KR102518932B1 - MTS deposition gas control system of silicon carbide deposition equipment - Google Patents

MTS deposition gas control system of silicon carbide deposition equipment Download PDF

Info

Publication number
KR102518932B1
KR102518932B1 KR1020230010531A KR20230010531A KR102518932B1 KR 102518932 B1 KR102518932 B1 KR 102518932B1 KR 1020230010531 A KR1020230010531 A KR 1020230010531A KR 20230010531 A KR20230010531 A KR 20230010531A KR 102518932 B1 KR102518932 B1 KR 102518932B1
Authority
KR
South Korea
Prior art keywords
mts
deposition
gas
nozzle
deposition gas
Prior art date
Application number
KR1020230010531A
Other languages
Korean (ko)
Inventor
박선우
Original Assignee
(주)브이아이테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)브이아이테크 filed Critical (주)브이아이테크
Priority to KR1020230010531A priority Critical patent/KR102518932B1/en
Priority to KR1020230037698A priority patent/KR102518943B1/en
Application granted granted Critical
Publication of KR102518932B1 publication Critical patent/KR102518932B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention relates to an MTS deposition gas control system of a silicon carbide deposition device. At this time, the MTS deposition gas control system of a silicon carbide deposition device improves a structure to allow MTS deposition gas inputted through a nozzle to be precisely controlled by each gas supply unit without using an expensive flow meter to significantly reduce manufacturing cost of vacuum deposition equipment and mainly comprise a vacuum deposition chamber (100) and a gas supply unit (200) to reduce maintenance and repair cost and minimize shutdown time due to maintenance and repair.

Description

탄화규소 증착장치의 MTS증착가스 제어시스템{MTS deposition gas control system of silicon carbide deposition equipment}MTS deposition gas control system of silicon carbide deposition equipment}

본 발명은 탄화규소 증착장치의 MTS증착가스 제어시스템에 관련되며, 보다 상세하게는 노즐을 통하여 투입되는 MTS증착가스가 고가의 유량계를 사용하지 않고 각각의 가스공급부에 의해 정밀 제어되도록 구조 개선되어, 진공증착 장비의 제조단가가 크게 절감됨과 더불어 유지보수 비용 절감 및 유지보수로 인한 운전 정지시간을 최소화할 수 있는 탄화규소 증착장치의 MTS증착가스 제어시스템에 관한 것이다.The present invention relates to an MTS deposition gas control system of a silicon carbide deposition apparatus, and more specifically, the structure is improved so that the MTS deposition gas injected through the nozzle is precisely controlled by each gas supply unit without using an expensive flowmeter, It relates to an MTS deposition gas control system for silicon carbide deposition equipment that can significantly reduce the manufacturing cost of vacuum deposition equipment, reduce maintenance costs and minimize downtime due to maintenance.

종래의 화학적 기상증착에 의한 탄화규소 증착장치는 탄화규소막질을 생성하는데 필요한 MTS(Methyltrichlorosilane)을 버블 상태로 처리조에 공급하여 고온하에서 증착형성이 구현되게 하고 있으나, 버블러의 특성상 일정량을 지속적으로 공급하는 것에 한계가 있고, 또 버블러를 통하여 공급한 MTS소스는 기화정도가 균등하지 못해 처리조에서 반응할 때, 변수가 많아 증착형성의 정밀성이 떨어지고, 두터운 증착형성이 어려울 뿐 아니라, 처리조의 구동과 관리가 복잡하여 사용이 불편하고, 제조원가가 높아지는 흠결이 있었다.Conventional silicon carbide deposition apparatuses by chemical vapor deposition supply MTS (Methyltrichlorosilane) necessary for producing silicon carbide films in a bubble state to a treatment tank to realize deposition formation at high temperatures, but due to the characteristics of bubblers, a certain amount is continuously supplied. There is a limit to what to do, and the MTS source supplied through the bubbler does not have an even degree of vaporization, so when reacting in the treatment tank, there are many variables, so the precision of deposition formation is poor, thick deposition formation is difficult, and the operation of the treatment tank And management is complicated, so it is inconvenient to use and the manufacturing cost is high.

이에 종래에 개시된 등록특허 10-2146769호에서, 원통형상으로 되어 내벽과 외벽 사이에 저수실이 형성되어 냉각수가 순환되고 지지각에 의하여 일정높이를 유지하는 몸통과, 몸통의 상측개방부에 외주연이 결합되어 결합부에 패킹이 장치되고, 볼트와 너트로 체결되며, 돔형상으로 되어 스테인레스스틸 내벽과 외벽 사이에 저수실이 형성되어 냉각수가 순환되는 상부덮개와, 하측개방부에 외주연이 결합되어 결합부에 패킹이 장치되고, 볼트와 너트로 체결되며, 접시형상으로 되어 스테인레스스틸 내벽과 외벽 사이에 저수실이 형성되어 냉각수가 순환되고, 중앙부에 상하로 관통하는 중앙관통구멍이 형성되는 하부덮개로 구성되어 하부덮개는 몸통에서 분리되고, 결합될 수 있게 처리조를 형성하고, 처리조의 처리실내에 그라파이트모재를 적층하는 폴대를 장치하고, 처리실 주벽에 그라파이트 단열벽과 그라파이트 내벽을 일정간격에 형성되어 다중의 단열벽을 형성하고, 내벽 내측에 전기발열체를 배치하고, 몸통 외측에서 내벽을 관통하게 기화소스공급노즐을 장치하여, 1200∼1400℃로 기화시킨 MTS 기화소스와 수소를 혼합한 혼합가스를 노즐로 공급하고, 별도의 라인을 통해 질소와 수소를 공급하는 기술이 선 제시된 바 있다.Accordingly, in Patent Registration No. 10-2146769 disclosed in the prior art, a body having a cylindrical shape with a water storage chamber formed between the inner wall and the outer wall to circulate cooling water and maintaining a certain height by the support angle, and an outer circumference at the upper opening of the body The coupling is coupled with packing, fastened with bolts and nuts, and is formed in a dome shape with a water storage chamber formed between the inner and outer walls of stainless steel to circulate the cooling water, and the outer periphery is coupled to the lower opening. Packing is installed at the coupling part, and it is fastened with bolts and nuts. It is shaped like a dish, and a water storage chamber is formed between the inner and outer walls of stainless steel to circulate cooling water. It is composed of a cover, and the lower cover is separated from the body and forms a treatment tank so that it can be combined, and a pole for laminating the graphite base material in the treatment chamber of the treatment tank is installed, and the graphite insulation wall and the graphite inner wall are installed at regular intervals on the main wall of the treatment chamber Formed to form multiple insulation walls, arrange an electric heating element inside the inner wall, and install a vaporization source supply nozzle from the outside of the body to penetrate the inner wall, and mix the MTS vaporization source vaporized at 1200 ~ 1400 ° C with hydrogen. A technique of supplying gas through a nozzle and supplying nitrogen and hydrogen through separate lines has been previously proposed.

그러나, 상기 종래기술은 탄화규소(sic) 증착형성장치의 처리실에 압력 조정장치를 부착하여 내부압력을 설정값으로 유지하려는 것이나, 각각의 기화소스공급노즐을 통하여 주입되는 MTS 기화소스가 처리실 내부로 분사하 하향 낙하함에 따라 처리실 하부영역에 배치되는 그라파이트에 대한 MTS증착 두께가 상부영역 대비 두껍게 형성되는 증착 편차가 발생되고, 이로 인해 상부영역의 MTS증착 두께가 기준치에 도달할때까지 증착이 진행되면서 하부 영역의 MTS증착 두께가 과도하게 증가되어 MTS 재료비 부담 및 MTS 증착층 후가공에 따른 시간과 비용 부담이 증가되는 폐단이 따랐다. However, the prior art is to maintain the internal pressure at a set value by attaching a pressure regulator to the processing chamber of the silicon carbide (sic) deposition forming apparatus, but the MTS vaporization source injected through each vaporization source supply nozzle is directed into the processing chamber. As the spray falls downward, a deposition deviation occurs in which the MTS deposition thickness for the graphite disposed in the lower region of the processing chamber is thicker than that of the upper region, and as a result, the deposition progresses until the MTS deposition thickness in the upper region reaches the standard The MTS deposition thickness in the lower region was excessively increased, resulting in the burden of MTS material cost and the burden of time and cost due to post-processing of the MTS deposition layer.

뿐만 아니라, 기화소스공급노즐로 공급되는 MTS 기화소스가 고가의 액체유량제어기에 의해 제어됨에 따라 설비 구축에 따른 비용 부담 및 유지보수에 많은 시간과 비용이 소요되는 문제점이 따랐다.In addition, as the MTS vaporization source supplied to the vaporization source supply nozzle is controlled by an expensive liquid flow controller, there are problems in that a lot of time and money are required for cost burden and maintenance due to facility construction.

이에 따라 본 발명은 상기한 문제점을 해결하기 위해 착안 된 것으로서, 노즐을 통하여 투입되는 MTS증착가스가 고가의 유량계를 사용하지 않고 각각의 가스공급부에 의해 정밀 제어되도록 구조 개선되어, 진공증착 장비의 제조단가가 크게 절감됨과 더불어 유지보수 비용 절감 및 유지보수로 인한 운전 정지시간을 최소화할 수 있는 탄화규소 증착장치의 MTS증착가스 제어시스템을 제공하는 것에 그 목적이 있다.Accordingly, the present invention has been conceived to solve the above problems, and the structure is improved so that the MTS deposition gas injected through the nozzle is precisely controlled by each gas supply unit without using an expensive flowmeter, thereby manufacturing vacuum deposition equipment. Its purpose is to provide an MTS deposition gas control system of a silicon carbide deposition apparatus capable of significantly reducing unit cost and minimizing downtime due to maintenance costs and maintenance.

이러한 목적을 달성하기 위해 본 발명의 특징은, 증착히터(110)에 의해 가열되고, 그라파이트모재(G)를 회전 가능하게 지지하는 거치대(120)가 등간격으로 원형 배치되며, 거치대(120)와 대응하는 위치에 복수의 노즐(130)이 종방향으로 이격되도록 구비되는 진공증착챔버(100); 및 상기 노즐(130)에 연결되어 증착챔버(100) 내부로 MTS증착가스를 투입하도록 구비되는 가스공급부(200);를 포함하고, 상기 진공증착챔버(100)는 내부 공간은 가상의 경계선을 기준으로 상, 하부 공간부(101)(102)로 분할되며, 상기 노즐(130)은 상부 공간부(101)에 대응하는 상부 노즐군(130a)과 하부 공간부(102)에 대응하는 하부 노즐군(130b)으로 구분되며, 상기 상, 하부 노즐군(130a)(130b)은 각각의 가스공급부(200)에 의해 MTS증착가스 투입 압력이 서로 상이하게 제어되어, 상부 노즐군(130a)으로 투입되는 MTS증착가스 압력 대비 하부 노즐군(130b)으로 투입되는 MTS증착가스 압력이 낮게 설정되도록 구비되는 것을 특징으로 한다.In order to achieve this object, the feature of the present invention is that the cradle 120 heated by the deposition heater 110 and rotatably supporting the graphite base material G is circularly arranged at equal intervals, and the cradle 120 and A vacuum deposition chamber 100 provided with a plurality of nozzles 130 spaced apart in the longitudinal direction at corresponding positions; and a gas supply unit 200 connected to the nozzle 130 and configured to inject MTS deposition gas into the deposition chamber 100, wherein the interior space of the vacuum deposition chamber 100 is based on a virtual boundary line. It is divided into upper and lower space parts 101 and 102, and the nozzle 130 includes an upper nozzle group 130a corresponding to the upper space part 101 and a lower nozzle group corresponding to the lower space part 102. (130b), and the upper and lower nozzle groups 130a and 130b are injected into the upper nozzle group 130a by controlling the input pressure of the MTS deposition gas to be different from each other by the gas supply unit 200, respectively. It is characterized in that the pressure of the MTS deposition gas injected into the lower nozzle group 130b is set low compared to the pressure of the MTS deposition gas.

이때, 상기 가스공급부(200)는, MTS 원료를 수소가스로 버블링하여 1차 MTS기화가스를 생성하는 1차 기화모듈(210)과, 1차 기화모듈(210)에서 생성된 1차 MTS기화가스를 분배 출력하도록 제 1, 2 출력포트(221)(222)가 형성하는 1차 분배구(220)와, 제 1, 2출구포트(221)(222)에 각각 연결되고, 1차 MTS기화가스를 가열 기화하면서 수소가스와 혼합하여 2차 MTS기화가스를 생성하는 2차 상, 하부 기화모듈(230)(230')과, 2차 상, 하부 기화모듈(230)(230')에서 생성된 2차 MTS기화가스를 각각 상, 하부 노즐군(130a)(130b)으로 분배 출력하도록 복수의 제 3출력포트(241)가 형성되는 2차 상, 하부 분배구(240)(240')를 포함하는 것을 특징으로 한다.At this time, the gas supply unit 200 includes a primary vaporization module 210 for generating primary MTS vaporization gas by bubbling the MTS raw material with hydrogen gas, and primary MTS vaporization generated by the primary vaporization module 210. It is connected to the primary distribution port 220 formed by the first and second output ports 221 and 222 and the first and second outlet ports 221 and 222 to distribute and output gas, respectively, and to vaporize the primary MTS. Generated by the secondary upper and lower vaporization modules 230 and 230' and the secondary upper and lower vaporization modules 230 and 230' that heat and vaporize the gas and mix it with hydrogen gas to generate the secondary MTS vaporization gas The secondary upper and lower distribution ports 240 and 240' having a plurality of third output ports 241 are formed to distribute and output the secondary MTS vaporized gas to the upper and lower nozzle groups 130a and 130b, respectively. It is characterized by including.

또한, 상기 2차 상, 하부 분배구(240)(240')에 질소, 수소 중 어느 하나 이상의 셔틀가스를 투입하는 주입구(242)가 구비되고, 상기 주입구(242)를 통하여 주입되는 셔틀가스 압력에 의해 2차 상, 하부 분배구(240)(240')를 통하여 상, 하부 노즐군(130a)(130b)으로 출력되는 MTS증착가스 투입 압력이 서로 상이하게 제어되도록 구비되는 것을 특징으로 한다.In addition, the secondary upper and lower distribution ports 240 and 240' are provided with an inlet 242 for injecting one or more shuttle gases of nitrogen and hydrogen, and the pressure of the shuttle gas injected through the inlet 242 It is characterized in that the input pressure of the MTS deposition gas output to the upper and lower nozzle groups 130a and 130b through the secondary upper and lower distribution ports 240 and 240' is controlled differently from each other.

또한, 상기 노즐(130)과 대응하는 위치에 예비노즐(130')이 구비되고, 상기 예비노즐(130')은 삼방밸브(132)에 의해 2차 상, 하부 분배구(240)(240') 또는 질소, 수소 중 어느 하나 이상의 셔틀가스가 공급되는 셔틀가스라인(133)과 연통되도록 구비되며, 상기 노즐(130)을 통하여 MTS증착가스가 출력되어 그라파이트모재(G)에 진공증착공정이 수행되는 중에는 예비노즐(130')을 통하여 셔틀가스가 출력되고, 노즐(130)이 막힘 시, 삼방밸브(132) 작동에 의해 노즐(130) 측으로 전달되는 MTS증착가스가 예비노즐(130') 측으로 우회하여 출력되도록 구비되는 것을 특징으로 한다.In addition, a preliminary nozzle 130' is provided at a position corresponding to the nozzle 130, and the preliminary nozzle 130' is provided with secondary upper and lower distribution ports 240 and 240' by a three-way valve 132. ) or nitrogen and hydrogen, provided to communicate with the shuttle gas line 133 supplied, and the MTS deposition gas is output through the nozzle 130 to perform a vacuum deposition process on the graphite base material (G) During this process, shuttle gas is output through the preliminary nozzle 130', and when the nozzle 130 is clogged, the MTS deposition gas delivered to the nozzle 130 side by the operation of the three-way valve 132 flows toward the preliminary nozzle 130' side. It is characterized in that it is provided to be output in a detour.

또한, 상기 상부 노즐군(130a)은 MTS증착가스가 세로방향으로 확산되는 세로형 부채꼴 분사영역(S1)을 형성하고, 상기 세로형 부채꼴 분사영역(S1)은 종방향으로 이웃하는 상부 노즐군(130a)의 노즐(130)에서 분사되는 세로형 부채꼴 분사영역(S1)과 세로방향 중첩영역(S1-1)을 형성하도록 구비되는 것을 특징으로 한다.In addition, the upper nozzle group 130a forms a vertical fan-shaped spraying area S1 in which the MTS deposition gas is spread in the vertical direction, and the vertical fan-shaped spraying area S1 is adjacent to the upper nozzle group in the vertical direction ( It is characterized in that it is provided to form a vertical fan-shaped spraying area S1 sprayed from the nozzle 130 of 130a and a vertical overlapping area S1-1.

또한, 상기 하부 노즐군(130b)은 MTS증착가스가 가로방향으로 확산되는 가로형 부채꼴 분사영역(S2)을 형성하고, 상기 가로형 부채꼴 분사영역(S2)은 횡방향으로 이웃하는 하부 노즐군(130b)의 노즐(130)에서 분사되는 가로형 부채꼴 분사영역(S2)과 중첩되어 가로방향 중첩영역(S2-1)을 형성하면서 횡형 가스커튼(S2-2)을 형성하며, 상기 상부 노즐군(130a)을 통하여 진공증착챔버(100)의 상부 공간부(101)로 분사된 후 하부 공간부(102)로 하향 낙하하는 MTS증착가스가 횡형 가스커튼(S2-2)을 타고 횡방향으로 방향 전환되어 하부 공간부(102)에 배치된 그라파이트모재(G)에 증착되도록 유도되는 것을 특징으로 한다.In addition, the lower nozzle group 130b forms a horizontal fan-shaped spraying area S2 in which the MTS deposition gas is diffused in the horizontal direction, and the horizontal fan-shaped spraying area S2 is horizontally adjacent to the lower nozzle group 130b. It overlaps with the horizontal fan-shaped spraying area S2 sprayed from the nozzle 130 to form a horizontal overlapping area S2-1 while forming a horizontal gas curtain S2-2, and the upper nozzle group 130a The MTS deposition gas, which is sprayed into the upper space 101 of the vacuum deposition chamber 100 and then falls downward into the lower space 102 through the horizontal gas curtain S2-2, is converted to the horizontal direction, thereby reducing the lower space It is characterized in that it is induced to be deposited on the graphite base material (G) disposed in the portion (102).

이상의 구성 및 작용에 의하면, 본 발명은 노즐을 통하여 투입되는 MTS증착가스가 고가의 유량계를 사용하지 않고 각각의 가스공급부에 의해 정밀 제어되도록 구조 개선되어, 진공증착 장비의 제조단가가 크게 절감됨과 더불어 유지보수 비용 절감 및 유지보수로 인한 운전 정지시간을 최소화할 수 있는 효과가 있다.According to the above configuration and operation, the present invention is structurally improved so that the MTS deposition gas injected through the nozzle is precisely controlled by each gas supply unit without using an expensive flowmeter, so that the manufacturing cost of vacuum deposition equipment is greatly reduced. It has the effect of reducing maintenance costs and minimizing downtime due to maintenance.

도 1은 본 발명의 일실시예에 따른 탄화규소 증착장치의 MTS증착가스 제어시스템을 전체적으로 나타내는 구성도.
도 2는 본 발명의 일실시예에 따른 탄화규소 증착장치의 MTS증착가스 제어시스템을 평면에서 나타내는 구성도.
도 3은 본 발명의 일실시예에 따른 탄화규소 증착장치의 MTS증착가스 제어시스템의 MTS증착가스 분사상태를 나타내는 구성도.
도 4는 본 발명의 일실시예에 따른 탄화규소 증착장치의 MTS증착가스 제어시스템의 진공증착챔버 하부 공간부에 대한 MTS증착가스 분사상태를 평면에서 나타내는 구성도.
1 is a configuration diagram showing the overall MTS deposition gas control system of a silicon carbide deposition apparatus according to an embodiment of the present invention.
Figure 2 is a configuration diagram showing the MTS deposition gas control system of the silicon carbide deposition apparatus according to an embodiment of the present invention in a plan view.
Figure 3 is a configuration diagram showing the MTS deposition gas injection state of the MTS deposition gas control system of the silicon carbide deposition apparatus according to an embodiment of the present invention.
Figure 4 is a configuration diagram showing the MTS deposition gas injection state to the lower space of the vacuum deposition chamber of the MTS deposition gas control system of the silicon carbide deposition apparatus according to an embodiment of the present invention in a plan view.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 일실시예에 따른 탄화규소 증착장치의 MTS증착가스 제어시스템을 전체적으로 나타내는 구성도이고, 도 2는 본 발명의 일실시예에 따른 탄화규소 증착장치의 MTS증착가스 제어시스템을 평면에서 나타내는 구성도이며, 도 3은 본 발명의 일실시예에 따른 탄화규소 증착장치의 MTS증착가스 제어시스템의 MTS증착가스 분사상태를 나타내는 구성도이고, 도 4는 본 발명의 일실시예에 따른 탄화규소 증착장치의 MTS증착가스 제어시스템의 진공증착챔버 하부 공간부에 대한 MTS증착가스 분사상태를 평면에서 나타내는 구성도이다.1 is a block diagram showing the MTS deposition gas control system of a silicon carbide deposition apparatus according to an embodiment of the present invention as a whole, and FIG. 2 is an MTS deposition gas control system of a silicon carbide deposition apparatus according to an embodiment of the present invention. Figure 3 is a configuration diagram showing the MTS deposition gas injection state of the MTS deposition gas control system of the silicon carbide deposition apparatus according to an embodiment of the present invention, Figure 4 is a configuration diagram showing an embodiment of the present invention It is a configuration diagram showing the MTS deposition gas injection state to the lower space of the vacuum deposition chamber of the MTS deposition gas control system of the silicon carbide deposition apparatus according to the plan view.

본 발명은 탄화규소 증착장치의 MTS증착가스 제어시스템에 관련되며, 이때 탄화규소 증착장치의 MTS증착가스 제어시스템은 노즐을 통하여 투입되는 MTS증착가스가 고가의 유량계를 사용하지 않고 각각의 가스공급부에 의해 정밀 제어되도록 구조 개선되어, 진공증착 장비의 제조단가가 크게 절감됨과 더불어 유지보수 비용 절감 및 유지보수로 인한 운전 정지시간을 최소화할 수 있도록 진공증착챔버(100), 가스공급부(200)를 포함하여 주요 구성한다.The present invention relates to an MTS deposition gas control system of a silicon carbide deposition apparatus. At this time, the MTS deposition gas control system of the silicon carbide deposition apparatus allows the MTS deposition gas injected through a nozzle to each gas supply unit without using an expensive flowmeter. The vacuum deposition chamber 100 and the gas supply unit 200 are included so that the manufacturing cost of the vacuum deposition equipment can be greatly reduced and maintenance costs can be reduced and downtime due to maintenance can be minimized. to make up the main

본 발명에 따른 진공증착챔버(100)는 증착히터(110)에 의해 가열되고, 그라파이트모재(G)를 회전 가능하게 지지하는 거치대(120)가 등간격으로 원형 배치되며, 거치대(120)와 대응하는 위치에 복수의 노즐(130)이 종방향으로 이격되도록 구비된다.The vacuum deposition chamber 100 according to the present invention is heated by the deposition heater 110, and the cradle 120 rotatably supporting the graphite base material G is circularly arranged at equal intervals, corresponding to the cradle 120 A plurality of nozzles 130 are provided so as to be spaced apart in the longitudinal direction.

상기 진공증착챔버(100)는 원통형으로 형성되어 덮개에 마감되고 내부에 증착실이 형성되며, 증착실에 전기발열체로 형성되는 증착히터(110)가 설치되고, 증착실 내부 진공도를 조성하는 진공펌프와, 증착실에서 배기되는 가스를 여과하는 집진기를 포함한다.The vacuum deposition chamber 100 is formed in a cylindrical shape and closed to a cover, and a deposition chamber is formed therein, a deposition heater 110 formed as an electric heating element is installed in the deposition chamber, and a vacuum pump creates a vacuum inside the deposition chamber. and a dust collector for filtering the gas exhausted from the deposition chamber.

이때, 상기 노즐(130)은 진공증착챔버(100) 외주면으로 방사형으로 배치되면서 진공증착챔버(100) 높이 방향으로 복층으로 이격 배치되고, 후술하는 가스공급부(200)에 연결되어 MTS증착가스, 수소가스, 질소가스, 퍼징가스 중 적어도 1종 이상의 가스가 투입되도록 구비된다.At this time, the nozzles 130 are radially disposed on the outer circumferential surface of the vacuum deposition chamber 100, spaced apart in multiple layers in the height direction of the vacuum deposition chamber 100, and connected to a gas supply unit 200 to be described later to obtain MTS deposition gas and hydrogen. It is provided so that at least one gas of gas, nitrogen gas, and purging gas is injected.

그리고, 상기 거치대(120)는 모터에 의해 회전되는 폴대와, 폴대 길이 방향으로 그라파이트모재를 적층하는 다단거치부로 이루어진다.In addition, the holder 120 is composed of a pole rotated by a motor and a multi-stage holder for laminating graphite base materials in the longitudinal direction of the pole.

여기서, 상기 그라파이트모재(G)는 링형 판으로 형성되어, 폴대와 동심원을 이루도록 배치되고, 후술하는 가스공급부(200)를 통하여 분사되는 MTS증착가스가 표면에 증착되어 탄화규소 증착층을 형성하게 된다.Here, the graphite base material (G) is formed as a ring-shaped plate, arranged concentrically with the pole, and MTS deposition gas injected through a gas supply unit 200 described later is deposited on the surface to form a silicon carbide deposition layer. .

또한, 본 발명에 따른 가스공급부(200)는 상기 노즐(130)에 연결되어 증착챔버(100) 내부로 MTS증착가스를 투입하도록 구비된다.In addition, the gas supply unit 200 according to the present invention is connected to the nozzle 130 and is provided to inject MTS deposition gas into the deposition chamber 100 .

이때, 상기 진공증착챔버(100)는 내부 공간은 가상의 경계선을 기준으로 상, 하부 공간부(101)(102)로 분할되고, 상기 노즐(130)은 상부 공간부(101)에 대응하는 상부 노즐군(130a)과 하부 공간부(102)에 대응하는 하부 노즐군(130b)으로 구분되며, 상기 상, 하부 노즐군(130a)(130b)은 각각의 가스공급부(200)에 의해 MTS증착가스 투입 압력이 서로 상이하게 제어된다.At this time, the interior space of the vacuum deposition chamber 100 is divided into upper and lower spaces 101 and 102 based on a virtual boundary line, and the nozzle 130 has an upper part corresponding to the upper space 101. It is divided into a nozzle group 130a and a lower nozzle group 130b corresponding to the lower space 102, and the upper and lower nozzle groups 130a and 130b are supplied with MTS deposition gas by the gas supply unit 200, respectively. The input pressures are controlled differently from each other.

즉, 상기 노즐(130)을 통하여 투입되는 MTS증착가스가 고가의 유량계를 사용하지 않고 각각의 가스공급부(200)에 의해 제어되도록 구비됨에 따라 장비 제조단가가 크게 절감됨과 더불어 유지보수 비용 절감 및 유지보수로 인한 운전 정지시간을 최소화할 수 있는 이점이 있다. That is, as the MTS deposition gas injected through the nozzle 130 is provided to be controlled by each gas supply unit 200 without using an expensive flowmeter, the unit manufacturing cost of the equipment is greatly reduced and maintenance costs are reduced and maintained. It has the advantage of minimizing operation downtime due to maintenance.

이때, 상부 노즐군(130a)으로 투입되는 MTS증착가스 압력 대비 하부 노즐군(130b)으로 투입되는 MTS증착가스 압력이 낮게 설정되도록 구비된다.At this time, the pressure of the MTS deposition gas injected into the lower nozzle group 130b is set lower than the pressure of the MTS deposition gas injected into the upper nozzle group 130a.

이는 상기 진공증착챔버(100) 내부로 투입되는 MTS증착가스의 비중 차이로 인해 상부 공간부(101)로 분사된 MTS증착가스 중 일부가 낙하되어 하부 공간부(102)에 배치된 그라파이트모재(G)에 증착됨에 따라 하부 노즐군(130b)으로 투입되는 MTS증착가스 압력이 낮게 설정하므로, 상, 하부 공간부(101)(102)에 배치되는 그라파이트모재(G)에 대한 MTS증착 두께가 균일하게 제어되는 이점이 있다.This is due to the difference in specific gravity of the MTS deposition gas injected into the vacuum deposition chamber 100, so that some of the MTS deposition gas injected into the upper space 101 falls and the graphite base material (G) disposed in the lower space 102 ), since the MTS deposition gas pressure injected into the lower nozzle group 130b is set low, the MTS deposition thickness for the graphite base material G disposed in the upper and lower spaces 101 and 102 is uniform. There are benefits to being controlled.

이때, 상기 가스공급부(200)는, MTS 원료를 수소가스로 버블링하여 1차 MTS기화가스를 생성하는 1차 기화모듈(210)과, 1차 기화모듈(210)에서 생성된 1차 MTS기화가스를 분배 출력하도록 제 1, 2 출력포트(221)(222)가 형성하는 1차 분배구(220)와, 제 1, 2출구포트(221)(222)에 각각 연결되고, 1차 MTS기화가스를 가열 기화하면서 수소가스와 혼합하여 2차 MTS기화가스를 생성하는 2차 상, 하부 기화모듈(230)(230')과, 2차 상, 하부 기화모듈(230)(230')에서 생성된 2차 MTS기화가스를 각각 상, 하부 노즐군(130a)(130b)으로 분배 출력하도록 복수의 제 3출력포트(241)가 형성되는 2차 상, 하부 분배구(240)(240')를 포함한다.At this time, the gas supply unit 200 includes a primary vaporization module 210 for generating primary MTS vaporization gas by bubbling the MTS raw material with hydrogen gas, and primary MTS vaporization generated by the primary vaporization module 210. It is connected to the primary distribution port 220 formed by the first and second output ports 221 and 222 and the first and second outlet ports 221 and 222 to distribute and output gas, respectively, and to vaporize the primary MTS. Generated by the secondary upper and lower vaporization modules 230 and 230' and the secondary upper and lower vaporization modules 230 and 230' that heat and vaporize the gas and mix it with hydrogen gas to generate the secondary MTS vaporization gas The secondary upper and lower distribution ports 240 and 240' having a plurality of third output ports 241 are formed to distribute and output the secondary MTS vaporized gas to the upper and lower nozzle groups 130a and 130b, respectively. include

이처럼 상기 1차 기화모듈(210)과 2차 상, 하부 기화모듈(230)(230')에 의해 MTS 원료가 단계적으로 기화되므로 공급량을 정밀하게 제어할 수 있고, 특히 2차 상, 하부 기화모듈(230)(230')에 의해 상, 하부 노즐군(130a)(130b)으로 공급되는 MTS증착가스 압력이 독립적으로 제어되도록 구비되는바, 즉, 상기 2차 상, 하부 기화모듈(230)(230') 내부로 투입되는 수소가스 압력에 의해 2차 MTS기화가스 출력 압력이 제어되도록 구비됨에 따라 고가의 유량계를 배재할 수 있다.As such, since the MTS raw material is vaporized step by step by the primary vaporization module 210 and the secondary phase and lower vaporization modules 230 and 230', the supply amount can be precisely controlled, especially the secondary phase and lower vaporization modules. The MTS deposition gas pressure supplied to the upper and lower nozzle groups 130a and 130b by 230 and 230' is independently controlled, that is, the secondary upper and lower vaporization modules 230 ( 230') As the secondary MTS gas output pressure is controlled by the pressure of the hydrogen gas injected into the inside, an expensive flow meter can be eliminated.

이때, 상기 2차 상, 하부 분배구(240)(240')에 질소, 수소 중 어느 하나 이상의 셔틀가스를 투입하는 주입구(242)가 구비된다.At this time, the secondary upper and lower distribution ports 240 and 240' are provided with inlets 242 for injecting one or more shuttle gases of nitrogen and hydrogen.

상기 주입구(242)를 통하여 주입되는 셔틀가스 압력에 의해 2차 상, 하부 분배구(240)(240')를 통하여 상, 하부 노즐군(130a)(130b)으로 출력되는 MTS증착가스 투입 압력이 서로 상이하게 제어되도록 구비됨에 따라 고가의 유량계를 배제할 수 있다. The MTS deposition gas input pressure output to the upper and lower nozzle groups 130a and 130b through the secondary upper and lower distribution ports 240 and 240' by the shuttle gas pressure injected through the inlet 242 is Expensive flowmeters can be excluded as they are provided to be controlled differently from each other.

또한, 상기 노즐(130)과 대응하는 위치에 예비노즐(130')이 구비된다.In addition, a preliminary nozzle 130' is provided at a position corresponding to the nozzle 130.

상기 예비노즐(130')은 삼방밸브(132)에 의해 2차 상, 하부 분배구(240)(240') 또는 질소, 수소 중 어느 하나 이상의 셔틀가스가 공급되는 셔틀가스라인(133)과 연통되도록 구비된다.The preliminary nozzle 130' communicates with the secondary upper and lower distribution ports 240 and 240' by the three-way valve 132 or the shuttle gas line 133 through which one or more shuttle gases of nitrogen and hydrogen are supplied. provided as possible

그리고, 상기 노즐(130)을 통하여 MTS증착가스가 출력되어 그라파이트모재(G)에 진공증착공정이 수행되는 중에는 예비노즐(130')을 통하여 셔틀가스가 출력되고, 노즐(130)이 막힘 시, 삼방밸브(132) 작동에 의해 노즐(130) 측으로 전달되는 MTS증착가스가 예비노즐(130') 측으로 우회하여 출력되도록 구비됨에 따라 노즐(130)이 막히더라도 진공증착공정을 연속적으로 수행할 수 있는 이점이 있다.In addition, while the MTS deposition gas is output through the nozzle 130 and the vacuum deposition process is performed on the graphite base material (G), the shuttle gas is output through the preliminary nozzle 130 ', and when the nozzle 130 is clogged, As the MTS deposition gas delivered to the nozzle 130 side by the operation of the three-way valve 132 is detoured to the preliminary nozzle 130' side and outputted, even if the nozzle 130 is clogged, the vacuum deposition process can be continuously performed There is an advantage.

도 3에서, 상기 상부 노즐군(130a)은 MTS증착가스가 세로방향으로 확산되는 세로형 부채꼴 분사영역(S1)을 형성한다.In FIG. 3, the upper nozzle group 130a forms a vertical fan-shaped spray area S1 in which the MTS deposition gas is diffused in the vertical direction.

그리고, 상기 세로형 부채꼴 분사영역(S1)은 종방향으로 이웃하는 상부 노즐군(130a)의 노즐(130)에서 분사되는 세로형 부채꼴 분사영역(S1)과 세로방향 중첩영역(S1-1)을 형성하도록 구비됨에 따라 그라파이트모재(G) 측으로 MTS증착가스가 집중되어 증착효율이 향상되는 이점이 있다.In addition, the vertical fan-shaped spray area S1 is sprayed from the nozzle 130 of the upper nozzle group 130a adjacent to the vertical direction and the vertical fan-shaped spray area S1 and the vertical overlapping area S1-1. As it is provided to form, there is an advantage in that the deposition efficiency is improved because the MTS deposition gas is concentrated toward the graphite base material (G).

도 4에서, 상기 하부 노즐군(130b)은 MTS증착가스가 가로방향으로 확산되는 가로형 부채꼴 분사영역(S2)을 형성한다.In FIG. 4, the lower nozzle group 130b forms a horizontal fan-shaped spraying area S2 in which the MTS deposition gas is diffused in the horizontal direction.

상기 가로형 부채꼴 분사영역(S2)은 횡방향으로 이웃하는 하부 노즐군(130b)의 노즐(130)에서 분사되는 가로형 부채꼴 분사영역(S2)과 중첩되어 가로방향 중첩영역(S2-1)을 형성하면서 횡형 가스커튼(S2-2)을 형성한다.The horizontal fan-shaped spray area S2 overlaps with the horizontal fan-shaped spray area S2 sprayed from the nozzle 130 of the lower nozzle group 130b neighboring in the horizontal direction to form a horizontal overlapping area S2-1. A horizontal gas curtain (S2-2) is formed.

그리고, 상기 상부 노즐군(130a)을 통하여 진공증착챔버(100)의 상부 공간부(101)로 분사된 후 하부 공간부(102)로 하향 낙하하는 MTS증착가스가 횡형 가스커튼(S2-2)을 타고 횡방향으로 방향 전환되어 하부 공간부(102)에 배치된 그라파이트모재(G)에 증착되도록 유도됨에 따라 하부 공간부(102)에서의 증착 효율이 향상됨과 더불어 고가의 MTS원료 낭비를 최소화하여 재료비를 대폭 절감할 수 있는 이점이 있다.In addition, the MTS deposition gas sprayed into the upper space 101 of the vacuum deposition chamber 100 through the upper nozzle group 130a and then falling downward into the lower space 102 is a horizontal gas curtain (S2-2) As the direction is converted in the transverse direction along the lower space portion 102 and guided to be deposited on the graphite base material G disposed in the lower space portion 102, the deposition efficiency in the lower space portion 102 is improved and the waste of expensive MTS raw materials is minimized. It has the advantage of significantly reducing material costs.

100: 진공증착챔버 200: 가스공급부100: vacuum deposition chamber 200: gas supply unit

Claims (6)

증착히터(110)에 의해 가열되고, 그라파이트모재(G)를 회전 가능하게 지지하는 거치대(120)가 등간격으로 원형 배치되며, 거치대(120)와 대응하는 위치에 복수의 노즐(130)이 종방향으로 이격되도록 구비되는 진공증착챔버(100); 및 상기 노즐(130)에 연결되어 증착챔버(100) 내부로 MTS증착가스를 투입하도록 구비되는 가스공급부(200);를 포함하고,
상기 진공증착챔버(100)는 내부 공간은 가상의 경계선을 기준으로 상, 하부 공간부(101)(102)로 분할되며,
상기 노즐(130)은 상부 공간부(101)에 대응하는 상부 노즐군(130a)과 하부 공간부(102)에 대응하는 하부 노즐군(130b)으로 구분되며,
상기 상, 하부 노즐군(130a)(130b)은 각각의 가스공급부(200)에 의해 MTS증착가스 투입 압력이 서로 상이하게 제어되어, 상부 노즐군(130a)으로 투입되는 MTS증착가스 압력 대비 하부 노즐군(130b)으로 투입되는 MTS증착가스 압력이 낮게 설정되도록 구비되며,
상기 가스공급부(200)는, MTS 원료를 수소가스로 버블링하여 1차 MTS기화가스를 생성하는 1차 기화모듈(210)과, 1차 기화모듈(210)에서 생성된 1차 MTS기화가스를 분배 출력하도록 제 1, 2 출력포트(221)(222)가 형성하는 1차 분배구(220)와, 제 1, 2출구포트(221)(222)에 각각 연결되고, 1차 MTS기화가스를 가열 기화하면서 수소가스와 혼합하여 2차 MTS기화가스를 생성하는 2차 상, 하부 기화모듈(230)(230')과, 2차 상, 하부 기화모듈(230)(230')에서 생성된 2차 MTS기화가스를 각각 상, 하부 노즐군(130a)(130b)으로 분배 출력하도록 복수의 제 3출력포트(241)가 형성되는 2차 상, 하부 분배구(240)(240')를 포함하는 것을 특징으로 하는 탄화규소 증착장치의 MTS증착가스 제어시스템.
The cradle 120 heated by the deposition heater 110 and rotatably supporting the graphite base material G is circularly arranged at regular intervals, and a plurality of nozzles 130 are placed at positions corresponding to the cradle 120. vacuum deposition chambers 100 provided to be spaced apart in the direction; And a gas supply unit 200 connected to the nozzle 130 and provided to inject MTS deposition gas into the deposition chamber 100;
The inner space of the vacuum deposition chamber 100 is divided into upper and lower spaces 101 and 102 based on a virtual boundary line,
The nozzle 130 is divided into an upper nozzle group 130a corresponding to the upper space 101 and a lower nozzle group 130b corresponding to the lower space 102,
In the upper and lower nozzle groups 130a and 130b, the MTS deposition gas input pressure is differently controlled by the gas supply unit 200, and the pressure of the MTS deposition gas injected into the upper nozzle group 130a is compared to the lower nozzle. It is provided so that the pressure of the MTS deposition gas introduced into the group 130b is set low,
The gas supply unit 200 includes a primary vaporization module 210 for generating primary MTS vaporization gas by bubbling MTS raw material with hydrogen gas, and primary MTS vaporization gas generated in the primary vaporization module 210. It is connected to the primary distribution port 220 formed by the first and second output ports 221 and 222 and the first and second outlet ports 221 and 222 to distribute and output, respectively, and to supply the primary MTS vaporized gas. Secondary upper and lower vaporization modules 230 and 230' that generate secondary MTS vaporization gas by mixing with hydrogen gas while heating and vaporizing, and 2 generated in the secondary upper and lower vaporization modules 230 and 230' Secondary upper and lower distribution ports 240 and 240' in which a plurality of third output ports 241 are formed to distribute and output the primary MTS vaporized gas to the upper and lower nozzle groups 130a and 130b, respectively MTS deposition gas control system of the silicon carbide deposition apparatus, characterized in that.
삭제delete 제 1항에 있어서,
상기 2차 상, 하부 분배구(240)(240')에 질소, 수소 중 어느 하나 이상의 셔틀가스를 투입하는 주입구(242)가 구비되고, 상기 주입구(242)를 통하여 주입되는 셔틀가스 압력에 의해 2차 상, 하부 분배구(240)(240')를 통하여 상, 하부 노즐군(130a)(130b)으로 출력되는 MTS증착가스 투입 압력이 서로 상이하게 제어되도록 구비되는 것을 특징으로 하는 탄화규소 증착장치의 MTS증착가스 제어시스템.
According to claim 1,
An inlet 242 for injecting one or more shuttle gases of nitrogen and hydrogen into the secondary upper and lower distribution ports 240 and 240' is provided, and the pressure of the shuttle gas injected through the inlet 242 Silicon carbide deposition characterized in that the input pressure of the MTS deposition gas output to the upper and lower nozzle groups 130a and 130b through the secondary upper and lower distribution ports 240 and 240' is controlled differently from each other. The device's MTS deposition gas control system.
제 1항 또는 제 3항에 있어서,
상기 노즐(130)과 대응하는 위치에 예비노즐(130')이 구비되고,
상기 예비노즐(130')은 삼방밸브(132)에 의해 2차 상, 하부 분배구(240)(240') 또는 질소, 수소 중 어느 하나 이상의 셔틀가스가 공급되는 셔틀가스라인(133)과 연통되도록 구비되며,
상기 노즐(130)을 통하여 MTS증착가스가 출력되어 그라파이트모재(G)에 진공증착공정이 수행되는 중에는 예비노즐(130')을 통하여 셔틀가스가 출력되고, 노즐(130)이 막힘 시, 삼방밸브(132) 작동에 의해 노즐(130) 측으로 전달되는 MTS증착가스가 예비노즐(130') 측으로 우회하여 출력되도록 구비되는 것을 특징으로 하는 탄화규소 증착장치의 MTS증착가스 제어시스템.
According to claim 1 or 3,
A preliminary nozzle 130 'is provided at a position corresponding to the nozzle 130,
The preliminary nozzle 130' communicates with the secondary upper and lower distribution ports 240 and 240' by the three-way valve 132 or the shuttle gas line 133 through which one or more shuttle gases of nitrogen and hydrogen are supplied. provided as much as possible,
While the MTS deposition gas is output through the nozzle 130 and the vacuum deposition process is performed on the graphite base material (G), the shuttle gas is output through the preliminary nozzle 130', and when the nozzle 130 is clogged, a three-way valve (132) An MTS deposition gas control system for a silicon carbide deposition apparatus, characterized in that the MTS deposition gas delivered to the nozzle 130 by operation is detoured and output to the preliminary nozzle 130'.
제 1항에 있어서,
상기 상부 노즐군(130a)은 MTS증착가스가 세로방향으로 확산되는 세로형 부채꼴 분사영역(S1)을 형성하고, 상기 세로형 부채꼴 분사영역(S1)은 종방향으로 이웃하는 상부 노즐군(130a)의 노즐(130)에서 분사되는 세로형 부채꼴 분사영역(S1)과 세로방향 중첩영역(S1-1)을 형성하도록 구비되는 것을 특징으로 하는 탄화규소 증착장치의 MTS증착가스 제어시스템.
According to claim 1,
The upper nozzle group 130a forms a vertical fan-shaped spraying area S1 in which the MTS deposition gas is spread in the vertical direction, and the vertical fan-shaped spraying area S1 is vertically adjacent to the upper nozzle group 130a. The MTS deposition gas control system of the silicon carbide deposition apparatus, characterized in that provided to form a vertical fan-shaped spray area (S1) and a vertical overlapping area (S1-1) sprayed from the nozzle 130 of the.
제 1항 또는 제 5항에 있어서,
상기 하부 노즐군(130b)은 MTS증착가스가 가로방향으로 확산되는 가로형 부채꼴 분사영역(S2)을 형성하고, 상기 가로형 부채꼴 분사영역(S2)은 횡방향으로 이웃하는 하부 노즐군(130b)의 노즐(130)에서 분사되는 가로형 부채꼴 분사영역(S2)과 중첩되어 가로방향 중첩영역(S2-1)을 형성하면서 횡형 가스커튼(S2-2)을 형성하며,
상기 상부 노즐군(130a)을 통하여 진공증착챔버(100)의 상부 공간부(101)로 분사된 후 하부 공간부(102)로 하향 낙하하는 MTS증착가스가 횡형 가스커튼(S2-2)을 타고 횡방향으로 방향 전환되어 하부 공간부(102)에 배치된 그라파이트모재(G)에 증착되도록 유도되는 것을 특징으로 하는 탄화규소 증착장치의 MTS증착가스 제어시스템.

According to claim 1 or 5,
The lower nozzle group 130b forms a horizontal fan-shaped spraying area S2 in which the MTS deposition gas is diffused in the horizontal direction, and the horizontal fan-shaped spraying area S2 is the nozzle of the lower nozzle group 130b adjacent to the horizontal direction. It overlaps with the horizontal fan-shaped spraying area S2 sprayed from 130 to form a horizontal overlapping area S2-1 while forming a horizontal gas curtain S2-2,
The MTS deposition gas sprayed into the upper space 101 of the vacuum deposition chamber 100 through the upper nozzle group 130a and then falling downward into the lower space 102 rides the horizontal gas curtain S2-2 The MTS deposition gas control system of the silicon carbide deposition apparatus, characterized in that the direction is converted in the transverse direction and guided to be deposited on the graphite base material (G) disposed in the lower space portion (102).

KR1020230010531A 2023-01-27 2023-01-27 MTS deposition gas control system of silicon carbide deposition equipment KR102518932B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020230010531A KR102518932B1 (en) 2023-01-27 2023-01-27 MTS deposition gas control system of silicon carbide deposition equipment
KR1020230037698A KR102518943B1 (en) 2023-01-27 2023-03-23 MTS deposition gas control system of silicon carbide deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230010531A KR102518932B1 (en) 2023-01-27 2023-01-27 MTS deposition gas control system of silicon carbide deposition equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020230037698A Division KR102518943B1 (en) 2023-01-27 2023-03-23 MTS deposition gas control system of silicon carbide deposition equipment

Publications (1)

Publication Number Publication Date
KR102518932B1 true KR102518932B1 (en) 2023-04-06

Family

ID=85918095

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020230010531A KR102518932B1 (en) 2023-01-27 2023-01-27 MTS deposition gas control system of silicon carbide deposition equipment
KR1020230037698A KR102518943B1 (en) 2023-01-27 2023-03-23 MTS deposition gas control system of silicon carbide deposition equipment

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230037698A KR102518943B1 (en) 2023-01-27 2023-03-23 MTS deposition gas control system of silicon carbide deposition equipment

Country Status (1)

Country Link
KR (2) KR102518932B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050062994A (en) * 2003-12-19 2005-06-28 주식회사 실트론 A chemical vapour deposition device for wafer
KR100596495B1 (en) * 2004-12-13 2006-07-04 삼성전자주식회사 Method of depositing a metal compound and apparatus for performing the same
KR102153501B1 (en) * 2019-12-12 2020-09-08 (주)브이아이테크 Silicon Carbide Deposition System by Chemical Vapor Deposition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050062994A (en) * 2003-12-19 2005-06-28 주식회사 실트론 A chemical vapour deposition device for wafer
KR100596495B1 (en) * 2004-12-13 2006-07-04 삼성전자주식회사 Method of depositing a metal compound and apparatus for performing the same
KR102153501B1 (en) * 2019-12-12 2020-09-08 (주)브이아이테크 Silicon Carbide Deposition System by Chemical Vapor Deposition

Also Published As

Publication number Publication date
KR102518943B1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
KR100378871B1 (en) showerhead apparatus for radical assisted deposition
US20200149166A1 (en) Flow control features of cvd chambers
KR100614648B1 (en) Apparatus for treating substrates used in manufacturing semiconductor devices
KR100254760B1 (en) Method of semiconductor thin film application
CN102687242A (en) Gas injection unit and a thin-film vapour-deposition device and method using the same
KR102481930B1 (en) Method and device for depositing a ⅲ-ⅴ-semiconductor layer
US20100263588A1 (en) Methods and apparatus for epitaxial growth of semiconductor materials
US20080095936A1 (en) Film forming system and method for forming film
KR20010052904A (en) Dual channel gas distribution plate
KR102153501B1 (en) Silicon Carbide Deposition System by Chemical Vapor Deposition
KR19990010957A (en) Shower head device having a plasma generator
US10837109B2 (en) CVI/CVD matrix densification process and apparatus
US3719166A (en) Coating apparatus
KR20200030591A (en) Apparatus and methods for improving thermochemical vapor deposition (CVD) uniformity
US20030021595A1 (en) Apparatus and method for vaporizing a liquid chemical
KR102518932B1 (en) MTS deposition gas control system of silicon carbide deposition equipment
EP2047009B1 (en) Methods and apparatus for the vaporization and delivery of solution precursors for atomic layer deposition
KR20090131384A (en) Top plate and apparatus for depositing thin film on wafer using the same
CN101905126B (en) Method and apparatus to help promote contact of gas with vaporized material
CN109411388A (en) Substrate-treating apparatus and its clean method
KR20090073353A (en) Gas injection apparatus and apparatus for depositing film having the same
KR20000032767A (en) Apparatus for injecting gas in metal organic cemical vapor deposition system for semiconductor
KR102098817B1 (en) Silicon Carbide Deposition Method by Chemical Vapor Deposition
JP2012009752A (en) Vapor phase growth device and gas discharging device
KR101365201B1 (en) Shower head assembly and apparatus for chemical vapor deposition having the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant