KR102136185B1 - Method of constructing concrete structure - Google Patents

Method of constructing concrete structure Download PDF

Info

Publication number
KR102136185B1
KR102136185B1 KR1020190119360A KR20190119360A KR102136185B1 KR 102136185 B1 KR102136185 B1 KR 102136185B1 KR 1020190119360 A KR1020190119360 A KR 1020190119360A KR 20190119360 A KR20190119360 A KR 20190119360A KR 102136185 B1 KR102136185 B1 KR 102136185B1
Authority
KR
South Korea
Prior art keywords
concrete structure
water
weight
mixture
carbon nano
Prior art date
Application number
KR1020190119360A
Other languages
Korean (ko)
Inventor
박완신
김창근
Original Assignee
주식회사 티앤테크
박완신
김창근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티앤테크, 박완신, 김창근 filed Critical 주식회사 티앤테크
Priority to KR1020190119360A priority Critical patent/KR102136185B1/en
Application granted granted Critical
Publication of KR102136185B1 publication Critical patent/KR102136185B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0048Fibrous materials
    • C04B20/0056Hollow or porous fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1033Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1048Polysaccharides, e.g. cellulose, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4596Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with fibrous materials or whiskers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Inorganic Fibers (AREA)

Abstract

When constructing a concrete structure using a mixture of cement, sand, aggregate, and water, the present invention adds and mixes 2 to 8 parts by weight of carbon nano-hollow fiber (10), based on 100 parts by weight of the mixture, which (i) has a diameter of 10 to 900 nm, (ii) is formed with a hollow part (12) formed in the center of a main body (11) along the longitudinal direction, and (iii) irregularly provided with micropores (13) for connecting the outer surface of the main body (11) and the hollow part (12). The present invention can uniformly distribute the carbon nano-hollow fiber (10) excellent in reinforcing effect and absorbency over the entire area of the concrete structure to be constructed, thereby greatly improving the strength of the concrete structure and effectively prevents a sharp drop in the strength of a concrete structure due to hydration in which the water remaining in the constructed concrete structure gathers at any one place of the concrete structure.

Description

콘크리트 구조물의 시공방법{Method of constructing concrete structure}Method of constructing concrete structure

본 발명은 콘크리트 구조물의 시공방법에 관한 것으로서, 보다 구체적으로는 시공된 콘크리트 구조물 내부에 잔존하는 물이 콘크리트 구조물의 어느 한 지점에 모여서 수화현상을 일으켜 콘크리트 구조물의 강도를 저하시키는 현상을 효과적으로 방지함과 동시에 시공된 콘크리트 구조물의 강도를 크게 향상시켜 주는 콘크리트 구조물의 시공방법에 관한 것이다.The present invention relates to a construction method of a concrete structure, and more specifically, to prevent the phenomenon that water remaining inside the constructed concrete structure collects at a point in the concrete structure to cause a hydration phenomenon to degrade the strength of the concrete structure. At the same time, it relates to a construction method of a concrete structure that greatly improves the strength of the concrete structure.

콘크리트 구조물의 강도를 보강해 주는 종래기술로서, 대한민국 등록특허 제10-1016004호 및 대한민국 등록특허 제10-1165289호 등에서는 시멘트, 모래, 골재 및 물을 혼합한 혼합물로 콘크리트 구조물을 제조할 때 상기 혼합물에 폴리아미드 섬유를 강도 보강재로 첨가, 혼합하는 방법을 게재하고 있으나, 상기 종래방법은 강도 보강재인 폴리아미드 섬유의 직경이 1~3데니어(10㎛ 이상)로 굵어서 시공된 콘크리트 구조물의 전체면적에 골고루 분산하기 어렵고 흡수성도 떨어지기 때문에 시공된 콘크리트 구조물의 강도를 보강하는 효과가 제한적이였고 시공된 콘크리트 구조물 내에 잔존하는 물이 콘크리트 구조물의 어느 한 지점에 모여 수화현상을 일으켜 콘크리트 구조물의 강도를 저하시키는 것을 효과적으로 방지할 수 없었다.As a conventional technique for reinforcing the strength of a concrete structure, in Korean Patent Registration No. 10-1016004 and Korean Patent Registration No. 10-1165289, when manufacturing a concrete structure with a mixture of cement, sand, aggregate and water Although the method of adding and mixing polyamide fibers as a strength reinforcing material in the mixture is disclosed, the conventional method has a polyamide fiber that is a strength reinforcing material having a diameter of 1 to 3 denier (10 µm or more) and is the total area of the concrete structure constructed. The effect of reinforcing the strength of the constructed concrete structure was limited because it was difficult to disperse evenly and the water absorption was also poor. It could not be effectively prevented from lowering.

콘크리트 구조물의 강도를 보강해 주는 또 다른 종래기술로서, 대한민국 등록특허 제10-1343454호 및 대한민국 등록특허 제10-1984869호 등에서는 시멘트, 모래, 골재 및 물을 혼합한 혼합물로 콘크리트 구조물을 제조할 때, 상기 혼합물에 탄소나노튜브(CNT)를 강도 보강재로 첨가, 혼합하는 방법을 게재하고 있으나, 상기 종래방법은 강도 보강재인 탄소나노튜브(CNT)의 유연성 및 흡수성이 떨어지기 때문에 시공된 콘크리트 구조물 내에 잔존하는 물이 콘크리트 구조물의 어느 한 지점에 모여 수화현상을 일으켜 콘크리트 구조물의 강도를 저하시키는 것을 효과적으로 방지할 수 없었고, 상기 탄소나노튜브(CNT)의 가격이 너무 비싸서 콘크리트 구조물의 강도 보강재로 사용하는데는 한계가 있었다.As another conventional technique for reinforcing the strength of concrete structures, in Korean Patent Registration No. 10-1343454 and Korean Patent Registration No. 10-1984869, concrete structures can be manufactured from a mixture of cement, sand, aggregate and water. At this time, although the method of adding and mixing carbon nanotubes (CNT) as a strength reinforcing material is published in the mixture, the conventional method has been constructed because the flexibility and absorbency of the carbon nanotubes (CNT), which are strength reinforcing materials, is poor. Water remaining in the body could not be effectively prevented from deteriorating the strength of the concrete structure by gathering at one point in the concrete structure, and the price of the carbon nanotube (CNT) was too expensive to be used as a strength reinforcement material for the concrete structure. There was a limit.

본 발명의 과제는 시공된 콘크리트 구조물의 강도를 향상시켜 줌과 동시에 시공된 콘크리트 구조물 내에 잔존하는 물이 콘크리트 구조물의 어느 한곳에 모여서 수화현상을 일으켜 콘크리트 구조물의 강도가 급격히 저하되는 것을 효과적으로 방지해 줄 수 있는 콘크리트 구조물의 시공방법을 제공하는 것이다.The object of the present invention is to improve the strength of the constructed concrete structure and at the same time, the water remaining in the constructed concrete structure gathers at any one place in the concrete structure to cause a hydration phenomenon to effectively prevent the strength of the concrete structure from rapidly decreasing. It is to provide a construction method of a concrete structure.

이와 같은 과제를 해결하기 위해서, 본 발명에서는 시멘트, 모래, 골재 및 물을 혼합한 혼합물을 사용하여 콘크리트 구조물을 시공할 때, 상기 혼합물 100중량부 대비 (ⅰ) 직경이 10~900㎚이고, (ⅱ) 본체(11)의 중앙 내부에 길이방향을 따라 중공부(12)가 형성되어 있고, (ⅲ) 본체(11)의 외표면과 상기 중공부(12)를 연통시켜주는 미세공(13)들이 불규칙적으로 형성되어 있는 탄소나노중공섬유(10) 2~8중량부를 첨가, 혼합시켜준다.In order to solve this problem, in the present invention, when constructing a concrete structure using a mixture of cement, sand, aggregate, and water, the diameter of the mixture is 10 to 900 nm compared to 100 parts by weight of the mixture, ( Ii) A hollow portion 12 is formed along the longitudinal direction inside the center of the body 11, and (iii) a micro hole 13 communicating the outer surface of the body 11 with the hollow portion 12 2 to 8 parts by weight of the carbon nano hollow fibers 10, which are irregularly formed, are added and mixed.

본 발명은 보강효과와 흡수성이 뛰어난 탄소나노중공섬유(10)를 시공되는 콘크리트 구조물 전체 면적에 걸쳐 골고루 분산시켜 줄 수 있으며, 그로 인해 콘크리트 구조물의 강도를 크게 향상시킴과 동시에 시공된 콘크리트 구조물 내에 잔존하는 물이 콘크리트 구조물의 어느 한곳에 모여서 수화현상으로 콘크리트 구조물의 강도가 급격히 저하되는 것을 효과적으로 방지해 준다.The present invention can evenly distribute the carbon nano hollow fiber 10 having excellent reinforcing effect and absorbency over the entire area of the concrete structure being constructed, thereby significantly improving the strength of the concrete structure and remaining in the constructed concrete structure. It effectively prevents the strength of the concrete structure from dropping rapidly due to hydration by gathering water in one place in the concrete structure.

도 1은 본 발명에 사용되는 탄소나노중공섬유(10)의 사시개략도.
도 2는 본 발명에 사용되는 탄소나노중공섬유(10)를 제조하는 공정개략도.
1 is a perspective schematic view of a carbon nano hollow fiber 10 used in the present invention.
Figure 2 is a process schematic diagram for producing a carbon nano hollow fiber 10 used in the present invention.

이하, 첨부한 도면 등을 통하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail through the accompanying drawings.

본 발명에 따른 콘크리트 구조물의 시공방법은 시멘트, 모래, 골재 및 물을 혼합한 혼합물을 사용하여 콘크리트 구조물을 시공할 때, 상기 혼합물 100중량부 대비 (ⅰ) 직경이 10~900㎚이고, (ⅱ) 본체(11)의 중앙 내부에 길이방향을 따라 중공부(12)가 형성되어 있고, (ⅲ) 본체(11)의 외표면과 상기 중공부(12)를 연통시켜주는 미세공(13)들이 불규칙적으로 형성되어 있는 탄소나노중공섬유(10) 2~8중량부를 첨가, 혼합시켜 주는 것을 특징으로 한다.The construction method of the concrete structure according to the present invention, when constructing a concrete structure using a mixture of cement, sand, aggregate, and water, the diameter of the mixture is 10 to 900 nm compared to 100 parts by weight of the mixture, (ii ) A hollow portion 12 is formed along the longitudinal direction inside the center of the main body 11, and (i) the fine pores 13 communicating the outer surface of the body 11 with the hollow portion 12 It is characterized by adding and mixing 2 to 8 parts by weight of the irregularly formed carbon nano hollow fibers 10.

도 1은 상기 탄소나노중공섬유(10)의 사시개략도이다.1 is a perspective schematic view of the carbon nano hollow fiber 10.

상기 탄소나노중공섬유(10)은 직경이 10~900㎚로 가늘기 때문에 콘크리트 구조물 시공용 혼합물 내에 균일하게 분산될 수 있고, 내부에 중공부(12)가 형성되고 외표면과 중공부(12)를 연통시켜 주는 미세공들이 불규칙적으로 형성되어 있기 때문에 시공된 콘크리트 구조물 내에 잔존하는 물을 고르게 흡수하여 상기 물이 콘크리트 구조물 내 어느 한 지점에 고여서 수화현상을 일으키는 것을 효과적으로 방지해 준다.Since the carbon nano hollow fiber 10 has a thin diameter of 10 to 900 nm, it can be uniformly dispersed in a mixture for constructing a concrete structure, and a hollow portion 12 is formed inside and an outer surface and a hollow portion 12 Since the micro-pores that communicate with each other are irregularly formed, the remaining water is evenly absorbed in the constructed concrete structure, thereby effectively preventing the water from accumulating at any point in the concrete structure and causing hydration.

본 발명의 또 다른 구현일례로는, 상기 탄소나노중공섬유의 본체(11) 외표면과 중공부(12)의 내표면 각각에 흡수성 고분자 코팅층(14,15)이 형성되어 있는 것이 보다 바람직하다.As another embodiment of the present invention, it is more preferable that the absorbent polymer coating layers 14 and 15 are formed on each of the outer surface of the body 11 of the carbon nano hollow fiber and the inner surface of the hollow portion 12.

상기 흡수성 고분자 코팅층(14,15)은 수불용성으로 가교화 처리된 폴리아크릴산, 수불용성으로 가교화 처리된 폴리비닐알코올, 수불용성으로 가교화 처리된 폴리에틸렌 옥시드 및 수불용성으로 가교화 처리된 녹말 중에서 선택된 1종의 고분자 등이다.The absorbent polymer coating layers (14, 15) are water insoluble crosslinked polyacrylic acid, water insoluble crosslinked polyvinyl alcohol, water insoluble crosslinked polyethylene oxide and water insoluble crosslinked starch And one polymer selected from among them.

콘크리트 구조물 시공용 혼합물 100중량부 대비 상기 탄소나노중공섬유(10)의 함량이 2중량부 미만인 경우에는 강도 보강효과 및 콘크리트 구조물의 수화현상을 방지하는 효과가 저하되고, 8중량부를 초과하는 경우에는 더 이상의 강도 보강효과 및 수화 현상 방지효과 없이 시공 원가만 상승하게 된다.When the content of the carbon nano hollow fiber 10 is less than 2 parts by weight compared to 100 parts by weight of the mixture for concrete structure construction, the strength reinforcing effect and the effect of preventing the hydration of the concrete structure are reduced, and when it exceeds 8 parts by weight Only the construction cost will rise without further strengthening effect and preventing hydration effect.

다음으로, 상기 탄소나노중공섬유(10)를 제조하는 구현일례를 살펴보면 도 2에 도시된 바와 같이 (ⅰ) 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하는 방사튜브 본체(1a), (ⅱ) 상기 방사튜브 본체(1a)의 내부에 상기 방사튜브 본체(1a)의 길이방향을 따라 형성되어 있는 다각형 튜브상 중공부(1b) 및 (ⅲ) 상기 다각형 튜브상 중공부(1b)의 모서리 부분 각각에 상기 방사튜브 본체(1a)의 길이방향을 따라 설치되어 있는 노즐(1c)로 구성되며, 상기 다각형 튜브상 중공부(1b)의 모서리 부분들이 방사튜브 본체(1a)의 외주면과 맞닿아 있는 구조를 구비하는 2성분 복합 나노섬유 제조용 방사튜브를 사용하여 코어성분이 수용성 폴리비닐알코올이고 쉬스성분이 폴리아크릴로니트릴인 시스-코어형 2성분 복합 나노섬유를 제조한 다음, 이를 물로 수세하여 코어부를 형성하는 수용성 폴리비닐알코올을 제거하여 중공 폴리아크릴로니트릴 섬유를 제조한 다음, 이를 열처리로 안정화 및 탄화시켜 탄소나노중공섬유(10)를 제조한다.Next, looking at the implementation example of manufacturing the carbon nano hollow fiber 10, as shown in Figure 2 (i) a spinning tube body (1a) having a shape selected from among cylindrical and conical (1a), (ii) the The polygonal tube-shaped hollow portion 1b and (i) the corner portions of the polygonal tube-shaped hollow portion 1b formed along the longitudinal direction of the radiation tube body 1a inside the radiation tube body 1a. It consists of a nozzle (1c) installed along the longitudinal direction of the radiation tube body (1a), the corner portion of the polygonal tube-shaped hollow portion (1b) is in contact with the outer peripheral surface of the radiation tube body (1a) structure Using a spinning tube for preparing two-component composite nanofibers, a cis-core two-component composite nanofiber having a core component of water-soluble polyvinyl alcohol and a sheath component of polyacrylonitrile is prepared, and then washed with water to form a core portion. The hollow polyacrylonitrile fibers are prepared by removing the water-soluble polyvinyl alcohol to be prepared, and then stabilized and carbonized by heat treatment to prepare carbon nano hollow fibers 10.

상기 2성분 복합나노섬유 제조용 방사튜브를 사용하여 코어성분이 수용성 폴리비닐알코올이고 쉬스성분이 폴리아크릴로니트릴인 시스-코어형 2성분 복합 나노섬유를 제조하는 구현일례를 보다 구체적으로 살펴보면, 상기 2성분 복합 나노섬유 제조용 방사튜브(1)를 모터(7)로 회전시켜 주면서 전압발생장치(6)로 상기 2성분 복합 나노섬유 제조용 방사튜브(1)에 고전압을 걸어준 다음, (ⅱ) 상기 2성분 복합 나노섬유 제조용 방사튜브(1)를 이루는 노즐(1c) 내로 수용성 폴리비닐알코올 방사액 공급함과 동시에 상기 2성분 복합 나노섬유 제조용 방사튜브(1)를 이루는 다각형 튜브상 중공부(1b) 내로 상기 폴리아크릴로니트릴 방사액을 공급한 다음, (ⅲ) 노즐(1c) 내로 공급된 수용성 폴리비닐알코올 방사액과 다각형 튜브상 중공부(1b) 내로 공급된 폴리아크릴로니트릴 방사액을 원심력과 전기력을 이용하여 전압발생장치(6)에 의해 고전압이 걸려 있는 컬렉터(2) 방향으로 방사하여 코어성분이 수용성 폴리비닐알코올이고 쉬스성분이 폴리아크릴로니트릴인 시스-코어형 2성분 복합 나노섬유를 제조할 수 있다.Looking more specifically at the implementation example of producing a cis-core bicomponent composite nanofiber, wherein the core component is a water-soluble polyvinyl alcohol and the sheath component is polyacrylonitrile, using the spinning tube for preparing the two-component composite nanofibers, the 2 While rotating the spinning tube 1 for manufacturing the composite nanofibers with a motor, apply a high voltage to the spinning tube 1 for producing the two-component composite nanofibers with a voltage generator 6, and then (ii) the 2 While supplying the water-soluble polyvinyl alcohol spinning solution into the nozzle 1c constituting the component composite nanofiber manufacturing spinning tube 1, the polycondensate nanofiber manufacturing spinning tube 1 forming the polygonal tube-shaped hollow part 1b After supplying the polyacrylonitrile spinning solution, (i) the water-soluble polyvinyl alcohol spinning solution supplied into the nozzle 1c and the polyacrylonitrile spinning solution supplied into the polygonal hollow tube 1b were subjected to centrifugal force and electric force. By using the voltage generator 6 to radiate in the direction of the collector 2 where the high voltage is applied, the core component is water-soluble polyvinyl alcohol, and the sheath component is polyacrylonitrile. Can be.

본 발명은 보강효과와 흡수성이 뛰어난 탄소나노중공섬유(10)를 시공되는 콘크리트 구조물 전체 면적에 걸쳐 골고루 분산시켜 줄 수 있으며, 그로 인해 콘크리트 구조물의 강도를 크게 향상시킴과 동시에 시공된 콘크리트 구조물 내에 잔존하는 물이 큰크리트 구조물의 어느 한 곳에 모여서 수화현상으로 콘크리트 구조물의 강도가 급격히 저하되는 것을 효과적으로 방지해 준다.The present invention can evenly distribute the carbon nano hollow fiber 10 having excellent reinforcing effect and absorbency over the entire area of the concrete structure being constructed, thereby significantly improving the strength of the concrete structure and remaining in the constructed concrete structure. It effectively prevents the strength of the concrete structure from dropping rapidly due to hydration by gathering water in one of the large concrete structures.

이하, 실시예 및 비교실시예를 통하여 본 발명을 보다 구체적으로 살펴본다.Hereinafter, the present invention will be described in more detail through Examples and Comparative Examples.

실시예 1Example 1

시멘트 15중량%, 모래 30중량%, 골재 40중량% 및 물 15중량%로 구성된 콘크리트 구조물 시공용 혼합물 100kg에 도 1에 도시된 바와 같이 (ⅰ) 직경이 200㎚이고, (ⅱ) 본체(11)의 중앙 내부에 길이방향을 따라 중공부(12)가 형성되어 있고, (ⅲ) 본체(11)의 외표면과 상기 중공부(12)를 연통시켜 주는 미세공(13)들이 불규칙적으로 형성되어 있고, (ⅳ) 본체(11) 외표면과 중공부(12) 내표면 각각에 수불용성으로 가교화 처리된 흡수성 아크릴산 고분자로 이루어진 흡수성 고분자 코팅층(14,15)이 형성되어 있는 탄소나노중공섬유(10) 5kg을 첨가, 혼합하여 두께 20㎝, 가로길이1m 및 세로길이 1m인 콘크리트 벽체(구조물) 시료를 제조하였다.As shown in FIG. 1 in 100 kg of a concrete structure construction mixture consisting of 15% by weight of cement, 30% by weight of sand, 40% by weight of aggregate and 15% by weight of water, (i) the diameter is 200 nm, and (ii) the body 11 ), the hollow portion 12 is formed along the longitudinal direction inside the center, and (iii) the micropores 13 communicating irregularly with the outer surface of the body 11 and the hollow portion 12 are irregularly formed. (I) Carbon nanohollow fibers having absorbent polymer coating layers (14, 15) made of absorbent acrylic polymer crosslinked with water insolubility on each of the outer surface of the body (11) and the inner surface of the hollow part (12) ( 10) 5 kg was added and mixed to prepare a sample of a concrete wall (structure) having a thickness of 20 cm, a width of 1 m, and a length of 1 m.

제조된 콘크리트 벽체(구조물) 시료를 1달 동안 대기중에 방치한 후 육안으로 수화현상을 관찰한 결과는 표 1과 같았다.Table 1 shows the results of observing the hydration phenomenon with the naked eye after the prepared concrete wall (structure) sample was left in the air for 1 month.

비교실시예 1Comparative Example 1

시멘트 15중량%, 모래 30중량%, 골재 40중량% 및 물 15중량%로 구성된 콘크리트 구조물 시공용 혼합물 100kg에 직경이 0.1㎜이고, 길이가 3㎜인 폴리아미드 단섬유 5kg을 첨가, 혼합하여 두께 20㎝, 가로길이1m 및 세로길이 1m인 콘크리트 벽체(구조물) 시료를 제조하였다.Concrete structure construction mixture composed of 15% by weight of cement, 30% by weight of sand, 40% by weight of aggregate, and 15% by weight of water. A sample of a concrete wall (structure) having a length of 20 cm, a length of 1 m, and a length of 1 m was prepared.

제조된 콘크리트 벽체(구조물) 시료를 1달 동안 대기중에 방치한 후 육안으로 수화현상을 관찰한 결과는 표 1과 같았다.Table 1 shows the results of observing the hydration phenomenon with the naked eye after the prepared concrete wall (structure) sample was left in the air for 1 month.

비교실시예 2Comparative Example 2

시멘트 15중량%, 모래 30중량%, 골재 40중량% 및 물 15중량%로 구성된 콘크리트 구조물 시공용 혼합물 100kg에 직경이 500㎚인 탄소나노튜브(CNT) 5kg을 첨가, 혼합하여 두께 20㎝, 가로길이1m 및 세로길이 1m인 콘크리트 벽체(구조물) 시료를 제조하였다.5 kg of carbon nanotube (CNT) with a diameter of 500 nm is added to 100 kg of a concrete structure construction mixture consisting of 15% by weight of cement, 30% by weight of sand, 40% by weight of aggregate, and 15% by weight of water. A concrete wall (structure) sample having a length of 1 m and a length of 1 m was prepared.

제조된 콘크리트 벽체(구조물) 시료를 1달 동안 대기중에 방치한 후 육안으로 수화현상을 관찰한 결과는 표 1과 같았다.Table 1 shows the results of observing the hydration phenomenon with the naked eye after the prepared concrete wall (structure) sample was left in the air for 1 month.

구분division 수화현상 발생여부Whether sign language occurs 실시예 1Example 1 발생 안됨Does not occur 비교실시예 1Comparative Example 1 발생됨Occurred 비교실시예 2Comparative Example 2 발생됨Occurred

10 : 탄소나노중공섬유
11 : 탄소나노중공섬유(10)의 본체
12 : 탄소나노중공섬유(10)의 중공부
13 : 미세공
14,15 : 흡수성 고분자 코팅층
1 : 2성분 복합 나노섬유 제조용 방사튜브
1a 방사튜브의 본체
1b : 다각형 튜브상 중공부 1c : 노즐
2: 컬렉터 3: 방사용액 분배판
3a : 제1방사용액(코어 형성용 방사용액) 분배판
3b : 제2방사용액(쉬스 형성용 방사용액) 분배판
4 : 제1방사용액(코어 형성용 방사용액) 공급탱크
5 : 제2방사용액(쉬스 형성용 방사용액) 공급탱크
6 : 전압발생장치 7 : 모터
F : 2성분 복합 나노섬유 Fc : 2성분 복합 나노섬유의 코어부
Fs : 2성분 복합 나노섬유의 쉬스부
10: carbon nano hollow fiber
11: The body of carbon nano hollow fiber (10)
12: hollow portion of carbon nano hollow fiber (10)
13: micropore
14,15: absorbent polymer coating layer
1: Spinning tube for manufacturing 2-component composite nanofibers
1a Radiation tube body
1b: Polygonal tube hollow part 1c: Nozzle
2: collector 3: spinning solution distribution plate
3a: first spinning solution (spinning solution for core formation) distribution plate
3b: Distribution plate for the second room (spinning solution for sheath formation)
4: First spinning solution (spinning solution for core formation) supply tank
5: Supply tank for the 2nd use liquid (spinning solution for forming sheath)
6: Voltage generator 7: Motor
F: 2-component composite nanofiber Fc: 2-component composite nanofiber core
Fs: Sheath part of 2-component composite nanofibers

Claims (3)

시멘트, 모래, 골재 및 물을 혼합한 혼합물을 사용하여 콘크리트 구조물을 시공함에 있어서,
상기 혼합물 100중량부 대비 (ⅰ) 직경이 10~900㎚이고, (ⅱ) 본체(11)의 중앙 내부에 길이방향을 따라 중공부(12)가 형성되어 있고, (ⅲ) 본체(11)의 외표면과 상기 중공부(12)를 연통시켜주는 미세공(13)들이 불규칙적으로 형성되어 있는 탄소나노중공섬유(10) 2~8중량부를 첨가, 혼합시켜 주는 것을 특징으로 하는 콘크리트 구조물의 시공방법.
In constructing a concrete structure using a mixture of cement, sand, aggregate and water,
Compared to 100 parts by weight of the mixture, (i) the diameter is 10 to 900 nm, (ii) a hollow portion 12 is formed along the longitudinal direction inside the center of the main body 11, and (i) the main body 11 is Construction method of concrete structure characterized by adding and mixing 2 to 8 parts by weight of carbon nano hollow fibers (10) with irregularly formed micro holes (13) communicating the outer surface with the hollow part (12) .
제1항에 있어서, 탄소나노중공섬유의 본체(11) 외표면과 중공부(12)의 내표면 각각에 흡수성 고분자 코팅층(14,15)이 형성되어 있는 것을 특징으로 하는 콘크리트 구조물의 시공방법.The method according to claim 1, wherein an absorbent polymer coating layer (14,15) is formed on each of the outer surface of the body (11) of the carbon nano hollow fiber and the inner surface of the hollow portion (12). 제2항에 있어서, 상기 흡수성 고분자 코팅층(14,15)은 수불용성으로 가교화 처리된 폴리아크릴산, 수불용성으로 가교화 처리된 폴리비닐알코올, 수불용성으로 가교화 처리된 폴리에틸렌 옥시드 및 수불용성으로 가교화 처리된 녹말 중에서 선택된 1종의 고분자인 것을 특징으로 하는 콘크리트 구조물의 시공방법.
According to claim 2, wherein the absorbent polymer coating layer (14,15) is water-insoluble crosslinked polyacrylic acid, water insoluble crosslinked polyvinyl alcohol, water insoluble crosslinked polyethylene oxide and water insoluble Construction method of a concrete structure, characterized in that it is a polymer selected from one of the crosslinked starch.
KR1020190119360A 2019-09-27 2019-09-27 Method of constructing concrete structure KR102136185B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190119360A KR102136185B1 (en) 2019-09-27 2019-09-27 Method of constructing concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190119360A KR102136185B1 (en) 2019-09-27 2019-09-27 Method of constructing concrete structure

Publications (1)

Publication Number Publication Date
KR102136185B1 true KR102136185B1 (en) 2020-07-21

Family

ID=71832528

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190119360A KR102136185B1 (en) 2019-09-27 2019-09-27 Method of constructing concrete structure

Country Status (1)

Country Link
KR (1) KR102136185B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070005041A (en) * 2005-07-05 2007-01-10 (주)노아 Crystal growth self-curing waterproof material
KR20070111728A (en) * 2006-05-18 2007-11-22 강성탁 Self-curable crystal growth waterproof material
KR20100020812A (en) * 2008-08-13 2010-02-23 코오롱건설주식회사 Concrete composition comprising polyamide reinforcing fibers
KR20150085250A (en) * 2014-01-15 2015-07-23 한국화학연구원 Polyacrylonitrile polymer and the spinning solution comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070005041A (en) * 2005-07-05 2007-01-10 (주)노아 Crystal growth self-curing waterproof material
KR20070111728A (en) * 2006-05-18 2007-11-22 강성탁 Self-curable crystal growth waterproof material
KR20100020812A (en) * 2008-08-13 2010-02-23 코오롱건설주식회사 Concrete composition comprising polyamide reinforcing fibers
KR20150085250A (en) * 2014-01-15 2015-07-23 한국화학연구원 Polyacrylonitrile polymer and the spinning solution comprising the same

Similar Documents

Publication Publication Date Title
EP1328947B1 (en) Conductive nonwoven
CN107617345B (en) Three-dimensional polymer nanofiber membrane and preparation method thereof
TWI290593B (en) Polyvinyl alcohol fibers, and nonwoven fabric comprising them and method for manufacture nonwoven fabric
KR100843191B1 (en) Anti-bacterial Nanofiber Filter Media and Manufacturing Method Therof Containing Silver Nano Particles
KR101816733B1 (en) Spinning device for two-component composited nanofiber and method of manufacturing two-component composited nanofiber thereby
Pan et al. Fabrication of multi-walled carbon nanotube reinforced polyelectrolyte hollow nanofibers by electrospinning
KR101806317B1 (en) Spinning tube for two-component composited nanofiber and method of manufacturing two-component composited nanofiber thereby
CN110528314A (en) A kind of composite sheet and its preparation method and application of the polyphenylene sulfide superfine fiber containing melt-blown
KR101668391B1 (en) High Density carbon Nano-fiber Felt with Unidirectional Orientation and Application to Supercapacitor Electrode
EP0858790A2 (en) Absorbing substance for medical application
CN108187503B (en) Preparation method of montmorillonite-reinforced chitosan composite cellulose acetate film
CN106283389A (en) A kind of hydrophobic/hydrophilic wellability difference composite cellulosic membrane and preparation method thereof
EP2154219B1 (en) Carbon/carbon film adhesive
CN112981575A (en) Aerogel composite fiber material and preparation method and application thereof
KR102136185B1 (en) Method of constructing concrete structure
US11839069B2 (en) Electromagnetic wave absorbing sheet and method of manufacturing the same
JP5105352B2 (en) Sponge-like fiber three-dimensional structure and manufacturing method thereof
KR101716598B1 (en) Spinning nozzle, process for producing fibrous mass, fibrous mass, and paper
DE102005027561A1 (en) Adjustment of the fiber volume content in oxide ceramic fiber composites
KR100514572B1 (en) A process of preparing for the ultra fine staple fiber
KR101806316B1 (en) Spinning device for two-component composited nanofiber and method of manufacturing two-component composited nanofiber thereby
CH638940A5 (en) METHOD FOR PRODUCING A LIQUID PERMEABLE ELECTRIC RESISTANCE HEATING ELEMENT.
KR102150389B1 (en) Silica sol grouting composition for earth preventing wall
KR102162614B1 (en) Spinning device for multi-components composited nanofibers and method of manufacturing multi-components composited nanofibers thereby
CN106215515A (en) A kind of preparation method of Electrospun nano-fibers glass woven felt filter material

Legal Events

Date Code Title Description
GRNT Written decision to grant