮개(1b)를 상, 하향 이동하는 리프트(210)와, 하향 개방된 하부 덮개(1b)를 수평 이동하는 셔틀(220)로 구성되는 것을 특징으로 한다.In addition, the lower cover (1b) is provided to be opened downward by the moving device stand 200 to move horizontally, and the moving device stand 200 includes a lift 210 moving up and down the lower cover (1b), and downward It is characterized by consisting of a shuttle 220 horizontally moving the open lower cover (1b).

또한, 상기 본체(1) 및 상, 하부 덮개(1a)(1b)는 내, 외벽(a)(b) 이중 구조로 형성되고, 내, 외벽(a)(b) 사이에 냉각수가 순환되는 수조(1c)가 구비되는 것을 특징으로 한다.In addition, the main body (1) and the upper and lower covers (1a) (1b) are formed in a dual structure of inner and outer walls (a) and (b), and a water tank through which cooling water is circulated between the inner and outer walls (a) and (b). It is characterized in that (1c) is provided.

또한, 상기 보온 내통(4) 내면에 그라파이트 단열재(5)가 구비되는 것을 특징으로 한다.In addition, it is characterized in that the graphite insulating material (5) is provided on the inner surface of the thermal insulation inner cylinder (4).

또한, 상기 제품장치대(2)의 다단거치부(2b)에 복수의 그라파이트모재(2c)를 적층하여 처리조(가) 내부로 투입한 후, 처리조(가)를 진공처리하고, 1200~1600℃로 가열하고, 제품장치대(2)의 폴대(2a)를 1 ~ 25rpm으로 회전하면서 가스공급부(100)의 공급노즐(6)을 통하여 MTS증착가스를 분사하여, 그라파이트모재(2c) 표면에 탄화규소 증착층(2c')을 형성한 후, 증착실(1') 내부 가스를 여과 배출하면서 퍼징가스를 주입하여, 증착실(1') 내부 온도를 600℃ 이하로 냉각하는 냉각퍼징처리하도록 구비되는 것을 특징으로 한다.In addition, after stacking a plurality of graphite base materials (2c) on the multi-stage mounting portion (2b) of the product rack (2) and putting them into the treatment tank (a), the treatment tank (a) was vacuum-treated, and 1200~ Heated to 1600°C, while rotating the pole (2a) of the product stand (2) at 1 to 25 rpm, the MTS deposition gas is injected through the supply nozzle (6) of the gas supply unit (100), and the surface of the graphite base material (2c) After forming the silicon carbide deposition layer (2c') in the evaporation chamber (1') by filtration and discharge of the gas while injecting a purging gas to cool the internal temperature of the evaporation chamber (1') to 600℃ or less. It characterized in that it is provided to.

또한, 상기 MTS증착가스는 기화기(8)를 통하여 MTS 100중량부, 수소 50~90중량부를 혼합하여 형성되고, 상기 기화기(8)를 통하여 생성된 MTS증착가스는 수소가스공급부(30)를 통하여 공급되는 수소에 의해 공급노즐(6)을 통한 분사압력이 제어되도록 구비되는 것을 특징으로 한다.In addition, the MTS deposition gas is formed by mixing 100 parts by weight of MTS and 50 to 90 parts by weight of hydrogen through the vaporizer 8, and the MTS deposition gas generated through the vaporizer 8 is passed through the hydrogen gas supply unit 30. It is characterized in that it is provided to control the injection pressure through the supply nozzle 6 by the supplied hydrogen.

이상의 구성 및 작용에 의하면, 본 발명은 액체의 MTS가 기화기로 주입되어 기화된 초 미립자화 된 MTS증착가스가 생성되고, 이렇게 생성된 MTS 초 미립자화 된 가스를 소량의 수소가 운반 역할을 하여 가스 배관의 구조물로 주입이된 후 추가로 주입되는 수소가스에 의해 MTS증착가스가 활성화되어 증착실 내부로 분사되도록 구조 개선됨에 따라 MTS의 손실이 최소화되면서 시간당 탄화규소 증착효율이 향상되고, 특히 저용량 기화기를 이용하여 대용량 탄화규소 증착설비를 구축할 수 있어 에너지효율 향상을 도모하는 효과가 있다.According to the above configuration and action, in the present invention, a liquid MTS is injected into a vaporizer to generate a vaporized ultra-fine MTS deposition gas, and a small amount of hydrogen serves as a transport for the thus-generated MTS ultra-micronized gas. As the structure is improved so that the MTS deposition gas is activated and injected into the deposition chamber by additionally injected hydrogen gas after it is injected into the structure of the pipe, the loss of MTS is minimized and the silicon carbide deposition efficiency per hour is improved, especially a low-capacity vaporizer. It is possible to build a large-capacity silicon carbide deposition facility by using, so there is an effect of improving energy efficiency.

도 1은 본 발명의 일실시예에 따른 화학적 기상증착에 의한 탄화규소 증착장치의 전체적인 개략도.
도 2는 본 발명의 일실시예에 따른 화학적 기상증착에 의한 탄화규소 증착장치의 처리조 외관사시도.
도 3은 본 발명의 일실시예에 따른 화학적 기상증착에 의한 탄화규소 증착장치의 처리조 외관 정면도.
도 4는 도 3의 가-가'선 단면도.
도 5는 본 발명의 일실시예에 따른 화학적 기상증착에 의한 탄화규소 증착장치의 기화소스공급노즐 단면도.
도 6은 본 발명의 일실시예에 따른 화학적 기상증착에 의한 탄화규소 증착장치의 제품장치대를 분리한 예시도.
도 7은 본 발명의 일실시예에 따른 화학적 기상증착에 의한 탄화규소 증착장치의 회전장치대의 일부 확대도.
도 8은 본 발명에 따른 화학적 기상증착에 의한 탄화규소 증착장치를 이용한 탄화규소 증착 방법을 개략적으로 나타내는 순서도이다.
1 is an overall schematic diagram of a silicon carbide deposition apparatus by chemical vapor deposition according to an embodiment of the present invention.
Figure 2 is a perspective view of a treatment tank of the silicon carbide deposition apparatus by chemical vapor deposition according to an embodiment of the present invention.
Figure 3 is a front view of a treatment tank of the silicon carbide deposition apparatus by chemical vapor deposition according to an embodiment of the present invention.
4 is a cross-sectional view taken along line Ga-ga' of FIG. 3.
5 is a cross-sectional view of a vaporization source supply nozzle of a silicon carbide deposition apparatus by chemical vapor deposition according to an embodiment of the present invention.
6 is an exemplary view showing the separation of the product stand of the silicon carbide deposition apparatus by chemical vapor deposition according to an embodiment of the present invention.
7 is a partial enlarged view of a rotating apparatus of a silicon carbide deposition apparatus by chemical vapor deposition according to an embodiment of the present invention.
8 is a flow chart schematically showing a silicon carbide deposition method using the silicon carbide deposition apparatus by chemical vapor deposition according to the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 화학적 기상증착에 의한 탄화규소 증착장치에 관련되며, 이는 액체의 MTS가 기화기로 주입되어 기화된 초 미립자화 된 MTS증착가스가 생성되고, 이렇게 생성된 MTS 초 미립자화 된 가스를 소량의 수소가 운반 역할을 하여 가스 배관의 구조물로 주입이된 후 추가로 주입되는 수소가스에 의해 MTS증착가스가 활성화되어 증착실 내부로 분사되도록 구조 개선됨에 따라 MTS의 손실이 최소화되면서 시간당 탄화규소 증착효율이 향상되고, 특히 저용량 기화기를 이용하여 대용량 탄화규소 증착설비를 구축할 수 있어 에너지효율 향상을 도모하기 위해 처리조(가), 내통(4), 제품장치대(2), 가스공급부(100)를 포함하여 주요구성으로 이루어진다.The present invention relates to a silicon carbide deposition apparatus by chemical vapor deposition, which is a liquid MTS is injected into a vaporizer to generate a vaporized ultra-fine MTS deposition gas, and a small amount of the MTS ultra-micronized gas thus generated Silicon carbide deposition efficiency per hour as the loss of MTS is minimized as the structure is improved so that the MTS deposition gas is activated and injected into the deposition chamber by additionally injected hydrogen gas after hydrogen is injected into the structure of the gas pipe as a transport role. In order to improve energy efficiency, it is possible to construct a large-capacity silicon carbide deposition facility using a low-capacity vaporizer, and in particular, a treatment tank (A), an inner cylinder (4), a product unit (2), and a gas supply unit (100) It consists of major components including.

본 발명에 따른 처리조(가)는 상, 하부 덮개(1a)(1b)에 의해 마감되어 증착실(1')을 형성하고, 내부에 전기발열체(3)가 설치되는 본체(1)와, 본체(1) 내부 진공도를 조성하는 진공펌프(11)와, 본체(1)에서 배기되는 가스를 여과하는 집진기로 이루어진다. 본체(1)는 상하부가 개방된 원통형으로 형성되고, 상, 하부 덮개(1a)(1b)는 돔형상으로 형성되어 본체(1)의 상하부 개방부를 마감하도록 설치된다. The treatment tank (A) according to the present invention is closed by upper and lower covers (1a) (1b) to form a deposition chamber (1'), and a body (1) in which an electric heating element (3) is installed, It consists of a vacuum pump 11 that establishes a degree of vacuum inside the main body 1 and a dust collector that filters gas exhausted from the main body 1. The main body 1 is formed in a cylindrical shape with the upper and lower portions open, and the upper and lower covers 1a and 1b are formed in a dome shape, and are installed to close the upper and lower openings of the main body 1.

이때, 본체(1) 및 상, 하부 덮개(1a)(1b)는 내, 외벽(a)(b) 이중 구조로 형성되고, 내, 외벽(a)(b) 사이에 냉각수가 순환되는 수조(1c)가 구비된다. 이에 1200~1600℃로 가열되는 증착실(1') 내부 온도에 의한 처리조(가) 손상 및 열변형이 방지된다.At this time, the main body 1 and the upper and lower covers 1a and 1b are formed in a double structure with inner and outer walls a and b, and a water tank in which cooling water circulates between the inner and outer walls a and b 1c) is provided. Accordingly, damage and thermal deformation of the treatment tank due to the internal temperature of the deposition chamber 1'heated to 1200 to 1600°C are prevented.

그리고, 상기 진공펌프(11)는 증착실(1') 내부 진공도를 조성하여, 증착공정 중에 증착실(1') 내부 수용물이 열에 산화되는 것을 방지하며, 또 집진기(도시 생략)는 스크러버를 포함하는 여과정치로서, 증착실(1') 내부에서 배기되는 공기 중에 포함된 MTS를 이물질을 여과처리하도록 구비된다.In addition, the vacuum pump 11 creates a degree of vacuum inside the deposition chamber 1'to prevent heat-oxidation of the receptacles inside the deposition chamber 1'during the deposition process, and the dust collector (not shown) uses a scrubber. As a filtering device including, the MTS contained in the air exhausted from the inside of the deposition chamber 1'is provided to filter foreign substances.

이때, 상기 전기발열체(3)와 본체(1) 내주면 사이에 보온 내통(4)이 설치되고, 보온 내통(4)은 내면에 그라파이트 단열재(5)가 구비되어 증착실(1') 내부를 단열하게 된다.At this time, a thermal insulation inner cylinder 4 is installed between the electric heating element 3 and the inner circumferential surface of the main body 1, and the thermal insulation inner cylinder 4 is provided with a graphite insulation material 5 on the inner surface to insulate the inside of the deposition chamber 1'. Is done.

도 4 및 7에서, 본 발명에 따른 제품장치대(2)는 상기 하부 덮개(1b)에서 처리조(가) 내부로 돌출되어 모터(2d)에 의해 회전되는 폴대(2a)와, 폴대(2a) 외주면에 그라파이트모재(2c)를 적층하는 다단거치부(2b)로 이루어진다. 폴대(2a)는 하부 덮개(1b) 중앙부를 축으로 복수개소에 배치되고, 폴대(2a) 길이방향으로 다단거치부(2b) 등간격으로 설치되어 그라파이트모재(2c)가 거치된다.In FIGS. 4 and 7, the product device stand 2 according to the present invention includes a pole 2a protruding from the lower cover 1b into the treatment tank A and rotated by a motor 2d, and a pole 2a. ) It consists of a multi-stage mounting portion (2b) laminating the graphite base material (2c) on the outer peripheral surface. The pole pole (2a) is disposed in a plurality of places along the axis of the central portion of the lower cover (1b), the multi-stage mounting portion (2b) is installed at equal intervals in the length direction of the pole pole (2a) the graphite base material (2c) is mounted.

여기서, 상기 그라파이트모재(2c)는 링형 판으로 형성되어, 폴대(2a)와 동심원을 이루도록 배치되고, 후술하는 가스공급부(100)를 통하여 분사되는 MTS증착가스가 표면에 증착되어 탄화규소 증착을 형성하게 된다.Here, the graphite base material 2c is formed as a ring-shaped plate, is arranged to form a concentric circle with the pole 2a, and the MTS deposition gas injected through the gas supply unit 100 described later is deposited on the surface to form silicon carbide deposition. Is done.

또한, 본 발명에 따른 가스공급부(100)는 상기 처리조(가) 및 보온 내통(4)을 관통하여 그라파이트모재(2c)와 대응하도록 설치되는 복수의 공급노즐(6)을 통하여 MTS증착가스, 수소가스, 퍼징가스 중 적어도 1종 이상의 가스를 투입하도록 구비된다. In addition, the gas supply unit 100 according to the present invention passes through the treatment tank (A) and the thermal insulation inner cylinder 4 through a plurality of supply nozzles 6 installed to correspond to the graphite base material 2c, It is provided to inject at least one gas of hydrogen gas and purging gas.

도 1 내지 3에서, 상기 가스공급부(100)는, 상기 공급노즐(6)로 이동되는 가스 공급량을 제어하는 유량계(10)와, 유량계(10)에 연결되고, 기화기(8)를 통하여 기화된 MTS(Methyltrichlorosilane), 수소를 포함하는 MTS증착가스를 공급하는 증착가스공급부(20)와, 유량계(10)에 연결되고, 수소가스를 공급하는 수소가스공급부(30)와, 유량계(10)에 연결되고, 질소를 포함하는 퍼징가스를 공급하는 퍼징가스공급부(40)와, MTS증착가스공급부(20), 수소가스공급부(30) 및 퍼징가스공급부(40)를 제어하여 MTS증착가스, 수소가스, 퍼징가스 공급을 제어하는 제어부로 이루어진다.In Figures 1 to 3, the gas supply unit 100, a flow meter 10 for controlling the amount of gas supplied to the supply nozzle 6, connected to the flow meter 10, vaporized through the vaporizer (8). MTS (Methyltrichlorosilane), a deposition gas supply unit 20 for supplying MTS deposition gas containing hydrogen, connected to a flow meter 10, a hydrogen gas supply unit 30 supplying hydrogen gas, and a flow meter 10 And, by controlling the purging gas supply unit 40 for supplying a purging gas containing nitrogen, the MTS deposition gas supply unit 20, the hydrogen gas supply unit 30 and the purging gas supply unit 40, MTS deposition gas, hydrogen gas, It consists of a control unit that controls the supply of purging gas.

도 5 (b)에서, 상기 가스공급부(100)는 제품장치대(2)의 폴대(2a) 회전축 중심과 그라파이트모재(2c) 외주면 사이 영역(L)으로 MTS증착가스가 분사되도록 경사각 또는 폴대(2a) 회전축 중심과 어긋나게 설치된다. 이에 공급노즐(6)을 통하여 분사되는 MTS증착가스와 그라파이트모재(2c) 표면과의 접촉 면적이 확대되어 MTS의 손실이 최소화되면서 시간당 탄화규소 증착효율이 향상된다.In FIG. 5 (b), the gas supply unit 100 has an inclination angle or a pole so that the MTS deposition gas is injected into the area L between the center of the rotation axis of the pole 2a of the product device 2 and the outer peripheral surface of the graphite base material 2c. 2a) It is installed away from the center of the rotation axis. Accordingly, the contact area between the MTS deposition gas injected through the supply nozzle 6 and the surface of the graphite base material 2c is enlarged, thereby minimizing the loss of MTS, thereby improving the silicon carbide deposition efficiency per hour.

또한, 상기 수소가스공급부(30)는 제 1, 2분배관(31)(32)을 통하여 수소가 분배 이동량이 제어되고, 제 1분배관(31)은 기화기(8)에 연결되어 MTS와 혼합 기화된 MTS증착가스를 형성하며, 제 2분배관(32)은 유량계(10)에 연결되어 공급노즐(6)을 통한 MTS증착가스 분사압력을 조절하도록 구비된다.In addition, the hydrogen gas supply unit 30 controls the amount of distribution and movement of hydrogen through the first and second distribution pipes 31 and 32, and the first distribution pipe 31 is connected to the vaporizer 8 and mixed with MTS. The vaporized MTS deposition gas is formed, and the second distribution pipe 32 is connected to the flow meter 10 to control the injection pressure of the MTS deposition gas through the supply nozzle 6.

이에 소량의 수소가스를 이용하여 MTS입자가 초미립자화 된 MTS증착가스가 생성되고, 추가로 주입되는 수소가스에 의해 MTS증착가스가 활성화되어 증착실 내부로 분사되도록 구조개선됨에 따라 MTS의 손실이 최소화되면서 시간당 탄화규소 증착효율이 향상되고, 특히 저용량 기화기(8)를 이용하여 대용량 탄화규소 증착설비 구축할 수 있어 에너지효율이 향상된다.As a result, MTS deposition gas with ultra-fine MTS particles is generated using a small amount of hydrogen gas, and MTS loss is minimized as the structure is improved so that the MTS deposition gas is activated and injected into the deposition chamber by additionally injected hydrogen gas. As a result, the silicon carbide deposition efficiency per hour is improved, and in particular, a large-capacity silicon carbide deposition facility can be constructed using the low-capacity vaporizer 8, thereby improving energy efficiency.

도 4에서, 상기 기화기(8)를 통하여 기화된 MTS증착가스는 복수의 분배관(9)을 통하여 공급노즐(6)로 분배 이동되고, 분배관(9)은 히터(9a)에 의해 가열되어 MTS증착가스 온도가 처리조(가) 내부온도와 일치되도록 구비된다. In Fig. 4, the MTS vaporized gas vaporized through the vaporizer 8 is distributed and moved to the supply nozzle 6 through a plurality of distribution pipes 9, and the distribution pipe 9 is heated by a heater 9a. The MTS deposition gas temperature is provided to match the internal temperature of the treatment tank.

이에 MTS증착가스가 분사되는 중에 증착실(1') 내부 온도가 일정하게 유지되어 탄화규소 증착품질이 향상됨과 더불어 기화기(8)에 연결되는 복수의 분배관(9) 수량 및 길이에 영향을 받지 않고 공급노즐(6)를 통하여 분사되는 MTS증착가스 품질이 균일하게 유지된다.Accordingly, the temperature inside the deposition chamber (1') is kept constant while the MTS deposition gas is sprayed, improving the silicon carbide deposition quality, and is not affected by the number and length of the plurality of distribution pipes (9) connected to the vaporizer (8). The quality of the MTS deposition gas injected through the supply nozzle 6 is maintained evenly.

도 5 (a)에서, 상기 공급노즐(6)은, 단부에 분출구(6c)가 형성되는 가스 분사관(6b)과, 가스 분사관(6b) 외주면을 감싸도록 형성되고, 주입관(6e)과 배출관(6f)을 통하여 냉각수가 순환되는 냉각수저장실(6d)로 구성되며, 상기 가스 분사관(6b) 분출구(6c) 외면에는 그라파이트로 형성되어 일정길이를 가지는 관형상의 보호캡(6g)이 설치되고, 상기 보호캡(6g) 선단부는 보온 내통(4) 내주면에서 내측방향으로 연장되어 돌출관부를 형성하도록 구비된다. 이에 주입관(6e)이 보호캡(6g) 내측으로 함몰 설치되어 증착실(1') 내부에 존재하는 미증착 MTS증착가스를 포함하는 이물질들로 부터 안전하게 보호되어 막힘등의 작동 불량이 방지된다.In Figure 5 (a), the supply nozzle 6 is formed so as to surround the outer peripheral surface of the gas injection pipe 6b, the gas injection pipe 6b is formed at the end of the ejection port (6c), injection pipe (6e) And a cooling water storage chamber (6d) through which cooling water is circulated through the discharge pipe (6f), and a tubular protective cap (6g) having a predetermined length is formed of graphite on the outer surface of the gas injection pipe (6b) outlet (6c). It is installed, and the front end portion of the protective cap 6g is provided to extend inward from the inner peripheral surface of the insulating inner cylinder 4 to form a protruding pipe portion. Accordingly, the injection pipe 6e is installed recessed inside the protective cap 6g to be safely protected from foreign substances including undeposited MTS deposition gas existing inside the deposition chamber 1'to prevent malfunctions such as clogging. .

이때, 상기 분사관(6b)은 냉각수저장실(6d)의 냉각수에 의해 지속적으로 냉각됨과 더불어 보호캡(6g)에 의해 증착실(1') 내부 열전달이 일부 차단됨에 따라 분사관(6b)이 1200~1600℃로 가열되는 증착실(1') 내부 온도에 의해 과열되어 손상 및 막히는 현상이 방지되면서 수명이 장구히 연장된다. At this time, the injection pipe 6b is continuously cooled by the cooling water in the cooling water storage chamber 6d, and heat transfer inside the deposition chamber 1'is partially blocked by the protective cap 6g, so that the injection pipe 6b is 1200 Due to the internal temperature of the deposition chamber 1'heated to ~1600°C, damage and clogging due to overheating are prevented, and the lifespan is prolonged.

도 6에서, 상기 하부 덮개(1b)는 이동장치대(200)에 의해 하향 개방되어 수평 이동되도록 구비되고, 상기 이동장치대(200)는 하부 덮개(1b)를 상, 하향 이동하는 리프트(210)와, 하향 개방된 하부 덮개(1b)를 수평 이동하는 셔틀(220)로 구성된다. In FIG. 6, the lower cover 1b is opened downward by the moving device stand 200 and provided to be horizontally moved, and the moving device stand 200 includes a lift 210 moving up and down the lower cover 1b. It consists of a shuttle 220 horizontally moving the lower cover (1b) opened downward.

이에 하부 덮개(1b)와 본체(1)의 결합, 분리 작동에 의해 증착실(1') 내부 공간이 개폐작동되는 구조로 인해 진공도 조성에 따른 기밀처리구조가 간단하고, 특히 하부 덮개(1b)가 하향 개방되어 셔틀(220)을 타고 수평 이동되는 방식으로 이동장치대(200)가 로딩, 언로딩되므로 탄화규소 증착층(2c')이 형성된 그라파이트모재(2c)의 교체 작업이 신속하게 이루어진다.Accordingly, due to the structure in which the inner space of the deposition chamber 1'is opened and closed by the combination and separation operation of the lower cover 1b and the main body 1, the airtight treatment structure according to the composition of the vacuum degree is simple, and in particular, the lower cover 1b Is opened downwardly, and the moving device base 200 is loaded and unloaded in a manner that is horizontally moved along the shuttle 220, so that the graphite base material 2c on which the silicon carbide deposition layer 2c' is formed is quickly replaced.

도 8은 본 발명에 따른 화학적 기상증착에 의한 탄화규소 증착장치를 이용한 탄화규소 증착 방법을 개략적으로 나타내는 순서도이다.8 is a flow chart schematically showing a silicon carbide deposition method using the silicon carbide deposition apparatus by chemical vapor deposition according to the present invention.

본 발명에 따른 화학적 기상증착에 의한 탄화규소 증착장치를 이용한 탄화규소 증착 방법은, 제품장치대(2)의 다단거치부(2b)에 복수의 그라파이트모재(2c)를 적층하여 처리조(가) 내부로 투입하는 준비단계(S1); 상기 준비단계(S1) 이후, 처리조(가)를 진공처리하고, 1200~1600℃로 가열하는 히팅단계(S2); 상기 히팅단계(S2) 이후, 제품장치대(2)의 폴대(2a)를 1 ~ 25rpm으로 회전하면서 가스공급부(100)의 공급노즐(6)을 통하여 MTS증착가스를 분사하여, 그라파이트모재(2c) 표면에 탄화규소 증착층(2c')을 형성하는 증착단계(S3); 및 상기 증착단계(S3)에서 탄화규소 증착층(2c')이 소정의 두께로 증착되는 공정이 완료되면, 증착실(1') 내부 가스를 여과 배출하면서 퍼징가스를 주입하여, 증착실(1') 내부 온도를 600℃ 이하로 냉각하는 냉각퍼징단계(S4);를 포함하여 이루어진다.The silicon carbide deposition method using the silicon carbide deposition apparatus by chemical vapor deposition according to the present invention is a treatment tank (a) by laminating a plurality of graphite base materials 2c on the multi-stage mounting portion 2b of the product rack 2 Preparation step (S1) to be introduced into the interior; After the preparation step (S1), a heating step (S2) of vacuuming the treatment tank (A) and heating it to 1200 to 1600°C; After the heating step (S2), the MTS deposition gas is injected through the supply nozzle 6 of the gas supply unit 100 while rotating the pole 2a of the product unit 2 at 1 to 25 rpm, and the graphite base material 2c ) A deposition step (S3) of forming a silicon carbide deposition layer (2c') on the surface; And when the process of depositing the silicon carbide deposition layer 2c' to a predetermined thickness in the deposition step S3 is completed, a purging gas is injected while filtering out the gas inside the deposition chamber 1'. ') a cooling purging step (S4) of cooling the internal temperature to 600°C or less;

이때, 상기 증착단계(S3)에서, MTS증착가스는 기화기(8)를 통하여 MTS 100중량부, 수소 50~90중량부를 혼합하여 형성되고, 상기 기화기(8)를 통하여 생성된 MTS증착가스는 수소가스공급부(30)를 통하여 공급되는 수소에 의해 공급노즐(6)을 통한 분사압력이 제어되도록 구비된다.At this time, in the deposition step (S3), the MTS deposition gas is formed by mixing 100 parts by weight of MTS and 50 to 90 parts by weight of hydrogen through the vaporizer 8, and the MTS deposition gas generated through the vaporizer 8 is hydrogen It is provided to control the injection pressure through the supply nozzle 6 by hydrogen supplied through the gas supply unit 30.

이에 상기 MTS 100중량부, 수소 50~90중량부를 혼합으로 인해 소량의 수소가스를 이용하여 MTS입자가 초미립자화 되어 MTS증착가스가 생성되고, 추가로 주입되는 수소가스에 의해 MTS증착가스가 활성화되어 증착실 내부로 분사되는 압력이 간단하게 제어됨으로 MTS의 손실이 최소화되면서 시간당 탄화규소 증착효율이 향상되고, 특히 그라파이트모재(2c) 사이즈에 대응하여 MTS증착가스 분사거리 및 분사량이 정밀하게 제어되어 다양한 사이즈의 탄화규소 증착층을 형성 가능한 범용성이 제공된다.Accordingly, by mixing 100 parts by weight of MTS and 50 to 90 parts by weight of hydrogen, the MTS particles are made ultra-fine using a small amount of hydrogen gas to generate MTS deposition gas, and the MTS deposition gas is activated by additionally injected hydrogen gas. As the pressure injected into the deposition chamber is simply controlled, the loss of MTS is minimized, and the silicon carbide deposition efficiency per hour is improved.In particular, in response to the size of the graphite base material (2c), the MTS deposition gas injection distance and injection amount are precisely controlled. The versatility of forming a silicon carbide vapor deposition layer of the size is provided.

1 : 본체 1a,1b : 덮개
1c : 수조 2 : 제품장치대
2a : 폴대 2b : 다단거치부
2c : 그라파이트모재 2d : 모터
3 : 전기발열체 4 : 내통
5 : 단열재 6 : 기화소스공급노즐
6a : 지지외통 6b : 소스분사관
6d : 냉각수저장실 6e : 냉각수주입관
6f : 배출관 6g : 보호캡
7 : 액체유량제어기 8 : 기화기
9 : 기화소스분배관 9a : 라인히터
10 : 유량계 11 : 진공펌프
가 : 처리조
1: main body 1a, 1b: cover
1c: water tank 2: product equipment stand
2a: pole 2b: multi-stage mounting
2c: graphite base material 2d: motor
3: electric heating element 4: inner cylinder
5: insulation material 6: vaporization source supply nozzle
6a: support outer cylinder 6b: source injection pipe
6d: cooling water storage room 6e: cooling water injection pipe
6f: discharge pipe 6g: protective cap
7: liquid flow controller 8: vaporizer
9: vaporization source distribution pipe 9a: line heater
10: flow meter 11: vacuum pump
A: Treatment tank

Claims (11)

상, 하부 덮개(1a)(1b)에 의해 마감되어 증착실(1')을 형성하고, 내부에 전기발열체(3)가 설치되는 본체(1)와, 본체(1) 내부 진공도를 조성하는 진공펌프(11)와, 본체(1)에서 배기되는 가스를 여과하는 집진기로 이루어지는 처리조(가);
상기 전기발열체(3)와 본체(1) 내주면 사이에 설치되어 보온 내통(4);
상기 하부 덮개(1b)에서 처리조(가) 내부로 돌출되어 모터(2d)에 의해 회전되는 폴대(2a)와, 폴대(2a) 외주면에 그라파이트모재(2c)를 적층하는 다단거치부(2b)로 이루어지는 제품장치대(2); 및
상기 처리조(가) 및 보온 내통(4)을 관통하여 그라파이트모재(2c)와 대응하도록 설치되는 복수의 공급노즐(6)을 통하여 MTS증착가스, 수소가스, 퍼징가스 중 적어도 1종 이상의 가스를 투입하도록 구비되는 가스공급부(100);를 포함하여 이루어지고,
상기 가스공급부(100)는, 상기 공급노즐(6)로 이동되는 가스 공급량을 제어하는 유량계(10)와, 유량계(10)에 연결되고, 기화기(8)를 통하여 기화된 MTS(Methyltrichlorosilane), 수소를 포함하는 MTS증착가스를 공급하는 증착가스공급부(20)와, 유량계(10)에 연결되고, 수소가스를 공급하는 수소가스공급부(30)와, 유량계(10)에 연결되고, 질소를 포함하는 퍼징가스를 공급하는 퍼징가스공급부(40)와, MTS증착가스공급부(20), 수소가스공급부(30) 및 퍼징가스공급부(40)를 제어하여 MTS증착가스, 수소가스, 퍼징가스 공급을 제어하는 제어부로 이루어지고,
상기 수소가스공급부(30)는 제 1, 2분배관(31)(32)을 통하여 수소가 분배 이동량이 제어되고, 제 1분배관(31)은 기화기(8)에 연결되어 MTS와 혼합 기화된 MTS증착가스를 형성하며, 제 2분배관(32)은 유량계(10)에 연결되어 공급노즐(6)을 통한 MTS증착가스 분사압력을 조절하도록 구비되는 것을 특징으로 하는 화학적 기상증착에 의한 탄화규소 증착장치.
The body 1 is closed by the upper and lower covers 1a and 1b to form the evaporation chamber 1', and the electric heating element 3 is installed therein, and a vacuum to create the internal vacuum degree of the body 1 A treatment tank comprising a pump 11 and a dust collector for filtering gas exhausted from the main body 1;
An inner cylinder 4 installed between the electric heating element 3 and the inner circumferential surface of the main body 1 to keep warm;
A multi-stage mounting portion (2b) in which a pole (2a) protruding from the lower cover (1b) into the treatment tank (a) and rotated by a motor (2d), and a graphite base material (2c) on the outer peripheral surface of the pole (2a) Product device stand (2) consisting of; And
At least one gas of MTS deposition gas, hydrogen gas, and purging gas is supplied through a plurality of supply nozzles 6 installed to correspond to the graphite base material 2c through the treatment tank (A) and the thermal insulation inner cylinder (4). Made including; a gas supply unit 100 provided to be injected,
The gas supply unit 100 includes a flow meter 10 for controlling the amount of gas supplied to the supply nozzle 6, and MTS (Methyltrichlorosilane) vaporized through the vaporizer 8, connected to the flow meter 10, and hydrogen. The deposition gas supply unit 20 for supplying the MTS deposition gas including, and connected to the flow meter 10, the hydrogen gas supply unit 30 for supplying hydrogen gas, and connected to the flow meter 10, containing nitrogen The purging gas supply unit 40 that supplies the purging gas, the MTS deposition gas supply unit 20, the hydrogen gas supply unit 30, and the purging gas supply unit 40 are controlled to control the supply of MTS deposition gas, hydrogen gas, and purging gas. Consists of a control unit,
The hydrogen gas supply unit 30 controls the amount of distribution and movement of hydrogen through the first and second distribution pipes 31 and 32, and the first distribution pipe 31 is connected to the vaporizer 8 to be mixed and vaporized with MTS. Silicon carbide by chemical vapor deposition, characterized in that it forms MTS deposition gas, and the second distribution pipe 32 is connected to the flow meter 10 and provided to control the injection pressure of the MTS deposition gas through the supply nozzle 6 Evaporation equipment.
제 1항에 있어서,
상기 가스공급부(100)는 제품장치대(2)의 폴대(2a) 회전축 중심과 그라파이트모재(2c) 외주면 사이 영역(L)으로 MTS증착가스가 분사되도록 설치되는 것을 특징으로 하는 화학적 기상증착에 의한 탄화규소 증착장치.
The method of claim 1,
The gas supply unit 100 is installed so that the MTS deposition gas is injected into the region L between the center of the rotation axis of the pole 2a of the product stand 2 and the outer peripheral surface of the graphite base material 2c. Silicon carbide deposition apparatus.
삭제delete 제 1항에 있어서,
상기 기화기(8)를 통하여 기화된 MTS증착가스는 복수의 분배관(9)을 통하여 공급노즐(6)로 분배 이동되고, 분배관(9)은 히터(9a)에 의해 가열되어 MTS증착가스 온도가 처리조(가) 내부온도와 일치되도록 구비되는 것을 특징으로 하는 화학적 기상증착에 의한 탄화규소 증착장치.
The method of claim 1,
The MTS vaporized gas vaporized through the vaporizer 8 is distributed and moved to the supply nozzle 6 through a plurality of distribution pipes 9, and the distribution pipe 9 is heated by a heater 9a to provide the MTS vapor deposition gas temperature. A processing tank (a) silicon carbide deposition apparatus by chemical vapor deposition, characterized in that provided to match the internal temperature.
제 1항에 있어서,
상기 공급노즐(6)은, 단부에 분출구(6c)가 형성되는 가스 분사관(6b)과, 가스 분사관(6b) 외주면을 감싸도록 형성되고, 주입관(6e)과 배출관(6f)을 통하여 냉각수가 순환되는 냉각수저장실(6d)로 구성되는 것을 특징으로 하는 화학적 기상증착에 의한 탄화규소 증착장치.
The method of claim 1,
The supply nozzle 6 is formed so as to surround the gas injection pipe 6b having a discharge port 6c formed at the end, and the outer peripheral surface of the gas injection pipe 6b, and through the injection pipe 6e and the discharge pipe 6f. Silicon carbide deposition apparatus by chemical vapor deposition, characterized in that consisting of a cooling water storage chamber (6d) in which cooling water is circulated.
제 5항에 있어서,
상기 가스 분사관(6b) 분출구(6c) 외면에는 그라파이트로 형성되어 일정길이를 가지는 관형상의 보호캡(6g)이 설치되고, 상기 보호캡(6g) 선단부는 보온 내통(4) 내주면에서 내측방향으로 연장되어 돌출관부를 형성하도록 구비되는 것을 특징으로 하는 화학적 기상증착에 의한 탄화규소 증착장치.
The method of claim 5,
A tubular protective cap (6g) formed of graphite and having a predetermined length is installed on the outer surface of the gas injection pipe (6b) outlet (6c), and the tip of the protective cap (6g) is inward from the inner circumferential surface of the thermal insulation inner cylinder (4) Silicon carbide deposition apparatus by chemical vapor deposition, characterized in that provided to extend to form a protruding tube portion.
제 1항에 있어서,
상기 하부 덮개(1b)는 이동장치대(200)에 의해 하향 개방되어 수평 이동되도록 구비되고, 상기 이동장치대(200)는 하부 덮개(1b)를 상, 하향 이동하는 리프트(210)와, 하향 개방된 하부 덮개(1b)를 수평 이동하는 셔틀(220)로 구성되는 것을 특징으로 하는 화학적 기상증착에 의한 탄화규소 증착장치.
The method of claim 1,
The lower cover (1b) is provided to be horizontally moved by being opened downward by the moving device stand 200, and the moving device stand 200 includes a lift 210 moving up and down the lower cover 1b, and a downwardly opened Silicon carbide deposition apparatus by chemical vapor deposition, characterized in that consisting of a shuttle 220 horizontally moving the lower cover (1b).
제 1항에 있어서,
상기 본체(1) 및 상, 하부 덮개(1a)(1b)는 내, 외벽(a)(b) 이중 구조로 형성되고, 내, 외벽(a)(b) 사이에 냉각수가 순환되는 수조(1c)가 구비되는 것을 특징으로 하는 화학적 기상증착에 의한 탄화규소 증착장치.
The method of claim 1,
The main body (1) and the upper and lower covers (1a) (1b) are formed in a dual structure of inner and outer walls (a) (b), and a water tank 1c in which cooling water is circulated between the inner and outer walls (a) and ) Silicon carbide deposition apparatus by chemical vapor deposition, characterized in that provided.
제 1항에 있어서,
상기 보온 내통(4) 내면에 그라파이트 단열재(5)가 구비되는 것을 특징으로 하는 화학적 기상증착에 의한 탄화규소 증착장치.
The method of claim 1,
Silicon carbide deposition apparatus by chemical vapor deposition, characterized in that a graphite insulating material (5) is provided on the inner surface of the insulating inner cylinder (4).
제 1항에 있어서,
상기 제품장치대(2)의 다단거치부(2b)에 복수의 그라파이트모재(2c)를 적층하여 처리조(가) 내부로 투입한 후, 처리조(가)를 진공처리하고, 1200~1600℃로 가열하고, 제품장치대(2)의 폴대(2a)를 1 ~ 25rpm으로 회전하면서 가스공급부(100)의 공급노즐(6)을 통하여 MTS증착가스를 분사하여, 그라파이트모재(2c) 표면에 탄화규소 증착층(2c')을 형성한 후, 증착실(1') 내부 가스를 여과 배출하면서 퍼징가스를 주입하여, 증착실(1') 내부 온도를 600℃ 이하로 냉각하는 냉각퍼징처리하도록 구비되는 것을 특징으로 하는 화학적 기상증착에 의한 탄화규소 증착장치.
The method of claim 1,
After stacking a plurality of graphite base materials (2c) on the multi-stage mounting portion (2b) of the product stand (2) and putting them into the treatment tank (A), the treatment tank (A) was vacuum-treated, and then 1200~1600℃ By heating and rotating the pole (2a) of the product stand (2) at 1 to 25 rpm, and spraying the MTS deposition gas through the supply nozzle (6) of the gas supply unit (100) to carbonize the surface of the graphite base material (2c) After the silicon deposition layer 2c' is formed, a purging gas is injected while filtering out the gas inside the deposition chamber 1'to cool the inside of the deposition chamber 1'to 600°C or less. Silicon carbide deposition apparatus by chemical vapor deposition, characterized in that.
제 10항에 있어서,
상기 MTS증착가스는 기화기(8)를 통하여 MTS 100중량부, 수소 50~90중량부를 혼합하여 형성되고, 상기 기화기(8)를 통하여 생성된 MTS증착가스는 수소가스공급부(30)를 통하여 공급되는 수소에 의해 공급노즐(6)을 통한 분사압력이 제어되도록 구비되는 것을 특징으로 하는 화학적 기상증착에 의한 탄화규소 증착장치.
The method of claim 10,
The MTS deposition gas is formed by mixing 100 parts by weight of MTS and 50 to 90 parts by weight of hydrogen through the vaporizer 8, and the MTS deposition gas generated through the vaporizer 8 is supplied through the hydrogen gas supply unit 30. Silicon carbide deposition apparatus by chemical vapor deposition, characterized in that provided to control the injection pressure through the supply nozzle (6) by hydrogen.
KR1020190165315A 2019-12-12 2019-12-12 Silicon Carbide Deposition System by Chemical Vapor Deposition KR102153501B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190165315A KR102153501B1 (en) 2019-12-12 2019-12-12 Silicon Carbide Deposition System by Chemical Vapor Deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190165315A KR102153501B1 (en) 2019-12-12 2019-12-12 Silicon Carbide Deposition System by Chemical Vapor Deposition

Publications (1)

Publication Number Publication Date
KR102153501B1 true KR102153501B1 (en) 2020-09-08

Family

ID=72451051

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190165315A KR102153501B1 (en) 2019-12-12 2019-12-12 Silicon Carbide Deposition System by Chemical Vapor Deposition

Country Status (1)

Country Link
KR (1) KR102153501B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102415202B1 (en) * 2021-10-25 2022-06-30 (주)한국이엔이 Vacuum Deposition Apparatus
KR20220136563A (en) * 2021-03-31 2022-10-11 주식회사 에프엑스티 An apparatus for manufacturing SiC member, a method for manufacturing SiC member, and a method for manufacturing a focus ring
KR102518932B1 (en) * 2023-01-27 2023-04-06 (주)브이아이테크 MTS deposition gas control system of silicon carbide deposition equipment
EP4306688A1 (en) * 2022-07-13 2024-01-17 Zadient Technologies SAS Method and device for producing a sic solid material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050019572A (en) 2003-08-19 2005-03-03 장민석 The method of SIC film forming on BN film by CVD
KR20130000338A (en) * 2011-06-22 2013-01-02 가부시키가이샤 히다치 고쿠사이 덴키 Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus and computer-readable medium having thereon program performing function embodying the same
KR101593922B1 (en) 2014-12-30 2016-02-15 하나머티리얼즈(주) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
KR101922469B1 (en) * 2017-05-12 2018-11-28 (주)디에스테크노 Chemical vapor deposition low resistance silicon carbide bulk manufacturign apparatus
KR102056107B1 (en) * 2019-09-09 2019-12-19 나기정 deposition forming device of Chemical Vapor Deposition sic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050019572A (en) 2003-08-19 2005-03-03 장민석 The method of SIC film forming on BN film by CVD
KR20130000338A (en) * 2011-06-22 2013-01-02 가부시키가이샤 히다치 고쿠사이 덴키 Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus and computer-readable medium having thereon program performing function embodying the same
KR101593922B1 (en) 2014-12-30 2016-02-15 하나머티리얼즈(주) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
KR101922469B1 (en) * 2017-05-12 2018-11-28 (주)디에스테크노 Chemical vapor deposition low resistance silicon carbide bulk manufacturign apparatus
KR102056107B1 (en) * 2019-09-09 2019-12-19 나기정 deposition forming device of Chemical Vapor Deposition sic

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220136563A (en) * 2021-03-31 2022-10-11 주식회사 에프엑스티 An apparatus for manufacturing SiC member, a method for manufacturing SiC member, and a method for manufacturing a focus ring
KR102567296B1 (en) * 2021-03-31 2023-08-18 주식회사 에프엑스티 An apparatus for manufacturing SiC member, a method for manufacturing SiC member, and a method for manufacturing a focus ring
KR102415202B1 (en) * 2021-10-25 2022-06-30 (주)한국이엔이 Vacuum Deposition Apparatus
EP4306688A1 (en) * 2022-07-13 2024-01-17 Zadient Technologies SAS Method and device for producing a sic solid material
WO2024013049A1 (en) * 2022-07-13 2024-01-18 Zadient Technologies SAS METHOD AND DEVICE FOR PRODUCING A SiC SOLID MATERIAL
KR102518932B1 (en) * 2023-01-27 2023-04-06 (주)브이아이테크 MTS deposition gas control system of silicon carbide deposition equipment
KR102518943B1 (en) * 2023-01-27 2023-04-06 (주)브이아이테크 MTS deposition gas control system of silicon carbide deposition equipment

Similar Documents

Publication Publication Date Title
KR102153501B1 (en) Silicon Carbide Deposition System by Chemical Vapor Deposition
US20210040613A1 (en) Heater assembly including cooling apparatus and method of using same
TWI377092B (en) Vaporizer and semiconductor processing system
US9469898B2 (en) Method and apparatus to help promote contact of gas with vaporized material
EP1750833B1 (en) Method and apparatus to help promote contact of gas with vaporized material
US6424800B1 (en) Bubbler
KR101128745B1 (en) Vapor emission device, organic thin-film vapor deposition apparatus and method of organic thin-film vapor deposition
KR102056107B1 (en) deposition forming device of Chemical Vapor Deposition sic
US6521047B1 (en) Process and apparatus for liquid delivery into a chemical vapor deposition chamber
JPH09134911A (en) High dielectric thin film production and manufacturing device
KR20010023887A (en) Vaporization and deposition apparatus and process
JP2000199066A (en) Liquid carrying device
US20060070575A1 (en) Solution-vaporization type CVD apparatus
US7635395B2 (en) Solid material gasification method
JP3893177B2 (en) Vaporizer, CVD apparatus, and thin film manufacturing method
KR20130042719A (en) Deposition apparatus having linear evaporating source
KR102098817B1 (en) Silicon Carbide Deposition Method by Chemical Vapor Deposition
JPH05214537A (en) Solid sublimating vaporizer
KR101324208B1 (en) Substrate processing apparatue
KR101772621B1 (en) Downward Evaporation Apparatus And Downward Evaporation Deposition Apparatus
KR100425672B1 (en) Cvd apparatus with ultrasonic oscillator and evaporator for manufacturing improved composite oxide thin film without clogging of transfer part
KR101464356B1 (en) Vaporizer in depositing apparatus
KR101528709B1 (en) depositon crucible for improving evaporation uniformity
JP4018841B2 (en) Vaporizer and vaporization supply method
KR101130045B1 (en) Gas injection apparatus and apparatus depositing thin film having the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant