JP5138915B2 - Reinforcing short fibers for cement-based moldings - Google Patents
Reinforcing short fibers for cement-based moldings Download PDFInfo
- Publication number
- JP5138915B2 JP5138915B2 JP2006261192A JP2006261192A JP5138915B2 JP 5138915 B2 JP5138915 B2 JP 5138915B2 JP 2006261192 A JP2006261192 A JP 2006261192A JP 2006261192 A JP2006261192 A JP 2006261192A JP 5138915 B2 JP5138915 B2 JP 5138915B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- cement
- concrete
- fibers
- reinforcing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/06—Macromolecular compounds fibrous
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/253—Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/02—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/04—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
- D01F6/06—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins from polypropylene
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Textile Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Description
本発明はセメント系成形体用の合成樹脂製補強短繊維に関するものである。さらに詳しくは土木、建築工事用などのセメント系成形体、特にコンクリートのひび割れ発生防止、及びこれにともなうコンクリート塊片の剥離、剥落を防止するために好適なセメント系成形体用補強短繊維に関するものである。 The present invention relates to a synthetic resin reinforced short fiber for cement-based molded bodies. More specifically, cement-based molded bodies for civil engineering and construction work, particularly those related to reinforcing short fibers for cement-based molded bodies suitable for preventing cracking of concrete and preventing the separation and peeling of concrete fragments accompanying this. It is.
従来、モルタル、コンクリートなどのセメント系成形体用の補強繊維として鋼繊維、ビニロン、ポリプロピレンなどの有機繊維が知られている。
最近では特に錆びないこと、耐セメントアルカリ性に優れ、また合成繊維の中で最も比重が小さいため、セメント成形体への質量比混入率が最も小さくなるというコストメリットを活かしてポリプロピレン繊維が注目され、トンネルの覆工コンクリート用として使用実績が進んでいる。
しかし、ポリプロピレン等のポリオレフィン樹脂製の補強繊維はセメントペーストとの接着性が弱く、そのままでは充分な補強効果が得られ難いという問題がある。この様な問題を克服するため、延伸による強度物性付与に引き続き、ギヤロール或いはプレス成型ロール等によって機械的に繊維表面に凹凸を付与し、セメント成形体への定着、及び引抜き時の抵抗性を付与する技術が提案されている(特許文献1参照)。
この様な技術によってセメント成形体との定着性を付与することはギヤロール或いはプレス成型ロールの使用によって連続的に機械加工が可能であり、繊維の製造工程上簡便であって、コスト的に安価に製造できる点では有利であるが、セメント成形体への定着性においては充分なものではなかった。
Conventionally, organic fibers such as steel fibers, vinylon, and polypropylene are known as reinforcing fibers for cement-based molded bodies such as mortar and concrete.
Recently, polypropylene fibers have been attracting attention by taking advantage of the cost advantage that the mass ratio is the smallest in the cement molding because it does not rust, has excellent cement alkali resistance, and has the lowest specific gravity among the synthetic fibers. It has been used for tunnel lining concrete.
However, a reinforcing fiber made of polyolefin resin such as polypropylene has a problem that its adhesiveness with a cement paste is weak and it is difficult to obtain a sufficient reinforcing effect as it is. In order to overcome such problems, following the provision of strength properties by stretching, mechanically imparting irregularities to the fiber surface with a gear roll or press-molding roll, fixing to the cement molded body, and providing resistance during drawing The technique to do is proposed (refer patent document 1).
By using such a technology, it is possible to continuously fix the cement molded body by using a gear roll or a press-molding roll, which is simple in terms of the fiber manufacturing process and low in cost. Although it is advantageous in that it can be produced, it is not sufficient in terms of fixability to a cement molded body.
一方、本出願人らは、セメントペーストとの接触面積を上げる目的で、断面形状が3〜6個の突起を有する略多角形であり、かつ該突起部の先端に、該繊維の長手方向に沿って凹部或いは凸部が一対の平行柄凸凹ローラーで付形する技術を提案している(特許文献2参照)。
しかし、この技術おいては、セメントペーストとの定着性を高めることは出来るが、この様な突起部先端を有する断面繊維では、セメント成形体における補強繊維としての荷重時においては、引張応力が繊維の突起部先端から順次中心部に向かって掛かるため、応力が繊維の断面先端部に集中し易い断面形状となっていた。
さらに、この先端部には繊維の引張物性を低下せしめる、欠陥とも言うべき凸凹が機械的に付形されており、この部分を起点に繊維の破断が発生しやすいという問題があり、セメントペーストとの定着性と繊維の引張強度とを両立できず、セメント成形体用の補強繊維としては、改善の余地があった。
On the other hand, for the purpose of increasing the contact area with the cement paste, the present applicants have a cross-sectional shape that is a substantially polygonal shape having 3 to 6 protrusions, and at the tips of the protrusions, in the longitudinal direction of the fibers. A technique has been proposed in which a concave portion or a convex portion is shaped by a pair of parallel pattern concave and convex rollers (see Patent Document 2).
However, in this technique, the fixability with the cement paste can be improved. However, in the cross-sectional fiber having such a projection tip, the tensile stress is increased when the reinforcing fiber in the cement molded body is loaded. Since the protrusions are sequentially applied from the tip of the protrusion toward the center, the cross-sectional shape is such that stress is easily concentrated on the tip of the cross section of the fiber.
In addition, the tip is mechanically shaped with irregularities that can be called defects, which degrade the tensile properties of the fiber, and there is a problem that the fiber is likely to break starting from this part. The fixing property of the fiber and the tensile strength of the fiber cannot be achieved, and there is room for improvement as a reinforcing fiber for a cement molded body.
また、フッレシュコンクリートを代表とする各種セメント系成形体への当該補強繊維の投入は、セメント硬化時間への配慮から短時間に開繊し、かつ均一に投入しなければならない。
一般には手動による開繊、または回転羽式或いは回転ピン式などの機繊開繊機を使用し、空気流を伴って短時間にフッレシュコンクリートを代表とする各種セメント系成形体に投入される。この際、繊維表面に凸凹等を有する繊維は繊維同士の引っかかり等により開繊が不充分となり、セメント系成形体への均一分散の点において問題が発生する恐れがあった。
このように、耐アルカリ性、軽量性等において利点を有するポリオレフィン系繊維において実用上満足できるセメント系成形体用補強短繊維は、未だ得られていない。
In addition, the reinforcing fiber should be introduced into various cement-based molded bodies represented by fuller concrete and opened in a short time and uniformly in consideration of the cement hardening time.
In general, manual opening or a machine opening machine such as a rotary blade type or a rotary pin type is used, and it is put into various cement-based molded bodies represented by Fluoresh concrete in a short time with an air flow. At this time, the fibers having irregularities on the fiber surface are not sufficiently opened due to the catching of the fibers, which may cause a problem in terms of uniform dispersion in the cement-based molded body.
Thus, a reinforced short fiber for a cement-based molded body that has been practically satisfactory for polyolefin fibers having advantages in alkali resistance, lightness, etc. has not yet been obtained.
本発明は、上記課題を解決するためになされたものであり、土木、建築工事用などのセメント系成形体用補強短繊維としてセメントペーストとの十分な定着力を有し、かつ、投入練り混ぜ時に、良好な開繊性と、コンクリート中での良好な分散性が得られるセメント系成形体用補強短繊維を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and has sufficient fixing power with cement paste as a reinforcing short fiber for cement-based molded articles for civil engineering, building construction, etc. It is an object of the present invention to provide a reinforcing short fiber for a cement-based molded body that sometimes provides good spreadability and good dispersibility in concrete.
本発明者らは、繊維を開繊させる際に、繊維同士が接触する部分には、障害となる凸凹がなく、かつセメントペーストとの定着性を確保するために繊維の表面積を大きくして、物理的結合を著しく高めることのできる形状について鋭意検討した。その結果、突起を有する略多角形の辺部又は溝底部に特定の深さ、特定の間隔でエンボスローラーによる凹部を形成せしめることにより、フッレシュコンクリートを代表とする各種セメント系構造体への投入時に、容易に開繊でき、かつセメントペーストとの強い定着性と、補強効果を有効に発現できる繊維の引張強度とを両立できることを見出した。
すなわち、本発明は、
(1)ポリプロピレン樹脂を主成分とし、断面形状がX字状の延伸繊維からなり、繊度が2,000〜8,000dtex、繊維長が20〜60mmのセメント系成形体用補強短繊維であって、
該断面形状がX字状の少なくとも一つの相対向する溝のそれぞれに、深さ100〜200μmの凹部を繊維の長手方向に沿って2〜4mmの間隔で連続して付形してなることを特徴とするセメント系成形体用補強短繊維、
を提供するものである。
The present inventors, when opening the fiber, in the portion where the fibers are in contact with each other, there is no unevenness that becomes an obstacle, and in order to ensure the fixability with the cement paste, the surface area of the fiber is increased, The shape which can remarkably increase the physical bond has been intensively studied. As a result, by forming recesses with embossing rollers at specific depths and at specific intervals on the sides or groove bottoms of roughly polygons with protrusions, they are put into various cement-based structures such as fuller concrete. It has been found that, at the same time, it is possible to achieve both a strong fixing property with a cement paste and a tensile strength of a fiber that can effectively develop a reinforcing effect.
That is, the present invention
(1) The polypropylene resin as a main component, a cross-sectional shape consists of X-shaped drawn fiber, fineness of 2,000~8,000Dtex, fiber length a cementitious molded body reinforcing short fibers 20~60mm ,
The respective grooves the cross-sectional shape is at least one opposing the X-shaped, a recess depth 100~200μm that formed by shape with continuously at intervals of 2~4mm along the longitudinal direction of the fiber Reinforced short fibers for cement-based molded products,
Is to provide.
本発明のセメント系成形体用補強短繊維は、繊維同士が接触する繊維表面に、繊維を開繊させる上で、障害となる凸凹がないため、フッレシュコンクリートを代表とする各種セメント系構造体への投入時に、容易に開繊でき、かつ突起を有する略多角形の特有の断面形状で、その溝底部に特定の深さと特定の間隔で凹部を付形しているので、凹凸付形による繊維の引張り物性の低下が小さい。その結果、セメント硬化後の繊維の素抜けが防止できるため、極めて優れた補強効果を発現できる。
また、合成樹脂としてポリオレフィン系樹脂、とりわけポリプロピレン樹脂とすれば、耐セメントアルカリ性に優れ、また合成繊維の中で最も比重が小さいため、セメント成形体への質量比混入率が最も小さくなり、コストの低減を図ることができる。
The reinforcing short fiber for cement-based molded article of the present invention has no irregularities that obstruct the fiber surface on the fiber surface where the fibers are in contact with each other. It has a unique polygonal cross-sectional shape that can be opened easily and has protrusions at the time of insertion into the groove, and concave portions are formed at specific depths and specific intervals at the bottom of the groove. The decrease in tensile properties of the fiber is small. As a result, it is possible to prevent the fiber from coming off after the cement has been cured, so that an extremely excellent reinforcing effect can be exhibited.
In addition, if a synthetic resin is a polyolefin resin, especially a polypropylene resin, it has excellent resistance to cement alkali, and the specific gravity is the lowest among the synthetic fibers. Reduction can be achieved.
本発明に使用される合成樹脂原料は、特に限定されるものではないが、耐セメントアルカリ性が要求される点からポリオレフィン系樹脂、ポリアセタール樹脂等が望ましい。特に好ましい樹脂として、ポリオレフィン系樹脂では、ポリプロピレン、ポリエチレン、ポリ4−メチルペンテン−1等、あるいはポリアセタール樹脂では、ポリオキシメチレン等が挙げられる。これらの樹脂は1種単独で又は2種以上を混合して用いることができる。
これらのうちで、特にポリプロピレン樹脂が好ましい。
ポリプロピレン樹脂としてはプロピレン単独重合体、エチレンなどのα−オレフィンとプロピレンとのブロックまたはランダム共重合体、またはこれらの混合物を使用することができる。
さらに、ポリプロピレン樹脂には、原料の段階でまたは紡糸押出時において、必要に応じて他のポリオレフィンを配合することもできる。ここで配合する他のポリオレフィンとしては、高密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸アルキル共重合体などのポリエチレン系樹脂、ポリブテン−1などが挙げられる。
また、樹脂のメルトフローレート(MFR)は、連続的な安定生産性と繊維強度のバランスの観点から、0.1〜30g/10分、好ましくは0.1〜20g/10分、さらに好ましくは0.3〜10g/10分が好適である。
The synthetic resin raw material used in the present invention is not particularly limited, but a polyolefin-based resin, a polyacetal resin, and the like are desirable from the viewpoint that cement alkali resistance is required. Particularly preferred resins include polypropylene, polyethylene, poly-4-methylpentene-1, etc. for polyolefin resins, and polyoxymethylene for polyacetal resins. These resins can be used alone or in combination of two or more.
Of these, polypropylene resin is particularly preferable.
As the polypropylene resin, a propylene homopolymer, a block or random copolymer of an α-olefin such as ethylene and propylene, or a mixture thereof can be used.
Furthermore, other polyolefins can be blended with the polypropylene resin, if necessary, at the raw material stage or at the time of spinning extrusion. Other polyolefins to be blended here include polyethylene resins such as high density polyethylene, linear low density polyethylene, low density polyethylene, ethylene-vinyl acetate copolymer, ethylene-alkyl acrylate copolymer, polybutene-1 Etc.
Further, the melt flow rate (MFR) of the resin is 0.1 to 30 g / 10 minutes, preferably 0.1 to 20 g / 10 minutes, more preferably from the viewpoint of the balance between continuous stable productivity and fiber strength. 0.3-10 g / 10min is suitable.
また、合成樹脂には、本発明の効果を妨げない範囲内で、さらに酸化防止剤、光安定剤、紫外線吸収剤、中和剤、造核剤、エポキシ安定剤、滑剤、抗菌剤、難燃剤、帯電防止剤、無機充填材、有機充填材、顔料、可塑剤などの添加剤を適宜添加することができる。 In addition, the synthetic resin has an antioxidant, a light stabilizer, an ultraviolet absorber, a neutralizer, a nucleating agent, an epoxy stabilizer, a lubricant, an antibacterial agent, a flame retardant, as long as the effects of the present invention are not hindered. In addition, additives such as an antistatic agent, an inorganic filler, an organic filler, a pigment, and a plasticizer can be appropriately added.
本発明におけるセメント系成形体用補強短繊維(以下、単に「補強短繊維」ということがある。)は、合成樹脂を主成分とする延伸繊維であって、該繊維の断面形状が3個以上の突起部を有し、隣り合う該突起部間に辺部又は溝部を有する略多角形であり、かつ少なくとも一つの辺部又は該溝部に繊維の長手方向に沿って所定の間隔で凹部が付形されていることが特徴である。
断面略多角形としては、より具体的には、X形、Y形、十字形、略三角形、略四角形、星型等が挙げられる。
本発明において辺部とは、繊維断面において隣り合う突起部(角部、頂点)間を結ぶ稜線(実在線)を意味する。
より具体的に説明すると、図1は、断面略四角形の補強短繊維を模式的に示す斜面図であり、4つの突起部(角部)2と、4つの辺部Sを有し、上下2つの辺部Sに菱形の凹部4を所定ピッチで連続して形成した場合を示している。
また、本発明の補強短繊維において、溝部とは、隣り合う突起部(頂点)間を結ぶ稜線(実在線)が、隣り合う突起部間を結ぶ直線(仮想線)より、繊維断面の中心側に湾曲することによって形成される凹部分を意味し、例えば、X字状の断面では、V字状または円弧状の溝状部分であって、繊維の長手方向に連続して形成される窪みを意味する。
The reinforcing short fibers for cement-based molded bodies in the present invention (hereinafter sometimes simply referred to as “reinforcing short fibers”) are drawn fibers mainly composed of a synthetic resin, and the cross-sectional shape of the fibers is 3 or more. The protrusions are substantially polygonal having side portions or groove portions between adjacent protrusion portions, and concave portions are attached to the at least one side portion or the groove portions at predetermined intervals along the longitudinal direction of the fiber. The feature is that it is shaped.
More specifically, examples of the substantially polygonal cross section include an X shape, a Y shape, a cross shape, a substantially triangular shape, a substantially rectangular shape, and a star shape.
In the present invention, the side means a ridge line (real line) connecting adjacent protrusions (corners, vertices) in the fiber cross section.
More specifically, FIG. 1 is a perspective view schematically showing a reinforcing short fiber having a substantially square cross section, which has four protrusions (corner portions) 2 and four side portions S, and has two upper and lower portions. The case where the diamond-shaped
Moreover, in the reinforced short fiber of the present invention, the groove is a ridge line (real line) connecting adjacent protrusions (vertices) to a center side of the fiber cross section from a straight line (imaginary line) connecting adjacent protrusions For example, in the X-shaped cross section, it is a V-shaped or arc-shaped groove-shaped portion, and a recess formed continuously in the longitudinal direction of the fiber. means.
略多角形断面としては、3個以上、特に4個以上の頂点を有する形状のものがより好ましい。繊維の形状をこのように形成することによって、従来の丸形断面や扁平丸形断面を有する繊維に比べて、見掛けの繊維厚みが増すため、繊維の断面曲げ二次モーメントが向上する。このため、比較的小さな引張ヤング率の短繊維であっても、セメント配合時の粗骨材、細骨材などとの衝突による短繊維の屈曲が抑制され、補強に有効な形態で分散して繊維補強効果を発現することにより、大きなコンクリート物性向上効果を発揮できる。 As the substantially polygonal cross section, a shape having 3 or more, particularly 4 or more apexes is more preferable. By forming the shape of the fiber in this way, the apparent fiber thickness is increased as compared with a fiber having a conventional round cross-section or flat round cross-section, and the cross-sectional bending secondary moment of the fiber is improved. For this reason, even short fibers with a relatively small tensile Young's modulus are prevented from bending due to collision with coarse aggregates, fine aggregates, etc. during cement mixing, and are dispersed in a form effective for reinforcement. By exhibiting a fiber reinforcing effect, a large effect of improving physical properties of concrete can be exhibited.
また、本発明の補強短繊維は、当該溝部の少なくとも一つの溝部底において、繊維の長手方向に沿って、所定間隔で凹部が付形されていることを要する。
溝部底の凹部は、2〜6個の溝底に形成されていることが望ましい。
補強効果の観点から、繊維断面の溝部底に付形される凹部の深さは、50〜250μm、さらに望ましくは100μm〜200μm、長手方向への配置間隔は1〜5mm、さらに望ましくは2mm〜4mmである。
エンボスローラーによる凹部が深すぎる場合、及びその数が多すぎる場合は、セメントペーストとの定着性は向上するが、反面、繊維の引張強度が低下し、充分な補強が困難になる。また逆に浅すぎる場合及び数が少ない場合は、繊維の引張強度の低下は少ないが、セメントペーストとの定着性が低下し補強は困難となる。繊維引張強度としては、日本道路公団のトンネル施工管理要領(繊維補強覆工コンクリート編、平成15年9月)によれば、トンネル用のセメントコンクリート補強に必要な繊維強度は450N/mm2以上と規定されており、これを満足する必要があり、凹部の深さ及び配置間隔はこれらを考慮して決定される。
Further, the reinforcing short fiber of the present invention requires that concave portions are formed at predetermined intervals along the longitudinal direction of the fiber at the bottom of at least one groove portion of the groove portion.
The recess at the bottom of the groove is preferably formed on 2 to 6 groove bottoms.
From the viewpoint of the reinforcing effect, the depth of the concave portion formed on the bottom of the groove portion of the fiber cross section is 50 to 250 μm, more preferably 100 μm to 200 μm, and the arrangement interval in the longitudinal direction is 1 to 5 mm, more preferably 2 mm to 4 mm. It is.
If the embossed roller has too deep recesses and the number thereof is too large, the fixing property with the cement paste is improved, but on the other hand, the tensile strength of the fiber is lowered, and sufficient reinforcement becomes difficult. On the other hand, when it is too shallow and when the number is small, the decrease in the tensile strength of the fiber is small, but the fixing property with the cement paste is lowered and the reinforcement becomes difficult. As the fiber tensile strength, according to the Japan Road Authority tunnel construction management guidelines (fiber reinforced concrete lining, September 2003), the fiber strength required for cement concrete reinforcement for tunnels is 450 N / mm 2 or more. It is defined and needs to be satisfied, and the depth and the arrangement interval of the recesses are determined in consideration of these.
溝部底の凹部の形成方法は、例えば、延伸に引き続き、該延伸繊維を一対のエンボスローラー間に適切な圧力下で通して、凹部を連続的に付形する方法を挙げることができる。
前述のような深さ及び間隔の凹部を付形しても繊維の強度低下を防ぐ方法として、複数溝のエンボス加工の場合、エンボス位置を長さ方向において同じ位置とせず、ずらして付形することが望ましい。これは一対のエンボスローラーのそれぞれの付形位置をずらすことによって可能である。
この様な凹部付形をするエンボスローラーの表面形状は、公称太さ3,300dtexの繊維の場合には、円周方向に沿って直線配置した多列の凸部を彫刻したエンボスローラーであって、円周方向への凸部の間隔が1mmから5mm、ローラー巾方向の多列凸部間隔が0.7mmから0.8mm、彫刻した凸部の高さが0.5mmから1mm程度のエンボスで、凸部の先端が円形状或いは多角形状に平坦に加工され、多列の凸部先端が相互に千鳥目に配置されたエンボスローラーを使用することによって、多数本の延伸ストランド(繊維)を連続的に、当該溝部だけに凹部加工することが出来る。
すなわち、1本1本のストランドは、エンボスローラーの凸部が円周方向に直線配置されているため、繊維断面の当該溝部とエンボスローラーの凸部とが互いにカップリングして、嵌まり込み、断面溝底部のみに凹部付形が可能となる。
Examples of the method for forming the recess at the bottom of the groove include a method of continuously forming the recess by passing the drawn fiber between the pair of embossing rollers under an appropriate pressure following the drawing.
As a method of preventing the fiber strength from being lowered even if the concave portions having the depths and intervals as described above are formed, the embossing positions are not shifted to the same position in the length direction, but are formed in a shifted manner when embossing a plurality of grooves. It is desirable. This is possible by shifting the shaping positions of the pair of embossing rollers.
In the case of a fiber having a nominal thickness of 3,300 dtex, the surface shape of the embossing roller having such a concave shape is an embossing roller engraved with multiple rows of convex portions arranged linearly along the circumferential direction. The embossing has an interval between convex portions in the circumferential direction of 1 mm to 5 mm, a multi-row convex portion interval in the roller width direction of 0.7 mm to 0.8 mm, and an engraved convex portion height of about 0.5 mm to 1 mm. By using an embossing roller in which the tips of the projections are processed flat into a circular shape or a polygonal shape, and the tips of the multi-row projections are arranged in a staggered pattern, a large number of stretched strands (fibers) are continuous. Therefore, the recess can be processed only in the groove.
That is, since the convex part of the embossing roller is linearly arranged in the circumferential direction, each strand of the strand is coupled with the groove part of the fiber cross section and the convex part of the embossing roller. Only the bottom of the cross-sectional groove can be formed with a recess.
繊維断面の溝底凹部加工は、偶数本の溝を有する断面では、付形用のエンボスローラーを上下方向、左右方向、或いは斜め方向にそれぞれ1対づつのローラーを配置して繊維ストランドを挟み込み使用できるので、補強用繊維製造上好都合である。
特に、繊維断面がX字状であると、溝数が4であり、1対のローラーにより、相対向する2つの溝に凹部を付形することができ、安定的に生産し易い。
なお、一対のローラーの片方をフラットローラーにすることによって奇数本の溝底にエンボス凹部加工を施すこともできる。
さらに、本発明の補強用繊維としての繊維物性に悪影響を与えない範囲で、エンボスローラーを複数、多段に配置し、同一溝あるいはその他の溝に凹部付形する事も出来る。この場合、各対のエンボスローラーの凸部形状が前段のものと異なるものを使用して、1つの溝内、あるいは溝間に異なる凹部を付形して、セメントペーストとの定着性を調整することもできる。
For the groove bottom recess processing of the fiber cross section, in the cross section with an even number of grooves, embossing rollers for shaping are used by placing a pair of rollers in the vertical direction, left and right direction, or diagonal direction, and sandwiching the fiber strand. This is advantageous for the production of reinforcing fibers.
In particular, when the fiber cross section is X-shaped, the number of grooves is 4, and a pair of rollers can form recesses in two opposing grooves, making it easy to produce stably.
In addition, embossing recessed part processing can also be given to an odd number of groove bottoms by making one of a pair of rollers into a flat roller.
Furthermore, a plurality of embossing rollers can be arranged in multiple stages within a range that does not adversely affect the physical properties of the fiber as the reinforcing fiber of the present invention, and the same groove or other grooves can be provided with a recess. In this case, the convex shape of each pair of embossing rollers is different from that of the previous stage, and different concave portions are formed in one groove or between the grooves to adjust the fixing property to the cement paste. You can also.
また、補強繊維の太さを変えた場合には、エンボスローラーの横方向の多列凸部間隔及び凸部の高さを適宜調整し、例えば太い繊維の場合には横方向の多列凸部間隔を大きく、凸部高さも大きくすることによって繊維物性低下抑制とセメントペーストとの定着性のバランスを鑑みつつ、調整することが必要であるが、溝底に凹部のエンボス付形を繊維の長手方向に連続的に付形することが重要である。 In addition, when the thickness of the reinforcing fiber is changed, the multi-row convex spacing in the horizontal direction of the embossing roller and the height of the convex portion are adjusted as appropriate. It is necessary to make adjustments while increasing the interval and increasing the height of the convex portion in consideration of the balance between the deterioration of the physical properties of the fiber and the fixing property of the cement paste. It is important to shape continuously in the direction.
なお、本発明の補強短繊維は、単層繊維だけでなく、高融点成分を芯層とし、低融点成分を鞘層とする複合繊維を使用することもできる。このような複合繊維の製造方法は、公知である。 In addition, the reinforced short fiber of this invention can use not only a single layer fiber but the composite fiber which uses a high melting component as a core layer, and uses a low melting component as a sheath layer. The manufacturing method of such a composite fiber is well-known.
本発明の補強短繊維の製造方法は、特に限定されず、種々の方法を採用することができる。通常、まず、合成樹脂を用いて、所望の突起形状に対応した形状のノズルから熔融押出しし、冷却、延伸を経て、繊維の長手方向に連続した角状又はフィン状の突起状物を有する単層繊維又は複合繊維を成形する。次いで、フィン状の突起状物間に存在する溝部に、凹部形状に対応した凸部を有するエンボスローラーを当接して、所定の溝に凹部を付形し、さらに界面活性剤の付着処理などを施し、最後に所望の長さに切断することにより製造することができる。以下に、補強短繊維の製造方法をより詳細に説明する。 The manufacturing method of the reinforced short fiber of this invention is not specifically limited, A various method is employable. Usually, a synthetic resin is first used to melt and extrude from a nozzle having a shape corresponding to a desired protrusion shape, and after cooling and stretching, a single piece having a rectangular or fin-like protrusion that is continuous in the longitudinal direction of the fiber. A layer fiber or a composite fiber is formed. Next, an embossing roller having a convex portion corresponding to the concave shape is brought into contact with the groove portion existing between the fin-like projections, and the concave portion is formed in a predetermined groove, and further, a surfactant is attached. It can be manufactured by applying and finally cutting to a desired length. Below, the manufacturing method of a reinforced short fiber is demonstrated in detail.
繊維の長手方向に連続したフィン状の突起状物を有する単繊維を成形する方法としては、特に制限はなく、突起部が付設された横断面が、3個以上の突起部を有する略多角形、たとえば略三角形、略星形多角形、略複合多角形などを形成するように製造できる方法であれば、いかなる方法でもよい。たとえば、X形、Y形、十字形、略三角形、略四角形、星型又はこれらの連糸形状のノズルを用いて、ポリオレフィン樹脂をダイスから熔融押出しし、冷却固化して、連続状の未延伸合成樹脂繊維を得ることができる。
上記により得られた合成樹脂製繊維は、次に、熱延伸、及び必要に応じて熱弛緩処理を施す。この熱処理によって繊維の剛性を高めて、伸びの小さいセメント補強用として好適な繊維とすることができる。熱延伸は合成樹脂の融点以下、軟化点以上の温度下に行われる。
熱延伸法としては、熱ロール式、熱板式、赤外線照射式、熱風オーブン式、熱水式、水蒸気式などの加熱方式を採用できる。延伸操作は、1段延伸、2段延伸、多段延伸のいずれでもよい。
The method for forming a single fiber having fin-like protrusions continuous in the longitudinal direction of the fiber is not particularly limited, and the cross section provided with the protrusions is a substantially polygonal shape having three or more protrusions. For example, any method may be used as long as it can be manufactured so as to form a substantially triangular shape, a substantially star polygon shape, a substantially complex polygon shape, or the like. For example, polyolefin resin is melt-extruded from a die using X-shaped, Y-shaped, cross-shaped, substantially triangular, substantially quadrangular, star-shaped nozzles, or these continuous yarn-shaped nozzles, cooled and solidified, and continuously unstretched Synthetic resin fibers can be obtained.
Next, the synthetic resin fiber obtained as described above is subjected to thermal stretching and, if necessary, thermal relaxation treatment. By this heat treatment, the rigidity of the fiber can be increased, and a fiber suitable for cement reinforcement having a small elongation can be obtained. Hot stretching is performed at a temperature below the melting point of the synthetic resin and above the softening point.
As the thermal stretching method, a heating method such as a hot roll method, a hot plate method, an infrared irradiation method, a hot air oven method, a hot water method, a water vapor method and the like can be adopted. The stretching operation may be one-stage stretching, two-stage stretching, or multi-stage stretching.
溝部底の凹部の形成方法は、例えば、延伸に引き続き、一対のエンボスローラー間に適切な圧力下で挿通挟持して、凹刻を連続的に付形する方法が、延伸時に付与された熱で繊維が昇温している状態で凹部の付形ができるので、効率的で経済的である。
凹部を付形しても繊維の強度低下を防ぐ方法としては、複数溝エンボス加工の場合、複数溝間のエンボス位置を長さ方向において同じ位置とせず、ずらして付形することが望ましい。これは一対のエンボスローラーのそれぞれの付形位置をずらすことによって可能である。
この様な凹部付形をするエンボスローラーの表面形状は、公称太さ3,300dtexの繊維の場合には、円周方向に沿って直線配置した多列の凸部を彫刻したエンボスローラーであって、円周方向への凸部の間隔が1mmから5mm、ローラー巾方向の多列凸部間隔が0.7mmから0.8mm、彫刻した凸部の高さが0.5mmから1mm程度のエンボスで、凸部の先端が円形状或いは多角形状に平坦に加工され、多列の凸部先端が相互に千鳥目に配置されたエンボスローラーを使用することによって、多数本の延伸ストランド(繊維)を連続的に、当該溝部だけに凹部加工することが出来る。
すなわち、1本1本のストランドは、エンボスローラーに凸部が円周方向に直線配置されているため、繊維断面の当該溝部とエンボスローラーの凸部とが互いにカップリングして、嵌まり込み、断面溝底部のみに凹部付形が可能となる。
A method for forming a recess at the bottom of the groove is, for example, a method in which, following stretching, a pair of embossed rollers is inserted and sandwiched between the embossing rollers under appropriate pressure, and the indentation is continuously formed by heat applied during stretching. Since the concave portion can be shaped while the fiber is heated, it is efficient and economical.
As a method for preventing a decrease in fiber strength even when the concave portion is formed, in the case of multi-groove embossing, it is desirable that the embossed position between the multiple grooves is not the same position in the length direction but is formed by shifting. This is possible by shifting the shaping positions of the pair of embossing rollers.
In the case of a fiber having a nominal thickness of 3,300 dtex, the surface shape of the embossing roller having such a concave shape is an embossing roller engraved with multiple rows of convex portions arranged linearly along the circumferential direction. The embossing has an interval between convex portions in the circumferential direction of 1 mm to 5 mm, a multi-row convex portion interval in the roller width direction of 0.7 mm to 0.8 mm, and an engraved convex portion height of about 0.5 mm to 1 mm. By using an embossing roller in which the tips of the projections are processed flat into a circular shape or a polygonal shape, and the tips of the multi-row projections are arranged in a staggered pattern, a large number of stretched strands (fibers) are continuous. Therefore, the recess can be processed only in the groove.
That is, each strand of the embossing roller is linearly arranged in the circumferential direction on the embossing roller, so that the groove section of the fiber cross section and the embossing roller protrusion are coupled to each other, and fitted. Only the bottom of the cross-sectional groove can be formed with a recess.
繊維断面の溝底凹部加工は、偶数本の溝を有する断面では、付形用のエンボスローラーを上下方向、左右方向、或いは斜め方向にそれぞれ1対のローラーを配置して繊維ストランドを挟み込み使用できるので、補強用繊維製造上好都合である。
繊維断面がX字状であると、溝数が4であり、1対のローラーにより、相対向する2つの溝に凹部を付形することができ、安定的に生産し易い。
The groove bottom recess processing of the fiber cross section can be used by sandwiching the fiber strand by arranging a pair of embossing rollers for shaping in the vertical direction, the horizontal direction, or the diagonal direction in a cross section having an even number of grooves. Therefore, it is convenient for the production of reinforcing fibers.
When the fiber cross section is X-shaped, the number of grooves is 4, and a pair of rollers can form recesses in two opposing grooves, making it easy to produce stably.
また、本発明の補強繊維において、単糸繊度は、補強効果と混入作業性、分散性、溝部への凹部の付形性等の観点から、1,000〜9,000dtexが好ましく、さらには
2,000〜8,000dtexが特に好ましい。
1,000dtex以上でれば、エンボスローラーによる溝底部への凹部の付形が可能であり、9,000dtex以下の範囲であれば、繊維のセメント混和物との接触面積が減少し、配合繊維量(容量%)との調整を行う上で、補強効果が劣るという問題も生じない。
Further, in the reinforcing fiber of the present invention, the single yarn fineness is preferably 1,000 to 9,000 dtex from the viewpoints of the reinforcing effect, mixing workability, dispersibility, shape of the concave portion in the groove, and the like. 8,000 to 8,000 dtex is particularly preferred.
If it is 1,000 dtex or more, it is possible to form a recess at the groove bottom with an embossing roller, and if it is 9,000 dtex or less, the contact area of the fiber with the cement admixture decreases, and the amount of blended fiber In adjusting with (capacity%), there is no problem that the reinforcing effect is inferior.
上記補強繊維は、短繊維とするための切断前または切断後に種々の処理を施すことができる。たとえば、繊維表面を界面活性剤、分散剤、カップリング剤等で処理してもよいし、ポリオレフィン系樹脂繊維の場合またはコロナ放電処理、紫外線照射、電子線照射等により表面活性化または架橋化等の処理を行ってもよい。特に、セメント系成形体に配合する際の分散性を高める点から、界面活性剤などで表面親水化処理を行うことが好ましい。
界面活性剤としては、繊維に使用される合成樹脂に応じて選定されるが、ポリオレフィン系繊維の場合は、疎水性であるポリオレフィン繊維とセメントペーストとの親和性を向上させるため、親水性の界面活性剤を使用するのが好ましい。ポリオレフィン繊維に親水性を付与することにより分散性が向上し、繊維とセメントペーストが均質に混合されることによって繊維補強効果が向上する。
親水性の界面活性剤としては、特に限定なく使用することができるが、なかでもポリエチレングリコールアルキルエステル系ノニオン界面活性剤、アルキルフォスフェート系アニオン界面活性剤、多価アルコール型アマイドノニオン系界面活性剤などを好ましく使用できる。
The reinforcing fiber can be subjected to various treatments before or after cutting to make short fibers. For example, the surface of the fiber may be treated with a surfactant, a dispersant, a coupling agent, etc., or in the case of a polyolefin resin fiber or surface activated or crosslinked by corona discharge treatment, ultraviolet irradiation, electron beam irradiation, etc. You may perform the process of. In particular, it is preferable to perform a surface hydrophilization treatment with a surfactant or the like from the viewpoint of enhancing dispersibility when blended in a cement-based molded body.
The surfactant is selected according to the synthetic resin used for the fiber. In the case of polyolefin fiber, a hydrophilic interface is used to improve the affinity between the hydrophobic polyolefin fiber and the cement paste. It is preferred to use an activator. Dispersibility is improved by imparting hydrophilicity to the polyolefin fiber, and fiber reinforcing effect is improved by uniformly mixing the fiber and the cement paste.
As the hydrophilic surfactant, it can be used without any particular limitation. Among them, a polyethylene glycol alkyl ester nonionic surfactant, an alkyl phosphate anionic surfactant, a polyhydric alcohol type amide nonionic surfactant Etc. can be preferably used.
ポリエチレングリコールアルキルエステルとしては、水分散液の安定性、繊維付着性の点から、それを構成する長鎖脂肪族アルキル基の炭素数が6〜18、好ましくは8〜16であるものが好ましい。好ましいポリエチレングリコールアルキルエステルの具体例としては、ポリエチレングリコールラウレート、ポリエチレングリコールオレエート、ポリエチレングリコールステアレートなどが挙げられる。
アルキルホスフェートは、平均炭素数18以下、好ましくは6〜16、より好ましくは8〜14のアルキル基を1分子中に1〜2個、好ましくは1個有するホスフェートであり、塩としてはアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩が挙げられる。好ましいアルキルフォスフェートの具体例としては、オクチルホスフェート、ラウリルホスフェート、ステアリルホスフェートのような高級アルコールの燐酸エステルのナトリウム、カリウム、マグネシウム、カルシウムなどの塩及びアミン塩が挙げられる。その中和は遊離水酸基の50%以上、特に完全中和物が好ましい。
多価アルコール型アマイドノニオンは、炭素数4〜18のアルキルアミンと、3〜13個の水酸基を持つポリグリセリンとの付加反応物が用いられ、好ましくは炭素数11〜17のアルキルアミンと、3〜6個の水酸基を持つポリグリセリンとの付加反応物が用いられる。
As the polyethylene glycol alkyl ester, those in which the long-chain aliphatic alkyl group constituting the polyethylene glycol alkyl ester has 6 to 18, preferably 8 to 16 carbon atoms are preferable from the viewpoint of the stability of the aqueous dispersion and the fiber adhesion. Specific examples of preferable polyethylene glycol alkyl esters include polyethylene glycol laurate, polyethylene glycol oleate, and polyethylene glycol stearate.
The alkyl phosphate is a phosphate having an average carbon number of 18 or less, preferably 6 to 16, more preferably 8 to 14 alkyl groups in one molecule, preferably 1 and an alkali metal salt as a salt. , Alkaline earth metal salts, ammonium salts, and amine salts. Specific examples of preferred alkyl phosphates include salts of higher alcohol phosphates such as octyl phosphate, lauryl phosphate, stearyl phosphate, such as sodium, potassium, magnesium, calcium, and amine salts. The neutralization is preferably 50% or more of the free hydroxyl group, particularly a completely neutralized product.
As the polyhydric alcohol type amido nonion, an addition reaction product of an alkylamine having 4 to 18 carbon atoms and polyglycerin having 3 to 13 hydroxyl groups is used, preferably an alkylamine having 11 to 17 carbon atoms and 3 Addition reactants with polyglycerin having ˜6 hydroxyl groups are used.
その他の好ましい界面活性剤としては、ポリオキシアルキレンアルキルフェニルエーテルリン酸エステル、ポリオキシアルキレン脂肪酸エステルが挙げられる。ポリオキシアルキレンアルキルフェニルエーテルリン酸エステルの具体例としては、ポリオキシエチレンノニルフェニルエーテルリン酸エステル、ポリオキシエチレンドデシルフェニルエーテルリン酸エステルなどが挙げられ、ポリオキシアルキレン脂肪酸エステルの具体例としては、ポリオキシエチレンオレイン酸エステル、ポリオキシエチレンステアリン酸エステルなどが挙げられる。これらの界面活性剤は、一種単独又は二種以上を混合して使用することができる。 Other preferable surfactants include polyoxyalkylene alkylphenyl ether phosphate esters and polyoxyalkylene fatty acid esters. Specific examples of the polyoxyalkylene alkyl phenyl ether phosphate ester include polyoxyethylene nonyl phenyl ether phosphate ester, polyoxyethylene dodecyl phenyl ether phosphate ester, and specific examples of the polyoxyalkylene fatty acid ester include Examples thereof include polyoxyethylene oleate and polyoxyethylene stearate. These surfactants can be used singly or in combination of two or more.
上記界面活性剤の繊維に対する付着量は特に限定されないが、セメント配合時の泡の発生抑制の観点から、総繊維に対して、通常0.05〜2質量%の範囲で用いられる。繊維に対する付着量が、総繊維に対して0.05質量%未満ではポリオレフィン繊維に親水性が十分付与されないおそれがあり、また、2質量%を超えても親水性は頭打ちになり、かえって繊維混練時のフッレシュコンクリートを代表とする各種セメント系成形体中に気泡が発生し、セメント系成形体の圧縮強度、曲げ強度などの物性値を低下させるおそれがあるので好ましくない。気泡の発生を抑制するために、繊維への界面活性剤処理時に、消泡剤を併用することもできる。 The amount of the surfactant attached to the fiber is not particularly limited, but it is usually used in the range of 0.05 to 2% by mass with respect to the total fiber from the viewpoint of suppressing the generation of bubbles when blending cement. If the adhesion amount to the fiber is less than 0.05% by mass with respect to the total fiber, the polyolefin fiber may not be sufficiently hydrophilic, and if it exceeds 2% by mass, the hydrophilicity will reach its peak, and the fiber kneading will be performed. It is not preferable because air bubbles are generated in various cement-based molded products represented by the time-fresh concrete, and the physical properties such as compressive strength and bending strength of the cement-based molded products may be lowered. In order to suppress the generation of bubbles, an antifoaming agent can be used in combination with the surfactant treatment on the fiber.
ポリオレフィン繊維に表面処理剤を付着させる方法としては、特に限定はなく、浸漬法、スプレー法、コーティング法のいずれの方法も採用することができる。繊維に表面処理剤を付与した後、必要に応じて、絞りロールなどを用いて繊維集合体の内部にまで浸透させることができる。 The method for attaching the surface treatment agent to the polyolefin fiber is not particularly limited, and any of a dipping method, a spray method, and a coating method can be employed. After the surface treatment agent is applied to the fiber, it can be penetrated into the fiber assembly using a squeeze roll or the like, if necessary.
こうして得られた補強用合成繊維は、所定長さにカットされ、セメント補強用の短繊維として使用される。セメント系成形体のひび割れにくさ(靭性)を向上する観点からは、短繊維の太さ(繊維径D)はより細く、長さ(繊維長L)はより長いもの、すなわち、短繊維のアスペクト比(L/D)がより大きいものほど好ましいが、本発明の補強用短繊維は、従来品に比べて、アスペクト比が小さくても、すなわち短繊維径が同じであれば繊維長が短くても補強効果が大きいという特徴がある。
本発明の補強用短繊維は、短繊維の繊維長(見かけ長さ)が10〜80mm、好ましくは15〜70mm、さらに好ましくは20〜60mmである。繊維長が10mm以上であれば、セメントからの抜けが生じ難く、80mm以内であれば、分散性が不良となることがない。
The reinforcing synthetic fiber thus obtained is cut to a predetermined length and used as a cement reinforcing short fiber. From the viewpoint of improving the cracking resistance (toughness) of the cement-based molded body, the short fiber has a smaller thickness (fiber diameter D) and a longer length (fiber length L), that is, an aspect of the short fiber. The higher the ratio (L / D), the better. However, the reinforcing short fiber of the present invention has a shorter fiber length as long as the short fiber diameter is the same, even if the aspect ratio is smaller than that of the conventional product. Is also characterized by a large reinforcing effect.
The short fiber for reinforcement of the present invention has a short fiber length (apparent length) of 10 to 80 mm, preferably 15 to 70 mm, and more preferably 20 to 60 mm. If the fiber length is 10 mm or more, it is difficult for the cement to come off from the cement, and if it is within 80 mm, the dispersibility does not become poor.
次に、本発明の補強用短繊維は、強化繊維材として、セメント、細骨材、粗骨材、水及び適量のコンクリート混和剤、又はセメント、細骨材、水及び適量のモルタル混和剤に配合して用いられ、コンクリート、モルタル等のセメント系成形体とすることができる。ここで、セメントとしては、普通ポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメント、白色ポルトランドセメント、アルミナセメント等の水硬性セメント又は石膏、石灰等の気硬性セメント等のセメント類を使用することができる。細骨材としては、川砂、海砂、山砂、珪砂、ガラス砂、鉄砂、灰砂、その他人工砂などが挙げられ、粗骨材としては、レキ、砂利、砕石、スラグ、各種人工軽量骨材などが挙げられる。混和剤としては、空気連行剤(AE剤)、流動化剤、減水剤、増粘剤、保水剤、撥水剤、膨張剤などを混合使用することができる。 Next, the reinforcing short fiber of the present invention is used as a reinforcing fiber material in cement, fine aggregate, coarse aggregate, water and an appropriate amount of concrete admixture, or cement, fine aggregate, water and an appropriate amount of mortar admixture. It is compounded and used, and it can be set as cement-type molded objects, such as concrete and mortar. Here, as the cement, it is possible to use ordinary portland cement, blast furnace cement, silica cement, fly ash cement, hydraulic cement such as white portland cement, alumina cement, or cement such as plaster, air-cement cement such as lime. it can. Examples of fine aggregates include river sand, sea sand, mountain sand, quartz sand, glass sand, iron sand, ash sand, and other artificial sand. Coarse aggregates include reki, gravel, crushed stone, slag, and various artificial light weights. Examples include aggregates. As the admixture, an air entraining agent (AE agent), a fluidizing agent, a water reducing agent, a thickening agent, a water retention agent, a water repellent, a swelling agent and the like can be mixed and used.
セメントに対する補強用短繊維の配合量は、セメント系成形体の体積に対して、通常、0.05〜2容積%である。セメント配合時の繊維の均一分散性、配合セメントの流動性、施工性、セメント系成形体の物性向上効果の点から、補強用短繊維の配合量は、好ましくは0.1〜1.5容積%、さらに好ましくは0.3〜1容積%の範囲である。 The blending amount of the reinforcing short fibers with respect to the cement is usually 0.05 to 2% by volume with respect to the volume of the cement-based molded body. From the viewpoints of uniform dispersibility of fibers at the time of cement blending, fluidity of blended cement, workability, and improvement in physical properties of cement-based molded products, the blending amount of reinforcing short fibers is preferably 0.1 to 1.5 volumes. %, More preferably in the range of 0.3 to 1% by volume.
本発明の補強用短繊維は、セメント系成形体の製造に用いる場合、補強短繊維をセメント系粉体、セメント系フラッシュ又はスラリー中に分散してセメント系混合物とし、これを湿式抄造成形法、押出成形または注型成形法によって所定形状に成形した後、自然養生、蒸気養生、オートクレーブ養生などによって、各種のセメント系成形体を製造することができる。
より具体的には、セメント、細骨材、粗骨材、水等よりなるコンクリート混合物をベースコンクリートとし、このベースコンクリートを混練後に、続けて補強用短繊維を投入し混練を行なうことが好ましい。混練時間は1回当たりの混合量により異なるが、一般的には、ベースコンクリートの混練は45〜90秒、補強用短繊維を投入後の混練についても45〜90秒の範囲が適当である。
When the short fiber for reinforcement of the present invention is used for the production of a cement-based molded body, the reinforcing short fiber is dispersed in a cement-based powder, a cement-based flash or a slurry to form a cement-based mixture, and this is a wet papermaking molding method, After molding into a predetermined shape by extrusion molding or cast molding, various cement-based molded bodies can be produced by natural curing, steam curing, autoclave curing, or the like.
More specifically, it is preferable to use a concrete mixture made of cement, fine aggregate, coarse aggregate, water or the like as base concrete, and after kneading the base concrete, the reinforcing short fibers are subsequently added and kneaded. Although the kneading time varies depending on the amount of mixing per one time, generally, the range of 45 to 90 seconds is appropriate for the mixing of the base concrete, and the range of 45 to 90 seconds is appropriate for the kneading after the reinforcing short fibers are added.
このようにして得られたセメント系成形体は、特に、土木、建築工事用のコンクリート成形体として好適である。たとえば、コンクリート道路舗装分野では、繊維補強による曲げ強度向上のため鉄筋量の減少が可能となり、かつコンクリート板の厚さの減少させることができ、工期の短縮、原材料の節減などに有効である。さらにトンネルの内壁の吹き付け工法に採用すると、繊維が柔軟で弾性があること、親水性が高く軽いことから、吹き付け時の骨材や繊維のハネ返りも少なく、コンクリートの落下も少なく、収率安全面で有効である。
コンクリート製品としては、型枠成型による矢板、中空円筒形製品のコンクリートパルプ、パイル、ポール等にも用いることができる。道路用コンクリートとしては、歩道用コンクリート平板、鉄筋コンクリートU形、コンクリートガードレール等に用いることができる。その他、左官用モルタル、建築関係部材として外装材料や屋根材、内装材として壁材、レリーフ、床材、天井材等に利用することもできる。
The cement-based molded body thus obtained is particularly suitable as a concrete molded body for civil engineering and construction work. For example, in the concrete road pavement field, it is possible to reduce the amount of reinforcing bars to improve the bending strength by fiber reinforcement, and to reduce the thickness of the concrete plate, which is effective for shortening the construction period and saving raw materials. In addition, when used in the tunnel inner wall spraying method, the fibers are flexible and elastic, hydrophilic and light, so there is little flaking of aggregates and fibers during spraying, less falling of concrete, and yield safety. It is effective in terms.
As a concrete product, it can also be used for sheet piles formed by molding, concrete pulp, piles, poles, etc. of hollow cylindrical products. As road concrete, it can be used for sidewalk concrete flat plates, reinforced concrete U-shaped, concrete guardrails and the like. In addition, it can also be used for plastering mortars, exterior materials and roofing materials as building-related members, and wall materials, reliefs, flooring materials, ceiling materials as interior materials.
次に、本発明を実施例により、さらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
実施例1
孔数が16、孔形がX型のノズルを備えた1軸溶融押出し機を使用し、MFR=2g/10分のアイソタクチックポリプロピレン樹脂(WF464N;住友化学製)を押出し温度255℃で溶融押出しし、押出された樹脂を冷却水槽中に投入して固化させながら5本の平行延伸ローラーで、定速で引き取った。引き取った繊維ストランドをそのまま連続して、95℃の温水加熱延伸槽に投入し、第二延伸ローラーで6.9倍延伸した。さらにこれに連続して120℃の蒸気加熱延伸槽に投入し、第三延伸ローラーで1.74倍延伸し、合わせて12倍の2段延伸を行った。
次いでこの延伸ストランドを上下1対のヤスリ目エンボスローラー(φ101mm、巾160mm、円周方向の凸部間隔が2.93mm、巾方向の凸部間隔が1.33mm、凸部の高さが0.9mm、凸部の先端形状が、短対角線長0.35mm×長対角線長0.625mmの菱形状で、上下1対ローラーの凸部先端クリアランスを0.2mmに調整し、表面速度をストランドの速度と同速度で順回転させ、X断面の上下2つの溝底に凹形状を付形した。
この後、水で希釈したアルキルフォスフェートアミン塩系界面活性剤(竹本油脂製)をスプレーにて約0.05質量%相当になるようにストランドに付着させ、ファン型カッターで40mm定長にカットしてポリプロピレン製短繊維を得た。
得られたポリプロピレンによる補強用短繊維1の形状は、図1(C)にその繊維断面を模式的に示すように、4つの突起部2の間にある4つの溝部3のうち、上面及び下面の2列の溝部に菱形状凹部4が付形されており、図1(A)に示すようにその間隔xは2.9mm、エンボスされた凹部の最大深さは、平均150μmであった。
なお、図2の平面写真に示すように、フィン状の突起部2も凹部4に対応する繊維の幅方向において膨れている傾向が認められた。
表1に示すように、物性は、繊度3,305dtex、引張強度509N/mm2、繊維長40mmであった。
Example 1
Using a single-screw melt extruder equipped with a nozzle with 16 holes and an X-shaped hole, melt an isotactic polypropylene resin (WF464N; manufactured by Sumitomo Chemical Co., Ltd.) with an MFR = 2 g / 10 min at an extrusion temperature of 255 ° C. The extruded resin was put into a cooling water tank and solidified by being put in a cooling water tank, and was taken up at a constant speed by five parallel stretching rollers. The taken-up fiber strand was continuously put into a warm water heated drawing tank at 95 ° C. and drawn 6.9 times with a second drawing roller. Further, this was continuously put into a steam heating stretching tank at 120 ° C., stretched by 1.74 times with a third stretching roller, and a two-stage stretching of 12 times was performed.
Next, this stretched strand was made into a pair of upper and lower file embossing rollers (φ 101 mm, width 160 mm, circumferential spacing of protrusions 2.93 mm, spacing in the width direction of projections 1.33 mm, and the height of the projections of 0.2 mm. 9mm, the tip shape of the convex part is a rhombus shape with a short diagonal length of 0.35 mm x long diagonal line length of 0.625 mm, the convex part tip clearance of the upper and lower pair of rollers is adjusted to 0.2 mm, and the surface speed is the speed of the strand And a concave shape was added to the upper and lower groove bottoms of the X section.
After that, alkyl phosphate amine salt surfactant diluted with water (manufactured by Takemoto Yushi) is attached to the strand so that it is equivalent to about 0.05% by mass by spraying, and cut to a constant length of 40 mm with a fan type cutter. Thus, a short fiber made of polypropylene was obtained.
The shape of the reinforcing short fiber 1 made of polypropylene is such that the upper and lower surfaces of the four
In addition, as shown in the plane photograph of FIG. 2, the tendency for the fin-like protrusion 2 to swell in the width direction of the fiber corresponding to the
As shown in Table 1, the physical properties were a fineness of 3,305 dtex, a tensile strength of 509 N / mm 2 , and a fiber length of 40 mm.
比較例
延伸ストランドのエンボスローラーを上下1対のストランドの走行方向に直交する平行柄凸凹ギヤローラー(φ100mm、巾160mm、ギヤ先端半径0.5mm、ギヤ先端間隔2.90mm、ギヤ先端の高さが0.9mm)を用い、上下1対のギヤ先端クリアランスを0.5mmに調整し、繊維X断面の突起先端部のみに凸凹付形した以外は実施例1と同様にして、ポリプロピレン短繊維を得た。
このポリプロピレン製短繊維の形状はX断面で、エンボス凹部は4つの断面突起先端部のみに付形され、繊維方向の凹部間隔は2.9mmであり、また物性は、繊度3,310dtex、引張強度487N/mm2、繊維長40mmであった。
Comparative example The embossed roller of the stretched strand is a parallel pattern uneven gear roller (φ100 mm, width 160 mm, gear tip radius 0.5 mm, gear tip interval 2.90 mm, the height of the gear tip is perpendicular to the traveling direction of a pair of upper and lower strands. 0.9 mm), a pair of upper and lower gear tip clearances was adjusted to 0.5 mm, and a polypropylene short fiber was obtained in the same manner as in Example 1, except that only the projection tip portion of the fiber X cross section was unevenly shaped. It was.
This polypropylene short fiber has an X cross section, the embossed recess is formed only at the tip of the four cross-sectional protrusions, the recess spacing in the fiber direction is 2.9 mm, and the physical properties are fineness of 3,310 dtex, tensile strength It was 487 N / mm 2 and the fiber length was 40 mm.
〔繊維物性試験方法〕
・繊維の繊度の測定、引張試験はJIS−L−1013に従い実施した。
・溝底エンボス・凹部の深さ測定:表面粗さ測定器(東京精密(株)製:Surfcom E-MD-S138A型)を使用し、測定範囲6mm〜8mmにおける繊維長手方向の凹部深さを測定し、さらにカット繊維50本を同様に測定し、その平均値を凹部深さとした。
・エンボス凹部の間隔:カット繊維長あたりの凹部数を測定し、繊維長/凹部数を算出すした。これをカット繊維100本で同様に測定し、その平均値をエンボス間隔とした。
・繊維長:カット繊維100本の繊維長を測定し、その平均値を繊維長とした。
[Fiber physical property test method]
-The measurement of the fineness of the fiber and the tensile test were carried out according to JIS-L-1013.
・ Groove bottom embossing ・ Depression depth measurement: Using a surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd .: Surfcom E-MD-S138A type), the concave depth in the longitudinal direction of the fiber in the measurement range of 6 mm to 8 mm Further, 50 cut fibers were measured in the same manner, and the average value was defined as the recess depth.
-Embossed recess spacing: The number of recesses per cut fiber length was measured, and the fiber length / number of recesses was calculated. This was similarly measured with 100 cut fibers, and the average value was taken as the emboss interval.
Fiber length: The fiber length of 100 cut fibers was measured, and the average value was defined as the fiber length.
セメントとの定着性試験
次に実施例1及び比較例1の補強用短繊維を用いて、セメントペーストとの定着性を表す尺度として埋設繊維の引抜き試験(引抜き抵抗値測定)、及び繊維配合コンクリートの圧縮試験、曲げ試験(曲げ強度、曲げ靭性係数測定)を行った。
〔繊維の引抜き抵抗値〕
管内径53mm、深さ20mmのポリ塩化ビニルパイプに充填したセメントモルタルに繊維1本を約15mm埋設し、28日常温で養生後、テンシロンにて2mm/分の速度で繊維をセメントから引抜き、その際の応力(引抜き抵抗値)を測定した。セメントは普通ポルトラントセメント(太平洋セメント社製)を使用し、砂は陸砂を使用した。水/セメント比は57%とした。
具体的な配合比は下記の通りである。
セメント:359g、砂:831g、水:205(全量1395g)を2Lステンレスバットに採取し、電動回転羽根を挿入し、1分間練り混ぜたモルタルを使用した。
繊維間の引抜き抵抗値を比較する上で、各繊維測定サンプルの実測埋設長を測定し、これを15mmあたりの埋設長さに比例換算し、引抜き抵抗値とした。(表1参照)
Cement fixability test Next, the reinforcing fiber of Example 1 and Comparative Example 1 was used as a measure to indicate the fixability with cement paste. Were subjected to a compression test and a bending test (measurement of bending strength and bending toughness coefficient).
[Fiber pulling resistance value]
About 15 mm of fiber was embedded in cement mortar filled in a polyvinyl chloride pipe with a pipe inner diameter of 53 mm and a depth of 20 mm. After curing at room temperature for 28 days, the fiber was pulled out from cement at a rate of 2 mm / min with Tensilon. The stress at the time (drawing resistance value) was measured. The cement used was ordinary portland cement (manufactured by Taiheiyo Cement Co., Ltd.), and the sand was land sand. The water / cement ratio was 57%.
The specific mixing ratio is as follows.
Cement: 359 g, sand: 831 g, water: 205 (total amount: 1395 g) was collected in a 2 L stainless steel vat, and electric mortar was inserted into the mortar.
In comparing the drawing resistance value between the fibers, the measured embedment length of each fiber measurement sample was measured, and this was proportionally converted to the embedment length per 15 mm to obtain the drawing resistance value. (See Table 1)
〔繊維配合コンクルートの圧縮、曲げ物性試験〕
(コンクリート試験供試体の製造)
50L強制2軸型ミキサーを使用し、全量40Lになるように、セメント350kg/m3、細骨材870kg/m3、粗骨材901kg/m3、水175kg/m3、高性能AE減水剤2.8kg/m3の配合比率で予め90秒間練り混ぜた。次いで実施例1及び比較例1の繊維をそれぞれ2.73kg/m3の配合比率で添加し、45秒間さらに練り混ぜた。
得られたフレッシュコンクリートを使用し、日本道路公団トンネル施工管理要領(繊維補強覆工コンクリート編;平成15年9月)に従い、曲げ試験用の供試体を作製した。
なお供試体は常温型養生を24時間行った後、離型し、6日間水中養生した。その後材齢28日まで大気中にて常温養生したものを供試体とした。
使用した材料:
・セメント:普通ポルトラントセメント(比重:3.16、太平洋セメント製)
・細骨材:陸砂、表乾比重2.60(最大粒度5mm)
・粗骨材:砕石、表乾比重2.67(最大粒度20mm)
・水:市水
・高性能AE減水剤:SP8SV(エヌエムビー社製)
[Compression and bending property test of fiber blended concrete]
(Manufacture of concrete test specimens)
Using the 50L forced biaxial mixer, so that the total volume of 40L, cement 350 kg / m 3, fine aggregates 870 kg / m 3, coarse aggregate 901kg / m 3, water 175 kg / m 3, high AE water reducing agent The mixture was kneaded in advance for 90 seconds at a blending ratio of 2.8 kg / m 3 . Next, the fibers of Example 1 and Comparative Example 1 were added at a blending ratio of 2.73 kg / m 3 , respectively, and further kneaded for 45 seconds.
Using the obtained fresh concrete, a specimen for a bending test was prepared in accordance with the Japan Highway Public Corporation Tunnel Construction Management Guidelines (Fiber-Reinforced Lining Concrete Edition, September 2003).
The specimens were subjected to room temperature curing for 24 hours, then released from the mold, and then cured in water for 6 days. The specimens were then cured at room temperature in the atmosphere until the age of 28 days.
Materials used:
・ Cement: Normal portland cement (specific gravity: 3.16, made by Taiheiyo Cement)
-Fine aggregate: land sand, surface dry specific gravity 2.60 (maximum particle size 5mm)
-Coarse aggregate: crushed stone, surface dry specific gravity 2.67 (maximum particle size 20mm)
・ Water: City water ・ High-performance AE water reducing agent: SP8SV (manufactured by NMB)
(コンクリート物性試験方法)
・曲げ強度、曲げ靭性試験は維補強覆工コンクリートの曲げ靭性試験方法(JHS 730―2003)に従った。
・圧縮強度:JHS−G551−1999に従った。
・スランプ試験:JIS A 1101に従った。
・空気量試験:JIS A 1128に従った。
(Concrete property test method)
The bending strength and bending toughness tests were in accordance with the bending toughness test method (JHS 730-2003) of fiber reinforced lining concrete.
-Compressive strength: According to JHS-G551-1999.
-Slump test: According to JIS A1101.
-Air quantity test: JIS A 1128 was followed.
〔繊維の開繊性試験〕
アジテータ車への繊維投入機の投入ホッパーに設置した繊維開繊用格子(外寸法:490mm×700mm;格子角目間隔:75mm一定、格子素材:φ2.5SUS棒)を使用し、人が手動で、繊維3kgを通過させる時間を各5回測定した。
・実施例の繊維:44、36、43、40、35秒(平均:40秒)
・比較例の繊維:56、47、50、49、51秒(平均:51秒)
この結果、実施例の繊維の方が、短時間で繊維塊を容易に開繊(1本1本をバラバラに)することができた。これは実施工時における繊維投入のための時間によるフッレシュコンクリート硬化を最小限に抑制することができ、比較例の繊維より優れていた。以降のコンクリート打設における作業性(ワーカビリティー)の向上に寄与する。
[Fiber opening test]
Using a fiber opening grid (outside dimensions: 490 mm x 700 mm; grid square spacing: 75 mm constant, grid material: φ2.5 SUS rod) installed in the input hopper of the fiber input machine to the agitator car, manually The time for passing 3 kg of fiber was measured 5 times each.
-Example fiber: 44, 36, 43, 40, 35 seconds (average: 40 seconds)
Comparative fibers: 56, 47, 50, 49, 51 seconds (average: 51 seconds)
As a result, the fibers of the examples were able to easily open the fiber mass (each one piece apart) in a short time. This was able to suppress the fullness of the flesh concrete due to the time for fiber input at the time of implementation, and was superior to the fibers of the comparative example. Contributes to the improvement of workability (workability) in subsequent concrete placement.
〔繊維のコンクリート分散性試験〕
フレッシュコンクリート4.5m3を積載したアジテータ車に実施例の繊維12.7kg(0.3vol%相当)を、上記φ75mm開繊格子を備えた投入機を使用して約3分で投入。その後2分間混練した。このフレッシュコンクリートの繊維分散性をJSCE−F554−1999(鋼繊維補強コンクリートの鋼繊維混入率試験方法)に準じ、アジテータ車からのコンクリート出始め、中間、最後についてそれぞれ7Lに計測したフレッシュコンクリートを採取し、水洗いすることによって分離してくる(水に浮く)本発明のPP繊維を分別採取し、乾燥質量を測定した。
・出始め:19.0g、中間:19.3g、最終:19.0g
・理論値(0.3vol%):19.1g
この結果、繊維投入からコンクリート混練までの開繊性、分散性は良好であることが確認できた。
以上の測定結果をまとめて表1に示す。
[Fiber concrete dispersibility test]
12.7 kg (equivalent to 0.3 vol%) of the fiber of the example was put into an agitator vehicle loaded with 4.5 m 3 of fresh concrete in about 3 minutes using the above-mentioned feeder equipped with a φ75 mm opening grid. Thereafter, the mixture was kneaded for 2 minutes. In accordance with JSCE-F554-1999 (Testing method for mixing steel fibers in steel fiber reinforced concrete), the fresh concrete was measured to 7L for concrete from the beginning, middle and end of the concrete. Then, the PP fibers of the present invention separated by floating in water (floating in water) were collected separately, and the dry mass was measured.
・ Start: 19.0 g, middle: 19.3 g, final: 19.0 g
・ Theoretical value (0.3 vol%): 19.1 g
As a result, it was confirmed that the spreadability and dispersibility from fiber feeding to concrete kneading were good.
The above measurement results are summarized in Table 1.
表1から明らかな通り、本発明の実施例1の補強用短繊維は比較例1の繊維より、引張強度が高く、引抜き抵抗値が約1.8倍も大きく、セメントペーストとの定着性に極めて優れていた。
また、本発明の実施例1の補強短繊維は、アジテータ車への繊維投入作業性及びコンクリート中での分散性にも比較例の補強短繊維よりも優れていた。
そして、実施例の繊維を使用したコンクリート成形物は、比較例の繊維を使用したコンクリートより曲げ靭性係数が大きく、補強効果において優れていた。
As is clear from Table 1, the reinforcing short fiber of Example 1 of the present invention has a higher tensile strength and a pulling resistance value that is about 1.8 times larger than that of the fiber of Comparative Example 1, and has a fixing property with cement paste. It was very good.
In addition, the reinforcing short fibers of Example 1 of the present invention were superior to the reinforcing short fibers of the comparative example in terms of workability for feeding fibers into an agitator vehicle and dispersibility in concrete.
And the concrete molding using the fiber of an Example had a larger bending toughness coefficient than the concrete using the fiber of a comparative example, and was excellent in the reinforcement effect.
本発明のセメント系成形体用補強短繊維は、繊維同士が接触する繊維表面に、繊維を開繊させる上で、障害となる凸凹がないため、フッレシュコンクリートを代表とする各種セメント系構造体への投入時に、容易に開繊でき、かつ突起を有する略多角形の特有の断面形状の溝底部に特定の深さと特定の間隔で凹部を付形しているので、凹凸付形による繊維の引張り物性の低下が小さく、かつ高いセメントとの引き抜き抵抗性を有している。その結果、セメント硬化後のコンクリート成形物において極めて優れた補強効果を発現できる。
また、合成樹脂としてポリオレフィン系樹脂、とりわけポリプロピレン樹脂とすれば、ポリプロピレン短繊維の比重が軽いために運搬、コンクリートに配合する場合の投入作業、及び施工性に優れた補強用短繊維を提供できる。
以上、本発明のセメント系成形体用補強短繊維は、コンクリートに配合する場合の投入作業、施工性に優れ、高い繊維補強効果を有しているので、セメント成形体用補強短繊維として有効に利用できる。
The reinforcing short fiber for cement-based molded article of the present invention has no irregularities that obstruct the fiber surface on the fiber surface where the fibers are in contact with each other. Since the recesses are shaped at a specific depth and at specific intervals at the bottom of the groove having a specific cross-sectional shape of a substantially polygonal shape having protrusions that can be easily opened at the time of insertion into the fiber, The decrease in tensile properties is small, and it has a high resistance to drawing with cement. As a result, an extremely excellent reinforcing effect can be expressed in the concrete molded product after cement hardening.
Further, if the polyolefin resin, particularly polypropylene resin, is used as the synthetic resin, the short fiber for reinforcement excellent in workability and workability when it is transported and mixed with concrete because the specific gravity of the polypropylene short fiber is light can be provided.
As described above, the reinforcing short fiber for cement-based molded product of the present invention is excellent in the charging work and workability when blended with concrete and has a high fiber reinforcing effect, so it is effective as a reinforcing short fiber for cement molded product. Available.
1 補強用短繊維
2 突起部
S 辺部
3 溝部
4、4' 凹部
DESCRIPTION OF SYMBOLS 1 Short fiber for reinforcement 2 Protrusion part
Claims (1)
該断面形状がX字状の少なくとも一つの相対向する溝のそれぞれに、深さ100〜200μmの凹部を繊維の長手方向に沿って2〜4mmの間隔で連続して付形してなることを特徴とするセメント系成形体用補強短繊維。 It is a reinforcing short fiber for cement-based molded bodies having a polypropylene resin as a main component , made of drawn fibers having an X-shaped cross section , a fineness of 2,000 to 8,000 dtex, and a fiber length of 20 to 60 mm,
The respective grooves the cross-sectional shape is at least one opposing the X-shaped, a recess depth 100~200μm that formed by shape with continuously at intervals of 2~4mm along the longitudinal direction of the fiber A reinforced short fiber for cement-based molded products.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006261192A JP5138915B2 (en) | 2006-09-26 | 2006-09-26 | Reinforcing short fibers for cement-based moldings |
PCT/JP2007/068665 WO2008038658A1 (en) | 2006-09-26 | 2007-09-26 | Reinforcing short fiber for cement molding |
CNA2007800350111A CN101516800A (en) | 2006-09-26 | 2007-09-26 | Reinforcing short fiber for cement molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006261192A JP5138915B2 (en) | 2006-09-26 | 2006-09-26 | Reinforcing short fibers for cement-based moldings |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008081338A JP2008081338A (en) | 2008-04-10 |
JP5138915B2 true JP5138915B2 (en) | 2013-02-06 |
Family
ID=39230094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006261192A Expired - Fee Related JP5138915B2 (en) | 2006-09-26 | 2006-09-26 | Reinforcing short fibers for cement-based moldings |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5138915B2 (en) |
CN (1) | CN101516800A (en) |
WO (1) | WO2008038658A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4956472B2 (en) * | 2008-03-25 | 2012-06-20 | 宇部日東化成株式会社 | Reinforcing short fibers for cement-based moldings |
JP2010053014A (en) * | 2008-07-31 | 2010-03-11 | Ube Nitto Kasei Co Ltd | Fiber-reinforced concrete composite material |
US8852337B2 (en) | 2011-02-18 | 2014-10-07 | Taisei Corporation | Fiber reinforced cement based mixed material |
JP5620014B2 (en) * | 2011-11-16 | 2014-11-05 | 大成建設株式会社 | Fiber-reinforced cement-based mixed material |
KR101335659B1 (en) | 2012-02-08 | 2013-12-03 | 건국대학교 산학협력단 | Method for manufacturing structural reinforcing polymer fiber |
KR101803551B1 (en) * | 2015-09-23 | 2017-11-30 | 주식회사 씨피엠테크 | Geo-grid for public works |
CN109653447B (en) * | 2017-10-11 | 2024-01-09 | 北京仁创科技集团有限公司 | Sand-plastic tile with water guide structure |
PL3517515T3 (en) | 2017-12-15 | 2022-03-28 | Omnicor - Manufacturas Internacionais de Cordoarias, Lda | Fiber bundle for reinforcement of a cementitious matrix, its uses and method of obtention |
CN108191315B (en) * | 2018-01-25 | 2020-09-08 | 江苏省建筑工程集团有限公司 | Concrete prepared from beach sand |
EP3873870A1 (en) * | 2018-10-31 | 2021-09-08 | Adfil N.V. | Fiber for concrete reinforcement |
WO2020117749A1 (en) | 2018-12-03 | 2020-06-11 | Forta Corporation | Radiation-treated fibers, methods of treating and applications for use |
CN110590185A (en) * | 2019-10-28 | 2019-12-20 | 河南交通职业技术学院 | Basalt fiber stick for concrete and preparation device thereof |
TR202004801A1 (en) * | 2020-03-27 | 2021-10-21 | Kordsa Teknik Tekstil As | CONCRETE REINFORCEMENT ELEMENT |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2633763B2 (en) * | 1991-10-01 | 1997-07-23 | 大和紡績株式会社 | Polypropylene fiber for cement reinforcement |
JPH08218220A (en) * | 1995-02-15 | 1996-08-27 | Kuraray Co Ltd | Thick fiber suitable for reinforcing |
JP3351724B2 (en) * | 1997-10-07 | 2002-12-03 | 萩原工業株式会社 | Polypropylene fiber for cement reinforcement and construction method of shotcrete using the same |
JP3755267B2 (en) * | 1997-11-18 | 2006-03-15 | チッソ株式会社 | Concrete reinforcing fiber and concrete molded body using the same |
JP2004018352A (en) * | 2002-06-20 | 2004-01-22 | Toyobo Co Ltd | Concrete reinforcing material |
JP2004256317A (en) * | 2003-02-24 | 2004-09-16 | Murakami Kogyo Kk | Reinforced concrete |
JP4358645B2 (en) * | 2004-02-09 | 2009-11-04 | 宇部日東化成株式会社 | Polyolefin short fiber for cement reinforcement and cement-based molded body using the same |
JP4221411B2 (en) * | 2006-01-20 | 2009-02-12 | 株式会社サンゴ | Short fiber for reinforcing concrete and its manufacturing method |
-
2006
- 2006-09-26 JP JP2006261192A patent/JP5138915B2/en not_active Expired - Fee Related
-
2007
- 2007-09-26 CN CNA2007800350111A patent/CN101516800A/en active Pending
- 2007-09-26 WO PCT/JP2007/068665 patent/WO2008038658A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN101516800A (en) | 2009-08-26 |
WO2008038658A1 (en) | 2008-04-03 |
JP2008081338A (en) | 2008-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5138915B2 (en) | Reinforcing short fibers for cement-based moldings | |
JP4956472B2 (en) | Reinforcing short fibers for cement-based moldings | |
JP3351724B2 (en) | Polypropylene fiber for cement reinforcement and construction method of shotcrete using the same | |
RU2396379C2 (en) | Synthetic fibre for three-dimensional reinforcement of cement product and method of preparing said fibre (versions), cement product containing dispersed synthetic fibre and method of preparing said cement product | |
US20060078729A1 (en) | Polypropylene fiber for cement reinforcement, molded cement made with the fiber, method of constructing concrete structure, and method of spray concreting | |
US20090226693A1 (en) | Concrete Fiber Material, Castable Constructs Including Same, And Methods | |
WO2017177997A1 (en) | Aerated concrete moulded body comprising an overlayer and/or underlayer | |
JP4358645B2 (en) | Polyolefin short fiber for cement reinforcement and cement-based molded body using the same | |
JP2011032129A (en) | Moderate flowable concrete | |
WO2006038225A2 (en) | A reinforcing fiber for concrete, a flexible concrete and a method to prepare the concrete | |
JP2010053014A (en) | Fiber-reinforced concrete composite material | |
JP2017119604A (en) | Fiber for suppressing crack of cured body based on hydraulic composition and cured body containing the same | |
JP2006151792A (en) | Polypropylene fiber for reinforcing cement and cement formed body obtained by using the same | |
JP3569460B2 (en) | Cement reinforcing fiber | |
JP3517330B2 (en) | Polypropylene fiber for cement reinforcement | |
JP2000256048A (en) | Polypropylene flat yarn for reinforcing cement | |
JP2004026620A (en) | High-strength fiber reinforced concrete | |
WO2004031095A1 (en) | Polypropylene fiber for cement reinforcement, fiber-reinforced molded cement made with the polypropylene fiber for cement reinforcement, method of constructing concrete structure with the polypropylene fiber for cement reinforcement, and method of concrete spraying with the polypropylene fiber for cement reinforcement | |
JP2006096565A (en) | Cement-reinforcing fiber | |
JP2004175574A (en) | Polypropylene fiber for reinforcing cement | |
JP2005289707A (en) | Cement-reinforcing fiber | |
JP2004143038A (en) | Polypropylene fiber for reinforcing cement | |
JP2006348584A (en) | Reinforcing construction method for tunnel lining, using sprayed concrete mixed with polyolefin short fiber | |
JPH10251920A (en) | Sheath-core type conjugate fiber molding product using the same | |
JP3902097B2 (en) | Joining member for formwork |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120622 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121106 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5138915 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151122 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |