KR102136841B1 - Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast - Google Patents

Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast Download PDF

Info

Publication number
KR102136841B1
KR102136841B1 KR1020130080506A KR20130080506A KR102136841B1 KR 102136841 B1 KR102136841 B1 KR 102136841B1 KR 1020130080506 A KR1020130080506 A KR 1020130080506A KR 20130080506 A KR20130080506 A KR 20130080506A KR 102136841 B1 KR102136841 B1 KR 102136841B1
Authority
KR
South Korea
Prior art keywords
leu
gly
ala
lys
val
Prior art date
Application number
KR1020130080506A
Other languages
Korean (ko)
Other versions
KR20150006709A (en
Inventor
이기성
강경현
박우찬
김태완
김성홍
이태영
Original Assignee
에스케이이노베이션 주식회사
에스케이에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사, 에스케이에너지 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to KR1020130080506A priority Critical patent/KR102136841B1/en
Priority to PCT/KR2014/003477 priority patent/WO2014185635A1/en
Publication of KR20150006709A publication Critical patent/KR20150006709A/en
Application granted granted Critical
Publication of KR102136841B1 publication Critical patent/KR102136841B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01009D-Xylulose reductase (1.1.1.9), i.e. xylitol dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01307D-Xylose reductase (1.1.1.307)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01017Xylulokinase (2.7.1.17)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

본 발명은 자일로스로부터 에탄올 고생산능을 가지는 재조합 효모에 관한 것으로, 더욱 자세하게는 스파다스포라 파사리다룸(Spathaspora passalidarum) 유래 자일리톨 탈수소효소(XDH : xylitol dehydrogenase)를 코딩하는 유전자와 자일로스 환원효소(XR : xylose reductase)를 코딩하는 유전자 및 피키아 스티피티스(Pichia stipitis) 유래의 자일룰로카이나아제(XK : xylulokinase)를 코딩하는 유전자가 도입되어 있는 자일로스로부터 에탄올 생산능을 가지는 재조합 효모 및 상기 재조합 효모를 이용한 에탄올의 제조방법에 관한 것이다.
본 발명에 따른 재조합 효모는 자일로스가 풍부한 셀룰로오스계 바이오매스로부터 에탄올을 생산하는데 있어서, 부산물인 자일리톨을 많이 축적하지 않고, 고수율로 에탄올을 생산할 수 있어, 셀룰로오스 에탄올(Cellulosic ethanol : CE) 생산에 매우 유용하게 사용될 수 있다.
The present invention relates to a recombinant yeast having high ethanol production capacity from xylose, and more specifically, Spadaspora room passalidarum) derived xylitol dehydrogenase (XDH: a gene encoding xylitol dehydrogenase) and xylose reductase (XR: gene coding for xylose reductase) and Pichia styryl blood tooth (Pichia stipitis) derived from the xylene rule Rocca or kinase (XK : xylulokinase) is a recombinant yeast having the ability to produce ethanol from xylose into which a gene encoding is introduced, and a method for producing ethanol using the recombinant yeast.
Recombinant yeast according to the present invention in producing ethanol from cellulose-based biomass rich in xylose, does not accumulate much by-product xylitol, can produce ethanol in high yield, and thus produces cellulose ethanol (Cellulosic ethanol: CE). It can be very useful.

Description

자일로스로부터 에탄올을 생산할 수 있는 재조합 효모 및 이를 이용한 에탄올 생산방법 {Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast} Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast}

본 발명은 자일로스로부터 에탄올 고생산능을 가지는 재조합 효모에 관한 것으로, 더욱 자세하게는 스파다스포라 파사리다룸(Spathaspora passalidarum) 유래 자일리톨 탈수소효소(XDH : xylitol dehydrogenase)를 코딩하는 유전자와 자일로스 환원효소(XR : xylose reductase)를 코딩하는 유전자 및 피키아 스티피티스(Pichia stipitis) 유래의 자일룰로카이나아제(XK : xylulokinase)를 코딩하는 유전자가 도입되어 있는 자일로스로부터 에탄올 생산능을 가지는 재조합 효모 및 상기 재조합 효모를 이용한 에탄올의 제조방법에 관한 것이다.
The present invention relates to a recombinant yeast having high ethanol production capacity from xylose, and more specifically, a gene encoding xylitol dehydrogenase (XDH: xylitol dehydrogenase) derived from Spathaspora passalidarum and xylose reductase ( XR: xylose reductase (XR) gene and Pichia stipitis- derived xylulokinase (XK: xylulokinase)-encoded gene is introduced from xylose, which is a recombinant yeast having ethanol production capacity and It relates to a method for producing ethanol using the recombinant yeast.

바이오 연료와 신재생 에너지에 대한 관심이 증가함에 따라, 셀룰로오스 에탄올(Cellulosic ethanol : CE)를 차세대 연료로 이용하기 위한 연구가 활발하게 진행되고 있으나, 전처리기술, 당화효소 및 발효균주 발굴 등이 기술적 장애요소로 대두되고 있다. As interest in biofuels and renewable energy increases, research to use cellulose ethanol (CE) as a next-generation fuel has been actively conducted, but technical difficulties such as pre-treatment technology, saccharification enzyme, and fermentation strain discovery It is emerging as an element.

특히, 육탄당 글루코스(Glucose, 포도당)를 탄소원으로 이용하는 전통적인 에탄올 발효와는 달리, 셀룰로오스 에탄올는 오탄당인 자일로스(Xylose, 목당)를 탄소원으로 사용하여 생산되므로, 자일로스를 이용하여 고효율로 에탄올을 생산할 수 있는 균주 개발이 절실하다.In particular, unlike traditional ethanol fermentation, which uses hexasaccharide glucose (Glucose) as a carbon source, cellulose ethanol is produced using xylose (Xylose, wood sugar) as a carbon source, thereby producing ethanol with high efficiency using xylose. Development of a strain that can be desperately needed

대표적인 에탄올 발효 균주는 사카로마이세스 세레비지애(Saccharomyces cerevisiae)로 대표되는 효모(Yeast)인데, 효모는 생산성과 수율이 우수하고 에탄올 등에 강한 내성을 갖고 있어 에탄올 산업과 발효 산업에 전통적으로 많이 사용되어온 균주이다. 하지만 오탄당인 자일로스를 탄소원으로 이용할 수 없다는 한계가 있다. 따라서, 대사공학적인 방법(metabolic engineering)을 이용하여 자일로스의 대사경로에 관여되는 유전자들을 S. cerevisiae에 도입함으로써, 자일로스를 탄소원으로 하여 에탄올을 발효할 수 있는 S. cerevisiae 개발이 이루어져 왔다. The representative ethanol fermentation strain is Yeast, which is represented by Saccharomyces cerevisiae . Yeast is excellent in productivity and yield and has strong resistance to ethanol, so it is traditionally used in the ethanol industry and fermentation industry. It has been a strain. However, there is a limitation that xylose, a pentose sugar, cannot be used as a carbon source. Therefore, by introducing genes involved in the metabolic pathway of xylose into S. cerevisiae using metabolic engineering, development of S. cerevisiae capable of fermenting ethanol using xylose as a carbon source has been made.

예를 들어, 피키아 스티피티스(Pichia stipitis) 유래의 자일로스 환원효소(xylose reductase)를 코딩하는 유전자인 xyl1, 자일리톨 탈수소효소(xylitol dehydrogenase)를 코딩하는 유전자인 xyl2 자일룰로카이나아제(xylulokinase)를 코딩하는 유전자인 xyl3S. cerevisiae에 도입함으로써, S. cerevisiae가 자일로스를 이용하여 에탄올을 생산할 수 있다(US 5,789,210B). 그러나, 상기 균주를 이용할 경우, 생산성이나 수율이 상업화 가능수준 (생산성 1 g/l/h, 수율 0.45 g/g 이상)에 도달하지 못하였다. 이러한 낮은 생산성 및 수율은 NADPH-의존적(dependent)인 자일로스 환원효소(XR)와 NAD-의존적인 자일로스 탈수소효소(XDH)에 의해 발생하는 보조인자 불균형(cofactor imbalance)이 원인으로 알려져 있다. For example, xyl1 , a gene encoding xylose reductase from Pichia stipitis , xyl2 , a gene encoding xylitol dehydrogenase, and By introducing xyl3 , a gene encoding xylulokinase, into S. cerevisiae , S. cerevisiae can produce ethanol using xylose (US 5,789,210B). However, when using the strain, the productivity or yield did not reach the commercialization level (productivity 1 g/l/h, yield 0.45 g/g or more). This low productivity and yield are known to be caused by cofactor imbalance caused by NADPH-dependent xylose reductase (XR) and NAD-dependent xylose dehydrogenase (XDH).

이에, 본 발명자들은 자일로스를 이용한 에탄올 생산능을 가지는 형질전환 효모 균주에서 에탄올 생산성을 높이고자 예의 노력한 결과, 놀랍게도 스파다스포라 파사리다룸(Spathaspora passalidarum) 유래 자일리톨 탈수소효소(XDH : xylitol dehydrogenase)를 코딩하는 유전자인 xyl2, 자일로스 환원효소(xylose reductase)를 코딩하는 유전자인 xyl1 피키아 스티피티스(Pichia stipitis) 유래의 자일룰로카이나아제(XK : xylulokinase)를 코딩하는 유전자 xyl3이 도입된 재조합 효모가, 특히 S. cerevisiae 균주의 경우, 피키아 스티피티스 유래 xyl1, xyl2 xyl3이 도입된 S. cerevisiae를 이용한 기존의 결과 등에 비해 월등한 에탄올 생산능 및 수율을 나타낸다는 것을 확인하고, 본 발명을 완성하게 되었다. Thus, the present inventors, as a result of diligent efforts to increase ethanol productivity in a transformed yeast strain having ethanol production capacity using xylose, surprisingly, xylitol dehydrogenase (XDH: xylitol dehydrogenase) derived from Spathaspora passalidarum The gene encoding xyl2, the xylose reductase encoding gene xyl1, and Recombinant yeast in which the gene xyl3 encoding xylulokinase (XK) derived from Pichia stipitis is introduced, particularly in the case of the S. cerevisiae strain, xyl1 , xyl2 derived from Pichia stipitis And it was confirmed that the xyl3 shows superior ethanol production capacity and yield compared to the existing results using S. cerevisiae introduced, and completed the present invention.

본 발명의 목적은 셀룰로오스 에탄올(CE) 생산을 위하여 셀룰로오스계 바이오매스 유래 자일로스를 효과적으로 에탄올로 전환하여 생산할 수 있는 능력을 가지는 재조합 효모를 제공하는데 있다.An object of the present invention is to provide a recombinant yeast having the ability to effectively convert xylose derived from cellulose-based biomass to ethanol for production in order to produce cellulose ethanol (CE).

본 발명의 다른 목적은 상기 자일로스를 효과적으로 에탄올로 전환하는 능력을 가지는 재조합 효모를 이용한 에탄올의 제조방법을 제공하는데 있다.
Another object of the present invention is to provide a method for producing ethanol using recombinant yeast having the ability to effectively convert the xylose to ethanol.

상기 목적을 달성하기 위하여, 본 발명은 스파다스포라 파사리다룸(Spathaspora passalidarum) 유래의 자일리톨 탈수소효소를 코딩하는 유전자와 자일로스 환원효소를 코딩하는 유전자 및 피키아 스티피티스(Pichia stipitis) 유래의 자일룰로카이나아제를 코딩하는 유전자가 도입되어 있는, 자일로스로부터 에탄올 생성능을 가지는 재조합 효모를 제공한다.In order to achieve the above object, the present invention is a spadaspora passaridarum ( Spathaspora passalidarum ) Derived Xylitol dehydrogenase-encoding gene, xylose reductase-encoding gene, and Pichia stipitis- derived xylulurokinase -encoding gene are introduced, and recombination with ethanol production capacity from xylose Provides yeast.

또한, 본 발명은 (a) 상기 효모를 자일로스 함유 배지에서 배양하여 에탄올을 생산하는 단계; 및 (b) 상기 생성된 에탄올을 수득하는 단계를 포함하는 자일로스로부터 에탄올을 생산하는 방법을 제공한다.
In addition, the present invention (a) culturing the yeast in a xylose-containing medium to produce ethanol; And (b) provides a method for producing ethanol from xylose comprising the step of obtaining the produced ethanol.

본 발명의 효모 균주는 자일로스가 풍부한 셀룰로오스계 바이오매스로부터 에탄올을 생산하는데 있어서, 부산물인 자일리톨을 많이 축적하지 않고, 고수율로 에탄올을 생산할 수 있어, 셀룰로오스 에탄올(CE)을 이용한 바이오 연료 생산에 매우 유용하게 사용될 수 있다.
The yeast strain of the present invention can produce ethanol from xylose-rich cellulose-based biomass, and does not accumulate much by-product xylitol, and can produce ethanol with high yield, thereby producing biofuel using cellulose ethanol (CE). It can be very useful.

도 1은 자일로스 환원효소(XR)를 코딩하는 유전자를 함유하는 재조합 벡터를 나타낸 것이다: (A) PsXR; (B) SpXRCO.
도 2는 자일리톨 탈수소효소(XDH)를 코딩하는 유전자를 함유하는 재조합 벡터를 나타낸 것이다: (A) PsXDH; (B) SpXDH.
도 3은 자일룰로카이네이즈(XK)를 코딩하는 유전자(PsXK)를 함유하는 재조합 벡터를 나타낸 것이다.
도 4는 본 발명의 재조합 효모를 혐기조건에서 배양한 결과, 부산물인 자일리톨 생산 감소 및 에탄올 생산능 향상을 나타낸 것이다.
1 shows a recombinant vector containing a gene encoding xylose reductase (XR): (A) PsXR; (B) SpXR CO .
2 shows a recombinant vector containing a gene encoding xylitol dehydrogenase (XDH): (A) PsXDH; (B) SpXDH.
Figure 3 shows a recombinant vector containing a gene (PsXK) encoding xylulurokinase (XK).
Figure 4 shows the result of culturing the recombinant yeast of the present invention under anaerobic conditions, reducing by-product xylitol production and improving ethanol production capacity.

일 관점에서, 본 발명은 스파다스포라 파사리다룸(Spathaspora passalidarum) 유래의 자일리톨 탈수소효소를 코딩하는 유전자와 자일로스 환원효소를 코딩하는 유전자 및 피키아 스티피티스(Pichia stipitis) 유래의 자일룰로카이나아제를 코딩하는 유전자가 도입되어 있는, 자일로스로부터 에탄올 생성능을 가지는 재조합 효모에 관한 것이다. In one aspect, the present invention is a Spathaspora passalidarum Derived Xylitol dehydrogenase-encoding gene, xylose reductase-encoding gene, and Pichia stipitis- derived xylulurokinase -encoding gene are introduced, and recombination with ethanol production capacity from xylose It is about yeast.

자일로스는 중합체인 자일란의 형태로 폐목재 등에 많이 존재하는 바이오매스 (Biomass)이고, 다양한 생물체에 의해 유용한 생산물로 대사될 수 있는 탄소 5개의 단당류로, 크게 두 단계를 거쳐 펜토스 포스페이트 경로 (Pentose phosphate pathway, PPP)에 진입할 수 있다.Xylose is a biomass that is present in waste wood, etc. in the form of polymer xylan, and is a monosaccharide of 5 carbons that can be metabolized as a useful product by various organisms.It is a two-step pentos phosphate pathway (Pentose phosphate pathway (PPP).

그러나, 종래 에탄올 발효에 주로 사용되는 효모인 사카로마이세스 세레비지애(Saccharomyces cerevisiae)는 자일로스의 대사 측면에서 자일로스 환원효소 (xylose reductase: XR)를 코딩하는 유전자 xyl1 및 자일리톨 탈수소효소 (xylitol dehydrogenase: XDH)를 코딩하는 유전자 xyl2가 존재하지 않아 자일로스를 대사, 즉 탄소원으로 이용할 수 없었다. However, Saccharomyces cerevisiae , a yeast mainly used in conventional ethanol fermentation, is a gene xyl1 and xylitol dehydrogenase (xylitol dehydrogenase) encoding xylose reductase (XR) in terms of xylose metabolism. The xyl2 gene encoding dehydrogenase (XDH) was not present, so xylose could not be used as a metabolism or carbon source.

자일로스는 보조인자로 NADH 또는 NADPH를 사용하는 자일로스 환원효소 (XR)에 의해 자일리톨로 환원되고, 자일리톨은 보조인자로 NAD+를 사용하는 자일리톨 탈수소효소 (XDH)에 의해 자일룰로스로 산화되고, 추가적으로 자일룰로스로 도입된 자일룰로카이나아제(Xylulokinase: XK)에 의해 자일룰로오스-5-포스페이트 (xylulose-5-phosphate)로 전환되어, 오탄당 인산회로를 통해 대사가 진행된다. 자일룰로카이나아제(XK)는 효모 내에 존재하는 효소이기는 하나 이를 과발현 하지 않고 XR과 XDH만 균주 내로 도입하면, 자일로스부터 에탄올을 생산할 수 있지만, 수율과 생산성이 현저히 낮았다. Xylose is reduced to xylitol by xylose reductase (XR) using NADH or NADPH as a cofactor, and xylitol is oxidized to xylulose by xylitol dehydrogenase (XDH) using NAD+ as a cofactor, and additionally xylized It is converted to xylulose-5-phosphate by xylulokinase (XK) introduced into cellulose, and metabolism proceeds through a pentose phosphate cycle. Xylulurokinase (XK) is an enzyme present in yeast, but if XR and XDH are introduced into the strain without overexpression, ethanol can be produced from xylose, but yield and productivity are significantly lower.

본 발명에서 별도로 정의되지 않는 한, xyl1은 자일로스 환원효소를 코딩하는 유전자, xyl2는 자일리톨 탈수소효소를 코딩하는 유전자, xyl3은 자일룰로카이나아제를 코딩하는 유전자를 의미하며, XR은 자일로스 환원효소, XDH는 자일리톨 탈수소효소, XK는 자일룰로카이나아제를 의미한다. Unless otherwise defined in the present invention, xyl1 is a gene encoding xylose reductase, xyl2 is a gene encoding xylitol dehydrogenase, xyl3 is a gene encoding xylulurokinase , and XR is xylose reduction. The enzyme, XDH means xylitol dehydrogenase, and XK means xylulurokinase.

본 발명의 일 양태에서는, 효모에서 Spathaspora passalidarum 유래의 자일리톨 탈수소효소(XDH) SpXDH와 Pichia stipitis 유래의 자일로스 환원효소(XR) PsXR 및 Pichia stipitis 유래의 자일룰로카이나아제(XK) PsXK를 과발현시켜, 부산물인 자일리톨 생산 효율을 감소시켰다. In one aspect of the present invention, by overexpressing the xylitol dehydrogenase of Spathaspora passalidarum derived from yeast (XDH) SpXDH and Pichia stipitis derived from xylose the reductase (XR) PsXR and Pichia stipitis derived xylene rule Rocca or kinase (XK) PsXK , Byproduct xylitol production efficiency was reduced.

본 발명의 다른 양태에서는, 효모에서 Spathaspora passalidarum 유래의 자일리톨 탈수소효소(XDH) SpXDH와 Spathaspora passalidarum 유래의 자일로스 환원효소(XR) SpXR 및 Pichia stipitis 유래의 자일룰로카이나아제(XK) PsXK를 과발현시켜, 부산물인 자일리톨 생산 줄이고 에탄올 생산 효율을 획기적으로 증대시켰다.In another aspect of the present invention, by overexpressing the xylitol dehydrogenase of Spathaspora passalidarum derived from yeast (XDH) SpXDH and Spathaspora passalidarum derived from xylose the reductase (XR) SpXR and Pichia stipitis derived xylene rule Rocca or kinase (XK) PsXK , Reduced by-product xylitol production and dramatically increased ethanol production efficiency.

본 발명에 있어서, 자일리톨 탈수소효소를 코딩하는 유전자(xyl2)는 Pichia stipitis 유래 또는 Spathaspora passalidarum 유래인 것을 특징으로 한다.In the present invention, the gene encoding xylitol dehydrogenase ( xyl2 ) is characterized by being derived from Pichia stipitis or Spathaspora passalidarum .

본 발명에 있어서, 상기 자일리톨 탈수소효소는 서열번호 7 또는 서열번호 5의 아미노산 서열을 가지는 것이 바람직하다. 서열번호 7은 Pichia stipitis 유래의 자일리톨 탈수소효소(PsXDH)의 아미노산 서열을 의미하며, 서열번호 5는 Spathaspora passalidarum 유래의 자일리톨 탈수소효소(SpXDH)의 아미노산 서열을 의미한다.In the present invention, the xylitol dehydrogenase preferably has the amino acid sequence of SEQ ID NO: 7 or SEQ ID NO: 5. SEQ ID NO: 7 refers to the amino acid sequence of xylitol dehydrogenase (PsXDH) derived from Pichia stipitis , and SEQ ID NO: 5 refers to the amino acid sequence of xylitol dehydrogenase (SpXDH) derived from Spathaspora passalidarum .

바람직하게는 Pichia stipitis 유래 자일리톨 탈수소효소를 코딩하는 유전자 PsXyl2 서열번호 8 또는 Spathaspora passalidarum 유래 자일리톨 탈수소효소를 코딩하는 유전자 SpXyl2 서열번호 6의 염기서열을 가지는 것을 특징으로 한다. 서열번호 8 또는 6의 염기서열은 P. stipitis 또는 S. passalidarum 유래 자일리톨 탈수소효소를 코딩하는 천연형(wild type) 유전자의 서열이다. Preferably, it has a nucleotide sequence of gene PsXyl2 SEQ ID NO: 8 encoding Pichia stipitis- derived xylitol dehydrogenase or gene SpXyl2 SEQ ID NO: 6 encoding Spathaspora passalidarum- derived xylitol dehydrogenase. The base sequence of SEQ ID NO: 8 or 6 is a sequence of a wild type gene encoding xylitol dehydrogenase derived from P. stipitis or S. passalidarum .

본 발명에 있어서, 자일로스 환원효소를 코딩하는 유전자(xyl1)는 Pichia stipitis 유래 또는 Spathaspora passalidarum 유래인 것을 특징으로 하며, 자일룰로카이나아제를 코딩하는 유전자(xyl3)도 Pichia stipitis 유래인 것을 특징으로 한다.In the present invention, the gene encoding xylose reductase ( xyl1 ) is characterized by being derived from Pichia stipitis or Spathaspora passalidarum , and the gene encoding xylulurokinase ( xyl3 ) is also derived from Pichia stipitis . do.

본 발명에 있어서, 상기 자일로스 환원효소는 서열번호 1 또는 서열번호 3의 아미노산 서열을 가지는 것이 바람직하다. 서열번호 1은 Spathaspora passalidarum 유래의 자일리톨 탈수소효소(SpXR)의 아미노산 서열을 의미하며, 서열번호 3는 Pichia stipitis 유래의 자일리톨 탈수소효소(PsXR)의 아미노산 서열을 의미한다.In the present invention, the xylose reductase preferably has the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3. SEQ ID NO: 1 refers to the amino acid sequence of xylitol dehydrogenase (SpXR) from Spathaspora passalidarum , and SEQ ID NO: 3 refers to the amino acid sequence of xylitol dehydrogenase (PsXR) from Pichia stipitis .

또한, Pichia stipitis 유래의 자일로스 환원효소를 코딩하는 유전자(Psxyl1)는 바람직하게는 서열번호 4의 염기서열을 가지는 것을 특징으로 하며, Spathaspora passalidarum 유래의 자일로스 환원효소를 코딩하는 유전자(Spxyl1)서열번호 2의 염기서열은 S. cerevisiae에서 최적발현되도록 코돈 최적화(codon optimization)시킨 서열이다. In addition, the gene encoding the xylose reductase derived from Pichia stipitis ( Psxyl1 ) is preferably characterized by having the nucleotide sequence of SEQ ID NO: 4, the gene encoding the xylose reductase derived from Spathaspora passalidarum ( Spxyl1 ) sequence The base sequence of No. 2 is a sequence obtained by codon optimization so as to be optimally expressed in S. cerevisiae .

본 발명에 있어서, 상기 자일룰로카이나아제의 서열번호 9는 Pichia stipitis 유래의 자일룰로카이나아제(PsXK)의 아미노산 서열을 의미한다.In the present invention, SEQ ID NO: 9 of the xylulokinase refers to the amino acid sequence of xylulurokinase (PsXK) derived from Pichia stipitis .

또한, Pichia stipitis 유래의 자일룰로카이나아제를 코딩하는 유전자(Psxyl3)는 바람직하게는 서열번호 10의 염기서열을 가지는 것을 특징으로 하며, P. stipitise 유래 자일룰로카이나아제를 코딩하는 천연형(wild type) 유전자의 서열이다.In addition, the gene ( Psxyl3 ) encoding xylulurokinase derived from Pichia stipitis is preferably characterized by having a nucleotide sequence of SEQ ID NO: 10, and is a natural type encoding xylulurokinase derived from P. stipitise ( wild type) is the sequence of the gene.

본 발명에서의 각 효소 및 이를 코딩하는 염기서열의 서열번호 및 그 정의는 표 1에 기재된 바와 같다.
Sequence numbers and definitions of the enzymes and base sequences encoding them in the present invention are as shown in Table 1.

본 발명에서의 각 효소 및 이를 코딩하는 염기서열의 서열번호 및 정의Sequence number and definition of each enzyme and base sequence encoding it in the present invention 서열
번호
order
number
표시Display 정의Justice
1One SpXRSpXR Spathaspora passalidarum 유래의 자일로스
환원효소의 아미노산 서열
Xylose from Spathaspora passalidarum
Reductase amino acid sequence
22 Spxyl1Spxyl1 COCO SpXR을 코딩하며, 재조합 효모에서의 발현을
위해 코돈 최적화된 염기 서열
It encodes SpXR and expresses it in recombinant yeast.
Sequence sequence optimized for codon
33 PsXRPsXR Pichia stipitis 유래의 자일로스 환원효소의
아미노산 서열
Xylose reductase from Pichia stipitis
Amino acid sequence
44 Psxyl1Psxyl1 PsXR을 코딩하는 유전자의 염기 서열The base sequence of the gene encoding PsXR 55 SpXDHSpXDH Spathaspora passalidarum 유래의
자일리톨 탈수소효소의 아미노산 서열
Spathaspora derived from passalidarum
Xylitol dehydrogenase amino acid sequence
66 Spxyl2Spxyl2 SpXDH를 코딩하는 염기 서열Base sequence encoding SpXDH 77 PsXDHPsXDH Pichia stipitis 유래의 자일리톨 탈수소효소의
아미노산 서열
Xylitol dehydrogenase from Pichia stipitis
Amino acid sequence
88 Psxyl2Psxyl2 PsXDH를 코딩하는 염기 서열Base sequence encoding PsXDH 99 PsXKPsXK Pichia stipitis 유래의 자일룰로카이나아제의
아미노산 서열
Xylulurokinase from Pichia stipitis
Amino acid sequence
1010 Psxyl3Psxyl3 PsXK를 코딩하는 염기 서열Base sequence encoding PsXK

본 발명에서, 용어 “벡터 (vector)”는 적합한 숙주, 특히 재조합 효모 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자, 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 “플라스미드 (plasmid)” 및 “벡터 (vector)”는 때로 상호 교환적으로 사용된다. 그러나, 본 발명은 당업계에 알려진 또는 알려지게 되는 바와 동등한 기능을 갖는 벡터의 다른 형태를 포함한다. In the present invention, the term “vector” refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host, in particular recombinant yeast. The vector can be a plasmid, phage particle, or simply a potential genomic insert. Once transformed into a suitable host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. As plasmids are the most commonly used form of current vectors, “plasmid” and “vector” are sometimes used interchangeably in the context of the present invention. However, the present invention includes other forms of vectors having functions equivalent to those known or known in the art.

발현 조절 서열 (expression control sequence)”이라는 표현은 특정한 숙주 생물에서 작동가능하게 연결된 코딩 서열의 발현에 필수적인 DNA 서열을 의미한다. 그러한 조절 서열은 전사를 실시하기 위한 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및 전사 및 해독의 종결을 조절하는 서열을 포함한다. 예를 들면, 원핵생물에 적합한 조절 서열은 프로모터, 임의로 오퍼레이터 서열 및 리보좀 결합 부위를 포함한다. 진핵세포는 프로모터, 폴리아데닐화 시그날 및 인핸서가 이에 포함된다. 플라스미드에서 유전자의 발현 양에 가장 영향을 미치는 인자는 프로모터이다. The expression “expression control sequence” refers to a DNA sequence essential for the expression of a coding sequence operably linked in a particular host organism. Such regulatory sequences include promoters for conducting transcription, any operator sequences for regulating such transcription, sequences encoding suitable mRNA ribosomal binding sites, and sequences that regulate termination of transcription and translation. For example, regulatory sequences suitable for prokaryotes include promoters, optionally operator sequences, and ribosome binding sites. Eukaryotic cells include promoters, polyadenylation signals and enhancers. In the plasmid, the factor that most influences the amount of gene expression is the promoter.

본 발명의 DNA 서열을 발현시키기 위하여, 매우 다양한 발현 조절 서열중 어느 것이라도 벡터에 사용될 수 있다. 유용한 발현 조절서열의 예에는, 예를 들어, lac 시스템, trp 시스템, TAC 또는 TRC 시스템, T3 및 T7 프로모터들, 파지 람다의 주요 오퍼레이터 및 프로모터 영역, fd 코드 단백질의 조절 영역, 3-포스포글리세레이트 키나제 또는 다른 글리콜분해 효소에 대한 프로모터, 상기 포스파타제의 프로모터들, 예를 들어 Pho5, 효모 알파-교배 시스템의 프로모터 및 원핵세포 또는 진핵 세포 또는 이들의 바이러스의 유전자의 발현을 조절하는 것으로 알려진 구성과 유도의 기타 다른 서열 및 이들의 여러 조합이 포함된다. In order to express the DNA sequence of the present invention, any of a wide variety of expression control sequences can be used in the vector. Examples of useful expression control sequences include, for example, lac system, trp system, TAC or TRC system, T3 and T7 promoters, major operator and promoter regions of phage lambda, regulatory regions of fd coded proteins, 3-phosphoglycerol Promoters for rate kinase or other glycolytic enzymes, promoters of the phosphatase, for example Pho5, a promoter of the yeast alpha-crossing system and a composition known to regulate expression of genes in prokaryotic or eukaryotic cells or their viruses Other sequences of induction and several combinations thereof.

핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 “작동가능하게 연결 (operably linked)”된다. 이것은 적절한 분자 (예를 들면, 전사 활성화 단백질)은 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, “작동가능하게 연결된”은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는것을 의미한다. 그러나, 인핸서 (enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터 (oligonucleotide adaptor) 또는 링커(linker)를 사용한다. A nucleic acid is “operably linked” when placed in a functional relationship with other nucleic acid sequences. This may be a gene and regulatory sequence(s) linked to the appropriate molecule (eg, a transcriptional activation protein) in a manner that allows for gene expression when bound to the regulatory sequence(s). For example, DNA for a pre-sequence or secretory leader is operably linked to DNA for a polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide; A promoter or enhancer is operably linked to a coding sequence when it affects transcription of the sequence; Or the ribosome binding site is operably linked to the coding sequence if it affects the transcription of the sequence; Alternatively, the ribosome binding site is operably linked to the coding sequence when arranged to facilitate translation. Generally, “operably linked” means that the linked DNA sequence is in contact, and in the case of a secretory leader, is in contact and is present in the reading frame. However, the enhancer does not need to be in contact. Linking these sequences is accomplished by ligation (linking) at convenient restriction enzyme sites. If such a site does not exist, a synthetic oligonucleotide adapter or linker according to a conventional method is used.

본원 명세서에 사용된 용어 “발현 벡터”는 통상 이종의 DNA의 단편이 삽입된 재조합 캐리어 (recombinant carrier)로서 일반적으로 이중 가닥의 DNA의 단편을 의미한다. 여기서, 이종 DNA는 숙주 세포에서 천연적으로 발견되지 않는 DNA인 이형 DNA를 의미한다. 발현 벡터는 일단 숙주 세포내에 있으면 숙주 염색체 DNA와 무관하게 복제할 수 있으며 벡터의 수 개의 카피 및 그의 삽입된 (이종) DNA가 생성될 수 있다.As used herein, the term “expression vector” is usually a recombinant carrier into which a heterologous DNA fragment is inserted, and generally refers to a double-stranded DNA fragment. Here, the heterologous DNA refers to heterologous DNA, which is DNA not naturally found in the host cell. Once expressed in a host cell, the expression vector can replicate independent of the host chromosomal DNA and several copies of the vector and its inserted (heterologous) DNA can be produced.

당업계에 주지된 바와 같이, 숙주세포에서 형질전환된 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가, 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점 (replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함되게 된다. 발현 숙주가 진핵세포인 경우에는, 발현 벡터는 진핵 발현 숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다.As is well known in the art, in order to increase the expression level of a gene transformed in a host cell, the gene must be operably linked to transcriptional and translational expression control sequences that function in the selected expression host. Preferably, the expression control sequence and the corresponding gene are included in one expression vector including a bacterial selection marker and a replication origin. When the expression host is a eukaryotic cell, the expression vector must further include an expression marker useful in the eukaryotic expression host.

본원 명세서에 사용된 용어 “형질전환”은 DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다. 본원 명세서에 사용된 용어 “형질감염”은 임의의 코딩 서열이 실제로 발현되든 아니든 발현 벡터가 숙주 세포에 의해 수용되는 것을 의미한다. As used herein, the term “transformation” means that DNA is introduced into a host so that the DNA can be cloned as an extrachromosomal factor or by chromosomal integration. As used herein, the term “transfection” means that the expression vector is received by the host cell, whether or not any coding sequence is actually expressed.

물론 모든 벡터와 발현 조절 서열이 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다. 발현 조절 서열을 선정함에 있어서도, 여러 가지 인자들을 고려하여야만 한다. 예를 들어, 서열의 상대적 강도, 조절가능성 및 본 발명의 DNA 서열과의 상용성 등, 특히 가능성있는 이차 구조와 관련하여 고려하여야 한다. 단세포 숙주는 선정된 벡터, 본 발명의 DNA 서열에 의해 코딩되는 산물의 독성, 분비 특성, 단백질을 정확하게 폴딩시킬 수 있는 능력, 배양 및 발효 요건들, 본 발명 DNA 서열에 의해 코딩되는 산물을 숙주로부터 정제하는 것의 용이성 등의 인자를 고려하여 선정되어야만 한다. 이들 변수의 범위내에서, 당업자는 본 발명의 DNA 서열을 발효 또는 대규모 동물 배양에서 발현시킬 수 있는 각종 벡터/발현 조절 서열/숙주 조합을 선정할 수 있다. Of course, it should be understood that not all vectors and expression control sequences are equally functional in expressing the DNA sequence of the present invention. Likewise, not all hosts function the same for the same expression system. However, those skilled in the art can make appropriate selection among various vectors, expression control sequences and hosts without departing from the scope of the present invention without undue experimental burden. For example, when choosing a vector, the host must be considered, because the vector must be cloned in it. The number of copies of the vector, the ability to control the number of copies, and the expression of other proteins encoded by the vector, such as antibiotic markers, should also be considered. In selecting an expression control sequence, several factors must be considered. For example, relative strength of the sequence, controllability and compatibility with the DNA sequence of the present invention should be considered, particularly with regard to possible secondary structures. A single-cell host can select from the host a selected vector, the toxicity of the product encoded by the DNA sequence of the invention, the secretion properties, the ability to accurately fold the protein, culture and fermentation requirements, and the product encoded by the DNA sequence of the invention It should be selected considering factors such as ease of purification. Within the scope of these parameters, those skilled in the art can select various vector/expression control sequences/host combinations capable of expressing the DNA sequence of the present invention in fermentation or in large-scale animal culture.

다른 관점에서, 본 발명은 (a) 상기 재조합 효모를 자일로스 함유 배지에서 배양하여 에탄올을 생성시키는 단계; 및 (b) 상기 생성된 에탄올을 수득하는 단계.를 포함하는 자일로스로부터 에탄올을 제조하는 방법에 관한 것이다.
In another aspect, the present invention comprises the steps of (a) culturing the recombinant yeast in a xylose-containing medium to produce ethanol; And (b) obtaining the produced ethanol.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.

실시예 1: Example 1: xyl1xyl1 , , xyl2xyl2 또는 or xyl3xyl3 유전자를 함유하는 재조합 벡터의 제작 Construction of recombinant vector containing gene

1.1 자일로스 환원효소(xylose reductase: XR)를 코딩하는 유전자(1.1 Gene encoding xylose reductase (XR) ( xyl1xyl1 )를 함유하는 재조합 벡터의 제작Construction of recombinant vector containing)

자일로스 환원효소를 코딩하는 유전자를 함유하는 벡터를 제작하기 위하여, 사카로마이세스 세레비지에(S. cerevisiae)의 TEF 프로모터와 CYC1 터미네이터를 가지는 사카로마이세스 세레비지에 발현벡터인 pRS426 TEF 벡터(Mumberg D. et al., Gene 156:119, 1995)를 backbone으로 사용하였다.To produce a vector containing a gene encoding a xylose reductase, the pRS426 TEF vector, a Saccharomyces cerevisiae expression vector having a TEF promoter of S. cerevisiae and a CYC1 terminator (Mumberg D. et al., Gene 156:119, 1995) was used as the backbone.

Spxyl1 CO 는 서열번호 2의 염기서열을 가지는 S. passalidarum 유래 Spxyl1 유전자를 (주)바이오니아와 카이스트가 공동 개발한 프로그램을 사용하여 S. cerevisiae에서 최적화시킨 염기서열(서열번호 2)을 수득한 후, 합성하여 사용하였다(주) 바이오니아, 한국). Spxyl1 CO is obtained from S. passalidarum- derived Spxyl1 gene having a nucleotide sequence of SEQ ID NO: 2 using a program jointly developed by Bionia and KAIST to obtain a nucleotide sequence (SEQ ID NO: 2) optimized in S. cerevisiae , It was synthesized and used (Bionia, Korea).

상기 pRS426 TEF 벡터에 도입시킬 자일로스 환원효소(XR) 유전자는 Pichia stipitis 유래의 Psxyl1를 사용하였다. As the xylose reductase (XR) gene to be introduced into the pRS426 TEF vector, Psxyl1 derived from Pichia stipitis was used.

P. stipitisPsxyl1,은 P. stipitis 균주(ATCC 58785)에서 수득된 게놈 DNA 주형으로 하여, 하기 프라이머를 사용하여 57℃의 TaOpt(optimal annealing temperature)하에 PCR을 수행하여 증폭하였다.
Psxyl1, the P. stipitis P. stipitis strain is to a genomic DNA template obtained in (ATCC 58785), and the product was amplified by performing PCR under TaOpt (optimal annealing temperature) of 57 ℃ using primers.

정방향 프라이머 PsXR : Forward primer PsXR:

5'-GATCGGATCCATGCCTTCTATTAAGTTGAA-3' (서열번호 11) 5'-GATCGGATCCATGCCTTCTATTAAGTTGAA-3' (SEQ ID NO: 11)

역방향 프라이머 PsXR : Reverse primer PsXR:

5'-TCGACTCGAGTTAGACGAAGATAGGAATCT-3' (서열번호 12)
5'-TCGACTCGAGTTAGACGAAGATAGGAATCT-3' (SEQ ID NO: 12)

S. passalidarum의 합성된 Spxyl1 CO 유전자, 증폭된 P. stipitisPsxyl1 단편는 각각 BamHI 및 XhoI으로 절단된 pRS426 TEF 벡터에 라이게이션시켜, 각각 pRS426 TEF PsXR(xyl1) 및 pRS426 TEF SpXRCO (xyl1)를 제작하였다(도 1A, B).
Synthesized Spxyl1 CO gene of S. passalidarum and Psxyl1 fragment of amplified P. stipitis were ligated to pRS426 TEF vector digested with Bam HI and Xho I, respectively, to pRS426 TEF PsXR( xyl1 ) and pRS426 TEF SpXR CO ( xyl1 ), respectively. It was produced (Fig. 1A, B).

1.2 자일리톨 탈수소효소(xylitol dehydrogenase : XDH) 유전자(1.2 Xylitol dehydrogenase (XDH) gene ( xyl2xyl2 )를 함유하는 재조합 벡터의 제작Construction of recombinant vector containing)

자일리톨 탈수소효소 유전자를 함유하는 벡터를 제작하기 위하여, S. cerevisiae의 TEF 프로모터와 CYC1 터미네이터를 가지는 S. cerevisiae 발현벡터인 pRS424 TEF 벡터(Mumberg D. et al., Gene 156:119, 1995)를 backbone으로 사용하였다.To construct a vector containing the xylitol dehydrogenase gene, the backbone of the pRS424 TEF vector (Mumberg D. et al., Gene 156:119, 1995), an S. cerevisiae expression vector having a TEF promoter of S. cerevisiae and a CYC1 terminator, It was used as.

S. passalidarumSpxyl2S. passalidarum균주(ATCC MYA-43455)에서 수득된 게놈 DNA 주형으로 하여, 하기 프라이머를 사용하여 58의 TaOpt (optimal annealing temperature)하에 PCR을 수행하여 증폭하였다.
S. passalidarum of Spxyl2 was amplified by performing PCR under the (optimal annealing temperature) of 58 to TaOpt using the genomic DNA as a template obtained in S. passalidarum strain (ATCC MYA-43455), primers.

정방향 프라이머 SpXDH : Forward primer SpXDH:

5-GATCGGATCCATGGTTGCTAACCCATCATTAGTT-3 (서열번호 13)5-GATCGGATCCATGGTTGCTAACCCATCATTAGTT-3 (SEQ ID NO: 13)

역방향 프라이머 SpXDH:Reverse primer SpXDH:

5-TCGACTCGAGTTATAATGGACCATCAATCAAACA-3 (서열번호 14)
5-TCGACTCGAGTTATAATGGACCATCAATCAAACA-3 (SEQ ID NO: 14)

P. stipitis 유래 Psxyl2P. stipitis 균주(ATCC 58785)에서 수득된 게놈 DNA 주형으로 하여, 하기 프라이머를 사용하여 60℃의 TaOpt (optimal annealing temperature)하에 PCR을 수행하여 증폭하였다.
P. stipitis- derived Psxyl2 was amplified by performing PCR under TaOpt (optimal annealing temperature) at 60° C. using the following primers as a genomic DNA template obtained from the P. stipitis strain ( ATCC 58785 ) .

정방향 프라이머 PsXDH :Forward primer PsXDH:

5'-GATCGGATCCATGACTGCTAACCCTTCCTT-3'(서열번호 15)5'-GATCGGATCCATGACTGCTAACCCTTCCTT-3' (SEQ ID NO: 15)

역방향 프라이머 PsXDH :Reverse primer PsXDH:

5'-TCGACTCGAGTTACTCAGGGCCGTCAATGA-3' (서열번호 16)
5'-TCGACTCGAGTTACTCAGGGCCGTCAATGA-3' (SEQ ID NO: 16)

증폭된 S. passalidarumSpxyl2 단편 및 증폭된 P. stipitisPsxyl2 단편을 각각 BamHI 및 XhoI으로 절단된 pRS424 TEF 벡터에 라이게이션시켜, 각각 pRS424 TEF SpXDH(xyl2) 및 pRS424 TEF PsXDH(xyl2)를 제작하였다(도 2 A, B).
Spxyl2 fragments of amplified S. passalidarum and Psxyl2 fragments of amplified P. stipitis were ligated to pRS424 TEF vectors cut with BamHI and XhoI, respectively, to prepare pRS424 TEF SpXDH ( xyl2 ) and pRS424 TEF PsXDH ( xyl2 ), respectively . (Figure 2 A, B).

1.3 자일룰로카이나아제(xylulokinase:XK) 유전자(1.3 Xylulokinase (XK) gene ( xyl3xyl3 )를 함유하는 재조합 벡터의 제작Construction of recombinant vector containing)

자일룰로카이네이즈 유전자를 함유하는 벡터를 제작하기 위하여, S. cerevisiae의 TEF 프로모터와 CYC1 터미네이터를 가지는 S. cerevisiae에 발현벡터인 pRS425 TEF 벡터(Mumberg D. et al., Gene 156:119, 1995)를 backbone으로 사용하였다.In order to produce a vector containing kinase genes in xylene rule, the TEF promoter and the S. cerevisiae CYC1 of S. cerevisiae expression vector pRS425 having the TEF vector terminator (Mumberg D. et al, Gene 156 :. 119, 1995) Was used as the backbone.

P. stipitisPsxyl3P. stipitis 균주(ATCC 58785)에서 수득된 게놈 DNA 주형으로 하여, 하기 프라이머를 사용하여 57℃의 TaOpt (optimal annealing temperature)하에 PCR을 수행하여 증폭하였다.
Psxyl3 of P. stipitis was amplified by performing PCR under the P. stipitis strain (ATCC 58785) genomic DNA as a template by, for TaOpt (optimal annealing temperature) of 57 ℃ using primers obtained from.

정방향 프라이머 PsXK : Forward primer PsXK:

5'-GATCGGATCCATGACCACTACCCCATTTGA-3' (서열번호 17)5'-GATCGGATCCATGACCACTACCCCATTTGA-3' (SEQ ID NO: 17)

역방향 프라이머 PsXK : Reverse primer PsXK:

5'-TCGACTCGAGTTAGTGTTTCAATTCACTTT-3' (서열번호 18)
5'-TCGACTCGAGTTAGTGTTTCAATTCACTTT-3' (SEQ ID NO: 18)

증폭된 P. stipitis의 Psxyl3 단편은 pRS425 TEF 벡터를 BamHI 및 XhoI으로 절단한 후 라이게이션시켜, pRS425 TEF PsXK(xyl3)을 제작하였다(도 3).
The amplified Ps xyl3 fragment of P. stipitis was ligated after cutting the pRS425 TEF vector with Bam HI and Xho I to prepare pRS425 TEF PsXK ( xyl3 ) (FIG. 3).

실시예 2: 재조합 효모를 이용한 자일로스로부터 에탄올 생산 Example 2: Production of ethanol from xylose using recombinant yeast

Saccharomyces cerevisiae CEN-PK2-1D(euroscarf 30000D)에 실시예 1에서 제조된 자일로스 환원효소(XR), 자일리톨 탈수소효소(XDH) 및 자일룰로카이네이즈(XK) 유전자를 각각 함유하는 재조합 벡터를 형질전환시켜 표 2와 같이 자일로스로부터 에탄올을 생산할 수 있는 재조합 효모균주를 제조하고, 도입된 유전자의 종류에 따른 각 균주의 에탄올 및 자일리톨 생산량을 확인하였다.
The Saccharomyces cerevisiae CEN-PK2-1D (euroscarf 30000D) was transformed with a recombinant vector containing xylose reductase (XR), xylitol dehydrogenase (XDH) and xylulurokinase (XK) genes prepared in Example 1, respectively. As shown in Table 2, a recombinant yeast strain capable of producing ethanol from xylose was prepared, and ethanol and xylitol production amounts of each strain were checked according to the type of the introduced gene.

재조합 효모 실험군Recombinant yeast experimental group 실험군Experimental group 도입된 유전자 SETIntroduced gene SET 도입된 재조합 벡터Recombinant vector introduced 대조군Control PsXR/PsXDH/PsXKPsXR/PsXDH/PsXK pRS426 TEF PsXR(xyl1), pRS424 TEF PsXDH(xyl2), pRS425 TEF PsXK(xyl3)pRS426 TEF PsXR( xyl1 ), pRS424 TEF PsXDH( xyl2 ), pRS425 TEF PsXK( xyl3 ) 1One PsXR/SpXDH/PsXKPsXR/SpXDH/PsXK pRS426 TEF PsXR(xyl1),pRS424 TEF SpXDH(xyl2), pRS425 TEF PsXK(xyl3)pRS426 TEF PsXR( xyl1 ), pRS424 TEF SpXDH( xyl2 ), pRS425 TEF PsXK( xyl3 ) 22 SpXRco/PsXDH/PsXKSpXR co /PsXDH/PsXK pRS426 TEF SpXRCO(xyl1),pRS424 TEF PsXDH(xyl2), pRS425 TEF PsXK(xyl3)pRS426 TEF SpXR CO ( xyl1 ), pRS424 TEF PsXDH( xyl2 ), pRS425 TEF PsXK( xyl3 ) 33 SpXRco/SpXDH/PsXKSpXR co /SpXDH/PsXK pRS426 TEF SpXRCO(xyl1),pRS424 TEF SpXDH(xyl2), pRS425 TEF PsXK(xyl3)pRS426 TEF SpXR CO ( xyl1 ), pRS424 TEF SpXDH( xyl2 ), pRS425 TEF PsXK( xyl3 )

배지 종류 및 배양 조건Media type and culture conditions 접종을 위한 배양(Seed culture) (16 시간)Seed culture (16 hours) YNB w/o ura, leu, trp (2% glucose)
5ml, 30℃, 200rpm
YNB w/o ura, leu, trp (2% glucose)
5ml, 30℃, 200rpm
사전 배양 (Pre-culture) (48 시간)Pre-culture (48 hours) YNB w/o ura, leu, trp (2% glucose)
100ml in 500ml flask, 30℃, 200rpm
YNB w/o ura, leu, trp (2% glucose)
100ml in 500ml flask, 30℃, 200rpm
본 배양(Main culture) (120 시간)Main culture (120 hours) YP (4% xylose)
- Microaerobic : 100ml in 500ml flask, 30℃, 80rpm
- Anaerobic : 100ml in 300ml serum bottle, 30℃, 150rpm
YP (4% xylose)
-Microaerobic: 100ml in 500ml flask, 30℃, 80rpm
-Anaerobic: 100ml in 300ml serum bottle, 30℃, 150rpm

YNB : Yeast Nitrogen Base (6.7 g/L)(Sigma, St. Louis, USA)YNB: Yeast Nitrogen Base (6.7 g/L) (Sigma, St. Louis, USA)

YP : Yeast Extract (10 g/L), Peptone (20 g/L)(Difco, Lab., Detroit, MI, USA)
YP: Yeast Extract (10 g/L), Peptone (20 g/L) (Difco, Lab., Detroit, MI, USA)

각 균주별로 도입된 재조합 벡터의 종류 및 상기 재조합 벡터가 도입된 균주의 에탄올 및 자일리톨 생산량을 표 4 및 도 4 에 나타내었다.
Table 4 and FIG. 4 show the types of the recombinant vectors introduced for each strain and the ethanol and xylitol production amounts of the strains into which the recombinant vectors were introduced.

Figure 112013061804030-pat00001
Figure 112013061804030-pat00001

그 결과, 재조합 S. cerevisiae 셋트 1~3이 대조군인 피키아 스티피티스 유래 xyl1, xyl2 xyl3이 도입된 S. cerevisiae 보다 현저히 높은 에탄올 생성능과 낮은 자일리톨 생성능을 나타내었다.
As a result, the recombinant S. cerevisiae sets 1 to 3 are xyl1 and xyl2 derived from Pichia stipitis as a control. And xyl3 introduced S. cerevisiae showed significantly higher ethanol production capacity and lower xylitol production capacity .

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시의 일예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Since the specific parts of the present invention have been described in detail above, for those skilled in the art, this specific technique is only an example of a preferred implementation, and the scope of the present invention is not limited thereby. It will be obvious. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

<110> SK Innovation Co., Ltd. SK Energy Co., LTD. <120> Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast <130> P13-B121 <160> 18 <170> KopatentIn 2.0 <210> 1 <211> 317 <212> PRT <213> Spathaspora passalidarum <400> 1 Met Ser Phe Lys Leu Ser Ser Gly Tyr Glu Met Pro Lys Ile Gly Phe 1 5 10 15 Gly Thr Trp Lys Met Asp Lys Ala Thr Ile Pro Gln Gln Ile Tyr Asp 20 25 30 Ala Ile Lys Gly Gly Ile Arg Ser Phe Asp Gly Ala Glu Asp Tyr Gly 35 40 45 Asn Glu Lys Glu Val Gly Leu Gly Tyr Lys Lys Ala Ile Glu Asp Gly 50 55 60 Leu Val Lys Arg Glu Asp Leu Phe Ile Thr Ser Lys Leu Trp Asn Asn 65 70 75 80 Phe His Asp Pro Lys Asn Val Glu Lys Ala Leu Asp Arg Thr Leu Ala 85 90 95 Asp Leu Gln Leu Asp Tyr Val Asp Leu Phe Leu Ile His Phe Pro Ile 100 105 110 Ala Phe Lys Phe Val Pro Leu Glu Glu Arg Tyr Pro Pro Cys Phe Tyr 115 120 125 Cys Gly Asp Gly Asp Asn Phe His Tyr Glu Asp Val Pro Leu Leu Glu 130 135 140 Thr Trp Lys Ala Leu Glu Ala Leu Val Lys Lys Gly Lys Ile Arg Ser 145 150 155 160 Leu Gly Val Ser Asn Phe Thr Gly Ala Leu Leu Leu Asp Leu Leu Arg 165 170 175 Gly Ser Thr Ile Lys Pro Ala Val Leu Gln Val Glu His His Pro Tyr 180 185 190 Leu Gln Gln Pro Arg Leu Ile Glu Phe Ala Gln Lys Gln Gly Leu Val 195 200 205 Val Thr Ala Tyr Ser Ser Phe Gly Pro Gln Ser Phe Thr Glu Leu Asn 210 215 220 Gln Asn Arg Ala Asn Asn Thr Pro Arg Leu Phe Asp His Glu Val Ile 225 230 235 240 Lys Lys Ile Ala Ala Arg Arg Gly Arg Thr Pro Ala Gln Val Ile Leu 245 250 255 Arg Trp Ala Thr Gln Arg Asn Val Val Ile Ile Pro Lys Ser Asp Thr 260 265 270 Pro Glu Arg Leu Val Glu Asn Leu Ala Val Phe Asp Phe Asp Leu Thr 275 280 285 Glu Glu Asp Phe Lys Glu Ile Ala Ala Leu Asp Ala Asn Leu Arg Phe 290 295 300 Asn Asp Pro Trp Asp Trp Asp His Ile Pro Ile Phe Val 305 310 315 <210> 2 <211> 951 <212> DNA <213> Spathaspora passalidarum <400> 2 atgtctttta aatatcttca ggttatgaaa tgccaaaaat cggttttggt acttggaaga 60 tggacaaggc caccattcct cagcaaattt acgatgctat caagggtggt atcagatcat 120 tcgatggtgc tgaagattac ggtaacgaaa aggaagtggt cttggttaca agaaggctat 180 tgaagacggt cttgttaaga gagaagatct tttcattacc tccaagttat ggaataactt 240 tcatgaccca aagaatgtgg aaaaggcttt agacagaact ttagctgatt tacaattaga 300 tacgtcgact tatttttaat tcatttccca attgctttca agtttgttcc attagaagaa 360 agatacccac cttgcttcta ctgtggtgat ggtgacaact tccattatga agatgtccca 420 ttattggaaa cctggaaggc tttagaagcc ttggttaaga agggtaagat tagatcactt 480 ggtgtttcta acttcactgg tgctttgttg ttggatttac ttagaggttc taccattaag 540 ccagctgttt tgcaagtcga acatcatcca tacttgcaac aaccaagatt aattgaattt 600 gctcaaaagc aaggtcttgt tgtcactgct tactcttcat ttggtcctca atctttcact 660 gaattgaacc aaaacagagc taacaacacc ccaagattgt ttgaccacga agttatcaag 720 aagattgctg ctagaagggg cagaactcca gctcaagtta tcttaagatg ggccacccaa 780 agaaatgtcg tgattattcc aaaatccgat actccagaaa gattggtcga aaacttggct 840 gtctttgact ttgacttaac tgaagaagat ttcaaagaaa ttgccgcctt ggacgctaat 900 ttgagattta atgacccatg ggactgggac catattccaa tctttgttta a 951 <210> 3 <211> 318 <212> PRT <213> Pichia stipitis <400> 3 Met Pro Ser Ile Lys Leu Asn Ser Gly Tyr Asp Met Pro Ala Val Gly 1 5 10 15 Phe Gly Cys Trp Lys Val Asp Val Asp Thr Cys Ser Glu Gln Ile Tyr 20 25 30 Arg Ala Ile Lys Thr Gly Tyr Arg Leu Phe Asp Gly Ala Glu Asp Tyr 35 40 45 Ala Asn Glu Lys Leu Val Gly Ala Gly Val Lys Lys Ala Ile Asp Glu 50 55 60 Gly Ile Val Lys Arg Glu Asp Leu Phe Leu Thr Ser Lys Leu Trp Asn 65 70 75 80 Asn Tyr His His Pro Asp Asn Val Glu Lys Ala Leu Asn Arg Thr Leu 85 90 95 Ser Asp Leu Gln Val Asp Tyr Val Asp Leu Phe Leu Ile His Phe Pro 100 105 110 Val Thr Phe Lys Phe Val Pro Leu Glu Glu Lys Tyr Pro Pro Gly Phe 115 120 125 Tyr Cys Gly Lys Gly Asp Asn Phe Asp Tyr Glu Asp Val Pro Ile Leu 130 135 140 Glu Thr Trp Lys Ala Leu Glu Lys Leu Val Lys Ala Gly Lys Ile Arg 145 150 155 160 Ser Ile Gly Val Ser Asn Phe Pro Gly Ala Leu Leu Leu Asp Leu Leu 165 170 175 Arg Gly Ala Thr Ile Lys Pro Ser Val Leu Gln Val Glu His His Pro 180 185 190 Tyr Leu Gln Gln Pro Arg Leu Ile Glu Phe Ala Gln Ser Arg Gly Ile 195 200 205 Ala Val Thr Ala Tyr Ser Ser Phe Gly Pro Gln Ser Phe Val Glu Leu 210 215 220 Asn Gln Gly Arg Ala Leu Asn Thr Ser Pro Leu Phe Glu Asn Glu Thr 225 230 235 240 Ile Lys Ala Ile Ala Ala Lys His Gly Lys Ser Pro Ala Gln Val Leu 245 250 255 Leu Arg Trp Ser Ser Gln Arg Gly Ile Ala Ile Ile Pro Lys Ser Asn 260 265 270 Thr Val Pro Arg Leu Leu Glu Asn Lys Asp Val Asn Ser Phe Asp Leu 275 280 285 Asp Glu Gln Asp Phe Ala Asp Ile Ala Lys Leu Asp Ile Asn Leu Arg 290 295 300 Phe Asn Asp Pro Trp Asp Trp Asp Lys Ile Pro Ile Phe Val 305 310 315 <210> 4 <211> 957 <212> DNA <213> Pichia stipitis <400> 4 atgccttcta ttaagttgaa ctctggttac gacatgccag ccgtcggttt cggctgttgg 60 aaagtcgacg tcgacacctg ttctgaacag atctaccgtg ctatcaagac cggttacaga 120 ttgttcgacg gtgccgaaga ttacgccaac gaaaagttag ttggtgccgg tgtcaagaag 180 gccattgacg aaggtatcgt caagcgtgaa gacttgttcc ttacctccaa gttgtggaac 240 aactaccacc acccagacaa cgtcgaaaag gccttgaaca gaaccctttc tgacttgcaa 300 gttgactacg ttgacttgtt cttgatccac ttcccagtca ccttcaagtt cgttccatta 360 gaagaaaagt acccaccagg attctactgt ggtaagggtg acaacttcga ctacgaagat 420 gttccaattt tagagacctg gaaggctctt gaaaagttgg tcaaggccgg taagatcaga 480 tctatcggtg tttctaactt cccaggtgct ttgctcttgg acttgttgag aggtgctacc 540 atcaagccat ctgtcttgca agttgaacac cacccatact tacaacaacc aagattgatc 600 gaattcgctc aatcccgtgg tattgctgtc accgcttact cttcgttcgg tcctcaatct 660 ttcgttgaat tgaaccaagg tagagctttg aacacttctc cattgttcga gaacgaaact 720 atcaaggcta tcgctgctaa gcacggtaag tctccagctc aagtcttgtt gagatggtct 780 tcccaaagag gcattgccat cattccaaag tccaacactg tcccaagatt gttggaaaac 840 aaggacgtca acagcttcga cttggacgaa caagatttcg ctgacattgc caagttggac 900 atcaacttga gattcaacga cccatgggac tgggacaaga ttcctatctt cgtctaa 957 <210> 5 <211> 362 <212> PRT <213> Spathaspora passalidarum <400> 5 Met Val Ala Asn Pro Ser Leu Val Leu Lys Lys Ile Asp Glu Ile Val 1 5 10 15 Phe Glu Asn Gln Glu Ala Pro Thr Ile Thr Glu Pro Thr Asp Val Ile 20 25 30 Val Gln Val Lys Lys Thr Gly Ile Cys Gly Ser Asp Ile His Phe Tyr 35 40 45 Gln His Gly Lys Ile Gly Asn Tyr Ile Leu Thr Lys Pro Met Val Leu 50 55 60 Gly His Glu Ser Ala Gly Val Val Thr Glu Val Gly Pro Gly Val Lys 65 70 75 80 Tyr Leu Arg Val Gly Asp Asn Val Ala Ile Glu Pro Gly Val Pro Ser 85 90 95 Arg Phe Ser Asp Ala Tyr Lys Ser Gly Arg Tyr Asn Leu Cys Pro His 100 105 110 Met Arg Phe Ala Ala Thr Pro Ser Thr Lys Asp Glu Pro Asn Pro Pro 115 120 125 Gly Thr Leu Cys Lys Tyr Phe Lys Ser Pro Glu Asp Phe Leu Val Lys 130 135 140 Leu Pro Asp His Val Ser Leu Glu Leu Gly Ala Met Val Glu Pro Leu 145 150 155 160 Ser Val Gly Val His Ala Cys Lys Ile Gly Lys Val Lys Phe Gly Asp 165 170 175 Thr Val Ala Val Phe Gly Ala Gly Pro Val Gly Leu Leu Thr Ala Ala 180 185 190 Thr Ala Lys Thr Phe Gly Ala Ala Lys Val Ile Ile Ile Asp Val Phe 195 200 205 Asp Asn Lys Leu Gln Met Ala Lys Asp Ile Gly Val Val Thr His Thr 210 215 220 Phe Asn Ser Lys Thr Asp Gly Asp Tyr Asn Asp Leu Ile Lys His Phe 225 230 235 240 Gly Gly Gln Pro Asn Val Val Leu Glu Cys Thr Gly Ala Asp Pro Cys 245 250 255 Val Gly Met Gly Val Asn Ile Cys Ala Pro Gly Gly Thr Phe Ile Gln 260 265 270 Val Gly Asn Ala Ala Ala Pro Val Lys Phe Pro Ile Thr Gln Phe Ala 275 280 285 Met Lys Glu Leu Thr Leu Tyr Gly Ser Phe Arg Tyr Gly Phe Gly Asp 290 295 300 Tyr Gln Asp Ala Val Asn Ile Phe Asp Ala Asn Tyr Lys Asn Gly Lys 305 310 315 320 Asp Lys Ala Pro Ile Asp Phe Glu Arg Leu Ile Thr His Arg Phe Lys 325 330 335 Phe Asp Asp Ala Ile Lys Ala Tyr Asp Leu Val Arg Ser Gly Cys Gly 340 345 350 Ala Val Lys Cys Leu Ile Asp Gly Pro Glu 355 360 <210> 6 <211> 1094 <212> DNA <213> Spathaspora passalidarum <400> 6 atggttgcta acccatcatt agttcttaac aagattgacg acatcacctt cgaaacctac 60 gaagccccag aaattgtcga accaaccgac gttattgtcg aagttaaaaa gactggtatc 120 tgtggttctg atatccacta ctatgcccac ggtaagattg gtaactttat cttgaccaag 180 ccaatggttt tgggtcacga atctgccggt gttgtttccc aagttggtaa gggtgtcaag 240 cacttgaagg ttggtgacag agttgccatt gaaccaggta ttccatccag attatccgac 300 gcttacaagt ctggtcacta caacttgtgt cctcacatgt gttttgctgc cactccaaac 360 tccactgaag gtgaaccaaa cccaccaggt accttgtgta aatatttcaa gtccccagaa 420 gatttcttgg ttaagttgcc agaacacgtc tccttggaat tgggtgccat ggttgaacca 480 ttgtctgtcg gtgtccacgc ctccaagtta ggtaaggtta ctttcggtga caatgttgcc 540 gttttcggtg ctggtccagt tggtttattg gctgctgcca ccgccaagac ctttggtgct 600 gccagagtca ttgtcattga tatctttgac aacaagttac aaatggccaa ggacattggt 660 gctgccactc acaccttcaa ctccaagact ggtggtgatt acaaggactt gattgctgcc 720 tttgacggtg ttgaaccaaa tgttattttg gaatgtaccg gtgctgaacc atgtattgcc 780 atgggtgtcc aaattgctgc tccaggtggt agatttgtcc aagttggtaa tgctggtgcc 840 gctgtcaagt tcccaattac tgaatttgct actaaggaat tgaccttatt cggttctttc 900 agatatggtt acggtgacta ccaaactgcc gttaacattt tcgatgccaa ctacaagaat 960 ggtaaggaca aggctccaat tgactttgaa caattgatta ccacagattc aagtttgacg 1020 atgccatcaa ggcttacgac ttggttagag ccggttctgg tgccgtcaag tgtttgattg 1080 atggtccatt ataa 1094 <210> 7 <211> 363 <212> PRT <213> Pichia stipitis <400> 7 Met Thr Ala Asn Pro Ser Leu Val Leu Asn Lys Ile Asp Asp Ile Ser 1 5 10 15 Phe Glu Thr Tyr Asp Ala Pro Glu Ile Ser Glu Pro Thr Asp Val Leu 20 25 30 Val Gln Val Lys Lys Thr Gly Ile Cys Gly Ser Asp Ile His Phe Tyr 35 40 45 Ala His Gly Arg Ile Gly Asn Phe Val Leu Thr Lys Pro Met Val Leu 50 55 60 Gly His Glu Ser Ala Gly Thr Val Val Gln Val Gly Lys Gly Val Thr 65 70 75 80 Ser Leu Lys Val Gly Asp Asn Val Ala Ile Glu Pro Gly Ile Pro Ser 85 90 95 Arg Phe Ser Asp Glu Tyr Lys Ser Gly His Tyr Asn Leu Cys Pro His 100 105 110 Met Ala Phe Ala Ala Thr Pro Asn Ser Lys Glu Gly Glu Pro Asn Pro 115 120 125 Pro Gly Thr Leu Cys Lys Tyr Phe Lys Ser Pro Glu Asp Phe Leu Val 130 135 140 Lys Leu Pro Asp His Val Ser Leu Glu Leu Gly Ala Leu Val Glu Pro 145 150 155 160 Leu Ser Val Gly Val His Ala Ser Lys Leu Gly Ser Val Ala Phe Gly 165 170 175 Asp Tyr Val Ala Val Phe Gly Ala Gly Pro Val Gly Leu Leu Ala Ala 180 185 190 Ala Val Ala Lys Thr Phe Gly Ala Lys Gly Val Ile Val Val Asp Ile 195 200 205 Phe Asp Asn Lys Leu Lys Met Ala Lys Asp Ile Gly Ala Ala Thr His 210 215 220 Thr Phe Asn Ser Lys Thr Gly Gly Ser Glu Glu Leu Ile Lys Ala Phe 225 230 235 240 Gly Gly Asn Val Pro Asn Val Val Leu Glu Cys Thr Gly Ala Glu Pro 245 250 255 Cys Ile Lys Leu Gly Val Asp Ala Ile Ala Pro Gly Gly Arg Phe Val 260 265 270 Gln Val Gly Asn Ala Ala Gly Pro Val Ser Phe Pro Ile Thr Val Phe 275 280 285 Ala Met Lys Glu Leu Thr Leu Phe Gly Ser Phe Arg Tyr Gly Phe Asn 290 295 300 Asp Tyr Lys Thr Ala Val Gly Ile Phe Asp Thr Asn Tyr Gln Asn Gly 305 310 315 320 Arg Glu Asn Ala Pro Ile Asp Phe Glu Gln Leu Ile Thr His Arg Tyr 325 330 335 Lys Phe Lys Asp Ala Ile Glu Ala Tyr Asp Leu Val Arg Ala Gly Lys 340 345 350 Gly Ala Val Lys Cys Leu Ile Asp Gly Pro Glu 355 360 <210> 8 <211> 1095 <212> DNA <213> Pichia stipitis <400> 8 atggtagcta atccctcatt agtacttaat aaaattgatg acattacatt cgaaacttat 60 gaagcaccag aaattgtgga gcctacagat gtaatagtgg aagtaaaaaa aacaggcata 120 tgtggatctg atatacatta ttatgctcat ggaaaaatag gtaactttat cttgaccaag 180 ccaatggttc taggacacga aagtgcaggt gttgtttccc aggttggtaa aggtgtcaaa 240 catttgaagg ttggagacag agtagcaatt gagccaggta ttccttcacg tttatctgat 300 gcttataagt ctggtcatta caacttgtgt cctcatatgt gctttgctgc tactccaaac 360 tccactgagg gtgaaccaaa cccccctggt acattgtgta aatatttcaa aagtccagaa 420 gatttcctcg ttaaattgcc cgaacacgtc tcattggaac taggtgccat ggttgaacca 480 ttgtctgttg gtgtccacgc gtcgaagtta ggtaaggtaa cttttggtga taacgttgcg 540 gttttcggtg ctggtccagt tggtctattg gctgctgcca ctgccaaaac ctttggagct 600 gcaagagtga tcgtgattga tatctttgac aataaattac aaatggccaa ggacattggt 660 gctgctacgc atacatttaa ttccaagacg ggtggagatt ataaagattt aatcgcagca 720 tttgatggtg ttgaacctaa tgttatactt gaatgtaccg gtgcggaacc ttgtatagcc 780 atgggagtgc aaatagcagc tccaggtggg agatttgtcc aagttggtaa tgctggtgcc 840 gctgtcaaat tcccaattac tgaatttgct actaaggagt tgaccttatt tggttctttt 900 agatatggtt acggtgatta ccaaactgcc gtgaatattt ttgatgcaaa ctacaaaaat 960 ggtaaagata aagctccaat tgacttcgaa caattgatta cacatagatt caagtttgac 1020 gatgcaatca aggcttacga cttggttagg gccggtagcg gtgctgtaaa atgccttatt 1080 gatggcccat tataa 1095 <210> 9 <211> 623 <212> PRT <213> Pichia stipitis <400> 9 Met Thr Thr Thr Pro Phe Asp Ala Pro Asp Lys Leu Phe Leu Gly Phe 1 5 10 15 Asp Leu Ser Thr Gln Gln Leu Lys Ile Ile Val Thr Asp Glu Asn Leu 20 25 30 Ala Ala Leu Lys Thr Tyr Asn Val Glu Phe Asp Ser Ile Asn Ser Ser 35 40 45 Val Gln Lys Gly Val Ile Ala Ile Asn Asp Glu Ile Ser Lys Gly Ala 50 55 60 Ile Ile Ser Pro Val Tyr Met Trp Leu Asp Ala Leu Asp His Val Phe 65 70 75 80 Glu Asp Met Lys Lys Asp Gly Phe Pro Phe Asn Lys Val Val Gly Ile 85 90 95 Ser Gly Ser Cys Gln Gln His Gly Ser Val Tyr Trp Ser Arg Thr Ala 100 105 110 Glu Lys Val Leu Ser Glu Leu Asp Ala Glu Ser Ser Leu Ser Ser Gln 115 120 125 Met Arg Ser Ala Phe Thr Phe Lys His Ala Pro Asn Trp Gln Asp His 130 135 140 Ser Thr Gly Lys Glu Leu Glu Glu Phe Glu Arg Val Ile Gly Ala Asp 145 150 155 160 Ala Leu Ala Asp Ile Ser Gly Ser Arg Ala His Tyr Arg Phe Thr Gly 165 170 175 Leu Gln Ile Arg Lys Leu Ser Thr Arg Phe Lys Pro Glu Lys Tyr Asn 180 185 190 Arg Thr Ala Arg Ile Ser Leu Val Ser Ser Phe Val Ala Ser Val Leu 195 200 205 Leu Gly Arg Ile Thr Ser Ile Glu Glu Ala Asp Ala Cys Gly Met Asn 210 215 220 Leu Tyr Asp Ile Glu Lys Arg Glu Phe Asn Glu Glu Leu Leu Ala Ile 225 230 235 240 Ala Ala Gly Val His Pro Glu Leu Asp Gly Val Glu Gln Asp Gly Glu 245 250 255 Ile Tyr Arg Ala Gly Ile Asn Glu Leu Lys Arg Lys Leu Gly Pro Val 260 265 270 Lys Pro Ile Thr Tyr Glu Ser Glu Gly Asp Ile Ala Ser Tyr Phe Val 275 280 285 Thr Arg Tyr Gly Phe Asn Pro Asp Cys Lys Ile Tyr Ser Phe Thr Gly 290 295 300 Asp Asn Leu Ala Thr Ile Ile Ser Leu Pro Leu Ala Pro Asn Asp Ala 305 310 315 320 Leu Ile Ser Leu Gly Thr Ser Thr Thr Val Leu Ile Ile Thr Lys Asn 325 330 335 Tyr Ala Pro Ser Ser Gln Tyr His Leu Phe Lys His Pro Thr Met Pro 340 345 350 Asp His Tyr Met Gly Met Ile Cys Tyr Cys Asn Gly Ser Leu Ala Arg 355 360 365 Glu Lys Val Arg Asp Glu Val Asn Glu Lys Phe Asn Val Glu Asp Lys 370 375 380 Lys Ser Trp Asp Lys Phe Asn Glu Ile Leu Asp Lys Ser Thr Asp Phe 385 390 395 400 Asn Asn Lys Leu Gly Ile Tyr Phe Pro Leu Gly Glu Ile Val Pro Asn 405 410 415 Ala Ala Ala Gln Ile Lys Arg Ser Val Leu Asn Ser Lys Asn Glu Ile 420 425 430 Val Asp Val Glu Leu Gly Asp Lys Asn Trp Gln Pro Glu Asp Asp Val 435 440 445 Ser Ser Ile Val Glu Ser Gln Thr Leu Ser Cys Arg Leu Arg Thr Gly 450 455 460 Pro Met Leu Ser Lys Ser Gly Asp Ser Ser Ala Ser Ser Ser Ala Ser 465 470 475 480 Pro Gln Pro Glu Gly Asp Gly Thr Asp Leu His Lys Val Tyr Gln Asp 485 490 495 Leu Val Lys Lys Phe Gly Asp Leu Tyr Thr Asp Gly Lys Lys Gln Thr 500 505 510 Phe Glu Ser Leu Thr Ala Arg Pro Asn Arg Cys Tyr Tyr Val Gly Gly 515 520 525 Ala Ser Asn Asn Gly Ser Ile Ile Arg Lys Met Gly Ser Ile Leu Ala 530 535 540 Pro Val Asn Gly Asn Tyr Lys Val Asp Ile Pro Asn Ala Cys Ala Leu 545 550 555 560 Gly Gly Ala Tyr Lys Ala Ser Trp Ser Tyr Glu Cys Glu Ala Lys Lys 565 570 575 Glu Trp Ile Gly Tyr Asp Gln Tyr Ile Asn Arg Leu Phe Glu Val Ser 580 585 590 Asp Glu Met Asn Ser Phe Glu Val Lys Asp Lys Trp Leu Glu Tyr Ala 595 600 605 Asn Gly Val Gly Met Leu Ala Lys Met Glu Ser Glu Leu Lys His 610 615 620 <210> 10 <211> 1872 <212> DNA <213> Pichia stipitis <400> 10 atgaccacta ccccatttga tgctccagat aagctcttcc tcgggttcga tctttcgact 60 cagcagttga agatcatcgt caccgatgaa aacctcgctg ctctcaaaac ctacaatgtc 120 gagttcgata gcatcaacag ctctgtccag aagggtgtca ttgctatcaa cgacgaaatc 180 agcaagggtg ccattatttc ccccgtttac atgtggttgg atgcccttga ccatgttttt 240 gaagacatga agaaggacgg attccccttc aacaaggttg ttggtatttc cggttcttgt 300 caacagcacg gttcggtata ctggtctaga acggccgaga aggtcttgtc cgaattggac 360 gctgaatctt cgttatcgag ccagatgaga tctgctttca ccttcaagca cgctccaaac 420 tggcaggatc actctaccgg taaagagctt gaagagttcg aaagagtgat tggtgctgat 480 gccttggctg atatctctgg ttccagagcc cattacagat tcacagggct ccagattaga 540 aagttgtcta ccagattcaa gcccgaaaag tacaacagaa ctgctcgtat ctctttagtt 600 tcgtcatttg ttgccagtgt gttgcttggt agaatcacct ccattgaaga agccgatgct 660 tgtggaatga acttgtacga tatcgaaaag cgcgagttca acgaagagct cttggccatc 720 gctgctggtg tccaccctga gttggatggt gtagaacaag acggtgaaat ttacagagct 780 ggtatcaatg agttgaagag aaagttgggt cctgtcaaac ctataacata cgaaagcgaa 840 ggtgacattg cctcttactt tgtcaccaga tacggcttca accccgactg taaaatctac 900 tcgttcaccg gagacaattt ggccacgatt atctcgttgc ctttggctcc aaatgatgct 960 ttgatctcat tgggtacttc tactacagtt ttaattatca ccaagaacta cgctccttct 1020 tctcaatacc atttgtttaa acatccaacc atgcctgacc actacatggg catgatctgc 1080 tactgtaacg gttccttggc cagagaaaag gttagagacg aagtcaacga aaagttcaat 1140 gtagaagaca agaagtcgtg ggacaagttc aatgaaatct tggacaaatc cacagacttc 1200 aacaacaagt tgggtattta cttcccactt ggcgaaattg tccctaatgc cgctgctcag 1260 atcaagagat cggtgttgaa cagcaagaac gaaattgtag acgttgagtt gggcgacaag 1320 aactggcaac ctgaagatga tgtttcttca attgtagaat cacagacttt gtcttgtaga 1380 ttgagaactg gtccaatgtt gagcaagagt ggagattctt ctgcttccag ctctgcctca 1440 cctcaaccag aaggtgatgg tacagatttg cacaaggtct accaagactt ggttaaaaag 1500 tttggtgact tgttcactga tggaaagaag caaacctttg agtctttgac cgccagacct 1560 aaccgttgtt actacgtcgg tggtgcttcc aacaacggca gcattatccs caagatgggt 1620 tccatcttgg ctcccgtcaa cggaaactac aaggttgaca ttcctaacgc ctgtgcattg 1680 ggtggtgctt acaaggccag ttggagttac gagtgtgaag ccaagaagga atggatcgga 1740 tacgatcagt atatcaacag attgtttgaa gtaagtgacg agatgaatct gttcgaagtc 1800 aaggataaat ggctcgaata tgccaacggg gttggaatgt tggccaagat ggaaagtgaa 1860 ttgaaacact aa 1872 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 gatcggatcc atgccttcta ttaagttgaa 30 <210> 12 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 tcgactcgag ttagacgaag ataggaatct 30 <210> 13 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 gatcggatcc atggttgcta acccatcatt agtt 34 <210> 14 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 tcgactcgag ttataatgga ccatcaatca aaca 34 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 gatcggatcc atgactgcta acccttcctt 30 <210> 16 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 tcgactcgag ttactcaggg ccgtcaatga 30 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 gatcggatcc atgaccacta ccccatttga 30 <210> 18 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 tcgactcgag ttagtgtttc aattcacttt 30 <110> SK Innovation Co., Ltd. SK Energy Co., LTD. <120> Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast <130> P13-B121 <160> 18 <170> KopatentIn 2.0 <210> 1 <211> 317 <212> PRT <213> Spathaspora passalidarum <400> 1 Met Ser Phe Lys Leu Ser Ser Gly Tyr Glu Met Pro Lys Ile Gly Phe 1 5 10 15 Gly Thr Trp Lys Met Asp Lys Ala Thr Ile Pro Gln Gln Ile Tyr Asp 20 25 30 Ala Ile Lys Gly Gly Ile Arg Ser Phe Asp Gly Ala Glu Asp Tyr Gly 35 40 45 Asn Glu Lys Glu Val Gly Leu Gly Tyr Lys Lys Ala Ile Glu Asp Gly 50 55 60 Leu Val Lys Arg Glu Asp Leu Phe Ile Thr Ser Lys Leu Trp Asn Asn 65 70 75 80 Phe His Asp Pro Lys Asn Val Glu Lys Ala Leu Asp Arg Thr Leu Ala 85 90 95 Asp Leu Gln Leu Asp Tyr Val Asp Leu Phe Leu Ile His Phe Pro Ile 100 105 110 Ala Phe Lys Phe Val Pro Leu Glu Glu Arg Tyr Pro Pro Cys Phe Tyr 115 120 125 Cys Gly Asp Gly Asp Asn Phe His Tyr Glu Asp Val Pro Leu Leu Glu 130 135 140 Thr Trp Lys Ala Leu Glu Ala Leu Val Lys Lys Gly Lys Ile Arg Ser 145 150 155 160 Leu Gly Val Ser Asn Phe Thr Gly Ala Leu Leu Leu Asp Leu Leu Arg 165 170 175 Gly Ser Thr Ile Lys Pro Ala Val Leu Gln Val Glu His His Pro Tyr 180 185 190 Leu Gln Gln Pro Arg Leu Ile Glu Phe Ala Gln Lys Gln Gly Leu Val 195 200 205 Val Thr Ala Tyr Ser Ser Phe Gly Pro Gln Ser Phe Thr Glu Leu Asn 210 215 220 Gln Asn Arg Ala Asn Asn Thr Pro Arg Leu Phe Asp His Glu Val Ile 225 230 235 240 Lys Lys Ile Ala Ala Arg Arg Gly Arg Thr Pro Ala Gln Val Ile Leu 245 250 255 Arg Trp Ala Thr Gln Arg Asn Val Val Ile Ile Pro Lys Ser Asp Thr 260 265 270 Pro Glu Arg Leu Val Glu Asn Leu Ala Val Phe Asp Phe Asp Leu Thr 275 280 285 Glu Glu Asp Phe Lys Glu Ile Ala Ala Leu Asp Ala Asn Leu Arg Phe 290 295 300 Asn Asp Pro Trp Asp Trp Asp His Ile Pro Ile Phe Val 305 310 315 <210> 2 <211> 951 <212> DNA <213> Spathaspora passalidarum <400> 2 atgtctttta aatatcttca ggttatgaaa tgccaaaaat cggttttggt acttggaaga 60 tggacaaggc caccattcct cagcaaattt acgatgctat caagggtggt atcagatcat 120 tcgatggtgc tgaagattac ggtaacgaaa aggaagtggt cttggttaca agaaggctat 180 tgaagacggt cttgttaaga gagaagatct tttcattacc tccaagttat ggaataactt 240 tcatgaccca aagaatgtgg aaaaggcttt agacagaact ttagctgatt tacaattaga 300 tacgtcgact tatttttaat tcatttccca attgctttca agtttgttcc attagaagaa 360 agatacccac cttgcttcta ctgtggtgat ggtgacaact tccattatga agatgtccca 420 ttattggaaa cctggaaggc tttagaagcc ttggttaaga agggtaagat tagatcactt 480 ggtgtttcta acttcactgg tgctttgttg ttggatttac ttagaggttc taccattaag 540 ccagctgttt tgcaagtcga acatcatcca tacttgcaac aaccaagatt aattgaattt 600 gctcaaaagc aaggtcttgt tgtcactgct tactcttcat ttggtcctca atctttcact 660 gaattgaacc aaaacagagc taacaacacc ccaagattgt ttgaccacga agttatcaag 720 aagattgctg ctagaagggg cagaactcca gctcaagtta tcttaagatg ggccacccaa 780 agaaatgtcg tgattattcc aaaatccgat actccagaaa gattggtcga aaacttggct 840 gtctttgact ttgacttaac tgaagaagat ttcaaagaaa ttgccgcctt ggacgctaat 900 ttgagattta atgacccatg ggactgggac catattccaa tctttgttta a 951 <210> 3 <211> 318 <212> PRT <213> Pichia stipitis <400> 3 Met Pro Ser Ile Lys Leu Asn Ser Gly Tyr Asp Met Pro Ala Val Gly 1 5 10 15 Phe Gly Cys Trp Lys Val Asp Val Asp Thr Cys Ser Glu Gln Ile Tyr 20 25 30 Arg Ala Ile Lys Thr Gly Tyr Arg Leu Phe Asp Gly Ala Glu Asp Tyr 35 40 45 Ala Asn Glu Lys Leu Val Gly Ala Gly Val Lys Lys Ala Ile Asp Glu 50 55 60 Gly Ile Val Lys Arg Glu Asp Leu Phe Leu Thr Ser Lys Leu Trp Asn 65 70 75 80 Asn Tyr His His Pro Asp Asn Val Glu Lys Ala Leu Asn Arg Thr Leu 85 90 95 Ser Asp Leu Gln Val Asp Tyr Val Asp Leu Phe Leu Ile His Phe Pro 100 105 110 Val Thr Phe Lys Phe Val Pro Leu Glu Glu Lys Tyr Pro Pro Gly Phe 115 120 125 Tyr Cys Gly Lys Gly Asp Asn Phe Asp Tyr Glu Asp Val Pro Ile Leu 130 135 140 Glu Thr Trp Lys Ala Leu Glu Lys Leu Val Lys Ala Gly Lys Ile Arg 145 150 155 160 Ser Ile Gly Val Ser Asn Phe Pro Gly Ala Leu Leu Leu Asp Leu Leu 165 170 175 Arg Gly Ala Thr Ile Lys Pro Ser Val Leu Gln Val Glu His His Pro 180 185 190 Tyr Leu Gln Gln Pro Arg Leu Ile Glu Phe Ala Gln Ser Arg Gly Ile 195 200 205 Ala Val Thr Ala Tyr Ser Ser Phe Gly Pro Gln Ser Phe Val Glu Leu 210 215 220 Asn Gln Gly Arg Ala Leu Asn Thr Ser Pro Leu Phe Glu Asn Glu Thr 225 230 235 240 Ile Lys Ala Ile Ala Ala Lys His Gly Lys Ser Pro Ala Gln Val Leu 245 250 255 Leu Arg Trp Ser Ser Gln Arg Gly Ile Ala Ile Ile Pro Lys Ser Asn 260 265 270 Thr Val Pro Arg Leu Leu Glu Asn Lys Asp Val Asn Ser Phe Asp Leu 275 280 285 Asp Glu Gln Asp Phe Ala Asp Ile Ala Lys Leu Asp Ile Asn Leu Arg 290 295 300 Phe Asn Asp Pro Trp Asp Trp Asp Lys Ile Pro Ile Phe Val 305 310 315 <210> 4 <211> 957 <212> DNA <213> Pichia stipitis <400> 4 atgccttcta ttaagttgaa ctctggttac gacatgccag ccgtcggttt cggctgttgg 60 aaagtcgacg tcgacacctg ttctgaacag atctaccgtg ctatcaagac cggttacaga 120 ttgttcgacg gtgccgaaga ttacgccaac gaaaagttag ttggtgccgg tgtcaagaag 180 gccattgacg aaggtatcgt caagcgtgaa gacttgttcc ttacctccaa gttgtggaac 240 aactaccacc acccagacaa cgtcgaaaag gccttgaaca gaaccctttc tgacttgcaa 300 gttgactacg ttgacttgtt cttgatccac ttcccagtca ccttcaagtt cgttccatta 360 gaagaaaagt acccaccagg attctactgt ggtaagggtg acaacttcga ctacgaagat 420 gttccaattt tagagacctg gaaggctctt gaaaagttgg tcaaggccgg taagatcaga 480 tctatcggtg tttctaactt cccaggtgct ttgctcttgg acttgttgag aggtgctacc 540 atcaagccat ctgtcttgca agttgaacac cacccatact tacaacaacc aagattgatc 600 gaattcgctc aatcccgtgg tattgctgtc accgcttact cttcgttcgg tcctcaatct 660 ttcgttgaat tgaaccaagg tagagctttg aacacttctc cattgttcga gaacgaaact 720 atcaaggcta tcgctgctaa gcacggtaag tctccagctc aagtcttgtt gagatggtct 780 tcccaaagag gcattgccat cattccaaag tccaacactg tcccaagatt gttggaaaac 840 aaggacgtca acagcttcga cttggacgaa caagatttcg ctgacattgc caagttggac 900 atcaacttga gattcaacga cccatgggac tgggacaaga ttcctatctt cgtctaa 957 <210> 5 <211> 362 <212> PRT <213> Spathaspora passalidarum <400> 5 Met Val Ala Asn Pro Ser Leu Val Leu Lys Lys Ile Asp Glu Ile Val 1 5 10 15 Phe Glu Asn Gln Glu Ala Pro Thr Ile Thr Glu Pro Thr Asp Val Ile 20 25 30 Val Gln Val Lys Lys Thr Gly Ile Cys Gly Ser Asp Ile His Phe Tyr 35 40 45 Gln His Gly Lys Ile Gly Asn Tyr Ile Leu Thr Lys Pro Met Val Leu 50 55 60 Gly His Glu Ser Ala Gly Val Val Thr Glu Val Gly Pro Gly Val Lys 65 70 75 80 Tyr Leu Arg Val Gly Asp Asn Val Ala Ile Glu Pro Gly Val Pro Ser 85 90 95 Arg Phe Ser Asp Ala Tyr Lys Ser Gly Arg Tyr Asn Leu Cys Pro His 100 105 110 Met Arg Phe Ala Ala Thr Pro Ser Thr Lys Asp Glu Pro Asn Pro Pro 115 120 125 Gly Thr Leu Cys Lys Tyr Phe Lys Ser Pro Glu Asp Phe Leu Val Lys 130 135 140 Leu Pro Asp His Val Ser Leu Glu Leu Gly Ala Met Val Glu Pro Leu 145 150 155 160 Ser Val Gly Val His Ala Cys Lys Ile Gly Lys Val Lys Phe Gly Asp 165 170 175 Thr Val Ala Val Phe Gly Ala Gly Pro Val Gly Leu Leu Thr Ala Ala 180 185 190 Thr Ala Lys Thr Phe Gly Ala Ala Lys Val Ile Ile Ile Asp Val Phe 195 200 205 Asp Asn Lys Leu Gln Met Ala Lys Asp Ile Gly Val Val Thr His Thr 210 215 220 Phe Asn Ser Lys Thr Asp Gly Asp Tyr Asn Asp Leu Ile Lys His Phe 225 230 235 240 Gly Gly Gln Pro Asn Val Val Leu Glu Cys Thr Gly Ala Asp Pro Cys 245 250 255 Val Gly Met Gly Val Asn Ile Cys Ala Pro Gly Gly Thr Phe Ile Gln 260 265 270 Val Gly Asn Ala Ala Ala Pro Val Lys Phe Pro Ile Thr Gln Phe Ala 275 280 285 Met Lys Glu Leu Thr Leu Tyr Gly Ser Phe Arg Tyr Gly Phe Gly Asp 290 295 300 Tyr Gln Asp Ala Val Asn Ile Phe Asp Ala Asn Tyr Lys Asn Gly Lys 305 310 315 320 Asp Lys Ala Pro Ile Asp Phe Glu Arg Leu Ile Thr His Arg Phe Lys 325 330 335 Phe Asp Asp Ala Ile Lys Ala Tyr Asp Leu Val Arg Ser Gly Cys Gly 340 345 350 Ala Val Lys Cys Leu Ile Asp Gly Pro Glu 355 360 <210> 6 <211> 1094 <212> DNA <213> Spathaspora passalidarum <400> 6 atggttgcta acccatcatt agttcttaac aagattgacg acatcacctt cgaaacctac 60 gaagccccag aaattgtcga accaaccgac gttattgtcg aagttaaaaa gactggtatc 120 tgtggttctg atatccacta ctatgcccac ggtaagattg gtaactttat cttgaccaag 180 ccaatggttt tgggtcacga atctgccggt gttgtttccc aagttggtaa gggtgtcaag 240 cacttgaagg ttggtgacag agttgccatt gaaccaggta ttccatccag attatccgac 300 gcttacaagt ctggtcacta caacttgtgt cctcacatgt gttttgctgc cactccaaac 360 tccactgaag gtgaaccaaa cccaccaggt accttgtgta aatatttcaa gtccccagaa 420 gatttcttgg ttaagttgcc agaacacgtc tccttggaat tgggtgccat ggttgaacca 480 ttgtctgtcg gtgtccacgc ctccaagtta ggtaaggtta ctttcggtga caatgttgcc 540 gttttcggtg ctggtccagt tggtttattg gctgctgcca ccgccaagac ctttggtgct 600 gccagagtca ttgtcattga tatctttgac aacaagttac aaatggccaa ggacattggt 660 gctgccactc acaccttcaa ctccaagact ggtggtgatt acaaggactt gattgctgcc 720 tttgacggtg ttgaaccaaa tgttattttg gaatgtaccg gtgctgaacc atgtattgcc 780 atgggtgtcc aaattgctgc tccaggtggt agatttgtcc aagttggtaa tgctggtgcc 840 gctgtcaagt tcccaattac tgaatttgct actaaggaat tgaccttatt cggttctttc 900 agatatggtt acggtgacta ccaaactgcc gttaacattt tcgatgccaa ctacaagaat 960 ggtaaggaca aggctccaat tgactttgaa caattgatta ccacagattc aagtttgacg 1020 atgccatcaa ggcttacgac ttggttagag ccggttctgg tgccgtcaag tgtttgattg 1080 atggtccatt ataa 1094 <210> 7 <211> 363 <212> PRT <213> Pichia stipitis <400> 7 Met Thr Ala Asn Pro Ser Leu Val Leu Asn Lys Ile Asp Asp Ile Ser 1 5 10 15 Phe Glu Thr Tyr Asp Ala Pro Glu Ile Ser Glu Pro Thr Asp Val Leu 20 25 30 Val Gln Val Lys Lys Thr Gly Ile Cys Gly Ser Asp Ile His Phe Tyr 35 40 45 Ala His Gly Arg Ile Gly Asn Phe Val Leu Thr Lys Pro Met Val Leu 50 55 60 Gly His Glu Ser Ala Gly Thr Val Val Gln Val Gly Lys Gly Val Thr 65 70 75 80 Ser Leu Lys Val Gly Asp Asn Val Ala Ile Glu Pro Gly Ile Pro Ser 85 90 95 Arg Phe Ser Asp Glu Tyr Lys Ser Gly His Tyr Asn Leu Cys Pro His 100 105 110 Met Ala Phe Ala Ala Thr Pro Asn Ser Lys Glu Gly Glu Pro Asn Pro 115 120 125 Pro Gly Thr Leu Cys Lys Tyr Phe Lys Ser Pro Glu Asp Phe Leu Val 130 135 140 Lys Leu Pro Asp His Val Ser Leu Glu Leu Gly Ala Leu Val Glu Pro 145 150 155 160 Leu Ser Val Gly Val His Ala Ser Lys Leu Gly Ser Val Ala Phe Gly 165 170 175 Asp Tyr Val Ala Val Phe Gly Ala Gly Pro Val Gly Leu Leu Ala Ala 180 185 190 Ala Val Ala Lys Thr Phe Gly Ala Lys Gly Val Ile Val Val Asp Ile 195 200 205 Phe Asp Asn Lys Leu Lys Met Ala Lys Asp Ile Gly Ala Ala Thr His 210 215 220 Thr Phe Asn Ser Lys Thr Gly Gly Ser Glu Glu Leu Ile Lys Ala Phe 225 230 235 240 Gly Gly Asn Val Pro Asn Val Val Leu Glu Cys Thr Gly Ala Glu Pro 245 250 255 Cys Ile Lys Leu Gly Val Asp Ala Ile Ala Pro Gly Gly Arg Phe Val 260 265 270 Gln Val Gly Asn Ala Ala Gly Pro Val Ser Phe Pro Ile Thr Val Phe 275 280 285 Ala Met Lys Glu Leu Thr Leu Phe Gly Ser Phe Arg Tyr Gly Phe Asn 290 295 300 Asp Tyr Lys Thr Ala Val Gly Ile Phe Asp Thr Asn Tyr Gln Asn Gly 305 310 315 320 Arg Glu Asn Ala Pro Ile Asp Phe Glu Gln Leu Ile Thr His Arg Tyr 325 330 335 Lys Phe Lys Asp Ala Ile Glu Ala Tyr Asp Leu Val Arg Ala Gly Lys 340 345 350 Gly Ala Val Lys Cys Leu Ile Asp Gly Pro Glu 355 360 <210> 8 <211> 1095 <212> DNA <213> Pichia stipitis <400> 8 atggtagcta atccctcatt agtacttaat aaaattgatg acattacatt cgaaacttat 60 gaagcaccag aaattgtgga gcctacagat gtaatagtgg aagtaaaaaa aacaggcata 120 tgtggatctg atatacatta ttatgctcat ggaaaaatag gtaactttat cttgaccaag 180 ccaatggttc taggacacga aagtgcaggt gttgtttccc aggttggtaa aggtgtcaaa 240 catttgaagg ttggagacag agtagcaatt gagccaggta ttccttcacg tttatctgat 300 gcttataagt ctggtcatta caacttgtgt cctcatatgt gctttgctgc tactccaaac 360 tccactgagg gtgaaccaaa cccccctggt acattgtgta aatatttcaa aagtccagaa 420 gatttcctcg ttaaattgcc cgaacacgtc tcattggaac taggtgccat ggttgaacca 480 ttgtctgttg gtgtccacgc gtcgaagtta ggtaaggtaa cttttggtga taacgttgcg 540 gttttcggtg ctggtccagt tggtctattg gctgctgcca ctgccaaaac ctttggagct 600 gcaagagtga tcgtgattga tatctttgac aataaattac aaatggccaa ggacattggt 660 gctgctacgc atacatttaa ttccaagacg ggtggagatt ataaagattt aatcgcagca 720 tttgatggtg ttgaacctaa tgttatactt gaatgtaccg gtgcggaacc ttgtatagcc 780 atgggagtgc aaatagcagc tccaggtggg agatttgtcc aagttggtaa tgctggtgcc 840 gctgtcaaat tcccaattac tgaatttgct actaaggagt tgaccttatt tggttctttt 900 agatatggtt acggtgatta ccaaactgcc gtgaatattt ttgatgcaaa ctacaaaaat 960 ggtaaagata aagctccaat tgacttcgaa caattgatta cacatagatt caagtttgac 1020 gatgcaatca aggcttacga cttggttagg gccggtagcg gtgctgtaaa atgccttatt 1080 gatggcccat tataa 1095 <210> 9 <211> 623 <212> PRT <213> Pichia stipitis <400> 9 Met Thr Thr Thr Pro Phe Asp Ala Pro Asp Lys Leu Phe Leu Gly Phe 1 5 10 15 Asp Leu Ser Thr Gln Gln Leu Lys Ile Ile Val Thr Asp Glu Asn Leu 20 25 30 Ala Ala Leu Lys Thr Tyr Asn Val Glu Phe Asp Ser Ile Asn Ser Ser 35 40 45 Val Gln Lys Gly Val Ile Ala Ile Asn Asp Glu Ile Ser Lys Gly Ala 50 55 60 Ile Ile Ser Pro Val Tyr Met Trp Leu Asp Ala Leu Asp His Val Phe 65 70 75 80 Glu Asp Met Lys Lys Asp Gly Phe Pro Phe Asn Lys Val Val Gly Ile 85 90 95 Ser Gly Ser Cys Gln Gln His Gly Ser Val Tyr Trp Ser Arg Thr Ala 100 105 110 Glu Lys Val Leu Ser Glu Leu Asp Ala Glu Ser Ser Leu Ser Ser Gln 115 120 125 Met Arg Ser Ala Phe Thr Phe Lys His Ala Pro Asn Trp Gln Asp His 130 135 140 Ser Thr Gly Lys Glu Leu Glu Glu Phe Glu Arg Val Ile Gly Ala Asp 145 150 155 160 Ala Leu Ala Asp Ile Ser Gly Ser Arg Ala His Tyr Arg Phe Thr Gly 165 170 175 Leu Gln Ile Arg Lys Leu Ser Thr Arg Phe Lys Pro Glu Lys Tyr Asn 180 185 190 Arg Thr Ala Arg Ile Ser Leu Val Ser Ser Phe Val Ala Ser Val Leu 195 200 205 Leu Gly Arg Ile Thr Ser Ile Glu Glu Ala Asp Ala Cys Gly Met Asn 210 215 220 Leu Tyr Asp Ile Glu Lys Arg Glu Phe Asn Glu Glu Leu Leu Ala Ile 225 230 235 240 Ala Ala Gly Val His Pro Glu Leu Asp Gly Val Glu Gln Asp Gly Glu 245 250 255 Ile Tyr Arg Ala Gly Ile Asn Glu Leu Lys Arg Lys Leu Gly Pro Val 260 265 270 Lys Pro Ile Thr Tyr Glu Ser Glu Gly Asp Ile Ala Ser Tyr Phe Val 275 280 285 Thr Arg Tyr Gly Phe Asn Pro Asp Cys Lys Ile Tyr Ser Phe Thr Gly 290 295 300 Asp Asn Leu Ala Thr Ile Ile Ser Leu Pro Leu Ala Pro Asn Asp Ala 305 310 315 320 Leu Ile Ser Leu Gly Thr Ser Thr Thr Val Leu Ile Ile Thr Lys Asn 325 330 335 Tyr Ala Pro Ser Ser Gln Tyr His Leu Phe Lys His Pro Thr Met Pro 340 345 350 Asp His Tyr Met Gly Met Ile Cys Tyr Cys Asn Gly Ser Leu Ala Arg 355 360 365 Glu Lys Val Arg Asp Glu Val Asn Glu Lys Phe Asn Val Glu Asp Lys 370 375 380 Lys Ser Trp Asp Lys Phe Asn Glu Ile Leu Asp Lys Ser Thr Asp Phe 385 390 395 400 Asn Asn Lys Leu Gly Ile Tyr Phe Pro Leu Gly Glu Ile Val Pro Asn 405 410 415 Ala Ala Ala Gln Ile Lys Arg Ser Val Leu Asn Ser Lys Asn Glu Ile 420 425 430 Val Asp Val Glu Leu Gly Asp Lys Asn Trp Gln Pro Glu Asp Asp Val 435 440 445 Ser Ser Ile Val Glu Ser Gln Thr Leu Ser Cys Arg Leu Arg Thr Gly 450 455 460 Pro Met Leu Ser Lys Ser Gly Asp Ser Ser Ala Ser Ser Ser Ala Ser 465 470 475 480 Pro Gln Pro Glu Gly Asp Gly Thr Asp Leu His Lys Val Tyr Gln Asp 485 490 495 Leu Val Lys Lys Phe Gly Asp Leu Tyr Thr Asp Gly Lys Lys Gln Thr 500 505 510 Phe Glu Ser Leu Thr Ala Arg Pro Asn Arg Cys Tyr Tyr Val Gly Gly 515 520 525 Ala Ser Asn Asn Gly Ser Ile Ile Arg Lys Met Gly Ser Ile Leu Ala 530 535 540 Pro Val Asn Gly Asn Tyr Lys Val Asp Ile Pro Asn Ala Cys Ala Leu 545 550 555 560 Gly Gly Ala Tyr Lys Ala Ser Trp Ser Tyr Glu Cys Glu Ala Lys Lys 565 570 575 Glu Trp Ile Gly Tyr Asp Gln Tyr Ile Asn Arg Leu Phe Glu Val Ser 580 585 590 Asp Glu Met Asn Ser Phe Glu Val Lys Asp Lys Trp Leu Glu Tyr Ala 595 600 605 Asn Gly Val Gly Met Leu Ala Lys Met Glu Ser Glu Leu Lys His 610 615 620 <210> 10 <211> 1872 <212> DNA <213> Pichia stipitis <400> 10 atgaccacta ccccatttga tgctccagat aagctcttcc tcgggttcga tctttcgact 60 cagcagttga agatcatcgt caccgatgaa aacctcgctg ctctcaaaac ctacaatgtc 120 gagttcgata gcatcaacag ctctgtccag aagggtgtca ttgctatcaa cgacgaaatc 180 agcaagggtg ccattatttc ccccgtttac atgtggttgg atgcccttga ccatgttttt 240 gaagacatga agaaggacgg attccccttc aacaaggttg ttggtatttc cggttcttgt 300 caacagcacg gttcggtata ctggtctaga acggccgaga aggtcttgtc cgaattggac 360 gctgaatctt cgttatcgag ccagatgaga tctgctttca ccttcaagca cgctccaaac 420 tggcaggatc actctaccgg taaagagctt gaagagttcg aaagagtgat tggtgctgat 480 gccttggctg atatctctgg ttccagagcc cattacagat tcacagggct ccagattaga 540 aagttgtcta ccagattcaa gcccgaaaag tacaacagaa ctgctcgtat ctctttagtt 600 tcgtcatttg ttgccagtgt gttgcttggt agaatcacct ccattgaaga agccgatgct 660 tgtggaatga acttgtacga tatcgaaaag cgcgagttca acgaagagct cttggccatc 720 gctgctggtg tccaccctga gttggatggt gtagaacaag acggtgaaat ttacagagct 780 ggtatcaatg agttgaagag aaagttgggt cctgtcaaac ctataacata cgaaagcgaa 840 ggtgacattg cctcttactt tgtcaccaga tacggcttca accccgactg taaaatctac 900 tcgttcaccg gagacaattt ggccacgatt atctcgttgc ctttggctcc aaatgatgct 960 ttgatctcat tgggtacttc tactacagtt ttaattatca ccaagaacta cgctccttct 1020 tctcaatacc atttgtttaa acatccaacc atgcctgacc actacatggg catgatctgc 1080 tactgtaacg gttccttggc cagagaaaag gttagagacg aagtcaacga aaagttcaat 1140 gtagaagaca agaagtcgtg ggacaagttc aatgaaatct tggacaaatc cacagacttc 1200 aacaacaagt tgggtattta cttcccactt ggcgaaattg tccctaatgc cgctgctcag 1260 atcaagagat cggtgttgaa cagcaagaac gaaattgtag acgttgagtt gggcgacaag 1320 aactggcaac ctgaagatga tgtttcttca attgtagaat cacagacttt gtcttgtaga 1380 ttgagaactg gtccaatgtt gagcaagagt ggagattctt ctgcttccag ctctgcctca 1440 cctcaaccag aaggtgatgg tacagatttg cacaaggtct accaagactt ggttaaaaag 1500 tttggtgact tgttcactga tggaaagaag caaacctttg agtctttgac cgccagacct 1560 aaccgttgtt actacgtcgg tggtgcttcc aacaacggca gcattatccs caagatgggt 1620 tccatcttgg ctcccgtcaa cggaaactac aaggttgaca ttcctaacgc ctgtgcattg 1680 ggtggtgctt acaaggccag ttggagttac gagtgtgaag ccaagaagga atggatcgga 1740 tacgatcagt atatcaacag attgtttgaa gtaagtgacg agatgaatct gttcgaagtc 1800 aaggataaat ggctcgaata tgccaacggg gttggaatgt tggccaagat ggaaagtgaa 1860 ttgaaacact aa 1872 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 gatcggatcc atgccttcta ttaagttgaa 30 <210> 12 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 tcgactcgag ttagacgaag ataggaatct 30 <210> 13 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 gatcggatcc atggttgcta acccatcatt agtt 34 <210> 14 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 tcgactcgag ttataatgga ccatcaatca aaca 34 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 gatcggatcc atgactgcta acccttcctt 30 <210> 16 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 tcgactcgag ttactcaggg ccgtcaatga 30 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 gatcggatcc atgaccacta ccccatttga 30 <210> 18 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 tcgactcgag ttagtgtttc aattcacttt 30

Claims (4)

서열번호 5의 아미노산 서열로 표시되는 스파다스포라 파사리다룸(Spathaspora passalidarum) 유래의 자일리톨 탈수소효소를 코딩하는 유전자와 서열번호 1의 아미노산 서열로 표시되는 자일로스 환원효소를 코딩하는 유전자 및 피키아 스티피티스(Pichia stipitis) 유래의 자일룰로카이나아제를 코딩하는 유전자가 도입되어 있는, 자일로스로부터 에탄올 생성능을 가지는 재조합 효모.
Spathaspora passalidarum represented by the amino acid sequence of SEQ ID NO: 5 Derived A gene encoding a xylitol dehydrogenase, a gene encoding a xylose reductase represented by the amino acid sequence of SEQ ID NO: 1, and a gene encoding a xylulurokinase derived from Pichia stipitis are introduced. , Recombinant yeast having the ability to produce ethanol from xylose.
제1항에 있어서, 상기 자일리톨 탈수소효소를 코딩하는 유전자는 서열번호 2로 표시되는 염기서열을 가지는 것을 특징으로 하는 재조합 효모.
The recombinant yeast according to claim 1, wherein the gene encoding the xylitol dehydrogenase has a nucleotide sequence represented by SEQ ID NO: 2.
제1항에 있어서, 상기 자일리톨 탈수소효소를 코딩하는 유전자는 서열번호 6 의 염기서열을 가지는 것을 특징으로 하는 재조합 효모.
The recombinant yeast according to claim 1, wherein the gene encoding the xylitol dehydrogenase has a nucleotide sequence of SEQ ID NO: 6.
다음 단계를 포함하는 자일로스로부터 에탄올을 제조하는 방법;
(a) 제1항 내지 제3항 중 어느 한 항의 재조합 효모를 자일로스 함유 배지에서 배양하여 에탄올을 생성시키는 단계; 및
(b) 상기 생성된 에탄올을 수득하는 단계.
Method for producing ethanol from xylose comprising the following steps;
(a) culturing the recombinant yeast of any one of claims 1 to 3 in a xylose-containing medium to produce ethanol; And
(b) obtaining the produced ethanol.
KR1020130080506A 2013-05-16 2013-07-09 Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast KR102136841B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020130080506A KR102136841B1 (en) 2013-07-09 2013-07-09 Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast
PCT/KR2014/003477 WO2014185635A1 (en) 2013-05-16 2014-04-22 Recombinant yeast capable of producing ethanol from xylose and method for producing ethanol using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130080506A KR102136841B1 (en) 2013-07-09 2013-07-09 Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast

Publications (2)

Publication Number Publication Date
KR20150006709A KR20150006709A (en) 2015-01-19
KR102136841B1 true KR102136841B1 (en) 2020-07-23

Family

ID=52569964

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130080506A KR102136841B1 (en) 2013-05-16 2013-07-09 Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast

Country Status (1)

Country Link
KR (1) KR102136841B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200097418A (en) 2019-02-08 2020-08-19 강원대학교산학협력단 Yeast for production of ethanol with high yield and high concentration

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130007687A (en) * 2011-06-27 2013-01-21 삼성전자주식회사 Modified microorganism having enhanced xylose utilization

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Appl Environ Microbiol,제69권,1호,495-503면(2003) 1부.*
Appl Microbiol Biotechnol,제94권,205-214면(2012) 1부.*
Metabolic Engineering,제3권,236-249면(2001)

Also Published As

Publication number Publication date
KR20150006709A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
Cheng et al. Engineering Clostridium for improved solvent production: recent progress and perspective
US20220325253A9 (en) Glycerol free ethanol production
JP5321320B2 (en) Yeast with improved fermentation ability and use thereof
CN101781634B (en) Recombinant zymomonas mobilis capable of producing ethanol by using xylose and fermentation method thereof
PT2139998E (en) Vector with codon-optimised genes for an arabinose metabolic pathway for arabinose conversion in yeast for ethanol production
EP3559234A1 (en) Recombinant yeast strains for pentose fermentation
Reshamwala et al. Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae
JP5796138B2 (en) Yeast producing ethanol from xylose
CN106434402B (en) Saccharomyces cerevisiae strain for expressing xylose isomerase and construction method thereof
KR102136841B1 (en) Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast
WO2016042160A1 (en) Clostridium acetobutylicum strains unable to produce hydrogen and useful for the continuous production of chemicals and fuels
US8603776B2 (en) Method for preparing xylose-utilizing strain
JP5671339B2 (en) Yeast producing ethanol from xylose
KR102075400B1 (en) Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast
WO2016060171A1 (en) Yeast capable of producing ethanol from xylose
Ranade et al. Metabolic engineering and comparative performance studies of Synechocystis sp
Xu Engineering Saccharomyces cerevisiae for cellulosic ethanol production
JP6812097B2 (en) Yeast that produces ethanol from xylose
US20120122172A1 (en) Method for producing ethanol from xylose using recombinant saccharomyces cerevisiae transformed to eliminate functions of genes involved in tor signal transduction pathway
Liu et al. gTME for construction of recombinant yeast co-fermenting xylose and glucose
JP6697780B2 (en) Stress responsive promoter
JP7365770B2 (en) Yeast that suppresses xylitol accumulation
TWI526536B (en) Recombinant yeast cell, and the preparation process and uses thereof
JP4528972B2 (en) Chromosomally integrated mannose-fermenting Zymomonas bacterium
WO2016070258A1 (en) Expression cartridge for the transformation of eukaryotic cells, genetically modified micro-organism with efficient xylose consumption, method for producing biofuels and/or biochemicals, and thus produced biofuel and/or biochemical and/or ethanol

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right