KR102150389B1 - Silica sol grouting composition for earth preventing wall - Google Patents

Silica sol grouting composition for earth preventing wall Download PDF

Info

Publication number
KR102150389B1
KR102150389B1 KR1020200038003A KR20200038003A KR102150389B1 KR 102150389 B1 KR102150389 B1 KR 102150389B1 KR 1020200038003 A KR1020200038003 A KR 1020200038003A KR 20200038003 A KR20200038003 A KR 20200038003A KR 102150389 B1 KR102150389 B1 KR 102150389B1
Authority
KR
South Korea
Prior art keywords
weight
earth
retaining wall
parts
silica sol
Prior art date
Application number
KR1020200038003A
Other languages
Korean (ko)
Inventor
박완신
김창근
Original Assignee
주식회사 티앤테크
박완신
김창근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티앤테크, 박완신, 김창근 filed Critical 주식회사 티앤테크
Priority to KR1020200038003A priority Critical patent/KR102150389B1/en
Application granted granted Critical
Publication of KR102150389B1 publication Critical patent/KR102150389B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/062Microsilica, e.g. colloïdal silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/308Iron oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/32Carbides; Nitrides; Borides ; Silicides
    • C04B14/322Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0048Fibrous materials
    • C04B20/0056Hollow or porous fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/20Retarders
    • C04B2103/24Hardening retarders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention relates to a silica sol grouting composition for an earth-retaining wall including: (i) 10-100 parts by weight of silica sol; (ii) 2-8 parts by weight of hollow carbon nanofibers having a diameter of 10-900 nm, and having micropores (13) formed randomly inside of the center of a main body (11) along the longitudinal direction to allow passage of a hollow portion (12); and (iii) 10-20 parts by weight of iron oxide, based on 100 parts by weight of a mixture of cement, sand, aggregates and water. In the earth-retaining wall constructed by using the silica sol grouting composition according to the present invention, the hollow carbon nanofibers (10) having an excellent reinforcing effect and absorbability can be dispersed homogeneously throughout the whole area of the earth-retaining wall. Therefore, it is possible to improve the strength of the earth-retaining wall significantly and to effectively prevent a rapid drop in strength of the earth-retaining wall, caused by a hydration phenomenon derived from the localization of water remaining in the constructed earth-retaining wall at a specific position of the earth-retaining wall. In addition, according to the present invention, silica sol is dispersed homogeneously throughout the whole area of the earth-retaining wall to provide improved water-shielding properties, and iron oxide can be dispersed homogeneously throughout the whole area of the earth-retaining wall to provide enhanced strength of the earth-retaining wall.

Description

흙막이 벽체용 실리카졸 그라우팅 조성물{Silica sol grouting composition for earth preventing wall}Silica sol grouting composition for earth preventing wall}

본 발명은 흙막이 벽체용 실리카졸 그라우팅 조성물에 관한 것으로서, 보다 구체적으로는 시공된 흙막이 벽체 내부에 잔존하는 물이 콘크리트 구조물의 어느 한 지점에 모여서 수화현상을 일으켜 흙막이 벽체의 강도를 저하시키는 현상을 효과적으로 방지함과 동시에 시공된 흙막이 벽체의 치수효과와 강도를 크게 향상시켜 주는 흙막이 벽체용 실리카졸 그라우팅 조성물에 관한 것이다.The present invention relates to a silica sol grouting composition for a retaining wall, and more specifically, the water remaining inside the constructed earth retaining wall collects at any one point of a concrete structure to cause a hydration phenomenon, effectively reducing the strength of the retaining wall. It relates to a silica sol grouting composition for an earthen wall which prevents and greatly improves the dimensional effect and strength of the installed earthen wall.

종래의 흙막이 벽체용 실리카졸 그라우팅 조성물로서, 대한민국 등록특허 제10-1497220호에서는 (ⅰ) 시멘트, (ⅱ) 실리카졸 및 (ⅲ) 황산 알루미늄(경화촉진제), 무수석고(팽창제), 구연산(경화지연제), 플라이에쉬(충진제)들을 포함하는 혼화제로 구성된 실리카졸 그라우팅 조성물을 게재하고 있으나, 상기 종래의 실리카졸 그라우팅 조성물은 실리카졸이 함유되어 치수성은 어느정도 향상되지만 흙막이 벽체 내부에 잔존하는 물이 흙막이 벽체의 어느 한 지점에만 모여서 수화현상을 일으켜 흙막이 벽체의 강도가 저하되는 것을 효과적으로 방지할 수 없는 문제가 있었다.As a conventional silica sol grouting composition for earthing walls, Korean Patent Registration No. 10-1497220 discloses (i) cement, (ii) silica sol and (iii) aluminum sulfate (hardening accelerator), anhydrite (expanding agent), citric acid (hardening A silica sol grouting composition composed of admixtures including retarder) and fly ash (filler) is disclosed.However, the conventional silica sol grouting composition contains silica sol, which improves the dimensionality to some extent, but the water remaining inside the wall There was a problem in that it could not effectively prevent the strength of the earthing wall from being reduced due to the phenomenon of hydration by gathering only at one point of the earthing wall.

콘크리트 구조물의 강도를 보강해 주는 종래기술로서, 대한민국 등록특허 제10-1016004호 및 대한민국 등록특허 제10-1165289호 등에서는 시멘트, 모래, 골재 및 물을 혼합한 혼합물로 콘크리트 구조물을 제조할 때 상기 혼합물에 폴리아미드 섬유를 강도 보강재로 첨가, 혼합하는 방법을 게재하고 있으나, 상기 종래방법은 강도 보강재인 폴리아미드 섬유의 직경이 1~3데니어(10㎛ 이상)로 굵어서 시공된 콘크리트 구조물의 전체면적에 골고루 분산하기 어렵고 흡수성도 떨어지기 때문에 시공된 콘크리트 구조물의 강도를 보강하는 효과가 제한적이였고 시공된 콘크리트 구조물 내에 잔존하는 물이 콘크리트 구조물의 어느 한 지점에 모여 수화현상을 일으켜 콘크리트 구조물의 강도를 저하시키는 것을 효과적으로 방지할 수 없었다.As a conventional technology that reinforces the strength of a concrete structure, Korean Patent No. 10-1016004 and Korean Patent No. 10-1165289, etc., when manufacturing a concrete structure with a mixture of cement, sand, aggregate, and water. A method of adding and mixing polyamide fibers as a strength reinforcing material to the mixture is disclosed, but in the conventional method, the total area of the constructed concrete structure is that the diameter of the polyamide fiber, which is a strength reinforcing material, is 1 to 3 deniers (10 μm or more) thick. Because it was difficult to evenly disperse and absorbency was poor, the effect of reinforcing the strength of the constructed concrete structure was limited, and the water remaining in the constructed concrete structure gathered at one point of the concrete structure, causing a hydration phenomenon to increase the strength of the concrete structure. It could not be effectively prevented from lowering.

콘크리트 구조물의 강도를 보강해 주는 또 다른 종래기술로서, 대한민국 등록특허 제10-1343454호 및 대한민국 등록특허 제10-1984869호 등에서는 시멘트, 모래, 골재 및 물을 혼합한 혼합물로 콘크리트 구조물을 제조할 때, 상기 혼합물에 탄소나노튜브(CNT)를 강도 보강재로 첨가, 혼합하는 방법을 게재하고 있으나, 상기 종래방법은 강도 보강재인 탄소나노튜브(CNT)의 유연성 및 흡수성이 떨어지기 때문에 시공된 콘크리트 구조물 내에 잔존하는 물이 콘크리트 구조물의 어느 한 지점에 모여 수화현상을 일으켜 콘크리트 구조물의 강도를 저하시키는 것을 효과적으로 방지할 수 없었고, 상기 탄소나노튜브(CNT)의 가격이 너무 비싸서 콘크리트 구조물의 강도 보강재로 사용하는데는 한계가 있었다.As another conventional technology that reinforces the strength of a concrete structure, Korean Patent No. 10-1343454 and Korean Patent No. 10-1984869 are used to manufacture a concrete structure with a mixture of cement, sand, aggregate, and water. In this case, a method of adding and mixing carbon nanotubes (CNT) as a strength reinforcing material to the mixture is disclosed, but the conventional method is a concrete structure constructed because the flexibility and absorption of carbon nanotubes (CNT), which is a strength reinforcing material, are inferior. It was not possible to effectively prevent the water remaining in the concrete structure from gathering at any one point of the concrete structure to cause hydration, reducing the strength of the concrete structure, and the cost of the carbon nanotube (CNT) was too expensive, so it was used as a strength reinforcement material for the concrete structure. There was a limit to doing it.

본 발명의 과제는 흙막이 벽체의 치수성과 강도를 향상시켜 줌과 동시에 흙막이 벽체 내에 잔존하는 물이 흙막이 벽체의 어느 한곳에 모여서 수화현상을 일으켜 흙막이 벽체의 강도가 급격히 저하되는 것을 효과적으로 방지해 줄 수 있는 흙막이 벽체용 실리카졸 그라우팅 조성물을 제공하는 것이다.An object of the present invention is to improve the dimension and strength of the wall, and at the same time, it is possible to effectively prevent the water remaining in the wall from gathering in any one place of the wall and causing hydration, thereby effectively reducing the strength of the wall. It is to provide a silica sol grouting composition for walls.

이와 같은 과제를 해결하기 위해서, 본 발명에서는 시멘트, 모래, 골재 및 물이 혼합된 혼합물 100중량부에 대하여 (ⅰ) 실리카졸 10~100중량부와 (ⅱ) 직경이 10~900㎚이고 본체(11)의 중앙 내부에 길이방향을 따라 중공부(12)를 연통시켜주는 미세공(13)들이 불규칙적으로 형성되어 있는 탄소나노중공섬유(10) 2~8중량부와 (ⅲ) 산화철 10~20중량부를 첨가, 혼합하여 흙막이 벽체용 실리카졸 그라우팅 조성물을 제조한다.In order to solve such a problem, in the present invention, with respect to 100 parts by weight of a mixture of cement, sand, aggregate, and water, (i) 10 to 100 parts by weight of silica sol and (ii) 10 to 900 nm in diameter and the main body ( 11) 2 to 8 parts by weight of carbon nano-hollow fibers 10 with irregularly formed micropores 13 communicating the hollow part 12 along the longitudinal direction and (iii) 10 to 20 iron oxide By adding and mixing parts by weight, a silica sol grouting composition for an earthen wall is prepared.

본 발명의 실리카졸 그라우팅 조성물을 사용하여 시공된 흙막이 벽체는 보강효과와 흡수성이 뛰어난 탄소나노중공섬유(10)를 시공되는 흙막이 벽체 전체 면적에 걸쳐 골고루 분산시켜 줄 수 있으며, 그로 인해 흙막이 벽체의 강도를 크게 향상시킴과 동시에 시공된 흙막이 벽체 내에 잔존하는 물이 흙막이 벽체의 어느 한 곳에 모여서 수화현상으로 흙막이 벽체의 강도가 급격히 저하되는 것을 효과적으로 방지해 준다.The soil barrier wall constructed using the silica sol grouting composition of the present invention can evenly distribute the carbon nano-hollow fiber 10 excellent in reinforcing effect and absorbency over the entire area of the soil barrier wall to be constructed, and thereby the strength of the soil barrier wall. At the same time, it greatly improves the structure and effectively prevents the water remaining in the installed earthen wall from accumulating in any one of the earthen wall, and the strength of the earthen wall is rapidly reduced due to hydration.

또한, 본 발명은 실리카졸을 흙막이 벽체 전체 면적에 골고루 분산시켜 차수성이 개선되고, 산화철을 흙막이 벽체 전체 면적에 골고루 분산시켜 흙막이 벽체의 강도를 더욱 증진시켜 준다.In addition, in the present invention, silica sol is evenly dispersed over the entire area of the retaining wall to improve water resistance, and iron oxide is evenly dispersed over the entire area of the retaining wall to further enhance the strength of the retaining wall.

도 1은 흙막이 벽체가 시공된 상태를 보여주는 정면도.
도 2는 도 1의 X-X'선을 따라 수직으로 절개한 단면도.
도 3은 본 발명에 사용되는 탄소나노중공섬유(10)의 사시개략도.
도 4는 본 발명에 사용되는 탄소나노중공섬유(10)를 제조하는 공정개략도.
1 is a front view showing a state in which an earthen wall is installed.
2 is a cross-sectional view taken vertically along line X-X' of FIG. 1;
Figure 3 is a perspective schematic view of the carbon nano-hollow fiber 10 used in the present invention.
Figure 4 is a schematic diagram of a process for manufacturing the carbon nano-hollow fiber 10 used in the present invention.

이하, 첨부한 도면 등을 통하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 흙막이 벽체용 실리카졸 그라우팅 조성물을 시멘트, 모래, 골재 및 물이 혼합된 혼합물 100중량부에 대하여 (ⅰ) 실리카졸 10~100중량부와 (ⅱ) 직경이 10~900㎚이고 본체(11)의 중앙 내부에 길이방향을 따라 중공부(12)를 연통시켜주는 미세공(13)들이 불규칙적으로 형성되어 있는 탄소나노중공섬유(10) 2~8중량부와 (ⅲ) 산화철 10~20중량부가 첨가, 혼합되어 있는 것을 특징으로 한다.The silica sol grouting composition for an earthen barrier according to the present invention is applied to 100 parts by weight of a mixture of cement, sand, aggregate, and water, and (i) 10 to 100 parts by weight of silica sol and (ii) 10 to 900 nm in diameter and 2-8 parts by weight of carbon nano-hollow fibers 10 in which micropores 13 communicating with the hollow part 12 along the longitudinal direction are irregularly formed in the center of (11) and (iii) iron oxide 10- It is characterized in that 20 parts by weight are added and mixed.

상기 탄소나노중공섬유(10)는 흙막이 벽체의 강도를 보강해 줌과 동시에 흙막이 벽체내에 잔존하는 물이 흙막이 벽체의 어느 한곳에 모여서 수화현상을 일으켜 흙막이 벽체의 강도가 저하되는 것을 방지하는 역할을 하며, 상기 탄소나노중공섬유의 함량은 시멘트, 모래, 골재 및 물의 혼합물 100중량부 대비 2~8중량부이다. 상기 함량이 2중량부 미만인 경우에는 흙막이 벽체의 강도 보강효과와 수화방지효과가 저하되고, 8중량부를 초과하는 경우에는 더 이상의 강도 보강이나 수화현상방지 효과 없이 시공원가만 상승하게 된다.The carbon nano-hollow fiber 10 reinforces the strength of the dirt wall and at the same time prevents the water remaining in the dirt wall from gathering in any one of the dirt wall to cause a hydration phenomenon, thereby reducing the strength of the dirt wall. The content of the carbon nano-hollow fiber is 2 to 8 parts by weight based on 100 parts by weight of a mixture of cement, sand, aggregate and water. When the content is less than 2 parts by weight, the strength reinforcing effect and hydration preventing effect of the earthen wall are reduced, and when it exceeds 8 parts by weight, only the city park is increased without further reinforcing strength or preventing hydration.

상기 실리카졸은 흙막이 벽체의 차수성을 개선하는 역할을 하며, 상기 실리카졸의 함량은 시멘트, 모래, 골재 및 물의 혼합물 100중량부 대비 10~100중량부이다. 상기 함량이 10중량부 미만이면 흙막이 벽체의 차수성 개선효과가 낮아지고, 100중량부를 초과하면 흙막이 벽체의 강도가 저하된다.The silica sol serves to improve the water-repellency of the earthing wall, and the content of the silica sol is 10 to 100 parts by weight compared to 100 parts by weight of a mixture of cement, sand, aggregate and water. If the content is less than 10 parts by weight, the effect of improving the water repellency of the earthing wall is lowered, and if it exceeds 100 parts by weight, the strength of the earthing wall is lowered.

한편, 본 발명에서는 경화시간을 용이하게 조절하기 위해서, 시멘트,모래,골재 및 물이 혼합된 혼합물 100중량부에 대하여 경화지연제인 산화아연 2~15중량부와 응집제인 탄화칼슘 1~5중량부가 추가로 더 첨가, 혼합시킬 수도 있다.On the other hand, in the present invention, in order to easily control the curing time, 2 to 15 parts by weight of zinc oxide as a hardening retardant and 1 to 5 parts by weight of calcium carbide as a coagulant based on 100 parts by weight of a mixture of cement, sand, aggregate and water In addition, it may be further added and mixed.

도 3은 상기 탄소나노중공섬유(10)의 사시개략도이다.3 is a perspective schematic view of the carbon nano-hollow fiber 10.

상기 탄소나노중공섬유(10)은 직경이 10~900㎚로 가늘기 때문에 흙막이 벽체 시공용 혼합물 내에 균일하게 분산될 수 있고, 내부에 중공부(12)가 형성되고 외표면과 중공부(12)를 연통시켜 주는 미세공들이 불규칙적으로 형성되어 있기 때문에 흙막이 벽체 내에 잔존하는 물을 고르게 흡수하여 상기 물이 흙막이 벽체 내 어느 한 지점에 고여서 수화현상을 일으키는 것을 효과적으로 방지해 준다.Since the carbon nano-hollow fiber 10 has a thin diameter of 10 to 900 nm, the soil film can be uniformly dispersed in the mixture for wall construction, and a hollow part 12 is formed inside, and the outer surface and the hollow part 12 Since the micropores that communicate with each other are irregularly formed, the earthen membrane evenly absorbs water remaining in the wall, effectively preventing the water from accumulating at any point in the wall and causing hydration.

본 발명의 또 다른 구현일례로는, 상기 탄소나노중공섬유의 본체(11) 외표면과 중공부(12)의 내표면 각각에 흡수성 고분자 코팅층(14,15)이 형성되어 있는 것이 보다 바람직하다.In another embodiment of the present invention, it is more preferable that the absorbent polymer coating layers 14 and 15 are formed on each of the outer surface of the body 11 and the inner surface of the hollow portion 12 of the carbon nano-hollow fiber.

상기 흡수성 고분자 코팅층(14,15)은 수불용성으로 가교화 처리된 폴리아크릴산, 수불용성으로 가교화 처리된 폴리비닐알코올, 수불용성으로 가교화 처리된 폴리에틸렌 옥시드 및 수불용성으로 가교화 처리된 녹말 중에서 선택된 1종의 고분자 등이다.The absorbent polymer coating layers 14 and 15 are polyacrylic acid crosslinked to be water-insoluble, polyvinyl alcohol crosslinked to be water-insoluble, polyethylene oxide crosslinked to be water-insoluble, and starch crosslinked to water insoluble It is one type of polymer selected from among.

시멘트, 모래, 골재 및 물이 혼합된 상기의 혼합물 100중량부 대비 상기 탄소나노중공섬유(10)의 함량이 2중량부 미만인 경우에는 강도 보강효과 및 흙막이 벽체의 수화현상을 방지하는 효과가 저하되고, 8중량부를 초과하는 경우에는 더 이상의 강도 보강효과 및 수화 현상 방지효과 없이 시공 원가만 상승하게 된다.When the content of the carbon nano-hollow fiber 10 is less than 2 parts by weight compared to 100 parts by weight of the mixture of cement, sand, aggregate and water, the effect of reinforcing strength and preventing the hydration of the earthen wall decreases. If it exceeds 8 parts by weight, only the construction cost increases without any further strength reinforcement effect and hydration prevention effect.

다음으로, 상기 탄소나노중공섬유(10)를 제조하는 구현일례를 살펴보면 도 4에 도시된 바와 같이 (ⅰ) 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하는 방사튜브 본체(1a), (ⅱ) 상기 방사튜브 본체(1a)의 내부에 상기 방사튜브 본체(1a)의 길이방향을 따라 형성되어 있는 다각형 튜브상 중공부(1b) 및 (ⅲ) 상기 다각형 튜브상 중공부(1b)의 모서리 부분 각각에 상기 방사튜브 본체(1a)의 길이방향을 따라 설치되어 있는 노즐(1c)로 구성되며, 상기 다각형 튜브상 중공부(1b)의 모서리 부분들이 방사튜브 본체(1a)의 외주면과 맞닿아 있는 구조를 구비하는 2성분 복합 나노섬유 제조용 방사튜브를 사용하여 코어성분이 수용성 폴리비닐알코올이고 쉬스성분이 폴리아크릴로니트릴인 시스-코어형 2성분 복합 나노섬유를 제조한 다음, 이를 물로 수세하여 코어부를 형성하는 수용성 폴리비닐알코올을 제거하여 중공 폴리아크릴로니트릴 섬유를 제조한 다음, 이를 열처리로 안정화 및 탄화시켜 탄소나노중공섬유(10)를 제조한다.Next, looking at an implementation example of manufacturing the carbon nano-hollow fiber 10, as shown in FIG. 4, (i) a spinning tube body 1a having a shape selected from a cylindrical shape and a conical shape, and (ii) the Each of the polygonal tube-shaped hollow portions 1b and (iii) the polygonal tube-shaped hollow portions 1b formed in the inside of the radiation tube main body 1a along the longitudinal direction of the radiation tube main body 1a. Consisting of a nozzle (1c) installed along the longitudinal direction of the radiation tube body (1a), the polygonal tube-shaped hollow portion (1b) has a structure in which the corner portions of the outer peripheral surface of the radiation tube body (1a) A cis-core type two-component composite nanofiber having a core component of water-soluble polyvinyl alcohol and a sheath component of polyacrylonitrile is prepared using a spinning tube for producing two-component composite nanofibers, and then washed with water to form a core part. After removing the water-soluble polyvinyl alcohol to prepare a hollow polyacrylonitrile fiber, it is stabilized and carbonized by heat treatment to prepare a carbon nano-hollow fiber (10).

상기 2성분 복합나노섬유 제조용 방사튜브를 사용하여 코어성분이 수용성 폴리비닐알코올이고 쉬스성분이 폴리아크릴로니트릴인 시스-코어형 2성분 복합 나노섬유를 제조하는 구현일례를 보다 구체적으로 살펴보면, 상기 2성분 복합 나노섬유 제조용 방사튜브(1)를 모터(7)로 회전시켜 주면서 전압발생장치(6)로 상기 2성분 복합 나노섬유 제조용 방사튜브(1)에 고전압을 걸어준 다음, (ⅱ) 상기 2성분 복합 나노섬유 제조용 방사튜브(1)를 이루는 노즐(1c) 내로 수용성 폴리비닐알코올 방사액 공급함과 동시에 상기 2성분 복합 나노섬유 제조용 방사튜브(1)를 이루는 다각형 튜브상 중공부(1b) 내로 상기 폴리아크릴로니트릴 방사액을 공급한 다음, (ⅲ) 노즐(1c) 내로 공급된 수용성 폴리비닐알코올 방사액과 다각형 튜브상 중공부(1b) 내로 공급된 폴리아크릴로니트릴 방사액을 원심력과 전기력을 이용하여 전압발생장치(6)에 의해 고전압이 걸려 있는 컬렉터(2) 방향으로 방사하여 코어성분이 수용성 폴리비닐알코올이고 쉬스성분이 폴리아크릴로니트릴인 시스-코어형 2성분 복합 나노섬유를 제조할 수 있다.Looking in more detail, an implementation example of manufacturing a cis-core type two-component composite nanofiber in which the core component is water-soluble polyvinyl alcohol and the sheath component is polyacrylonitrile using the spinning tube for producing the two-component composite nanofibers is described in more detail. A high voltage is applied to the spinning tube 1 for producing the two-component composite nanofibers with a voltage generator 6 while rotating the spinning tube 1 for producing the component composite nanofibers with a motor 7, and then (ii) the 2 The water-soluble polyvinyl alcohol spinning solution is supplied into the nozzle (1c) constituting the spinning tube (1) for producing composite nanofibers, and at the same time, into the hollow portion (1b) of the polygonal tube forming the spinning tube (1) for producing the two-component composite nanofibers. After supplying the polyacrylonitrile spinning solution, (iii) the water-soluble polyvinyl alcohol spinning solution supplied into the nozzle (1c) and the polyacrylonitrile spinning solution supplied into the polygonal tube-shaped hollow portion (1b) were subjected to centrifugal force and electric force. Using a voltage generator (6), it is spun in the direction of the collector (2) where a high voltage is applied to produce a cis-core type two-component composite nanofiber in which the core component is water-soluble polyvinyl alcohol and the sheath component is polyacrylonitrile. I can.

본 발명의 실리카졸 그라우팅 조성물을 사용하여 시공된 흙막이 벽체는 보강효과와 흡수성이 뛰어난 탄소나노중공섬유(10)를 시공되는 흙막이 벽체 전체 면적에 걸쳐 골고루 분산시켜 줄 수 있으며, 그로 인해 흙막이 벽체의 강도를 크게 향상시킴과 동시에 시공된 흙막이 벽체 내에 잔존하는 물이 흙막이 벽체의 어느 한 곳에 모여서 수화현상으로 흙막이 벽체의 강도가 급격히 저하되는 것을 효과적으로 방지해 준다.The soil barrier wall constructed using the silica sol grouting composition of the present invention can evenly distribute the carbon nano-hollow fiber 10 excellent in reinforcing effect and absorbency over the entire area of the soil barrier wall to be constructed, and thereby the strength of the soil barrier wall. At the same time, it greatly improves the structure and effectively prevents the water remaining in the installed earthen wall from accumulating in any one of the earthen wall, and the strength of the earthen wall is rapidly reduced due to hydration.

또한, 본 발명은 실리카졸을 흙막이 벽체 전체 면적에 골고루 분산시켜 차수성이 개선되고, 산화철을 흙막이 벽체 전체 면적에 골고루 분산시켜 흙막이 벽체의 강도를 더욱 증진시켜 준다.In addition, in the present invention, silica sol is evenly dispersed over the entire area of the retaining wall to improve water resistance, and iron oxide is evenly dispersed over the entire area of the retaining wall to further enhance the strength of the retaining wall.

이하, 실시예 및 비교실시예를 통하여 본 발명을 보다 구체적으로 살펴본다.Hereinafter, the present invention will be described in more detail through Examples and Comparative Examples.

실시예 1Example 1

시멘트 15중량%, 모래 30중량%, 골재 40중량% 및 물 15중량%로 구성된 혼합물 100kg에 (ⅰ) 실리카졸 20kg과 (ⅱ) 도 1에 도시된 바와 같이 직경이 200㎚이고, 본체(11)의 중앙 내부에 길이방향을 따라 중공부(12)가 형성되어 있고, 본체(11)의 외표면과 상기 중공부(12)를 연통시켜 주는 미세공(13)들이 불규칙적으로 형성되어 있고, 본체(11) 외표면과 중공부(12) 내표면 각각에 수불용성으로 가교화 처리된 흡수성 아크릴산 고분자로 이루어진 흡수성 고분자 코팅층(14,15)이 형성되어 있는 탄소나노중공섬유(10) 5kg과 (ⅲ) 산화철 15kg을 첨가, 혼합하여 직경이 50㎝이고 길이가 1m인 흙막이 벽체 구조물 시료를 제조하였다.In 100 kg of a mixture consisting of 15% by weight of cement, 30% by weight of sand, 40% by weight of aggregate and 15% by weight of water, (i) 20 kg of silica sol and (ii) 200 nm in diameter as shown in FIG. 1, and the main body 11 ), a hollow part 12 is formed along the longitudinal direction in the center of the body 11, and micropores 13 for communicating the outer surface of the body 11 and the hollow part 12 are irregularly formed, and the main body (11) 5 kg of carbon nano-hollow fibers 10 and 5 kg of water-absorbing polymer coating layers 14 and 15 made of water-insoluble acrylic acid polymer crosslinked on the outer surface and the inner surface of the hollow part 12, respectively, and (iii) ) 15 kg of iron oxide was added and mixed to prepare a sample of a wall structure with a diameter of 50 cm and a length of 1 m.

제조한 흙막이 벽체 구조물 시료를 2주 동안 대기중에 방치한 후 육안으로 수화현상을 관찰한 결과는 표 1과 같았다.Table 1 shows the results of observing the hydration phenomenon with the naked eye after leaving the sample of the prepared earthing wall structure in the air for 2 weeks.

비교실시예 1Comparative Example 1

시멘트 15중량%, 모래 30중량%, 골재 40중량% 및 물 15중량%로 구성된 혼합물 100kg에 (ⅰ) 실리카졸 20kg과 (ⅱ) 직경이 0.1㎜이고, 길이가 3㎜인 폴리아미드 단섬유 5kg을 첨가, 혼합하여 직경이 50㎝이고 길이가 1m인 흙막이 벽체 구조물 시료를 제조하였다.In 100 kg of a mixture consisting of 15% by weight of cement, 30% by weight of sand, 40% by weight of aggregate and 15% by weight of water, (i) 20 kg of silica sol and (ii) 5 kg of short polyamide fibers having a diameter of 0.1 mm and a length of 3 mm Was added and mixed to prepare a sample of a wall structure with a diameter of 50 cm and a length of 1 m.

제조된 흙막이 벽체 구조물 시료를 2주 동안 대기중에 방치한 후 육안으로 수화현상을 관찰한 결과는 표 1과 같았다.Table 1 shows the results of observing the hydration phenomenon with the naked eye after leaving a sample of the prepared earthing wall structure in the air for 2 weeks.

비교실시예 2Comparative Example 2

시멘트 15중량%, 모래 30중량%, 골재 40중량% 및 물 15중량%로 구성된 혼합물 100kg에 실리카졸 20kg을 첨가, 혼합하여 직경이 50㎝이고 길이가 1m인 흙막이 벽체 구조물 시료를 제조하였다.20 kg of silica sol was added and mixed to 100 kg of a mixture consisting of 15% by weight of cement, 30% by weight of sand, 40% by weight of aggregate, and 15% by weight of water to prepare a sample of a wall structure having a diameter of 50 cm and a length of 1 m.

제조된 흙막이 벽체 구조물 시료를 2주 동안 대기중에 방치한 후 육안으로 수화현상을 관찰한 결과는 표 1과 같았다.Table 1 shows the results of observing the hydration phenomenon with the naked eye after leaving a sample of the prepared earthing wall structure in the air for 2 weeks.

구분division 수화현상 발생여부Whether or not hydration occurs 실시예 1Example 1 발생 안됨Does not occur 비교실시예 1Comparative Example 1 발생됨Occurred 비교실시예 2Comparative Example 2 발생됨Occurred

한편, 실시예 1로 제조된 흙막이 벽체 구조물 시료의 강도는 비교실시예 1 및 비교실시예 2로 제조된 흙막이 벽체 구조물 시료의 강도 보다 1.5배이상 우수하였다.On the other hand, the strength of the retaining wall structure samples prepared in Example 1 was more than 1.5 times superior to the strength of the retaining wall structure samples prepared in Comparative Examples 1 and 2.

A : 흙막이 벽체
B : 땅파기 작업을 하는 지반
C : 땅파기 작업을 하지 않는 지반
10 : 탄소나노중공섬유
11 : 탄소나노중공섬유(10)의 본체
12 : 탄소나노중공섬유(10)의 중공부
13 : 미세공
14,15 : 흡수성 고분자 코팅층
1 : 2성분 복합 나노섬유 제조용 방사튜브
1a 방사튜브의 본체
1b : 다각형 튜브상 중공부 1c : 노즐
2: 컬렉터 3: 방사용액 분배판
3a : 제1방사용액(코어 형성용 방사용액) 분배판
3b : 제2방사용액(쉬스 형성용 방사용액) 분배판
4 : 제1방사용액(코어 형성용 방사용액) 공급탱크
5 : 제2방사용액(쉬스 형성용 방사용액) 공급탱크
6 : 전압발생장치 7 : 모터
F : 2성분 복합 나노섬유 Fc : 2성분 복합 나노섬유의 코어부
Fs : 2성분 복합 나노섬유의 쉬스부
A: Earthen wall
B: Ground for digging
C: Ground that is not digging
10: carbon nano hollow fiber
11: Main body of carbon nano hollow fiber (10)
12: hollow part of carbon nano hollow fiber (10)
13: micropores
14,15: absorbent polymer coating layer
1: Spinning tube for manufacturing two-component composite nanofibers
1a Radiation tube body
1b: polygonal tube-shaped hollow portion 1c: nozzle
2: Collector 3: Spinning solution distribution plate
3a: Distribution plate of the first spinning solution (spinning solution for core formation)
3b: Distribution plate of the second spinning solution (spinning solution for sheath formation)
4: First spinning solution (spinning solution for core formation) supply tank
5: Second spinning solution (spinning solution for sheath formation) supply tank
6: voltage generating device 7: motor
F: two-component composite nanofiber Fc: the core portion of two-component composite nanofiber
Fs: Sheath part of two-component composite nanofiber

Claims (4)

시멘트, 모래, 골재 및 물이 혼합된 혼합물 100중량부에 대하여 (ⅰ) 실리카졸 10~100중량부와 (ⅱ) 직경이 10~900㎚이고 본체(11)의 중앙 내부에 길이방향을 따라 중공부(12)를 연통시켜주는 미세공(13)들이 불규칙적으로 형성되어 있는 탄소나노중공섬유(10) 2~8중량부와 (ⅲ) 산화철 10~20중량부와 (ⅳ) 경화지연제인 산화아연 2~15중량부와 (ⅴ) 응집제인 탄화칼슘 1~5중량부가 첨가, 혼합되어 있는 것을 특징으로 하는 흙막이 벽체용 실리카졸 그라우팅 조성물.For 100 parts by weight of a mixture of cement, sand, aggregate and water, (i) 10 to 100 parts by weight of silica sol and (ii) 10 to 900 nm in diameter and hollow along the length direction inside the center of the main body 11 2 to 8 parts by weight of carbon nano-hollow fibers 10 with irregularly formed micropores 13 connecting the part 12, (iii) 10 to 20 parts by weight of iron oxide and (iv) zinc oxide as a hardening retardant 2 to 15 parts by weight and (v) 1 to 5 parts by weight of calcium carbide as a coagulant are added and mixed. 삭제delete 제1항에 있어서, 탄소나노중공섬유의 본체(11) 외표면과 중공부(12)의 내표면 각각에 흡수성 고분자 코팅층(14,15)이 형성되어 있고, 상기 흡수성 고분자 코팅층(14,15)은 수불용성으로 가교화 처리된 폴리아크릴산, 수불용성으로 가교화 처리된 폴리비닐알코올, 수불용성으로 가교화 처리된 폴리에틸렌 옥시드 및 수불용성으로 가교화 처리된 녹말 중에서 선택된 1종의 고분자인 것을 특징으로 하는 흙막이 벽체용 실리카졸 그라우팅 조성물.According to claim 1, wherein the absorbent polymer coating layer (14, 15) is formed on each of the outer surface of the body (11) and the inner surface of the hollow portion (12) of the carbon nano-hollow fiber, and the absorbent polymer coating layer (14,15) Is a polymer selected from polyacrylic acid crosslinked to be water insoluble, polyvinyl alcohol crosslinked to be water insoluble, polyethylene oxide crosslinked to water insoluble, and starch crosslinked to water insoluble Silica sol grouting composition for an earthing wall made of. 삭제delete
KR1020200038003A 2020-03-30 2020-03-30 Silica sol grouting composition for earth preventing wall KR102150389B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200038003A KR102150389B1 (en) 2020-03-30 2020-03-30 Silica sol grouting composition for earth preventing wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200038003A KR102150389B1 (en) 2020-03-30 2020-03-30 Silica sol grouting composition for earth preventing wall

Publications (1)

Publication Number Publication Date
KR102150389B1 true KR102150389B1 (en) 2020-09-01

Family

ID=72450684

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200038003A KR102150389B1 (en) 2020-03-30 2020-03-30 Silica sol grouting composition for earth preventing wall

Country Status (1)

Country Link
KR (1) KR102150389B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532445A (en) * 1991-07-29 1993-02-09 Osaka Gas Co Ltd Cement composition, mortar and production of fiber-reinforced concrete composite material
KR100444838B1 (en) * 2001-07-27 2004-08-25 정란 A fiber reinforced earth retaining wall, a constructing method thereof, and a composite underground wall structure using thereof
KR20140011094A (en) * 2012-07-17 2014-01-28 유한회사 콘원 Highstrength concrete using carbon fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532445A (en) * 1991-07-29 1993-02-09 Osaka Gas Co Ltd Cement composition, mortar and production of fiber-reinforced concrete composite material
KR100444838B1 (en) * 2001-07-27 2004-08-25 정란 A fiber reinforced earth retaining wall, a constructing method thereof, and a composite underground wall structure using thereof
KR20140011094A (en) * 2012-07-17 2014-01-28 유한회사 콘원 Highstrength concrete using carbon fiber

Similar Documents

Publication Publication Date Title
JP3351724B2 (en) Polypropylene fiber for cement reinforcement and construction method of shotcrete using the same
DE60125178T2 (en) PLASTIC FIBERS FOR IMPROVED CONCRETE
JP5138915B2 (en) Reinforcing short fibers for cement-based moldings
US20080044654A1 (en) Loaded Polymer Fibre, Method for the Production Thereof, Use of the Same, and Composition Comprising Such Fibres
Pan et al. Fabrication of multi-walled carbon nanotube reinforced polyelectrolyte hollow nanofibers by electrospinning
KR102183800B1 (en) A permeable concrete composition having high strength and durability for eco-friendly elastic pavement and eco-friendly method for elastic pavement
EP3263833B1 (en) Method of producing a waterproof sheet for a tunnel and its use
TWI583651B (en) Cement reinforcing fiber and cement hardened body using the same
US6844065B2 (en) Plastic fibers for improved concrete
KR102150389B1 (en) Silica sol grouting composition for earth preventing wall
CN112981575A (en) Aerogel composite fiber material and preparation method and application thereof
JP2009007727A (en) Method for producing polypropylene fiber excellent in heat resistance and strength
JPS6126510B2 (en)
KR102136185B1 (en) Method of constructing concrete structure
WO1999003796A1 (en) Reinforcing material, method of production thereof, reinforcing/repairing method using the reinforcing material, reinforcing/repairing structure, and structural element
JP4358645B2 (en) Polyolefin short fiber for cement reinforcement and cement-based molded body using the same
CN116330758B (en) Cement blanket and manufacturing method and application thereof
KR102150381B1 (en) Modified asphalt mixture
DE69909164T2 (en) Reinforcement material for kneaded and shaped hydraulic material and kneaded and shaped object
JP5830785B2 (en) Connection thread for concrete reinforcement and manufacturing method thereof
JP2000302494A (en) Cement reinforcing fiber
JP3720471B2 (en) Reinforcing material for hydraulic substance and hydraulic cured product
JP7476112B2 (en) Bundling yarn, hydraulic composition and molded body
JP7312947B2 (en) Concrete composition and method for producing concrete structure
JP2000080894A (en) Impermeable sheet and impermeable method

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant