KR102075400B1 - Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast - Google Patents

Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast Download PDF

Info

Publication number
KR102075400B1
KR102075400B1 KR1020130055913A KR20130055913A KR102075400B1 KR 102075400 B1 KR102075400 B1 KR 102075400B1 KR 1020130055913 A KR1020130055913 A KR 1020130055913A KR 20130055913 A KR20130055913 A KR 20130055913A KR 102075400 B1 KR102075400 B1 KR 102075400B1
Authority
KR
South Korea
Prior art keywords
leu
gly
ala
lys
val
Prior art date
Application number
KR1020130055913A
Other languages
Korean (ko)
Other versions
KR20140137470A (en
Inventor
김성홍
이기성
박우찬
김태완
이태영
이혜성
강경현
Original Assignee
에스케이이노베이션 주식회사
에스케이에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사, 에스케이에너지 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to KR1020130055913A priority Critical patent/KR102075400B1/en
Priority to PCT/KR2014/003477 priority patent/WO2014185635A1/en
Publication of KR20140137470A publication Critical patent/KR20140137470A/en
Application granted granted Critical
Publication of KR102075400B1 publication Critical patent/KR102075400B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01009D-Xylulose reductase (1.1.1.9), i.e. xylitol dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01307D-Xylose reductase (1.1.1.307)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01017Xylulokinase (2.7.1.17)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

본 발명은 자일로스로부터 에탄올 고생성능을 가지는 효모에 관한 것으로, 더욱 자세하게는 NADH를 보조인자로 사용하는 자일로스 환원효소를 코딩하는 유전자, NAD+를 보조인자로 사용하는 자일리톨 탈수소효소를 코딩하는 유전자 및 자이룰로카이나아제를 코딩하는 유전자로 형질전환된 자일로스로부터 에탄올 생산능을 가지는 효모 및 상기 효모를 이용한 에탄올의 생산방법에 관한 것이다.
본 발명에 따른 재조합 효모는 자일로스가 풍부한 셀룰로오스계 바이오매스로부터 에탄올을 생산하는데 있어서, 부산물인 자일리톨을 많이 축적하지 않고, 고수율로 에탄올을 생산할 수 있어, 셀룰로오스 에탄올(Cellulosic ethanol : CE) 생산에 매우 유용하게 사용될 수 있다.
The present invention relates to a yeast having high ethanol production from xylose, and more particularly, a gene encoding xylose reductase using NADH as a cofactor, a gene encoding xylitol dehydrogenase using NAD + as a cofactor, and xylul. It relates to a yeast having an ethanol production capacity from xylose transformed with a gene encoding a locinase and a method for producing ethanol using the yeast.
Recombinant yeast according to the present invention can produce ethanol in high yield without producing much xylitol as a by-product in producing ethanol from cellulose-based biomass rich in xylose, thereby producing cellulose ethanol (Cellulosic ethanol: CE). It can be very useful.

Description

자일로스로부터 에탄올을 생산할 수 있는 재조합 효모 및 이를 이용한 에탄올 생산방법{Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast} Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast}

본 발명은 자일로스로부터 에탄올 고생산능을 가지는 재조합 효모에 관한 것으로, 더욱 자세하게는 NADH를 보조인자(cofactor)로 사용하는 자일로스 환원효소(XR : xylose reductase)를 코딩하는 유전자, NAD+를 보조인자(cofactor)로 사용하는 자일리톨 탈수소효소(XDH : xylitol dehydrogenase)를 코딩하는 유전자 및 자이룰로카이나아제(XK : xylulokinase)를 코딩하는 유전자가 도입되어 있는 자일로스로부터 에탄올 생산능을 가지는 재조합 효모 및 상기 재조합 효모를 이용한 에탄올의 제조방법에 관한 것이다.
The present invention relates to a recombinant yeast having high ethanol production ability from xylose, and more particularly, a gene encoding xylose reductase (XR) using NADH as a cofactor, NAD + as a cofactor ( Recombinant yeast having ethanol production ability from xylose having a gene encoding xylitol dehydrogenase (XDH) and a gene encoding xylulokinase (XK) used as a cofactor) It relates to a method for producing ethanol using yeast.

바이오 연료와 신재생 에너지에 대한 관심이 증가함에 따라, 셀룰로오스 에탄올(Cellulosic ethanol : CE)를 차세대 연료로 이용하기 위한 연구가 활발하게 진행되고 있으나, 전처리기술, 당화효소 및 발효균주의 발굴 등이 기술적 장애요소로 대두되고 있다. As interest in biofuels and renewable energy increases, researches to use cellulose ethanol (CE) as a next-generation fuel are being actively conducted, but technical obstacles such as the pretreatment technology, the discovery of saccharase and fermentation strains It is emerging as an element.

특히, C6의 글루코스(Glucose, 포도당)를 탄소원으로 이용하는 전통적인 에탄올 발효와는 달리, CE는 C5인 자일로스(Xylose, 목당)를 탄소원으로 사용하여 생산되므로, 자일로스를 이용하여 고효율로 에탄올을 생산할 수 있는 균주 개발이 절실하다.In particular, unlike traditional ethanol fermentation using C 6 glucose (Glucose) as a carbon source, CE is produced using C 5 Xylose (carbon sugar) as a carbon source, so ethanol with high efficiency There is an urgent need for the development of strains that can produce.

대표적인 에탄올 발효 균주는 사카로마이세스 세레비지애(Saccharomyces cerevisiae)로 대표되는 효모(Yeast)인데, 효모는 생산성과 수율이 우수하고 에탄올 등에 강한 내성을 갖고 있어 에탄올 산업과 발효 산업에 전통적으로 많이 사용되어온 균주이다. 하지만 오탄당인 자일로스를 탄소원으로 이용할 수 없다는 한계가 있다. 따라서, 대사공학적인 방법(metabolic engineering)을 이용하여 자일로스의 대사경로에 관여되는 유전자들을 S. cerevisiae에 도입함으로써, 자일로스를 탄소원으로 하여 에탄올을 발효할 수 있는 S. cerevisiae 개발이 이루어져 왔다. Representative ethanol fermentation strain is yeast (Yeast) represented by Saccharomyces cerevisiae , yeast has a high productivity, yield and strong resistance to ethanol, so it is used traditionally in ethanol industry and fermentation industry. It has been a strain. However, there is a limit that can not use xantose as a carbon source. Therefore, the development of S. cerevisiae capable of fermenting ethanol using xylose as a carbon source by introducing genes involved in the metabolic pathway of xylose into S. cerevisiae using metabolic engineering.

예를 들어, 피키아 스티피티스(Pichia stipitis) 유래의 자일로스 환원효소(xylose reductase)를 코딩하는 유전자인 xyl1, 자일리톨 탈수소효소(xylitol dehydrogenase)를 코딩하는 유전자인 xyl2 자이룰로카이나아제(xylulokinase)를 코딩하는 유전자인 xyl3S. cerevisiae에 도입함으로써, S. cerevisiae가 자일로스를 이용하여 에탄올을 생산할 수 있다(US 5,789,210B). 그러나, 상기 균주를 이용할 경우, 생산성이나 수율이 상업화 가능수준 (생산성 1 g/l/h, 수율 0.45 g/g 이상)에 도달하지 못하였다. 이러한 낮은 생산성 및 수율은 NADPH-의존적(dependent)인 자일로스 환원효소(XR)와 NAD-의존적인 자일로스 탈수소효소(XDH)에 의해 발생하는 보조인자 불균형(cofactor imbalance)이 원인으로 알려져 있다. For example, xyl1 , a gene encoding xylose reductase derived from Pichia stipitis , xyl2 , a gene encoding xylitol dehydrogenase, and By introducing xyl3 , a gene encoding xylulokinase, into S. cerevisiae , S. cerevisiae can produce ethanol using xylose (US 5,789,210B). However, when using the strain, the productivity or yield did not reach the commercialization level (productivity 1 g / l / h, yield 0.45 g / g or more). This low productivity and yield is known to be due to cofactor imbalance caused by NADPH-dependent xylose reductase (XR) and NAD-dependent xylose dehydrogenase (XDH).

이에, 본 발명자들은 자일로스를 이용한 에탄올 생산능을 가지는 형질전환 효모 균주에서 보조인자 불균형(cofactor imbalance)에 의하여 에탄올 생산성이 낮아지는 문제점을 극복하기 위하여 예의 노력한 결과, 글루코오스와 자일로오스를 동시에 소모한다고 알려진 스파다스포라 파사리다룸(Spathaspora passalidarum)의 xyl1과 기존에 알려진 피키아 스티피티스(Pichia stipitis)의 xyl2xyl3이 도입된 재조합 효모, 특히 S. cerevisiae 균주의 경우, 피키아 스티피티스 유래 xyl1, xyl2 xyl3이 도입된 S. cerevisiae를 이용한 기존의 결과 등에 비해 월등한 에탄올 생산능 및 수율을 나타낸다는 것을 확인하고, 본 발명을 완성하게 되었다. Accordingly, the present inventors have intensively consumed glucose and xylose as a result of intensive efforts to overcome the problem of low ethanol productivity due to cofactor imbalance in a transgenic yeast strain having ethanol production ability using xylose. In the case of recombinant yeasts, especially S. cerevisiae strains, which have been introduced with xyl1 of Spathaspora passalidarum , which is known to be known, and xyl2 and xyl3 of Pichia stipitis , which have been previously known, The present invention was completed by confirming that xyl1 , xyl2 and xyl3 derived from S. cerevisiae exhibited superior ethanol production capacity and yield compared to the existing results.

본 발명의 목적은 셀룰로오스 에탄올(CE) 생산을 위하여 셀룰로오스계 바이오매스 유래 자일로스를 효과적으로 에탄올로 전환하여 생산할 수 있는 능력을 가지는 재조합 효모를 제공하는데 있다.An object of the present invention is to provide a recombinant yeast having the ability to effectively convert cellulose-based biomass-derived xylose to ethanol for production of cellulose ethanol (CE).

본 발명의 다른 목적은 상기 자일로스를 효과적으로 에탄올로 전환하는 능력을 가지는 재조합 효모를 이용한 에탄올의 제조방법을 제공하는데 있다.
Another object of the present invention to provide a method for producing ethanol using recombinant yeast having the ability to effectively convert the xylose to ethanol.

상기 목적을 달성하기 위하여, 본 발명은 NADH를 보조인자로 사용하는 자일로스 환원효소를 코딩하는 유전자(xyl1), NAD+를 보조인자로 사용하는 자일리톨 탈수소효소를 코딩하는 유전자(xyl2) 및 자이룰로카이나아제를 코딩하는 유전자(xyl3)가 도입되어 있는, 자일로스로부터 에탄올 생성능을 가지는 재조합 효모를 제공한다.In order to achieve the above object, the present invention provides a gene encoding xylose reductase ( xyl1 ) using NADH as a cofactor, a gene encoding xylitol dehydrogenase using xAD2 as a cofactor ( xyl2 ), and xyrulokinase It provides a recombinant yeast having the ability to produce ethanol from xylose, in which a gene encoding xyl3 is introduced.

또한, 본 발명은 (a) 상기 효모를 자일로스 함유 배지에서 배양하여 에탄올을 생산하는 단계; 및 (b) 상기 생성된 에탄올을 수득하는 단계를 포함하는 자일로스로부터 에탄올을 생산하는 방법을 제공한다.
In addition, the present invention (a) culturing the yeast in a xylose-containing medium to produce ethanol; And (b) provides a method for producing ethanol from xylose comprising the step of obtaining the produced ethanol.

본 발명의 효모 균주는 자일로스가 풍부한 셀룰로오스계 바이오매스로부터 에탄올을 생산하는데 있어서, 부산물인 자일리톨을 많이 축적하지 않고, 고수율로 에탄올을 생산할 수 있어, 셀룰로오스 에탄올(CE)을 이용한 바이오 연료 생산에 매우 유용하게 사용될 수 있다.
In the yeast strain of the present invention in producing ethanol from xylose-rich cellulose-based biomass, it is possible to produce ethanol in high yield without accumulating much xylitol as a by-product, and to produce biofuel using cellulose ethanol (CE). It can be very useful.

도 1은 자일로스로부터 에탄올을 생산하는 대사경로를 나타낸 것으로, S. passalidarum의 유전자 SPxyl1P. stipitis의 유전자 PSxyl2PSxyl3가 도입된 효모 균주에서의 자일로스 대사경로를 나타낸 것이다.
도 2는 자일로스 환원효소(XR)를 코딩하는 유전자를 함유하는 재조합 벡터를 나타낸 것이다: (A) PsXR; (B) SpXR; (C) SpXRCO.
도 3는 자일리톨 탈수소효소(XDH) 또는 자이룰로카이네이즈(XK)를 코딩하는 유전자를 함유하는 재조합 벡터를 나타낸 것이다: (A) PsXDH; (B) PsXK.
도 4는 자일로스 환원효소(XR)를 코딩하는 유전자를 함유하는 재조합 벡터로 형질전환된 효모의 보조인자(NADH 및 NADPH)에 따른 효소역가를 나타낸 것이다: (A) PsXR; (B) SpXRCO; (C) SpXR.
FIG. 1 shows metabolic pathways for producing ethanol from xylose, and shows xylose metabolic pathways in yeast strains into which S. passalidarum genes SPxyl1 and P. stipitis genes PSxyl2 and PSxyl3 are introduced.
2 shows a recombinant vector containing a gene encoding xylose reductase (XR): (A) PsXR; (B) SpXR; (C) SpXR CO .
Figure 3 shows a recombinant vector containing a gene encoding xylitol dehydrogenase (XDH) or xylolokinase (XK): (A) PsXDH; (B) PsXK.
4 shows enzymatic titers according to cofactors (NADH and NADPH) of yeast transformed with recombinant vectors containing genes encoding xylose reductase (XR): (A) PsXR; (B) SpXR CO ; (C) SpXR.

일 관점에서, 본 발명은 NADH를 보조인자로 사용하는 자일로스 환원효소를 코딩하는 유전자, NAD+를 보조인자로 사용하는 자일리톨 탈수소효소를 코딩하는 유전자 및 자이룰로카이나아제를 코딩하는 유전자가 도입되어 있는, 자일로스로부터 에탄올 생성능을 가지는 재조합 효모에 관한 것이다. In one aspect, the present invention, a gene encoding a xylose reductase using NADH as a cofactor, a gene encoding a xylitol dehydrogenase using NAD + as a cofactor, and a gene encoding a xylolokinase are introduced. It relates to a recombinant yeast having the ability to produce ethanol from xylose.

자일로스는 중합체인 자일란의 형태로 폐목재 등에 많이 존재하는 바이오매스 (Biomass)이고, 다양한 생물체에 의해 유용한 생산물로 대사될 수 있는 탄소 5개의 단당류로, 크게 두 단계를 거쳐 펜토스 포스페이트 경로 (Pentose phosphate pathway, PPP)에 진입할 수 있다.Xylose is a biomass that is abundant in waste wood in the form of a polymer called xylan, and is a five-carbon monosaccharide that can be metabolized into useful products by various organisms. It is a two-step pentose phosphate pathway. phosphate pathway (PPP).

그러나, 종래 에탄올 발효에 주로 사용되는 효모인 사카로마이세스 세레비지에(Saccharomyces cerevisiae)는 자일로스의 대사 측면에서 자일로스 환원효소 (xylose reductase: XR)를 코딩하는 유전자 xyl1 및 자일리톨 탈수소효소 (xylitol dehydrogenase: XDH)를 코딩하는 유전자 xyl2가 존재하지 않아 자일로스를 대사, 즉 탄소원으로 이용할 수 없었다. However, Saccharomyces cerevisiae , a yeast mainly used in conventional ethanol fermentation, has a gene xyl1 and xylitol that encodes xylose reductase (XR) in terms of metabolism of xylose. The absence of the gene xyl2 , which encodes dehydrogenase (XDH), prevented the use of xylose as a metabolic, ie carbon source.

자일로스는 보조인자로 NADH 또는 NADPH를 사용하는 자일로스 환원효소 (XR)에 의해 자일리톨로 환원되고, 자일리톨은 보조인자로 NAD+를 사용하는 자일리톨 탈수소효소 (XDH)에 의해 자일룰로스로 산화되고, 추가적으로 자일룰로스로 도입된 자이룰로카이나아제(Xylulokinase: XK)에 의해 자이룰로오스-5-포스페이트 (xylulose-5-phosphate)로 전환되어, 5 탄당 인산회로를 통해 대사가 진행된다. 자이룰로카이나아제(XK)는 효모 내에 존재하는 효소이기는 하나 이를 과발현 하지 않고 XR과 XDH만 균주 내로 도입하면, 자일로스부터 에탄올을 생산할 수 있지만, 수율과 생산성이 현저히 낮았다. Xylose is reduced to xylitol by xylose reductase (XR) using NADH or NADPH as cofactor, xylitol is oxidized to xylulose by xylitol dehydrogenase (XDH) using NAD + as cofactor, and further xyl Xylulokinase (XK) introduced into cellulose is converted to xylulose-5-phosphate, and metabolism proceeds through the pentose phosphate cycle. Xylolokinase (XK) is an enzyme present in yeast, but if only XR and XDH are introduced into the strain without overexpressing it, ethanol can be produced from xylose, but the yield and productivity are remarkably low.

본 발명에서 별도로 정의되지 않는 한, xyl1은 자일로스 환원효소를 코딩하는 유전자, xyl2는 자일리톨 탈수소효소를 코딩하는 유전자, xyl3은 자일루로 카이나아제를 코딩하는 유전자를 의미하며, XR은 자일로스 환원효소, XDH는 자일리톨 탈수소효소, XK는 자일루로카이나아제를 의미한다. Unless defined otherwise in the present invention, xyl1 is a gene encoding xylose reductase, xyl2 is a gene encoding xylitol dehydrogenase, xyl3 is a gene encoding xylolo kinase, and XR is xylose. Reductase, XDH means xylitol dehydrogenase, XK means xylolokinase.

본 발명의 일 양태에서는, NADPH 의존성 자일로스 환원효소(XR)가 아닌, NADH 의존성 Spathaspora passalidarum 유래의 SpXR 와 Pichia stipitis 유래의 PsXDH 및 PsXK를 과발현시켜서 보조인자 불균형(cofactor imbalance) 문제를 해결 하고, 에탄올 생산 효율을 획기적으로 증대시켰다. In one embodiment of the invention, SpXR derived from NADH dependent Spathaspora passalidarum and PsXDH derived from Pichia stipitis, and not NADPH dependent xylose reductase (XR); Overexpression of PsXK resolved cofactor imbalance and dramatically increased ethanol production efficiency.

기존에 P. stipitis 유래의 Psxyl1, Psxyl2 Psxyl3이 도입된 재조합 효모 균주에서의 자일로오스 대사경로는, P. stipitis 유래의 Psxyl1이 코딩하는 자일로스 환원효소(XR)의 경우 NADPH를 보조인자로 사용하는 효소이고, Psxyl2가 코딩하는 자일리톨 환원효소는 NAD를 보조인자를 사용하는 효소이므로, 두 효소의 반응 간에 보조인자를 재사용할 수 없어, 보조인자 불균형이 일어나게 된다. Xylose metabolism pathways in recombinant yeast strains in which Psxyl1 , Psxyl2 and Psxyl3 derived from P. stipitis have been previously introduced are NADPH as a cofactor in the case of xylose reductase (XR) encoded by Ps xyl1 derived from P. stipitis. Xylitol reductase, which is an enzyme used and encoded by Ps xyl2, is an enzyme that uses NAD as a cofactor, so that cofactors cannot be reused between the reactions of two enzymes, resulting in cofactor imbalance.

도 1는 S. passalidarum 유래의 Spxyl1 유전자와 P. stipitis 유래의 PSxyl2PSxyl3를 도입한 재조합 효모 균주에서의 자일로스 대사경로를 나타낸 것으로, S. passalidarum 유래의 SPxyl1이 코딩하는 자일로스 환원효소(XR)의 경우 NADH를 보조인자로 사용하는 효소이고, P. stipitis 유래의 PSxyl2는 NAD를 보조인자를 사용하는 효소이므로, 두 효소의 반응 간에 보조인자를 재사용이 일어나, 보조인자 불균형이 없어지게 된다. Figure 1 illustrates the xylene loss pathways, xylose reductase, which is coded in S. SPxyl1 passalidarum derived from S. passalidarum incorporating PSxyl2 and PSxyl3 Spxyl1 of genes derived from the P. stipitis strain derived from recombinant yeast (XR ) Is an enzyme that uses NADH as a cofactor, and PSxyl2 derived from P. stipitis is an enzyme that uses NAD as a cofactor, so that cofactors are reused between the reactions of the two enzymes, thereby eliminating cofactor imbalance.

따라서 본 발명에 있어서, NADH를 보조인자로 사용하는 자일로스 환원효소는 Spathaspora passalidarum 유래인 것을 특징으로 한다.Therefore, in the present invention, the xylose reductase using NADH as a cofactor is derived from Spathaspora passalidarum It features.

바람직하게는 NADH를 보조인자로 사용하는 Spathaspora passalidarum 유래 자일로스 환원효소(SpXR)는 서열번호 1에 따른 아미노산 서열을 가지며, 바람직하게는 Spathaspora passalidarum 유래 자일로스 환원효소를 코딩하는 유전자 Spxyl1은 서열번호 2 또는 서열번호 3의 염기서열을 가지는 것을 특징으로 하는데, 서열번호 2의 염기서열은 S. passalidarum 유래 자일로스 환원효소를 코딩하는 천연형(wild type) 유전자의 서열이고, 서열번호 3의 염기서열은 상기 서열번호 2의 염기서열을 S. cerevisiae에서 최적발현되도록 코돈 최적화(codon optimization)시킨 서열이다. Preferably, Spathaspora passalidarum- derived xylose reductase (SpXR) using NADH as a cofactor has an amino acid sequence according to SEQ ID NO: 1, preferably, the gene Spxyl1 encoding Spathaspora passalidarum- derived xylose reductase is SEQ ID NO: 2 or Characterized in that it has a nucleotide sequence of SEQ ID NO: 3, the nucleotide sequence of SEQ ID NO: 2 is a sequence of a wild type gene encoding a S. passalidarum- derived xylose reductase, the nucleotide sequence of SEQ ID NO: 3 The base sequence of SEQ ID NO: 2 is a codon optimized sequence (codon optimization) to be optimally expressed in S. cerevisiae .

상기 서열번호 2 또는 서열번호 3의 염기서열과 80% 이상, 바람직하게는 90% 이상, 더욱 바람직하게는 95% 이상, 가장 바람직하게는 97% 이상의 서열 상동성을 가지는 염기 서열, 특히 본 발명에서 제공되는 S. passalidarum 유래의 Spxyl1에 의해 코딩되는 자일로스 환원효소의 기능이 유지되는 한, 일부 아미노산 서열에서 변이가 일어난 자일로스 환원효소, 예를 들어 일부 아미노산 잔기에서 보존적 치환(conservative substitution)이 일어난 자일로스 환원효소를 코딩하는 염기 서열도 본 발명에 따른 권리범위에 포함되는 것임은 통상의 기술자에게는 자명한 것이다. 또한, 서열번호 2 또는 서열번호 3에 의해 코딩되는 동일한 아미노산 서열을 코딩하며, 코돈 축퇴성(codon degeneracy)으로 인해 염기 서열이 상이한 염기서열 또한 본 발명에 따른 권리범위에 포함되는 것임은 통상의 기술자에게는 자명한 것이다. Base sequence having at least 80%, preferably at least 90%, more preferably at least 95%, most preferably at least 97% of the base sequence of SEQ ID NO: 2 or SEQ ID NO: 3, in particular in the present invention As long as the function of the xylose reductase encoded by Sp xyl1 from the provided S. passalidarum is retained, a conservative substitution at the xylose reductase, for example at some amino acid residues, has resulted in mutations in some amino acid sequences. It will be apparent to those skilled in the art that the nucleotide sequence encoding the generated xylose reductase is also included in the scope of rights according to the present invention. In addition, those skilled in the art are those that encode the same amino acid sequence encoded by SEQ ID NO: 2 or SEQ ID NO: 3, and whose base sequences differ due to codon degeneracy, are also included in the scope of rights according to the present invention. It is self-evident to.

본 명세서에서 사용된 용어 "상동성 (Homology)"은 서열 유사성 또는 서열 동일성을 의미한다. 상기 상동성은 당업계에 알려진 표준기술을 사용하여 측정 될 수 있다.As used herein, the term "homology" refers to sequence similarity or sequence identity. The homology can be measured using standard techniques known in the art.

본 발명에 있어서, NAD+를 보조인자로 사용하는 자일리톨 탈수소효소를 코딩하는 유전자(xyl2)는 Pichia stipitis 유래인 것을 특징으로 하며, 자이룰로카이나아제를 코딩하는 유전자(xyl3)도 Pichia stipitis 유래인 것을 특징으로 한다.In the present invention, the gene ( xyl2 ) coding for xylitol dehydrogenase using NAD + as a cofactor is derived from Pichia stipitis , and the gene ( xyl3 ) coding for xyllurokinase is also derived from Pichia stipitis It is done.

본 발명에 있어서, 상기 NAD+를 보조인자로 사용하는 자일리톨 탈수소효소는 서열번호 6의 아미노산 서열을 가지는 것이 바람직하다. 서열번호 6은 Pichia stipitis 유래의 자일리톨 탈수소효소(PsXDH)의 아미노산 서열을 의미한다. 또한, Pichia stipitis 유래의 자일리톨 탈수소효소를 코딩하는 유전자(PSxyl2)는 바람직하게는 서열번호 7의 염기서열(Psxyl2)을 가지는 것을 특징으로 하며, Pichia stipitis 유래의 자이룰로카이나아제(PsXK)는 서열번호 8의 아미노산 서열을 가지는 것이 바람직하고, 이를 코딩하는 유전자(Psxyl3)는 서열번호 9의 염기서열을 가지는 것이 바람직하다. In the present invention, the xylitol dehydrogenase using the NAD + as a cofactor preferably has an amino acid sequence of SEQ ID NO. SEQ ID NO: 6 refers to the amino acid sequence of xylitol dehydrogenase (PsXDH) derived from Pichia stipitis . In addition, the gene ( PSxyl2 ) encoding the xylitol dehydrogenase derived from Pichia stipitis preferably is characterized by having the nucleotide sequence ( Psxyl2 ) of SEQ ID NO: 7, and the gyrullokinase ( PsXK ) derived from Pichia stipitis is a sequence It is preferable to have an amino acid sequence of No. 8, and the gene ( Psxyl3 ) encoding the same has a nucleotide sequence of SEQ ID NO: 9.

서열번호 7 및 서열번호 9에 따른 염기서열에 있어, 상기 서열번호 2 또는 서열번호 3에 따른 염기서열과 동일하게 80% 이상, 바람직하게는 90% 이상, 더욱 바람직하게는 95% 이상, 가장 바람직하게는 97% 이상의 서열 상동성을 가지는 염기 서열 및 코돈 축퇴성으로 인해 상이한 염기서열을 가지지만 동일한 아미노산 서열을 가지는 자일리톨 탈수소효소 또는 자이룰로카이나아제를 코딩하는 염기 서열, 그리고 자일리톨 탈수소효소 또는 자이룰로카이나아제의 기능이 유지되는 한, 일부 아미노산 서열에서 변이가 일어난 아미노산 서열, 특히 일부 아미노산 잔기에서 보존적 치환(conservative substitution)이 일어난 자일리톨 탈수소효소 또는 자이룰로카이나아제를 코딩하는 염기 서열도 본 발명에 따른 권리범위에 포함되는 것임은 통상의 기술자에게는 자명한 것이다In the base sequence according to SEQ ID NO: 7 and SEQ ID NO: 9, the same as the base sequence according to SEQ ID NO: 2 or SEQ ID NO: 3 80% or more, preferably 90% or more, more preferably 95% or more, most preferably Preferably, a nucleotide sequence encoding xylitol dehydrogenase or xylolokinase having a different nucleotide sequence but having the same amino acid sequence due to codon degeneracy and a base sequence having more than 97% sequence homology, and xylitol dehydrogenase or As long as the function of the illurokinase is maintained, the amino acid sequence in which the mutation occurs in some amino acid sequences, in particular the base sequence encoding xylitol dehydrogenase or xylokinase, in which conservative substitutions occur in some amino acid residues, It is obvious to those skilled in the art that the scope of the present invention is included in the scope of the present invention. It is

본 발명에서의 각 효소 및 이를 코딩하는 염기서열의 서열번호 및 그 정의는 표 1에 기재된 바와 같다.
The sequence numbers and definitions of the respective enzymes and base sequences encoding the same in the present invention are as described in Table 1.

본 발명에서의 각 효소 및 이를 코딩하는 염기서열의 서열번호 및 정의Sequence number and definition of each enzyme in the present invention and the base sequence encoding the same 서열
번호
order
number
표시Display 정의Justice
1One SpXRSpXR Spathaspora passalidarum 유래의 자일로스
환원효소의 아미노산 서열
Xylose from Spathaspora passalidarum
Amino acid sequence of the reductase
22 Spxyl1Spxyl1 SpXR을 코딩하는 천연형 유전자의 염기 서열Nucleotide sequence of the native gene encoding SpXR 33 Spxyl1Spxyl1 COCO SpXR을 코딩하며, 재조합 효모에서의 발현을
위해 코돈 최적화된 염기 서열
Encodes SpXR and expresses expression in recombinant yeast
Codon-optimized nucleotide sequence
44 PsXRPsXR Pichia stipitis 유래의 자일로스 환원효소의
아미노산 서열
Of xylose reductase from Pichia stipitis
Amino acid sequence
55 Psxyl1Psxyl1 PsXR을 코딩하는 유전자의 염기 서열Nucleotide sequence of the gene encoding PsXR 66 PsXDHPsXDH Pichia stipitis 유래의 자일리톨 탈수소효소의
아미노산 서열
Of Xylitol Dehydrogenase from Pichia stipitis
Amino acid sequence
77 Psxyl2Psxyl2 PsXDH를 코딩하는 염기 서열Base sequence encoding PsXDH 88 PsXKPsXK Pichia stipitis 유래의 자일루로 카이나아제의
아미노산 서열
Of xylolokinase from Pichia stipitis
Amino acid sequence
99 Psxyl3Psxyl3 PsXK를 코딩하는 염기 서열Base sequence encoding PsXK

본 발명에서, 용어 “벡터 (vector)”는 적합한 숙주, 특히 재조합 효모 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자, 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 “플라스미드 (plasmid)” 및 “벡터 (vector)”는 때로 상호 교환적으로 사용된다. 그러나, 본 발명은 당업계에 알려진 또는 알려지게 되는 바와 동등한 기능을 갖는 벡터의 다른 형태를 포함한다. In the present invention, the term "vector" refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host, in particular in recombinant yeast. The vector may be a plasmid, phage particles, or simply a potential genomic insert. Once transformed into the appropriate host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are the most commonly used form of the current vector, "plasmid" and "vector" are sometimes used interchangeably in the context of the present invention. However, the present invention includes other forms of vectors having functions equivalent to those known or known in the art.

발현 조절 서열 (expression control sequence)”이라는 표현은 특정한 숙주 생물에서 작동가능하게 연결된 코딩 서열의 발현에 필수적인 DNA 서열을 의미한다. 그러한 조절 서열은 전사를 실시하기 위한 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및 전사 및 해독의 종결을 조절하는 서열을 포함한다. 예를 들면, 원핵생물에 적합한 조절 서열은 프로모터, 임의로 오퍼레이터 서열 및 리보좀 결합 부위를 포함한다. 진핵세포는 프로모터, 폴리아데닐화 시그날 및 인핸서가 이에 포함된다. 플라스미드에서 유전자의 발현 양에 가장 영향을 미치는 인자는 프로모터이다. The expression “expression control sequence” refers to a DNA sequence essential for the expression of a coding sequence operably linked in a particular host organism. Such regulatory sequences include promoters for effecting transcription, any operator sequence for regulating such transcription, sequences encoding suitable mRNA ribosomal binding sites, and sequences that control termination of transcription and translation. For example, suitable control sequences for prokaryotes include promoters, optionally operator sequences, and ribosomal binding sites. Eukaryotic cells include promoters, polyadenylation signals and enhancers. The factor that most influences the amount of gene expression in the plasmid is the promoter.

본 발명의 DNA 서열을 발현시키기 위하여, 매우 다양한 발현 조절 서열중 어느 것이라도 벡터에 사용될 수 있다. 유용한 발현 조절서열의 예에는, 예를 들어, lac 시스템, trp 시스템, TAC 또는 TRC 시스템, T3 및 T7 프로모터들, 파지 람다의 주요 오퍼레이터 및 프로모터 영역, fd 코드 단백질의 조절 영역, 3-포스포글리세레이트 키나제 또는 다른 글리콜분해 효소에 대한 프로모터, 상기 포스파타제의 프로모터들, 예를 들어 Pho5, 효모 알파-교배 시스템의 프로모터 및 원핵세포 또는 진핵 세포 또는 이들의 바이러스의 유전자의 발현을 조절하는 것으로 알려진 구성과 유도의 기타 다른 서열 및 이들의 여러 조합이 포함된다. To express the DNA sequences of the invention, any of a wide variety of expression control sequences can be used in the vector. Examples of useful expression control sequences include, for example, lac system, trp system, TAC or TRC system, T3 and T7 promoters, major operator and promoter region of phage lambda, regulatory region of fd code protein, 3-phosphoglycerol A promoter known to modulate the expression of a promoter for late kinase or other glycolysis enzymes, promoters of said phosphatase, such as Pho5, a yeast alpha-crossing system and prokaryotic or eukaryotic cells or genes of their viruses; Other sequences of induction and various combinations thereof.

핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 “작동가능하게 연결 (operably linked)”된다. 이것은 적절한 분자 (예를 들면, 전사 활성화 단백질)은 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, “작동가능하게 연결된”은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는것을 의미한다. 그러나, 인핸서 (enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터 (oligonucleotide adaptor) 또는 링커(linker)를 사용한다. Nucleic acids are “operably linked” when placed in a functional relationship with other nucleic acid sequences. This may be genes and regulatory sequence (s) linked in such a way as to allow gene expression when appropriate molecules (eg, transcriptional activating proteins) bind to regulatory sequence (s). For example, DNA for a pre-sequence or secretion leader is operably linked to DNA for a polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide; A promoter or enhancer is operably linked to a coding sequence when it affects the transcription of the sequence; Or the ribosomal binding site is operably linked to a coding sequence when it affects the transcription of the sequence; Or the ribosomal binding site is operably linked to a coding sequence when disposed to facilitate translation. In general, “operably linked” means that the linked DNA sequences are in contact, and in the case of a secretory leader, are in contact and present within the reading frame. However, enhancers do not need to touch. Linking of these sequences is performed by ligation (linking) at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers according to conventional methods are used.

본원 명세서에 사용된 용어 “발현 벡터”는 통상 이종의 DNA의 단편이 삽입된 재조합 캐리어 (recombinant carrier)로서 일반적으로 이중 가닥의 DNA의 단편을 의미한다. 여기서, 이종 DNA는 숙주 세포에서 천연적으로 발견되지 않는 DNA인 이형 DNA를 의미한다. 발현 벡터는 일단 숙주 세포내에 있으면 숙주 염색체 DNA와 무관하게 복제할 수 있으며 벡터의 수 개의 카피 및 그의 삽입된 (이종) DNA가 생성될 수 있다.As used herein, the term “expression vector” generally refers to a double strand of DNA as a recombinant carrier into which a fragment of heterologous DNA has been inserted. Here, heterologous DNA refers to heterologous DNA, which is DNA not naturally found in host cells. The expression vector can replicate independently of the host chromosomal DNA once it is in the host cell and several copies of the vector and its inserted (heterologous) DNA can be produced.

당업계에 주지된 바와 같이, 숙주세포에서 형질전환된 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가, 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점 (replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함되게 된다. 발현 숙주가 진핵세포인 경우에는, 발현 벡터는 진핵 발현 숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다.As is well known in the art, to raise the expression level of a transformed gene in a host cell, the gene must be operably linked to transcriptional and translational expression control sequences that function in the selected expression host. Preferably, the expression control sequence and the gene of interest are included in one expression vector including the bacterial selection marker and the replication origin. If the expression host is a eukaryotic cell, the expression vector must further comprise an expression marker useful in the eukaryotic expression host.

본원 명세서에 사용된 용어 “형질전환”은 DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다. 본원 명세서에 사용된 용어 “형질감염”은 임의의 코딩 서열이 실제로 발현되든 아니든 발현 벡터가 숙주 세포에 의해 수용되는 것을 의미한다. As used herein, the term “transformation” means that DNA is introduced into a host so that the DNA is replicable as an extrachromosomal factor or by chromosomal integration. The term “transfection” as used herein means that the expression vector is accepted by the host cell whether or not any coding sequence is actually expressed.

물론 모든 벡터와 발현 조절 서열이 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다. 발현 조절 서열을 선정함에 있어서도, 여러 가지 인자들을 고려하여야만 한다. 예를 들어, 서열의 상대적 강도, 조절가능성 및 본 발명의 DNA 서열과의 상용성 등, 특히 가능성있는 이차 구조와 관련하여 고려하여야 한다. 단세포 숙주는 선정된 벡터, 본 발명의 DNA 서열에 의해 코딩되는 산물의 독성, 분비 특성, 단백질을 정확하게 폴딩시킬 수 있는 능력, 배양 및 발효 요건들, 본 발명 DNA 서열에 의해 코딩되는 산물을 숙주로부터 정제하는 것의 용이성 등의 인자를 고려하여 선정되어야만 한다. 이들 변수의 범위내에서, 당업자는 본 발명의 DNA 서열을 발효 또는 대규모 동물 배양에서 발현시킬 수 있는 각종 벡터/발현 조절 서열/숙주 조합을 선정할 수 있다. Of course, it should be understood that not all vectors and expression control sequences function equally in expressing the DNA sequences of the present invention. Likewise not all hosts function equally for the same expression system. However, those skilled in the art can make appropriate choices among various vectors, expression control sequences and hosts without departing from the scope of the present invention without undue experimental burden. For example, in selecting a vector, the host must be taken into account because the vector must be replicated therein. The number of copies of the vector, the ability to control the number of copies, and the expression of other proteins encoded by the vector, such as antibiotic markers, must also be considered. In selecting expression control sequences, several factors must be considered. For example, the relative strength of the sequence, controllability, and compatibility with the DNA sequences of the present invention should be considered, particularly with regard to possible secondary structures. Single cell hosts may be selected from a host for the selected vector, the toxicity of the product encoded by the DNA sequence of the invention, the secretory properties, the ability to accurately fold the protein, the culture and fermentation requirements, the product encoded by the DNA sequence of the invention from the host. It should be selected in consideration of factors such as the ease of purification. Within the scope of these variables, one skilled in the art can select a variety of vector / expression control sequence / host combinations that can express the DNA sequences of the invention in fermentation or large scale animal culture.

다른 관점에서, 본 발명은 (a) 상기 재조합 효모를 자일로스 함유 배지에서 배양하여 에탄올을 생성시키는 단계; 및 (b) 상기 생성된 에탄올을 수득하는 단계.를 포함하는 자일로스로부터 에탄올을 제조하는 방법에 관한 것이다.
In another aspect, the present invention comprises the steps of (a) culturing the recombinant yeast in a xylose-containing medium to produce ethanol; And (b) obtaining the produced ethanol. It relates to a method for preparing ethanol from xylose.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예 1: Example 1: xyl1xyl1 , , xyl2xyl2 또는  or xyl3xyl3 유전자를 함유하는 재조합 벡터의 제작 Construction of Recombinant Vectors Containing Genes

1.1 자일로스 환원효소(xylose reductase: XR)를 코딩하는 유전자(1.1 gene encoding xylose reductase (XR) xyl1xyl1 )를 함유하는 재조합 벡터의 제작Construction of Recombinant Vectors Containing

자일로스 환원효소를 코딩하는 유전자를 함유하는 벡터를 제작하기 위하여, 사카로마이세스 세레비지에(S. cerevisiae)의 TEF 프로모터와 CYC1 터미네이터를 가지는 사카로마이세스 세레비지에 발현벡터인 pRS426 TEF 벡터(Mumberg D. et al., Gene 156:119, 1995)를 backbone으로 사용하였다.To construct a vector containing a gene encoding a xylose reductase, pRS426 TEF vector, an expression vector of Saccharomyces cerevisiae having a TEF promoter of S. cerevisiae and a CYC1 terminator (Mumberg D. et al., Gene 156: 119, 1995) was used as the backbone.

상기 pRS426 TEF 벡터에 도입시킬 자일로스 환원효소(XR) 유전자는 Pichia stipitis 유래의 Psxyl1, Spathaspora passalidarum 유래의 Spxyl1Spxyl1S. cerevisiae에서의 발현이 최적화되도록 코돈최적화(codon optimization)시킨 Spxyl1 CO 유전자를 각각 사용하였다. The pRS426 TEF xylose reductase (XR) gene to be introduced into a vector that is codon optimized (codon optimization) such that the expression in Psxyl1, Spathaspora passalidarum of Spxyl1 and Spxyl1 derived from S. cerevisiae of Pichia stipitis-derived optimized Spxyl1 CO Each gene was used.

P. stipitisPsxyl1,은 P. stipitis 균주(ATCC 58785)에서 수득된 게놈 DNA 주형으로 하여, 하기 프라이머를 사용하여 57℃의 TaOpt(optimal annealing temperature)하에 PCR을 수행하여 증폭하였다.
Psxyl1, the P. stipitis P. stipitis strain is to a genomic DNA template obtained in (ATCC 58785), and the product was amplified by performing PCR under TaOpt (optimal annealing temperature) of 57 ℃ using primers.

정방향 프라이머 PsXR : 5'-GATCGGATCCATGCCTTCTATTAAGTTGAA-3' (서열번호 10) Forward primer PsXR: 5'-GATCGGATCCATGCCTTCTATTAAGTTGAA-3 '(SEQ ID NO: 10)

역방향 프라이머 PsXR : 5'-TCGACTCGAGTTAGACGAAGATAGGAATCT-3' (서열번호 11)
Reverse primer PsXR: 5'-TCGACTCGAGTTAGACGAAGATAGGAATCT-3 '(SEQ ID NO: 11)

S. passalidarumSpxyl1S. passalidarum 균주(ATCC MYA-43455)에서 수득된 게놈 DNA 주형으로 하여, 하기 프라이머를 사용하여 55℃의 TaOpt(optimal annealing temperature)하에 PCR을 수행하여 증폭하였다. Spxyl1 of S. passalidarum is S. passalidarum The genomic DNA template obtained from the strain (ATCC MYA-43455) was amplified by PCR under an optimal annealing temperature (TaOpt) of 55 ° C using the following primers.

정방향 프라이머 SpXR : 5'-GATCGGATCCATGTCTTTTAAATTATCTTC-3' (서열번호 12)Forward primer SpXR: 5'-GATCGGATCCATGTCTTTTAAATTATCTTC-3 '(SEQ ID NO: 12)

역방향 프라이머 SpXR: 5'-TCGACTCGAGTTAAACAAAGATTGGAATAT-3' (서열번호 13)
Reverse primer SpXR: 5'-TCGACTCGAGTTAAACAAAGATTGGAATAT-3 '(SEQ ID NO: 13)

Spxyl1 CO 는 서열번호 2의 염기서열을 가지는 S. passalidarum 유래 Spxyl1 유전자를 (주)바이오니아와 카이스트가 공동 개발한 프로그램을 사용하여 S. cerevisiae에서 최적화시킨 염기서열(서열번호 3)을 수득한 후, 합성하여 사용하였다(주) 바이오니아, 한국). Spxyl1 CO was obtained by optimizing the S. passalidarum- derived Spxyl1 gene having the nucleotide sequence of SEQ ID NO: 2 in S. cerevisiae (SEQ ID NO: 3) using a program co-developed by Bioneer and KAIST. It synthesize | combined and used (Bionia, Korea).

증폭된 P. stipitisPsxyl1단편, S. passalidarumSpxyl1 단편 및 합성된 Spxyl1 CO 유전자는 BamHI 및 XhoI으로 절단된 pRS426 TEF 벡터에 라이게이션 시켜, 각각 pRS426 TEF PsXR(xyl1), pRS426 TEF SpXR 및 pRS426 TEF SpXRCO 를 제작하였다 (도 2).
A fragment of Spxyl1 Psxyl1 fragments, S. passalidarum of amplified P. stipitis and synthetic Spxyl1 CO gene was ligated to pRS426 TEF vector cut with BamHI and XhoI, respectively pRS426 TEF PsXR (xyl1), pRS426 and pRS426 SpXR TEF TEF SpXR CO was produced (FIG. 2).

1.2 자일리톨 탈수소효소(xylitol dehydrogenase : XDH) 유전자(1.2 xylitol dehydrogenase (XDH) gene ( xyl2xyl2 )를 함유하는 재조합 벡터의 제작Construction of Recombinant Vectors Containing

자일리톨 탈수소효소 유전자를 함유하는 벡터를 제작하기 위하여, S. cerevisiae의 TEF 프로모터와 CYC1 터미네이터를 가지는 S. cerevisiae 발현벡터인 pRS424 TEF 벡터(Mumberg D. et al., Gene 156:119, 1995)를 backbone으로 사용하였다.In order to produce a vector containing the xylitol dehydrogenase gene and having the TEF promoter and the CYC1 terminator of S. cerevisiae S. cerevisiae expression vector pRS424 vector TEF (Mumberg D. et al, Gene 156 :. 119, 1995) the backbone Used as.

P. stipitis 유래 Psxyl2P. stipitis 균주(ATCC 58785)에서 수득된 게놈 DNA 주형으로 하여, 하기 프라이머를 사용하여 60℃의 TaOpt (optimal annealing temperature)하에 PCR을 수행하여 증폭하였다.
P. stipitis derived Psxyl2 was amplified by performing PCR under the P. stipitis strain (ATCC 58785) genomic DNA as a template by, for TaOpt (optimal annealing temperature) of 60 ℃ using primers obtained from.

정방향 프라이머 PsXDH : 5'-GATCGGATCCATGACTGCTAACCCTTCCTT-3'(서열번호 14)Forward primer PsXDH: 5'-GATCGGATCCATGACTGCTAACCCTTCCTT-3 '(SEQ ID NO: 14)

역방향 프라이머 PsXDH : 5'-TCGACTCGAGTTACTCAGGGCCGTCAATGA-3' (서열번호 15)Reverse primer PsXDH: 5'-TCGACTCGAGTTACTCAGGGCCGTCAATGA-3 '(SEQ ID NO: 15)

증폭된 P. stipitisPsxyl2 단편을 BamHI 및 XhoI으로 절단된 pRS424 TEF 벡터에 라이게이션시켜, 각각 pRS424 TEF PsXDH(xyl2) 를 제작하였다(도 3(A) ).
Psxyl2 fragments of amplified P. stipitis were ligated to pRS424 TEF vectors digested with BamHI and XhoI to construct pRS424 TEF PsXDH ( xyl2 ), respectively (FIG. 3 (A)).

1.3 자일룰로카이네이즈(xylulokinase:XK) 유전자(1.3 xylulokinase (XK) gene ( xyl3xyl3 )를 함유하는 재조합 벡터의 제작Construction of Recombinant Vectors Containing

자일룰로카이네이즈 유전자를 함유하는 벡터를 제작하기 위하여, S. cerevisiae의 TEF 프로모터와 CYC1 터미네이터를 가지는 S. cerevisiae에 발현벡터인 pRS425 TEF 벡터(Mumberg D. et al., Gene 156:119, 1995)를 backbone으로 사용하였다.In order to construct a vector containing a xylulokinase gene, pRS425 TEF vector (Mumberg D. et al., Gene 156: 119, 1995), which is an expression vector of S. cerevisiae having a TEF promoter and a CYC1 terminator of S. cerevisiae Was used as the backbone.

P. stipitisPsxyl3P. stipitis 균주(ATCC 58785)에서 수득된 게놈 DNA 주형으로 하여, 하기 프라이머를 사용하여 57℃의 TaOpt (optimal annealing temperature)하에 PCR을 수행하여 증폭하였다.
Psxyl3 of P. stipitis was amplified by performing PCR under the P. stipitis strain (ATCC 58785) genomic DNA as a template by, for TaOpt (optimal annealing temperature) of 57 ℃ using primers obtained from.

정방향 프라이머 PsXK : 5'-GATCGGATCCATGACCACTACCCCATTTGA-3' (서열번호 16)Forward primer PsXK: 5'-GATCGGATCCATGACCACTACCCCATTTGA-3 '(SEQ ID NO: 16)

역방향 프라이머 PsXK : 5'-TCGACTCGAGTTAGTGTTTCAATTCACTTT-3' (서열번호 17)Reverse primer PsXK: 5'-TCGACTCGAGTTAGTGTTTCAATTCACTTT-3 '(SEQ ID NO: 17)

증폭된 P. stipitis의 Ps xyl3 단편과 pRS425 TEF 벡터를 BamHI 및 XhoI으로 절단한 후 라이게이션시켜, pRS425 TEF PsXK( xyl3 )을 제작하였다(도 3(B)).
PRS xyl3 fragments of amplified P. stipitis and pRS425 TEF vectors were digested with BamHI and XhoI and ligated to prepare pRS425 TEF PsXK ( xyl3 ) (FIG. 3 (B)).

실시예 2: 자일로스 환원효소의 보조인자 의존성 확인 Example 2: Confirmation of cofactor dependency of xylose reductase

자일로스 환원효소(XR)의 보조인자 의존성을 확인하기 위하여, Pichia stipitis 유래의 Psxyl1, Spathaspora passalidarum 유래의 SPxyl1, S. cerevisiae에서의 발현을 최적화시키기 위하여 SPxyl1을 코돈최적화(codon optimization)시킨 Spxyl1 CO 를 각각 발현하는 재조합 균주를 제조하고, 상기 재조합 균주의 세포추출물의 NADH 또는 NADPH의 환원정도를 확인하였다.To confirm the cofactor dependence of xylose reductase (XR), Spxyl1 CO with codon optimization of SPxyl1 to optimize expression of Ps xyl1 from Pichia stipitis , SPxyl1 from Spathaspora passalidarum and S. cerevisiae To prepare a recombinant strain expressing each, and confirmed the degree of reduction of NADH or NADPH of the cell extract of the recombinant strain.

먼저, Pichia stipitis 유래의 Psxyl1Spathaspora passalidarum 유래의 Spxyl1 Spxyl1 CO 를 각각 함유하는 재조합 벡터 pRS426 TEF PsXR(xyl1), pRS426 TEF SpXR 및 pRS426 TEF SpXRCO를 각각 Saccharomyces cerevisiae CEN-PK2-1D (euroscarf 30000D)에 형질전환시켜, Psxyl1, Spxyl1Spxyl1 CO 를 각각 단독으로 발현하는 재조합 S. cerevisiae인 rSC (PsXR), rSC (SpXR) 및 rSC (SpXRCO)를 수득하였다. 상기 수득된 재조합 균주는 최소배지 (YNB w/o ura, leu, trp)에서 30℃ 200rpm 조건으로 24시간 배양한 후, 글래스 비드(glass bead)를 이용한 세포 파쇄를 통해 조 세포 추출물(crude cell extract)을 수득하였다.First, the recombinant Pichia stipitis containing Spxyl1 Spxyl1 and CO derived from the Psxyl1 and Spathaspora passalidarum derived from each vector pRS426 TEF PsXR (xyl1), pRS426 and pRS426 TEF Saccharomyces cerevisiae TEF SpXR the SpXR CO respectively CEN-PK2-1D (euroscarf 30000D) Was transformed to obtain recombinant S. cerevisiae rSC (PsXR), rSC (SpXR) and rSC (SpXR CO ), which express Psxyl1 , Spxyl1 and Spxyl1 CO alone, respectively. The obtained recombinant strain was incubated for 24 hours at 30 ℃ 200rpm conditions in a minimal medium (YNB w / o ura, leu, trp), crude cell extract (crude cell extract through cell disruption using glass beads) ) Was obtained.

자일로스 환원효소(XR)의 역가값은 1U를 1 μmol의 NADH 또는 NADPH가 1분간 환원되는 정도를 기준으로 정의하였으며, 조 세포 추출물의 총단백질 농도에 따른 값으로 표기하였다. 측정방법은 다음과 같다:The titer of xylose reductase (XR) was defined based on the degree to which 1 μmol of NADH or NADPH was reduced for 1 minute and expressed as a value according to the total protein concentration of the crude cell extract. The measurement method is as follows:

반응용액으로는 100 μl의 0.1M potassium phosphate buffer와 20μl의 4mM NADH 또는 4mM NADPH, 20 μl의 조 세포 추출물, 60μl의 0.33M 자일로스 용액이 포함된 200 μl 용액을 사용하였으며, 자일로스 용액이 추가되기 이전에 3분간 평형상태 유지를 위하여 정치시킨 후, 자일로스 용액이 추가된 후 3분간 340nm에서 보효소의 환원 정도를 관찰하여 측정하였다. 단백질의 농도는 Bradford assay 측정법을 이용하여 정량하였다.As a reaction solution, 200 μl solution containing 100 μl 0.1M potassium phosphate buffer, 20 μl 4mM NADH or 4mM NADPH, 20 μl crude cell extract, 60 μl 0.33M xylose solution was added. After the mixture was allowed to stand for 3 minutes to maintain equilibrium, it was measured by observing the reduction of the coenzyme at 340 nm for 3 minutes after the addition of the xylose solution. Protein concentration was quantified using the Bradford assay.

그 결과, 도 4에 나타난 바와 같이, PsXR의 경우는 보조인자로 NADPH를 주로 사용하였으며, SpXR과 SpXRCO(Spxyl1을 SpXR의 발현을 위해 사용한 경우)의 경우는 보조인자로 NADPH 의존도가 낮아지는 것을 확인할 수 있었다.
As a result, as shown in Figure 4, in the case of PsXR, NADPH was mainly used as a cofactor, and in the case of SpXR and SpXR CO (when Sp xyl1 was used for the expression of SpXR), it was confirmed that the dependency of NADPH was reduced as a cofactor. Could.

실시예 3: NADH 의존성 자일로스 환원효소를 이용한 자일로스로부터 에탄올 생산 Example 3: Ethanol Production from Xylose Using NADH-dependent Xylose Reductase

Saccharomyces cerevisiae CEN-PK2-1D(euroscarf 30000D)에 실시예 1에서 제조된 자일로스 환원효소(XR), 자일리톨 탈수소효소(XDH) 및 자일룰로카이네이즈(XK) 유전자를 각각 함유하는 재조합 벡터를 형질전환시켜 자일로스로부터 에탄올을 생산할 수 있는 재조합 효모균주를 제조하고, 도입된 유전자의 종류에 따른 각 균주의 에탄올 및 자일리톨 생산량을 확인하였다. Saccharomyces cerevisiae CEN-PK2-1D (euroscarf 30000D) was transformed with a recombinant vector containing xylose reductase (XR), xylitol dehydrogenase (XDH) and xylulanase (XK) genes prepared in Example 1, respectively. By preparing a recombinant yeast strain capable of producing ethanol from xylose, and confirmed the ethanol and xylitol production of each strain according to the type of the introduced gene.

배지 종류 및 배양 조건Medium type and culture conditions 접종을 위한 배양(Seed culture) (16 시간)Seed culture (16 hours) YNB w/o ura, leu, trp (2% glucose)
5ml, 30℃, 200rpm
YNB w / o ura, leu, trp (2% glucose)
5ml, 30 ℃, 200rpm
사전 배양 (Pre-culture) (48 시간)Pre-culture (48 hours) YNB w/o ura, leu, trp (2% glucose)
100ml in 500ml flask, 30℃, 200rpm
YNB w / o ura, leu, trp (2% glucose)
100ml in 500ml flask, 30 ℃, 200rpm
본 배양(Main culture) (120 시간)Main culture (120 hours) YP (4% xylose)
- Microaerobic : 100ml in 500ml flask, 30℃, 80rpm
- Anaerobic : 100ml in 300ml serum bottle, 30℃, 150rpm
YP (4% xylose)
-Microaerobic: 100ml in 500ml flask, 30 ℃, 80rpm
Anaerobic: 100ml in 300ml serum bottle, 30 ℃, 150rpm

YNB : Yeast Nitrogen Base (6.7 g/L)(Sigma, St. Louis, USA)YNB: Yeast Nitrogen Base (6.7 g / L) (Sigma, St. Louis, USA)

YP : Yeast Extract (10 g/L), Peptone (20 g/L)(Difco, Lab., Detroit, MI, USA)
YP: Yeast Extract (10 g / L), Peptone (20 g / L) (Difco, Lab., Detroit, MI, USA)

각 균주별로 도입된 재조합 벡터의 종류 및 상기 재조합 벡터가 도입된 균주의 에탄올 및 자일리톨 생산량을 표 3에 나타내었다. Table 3 shows the types of recombinant vectors introduced for each strain and the ethanol and xylitol production of the strains into which the recombinant vectors were introduced.

도입된 유전자 Set에 따른 자일로스 대사 및 에탄올 생산 특성Xylose Metabolism and Ethanol Production Characteristics According to Introduced Gene Set
구분

division
도입 유전자 SETIntroduction gene SET Xylose consumption rate (g/L/hr)Xylose consumption rate (g / L / hr) ethanol productivity (g/L/hr)ethanol productivity (g / L / hr) ethanol titer (g/L)ethanol titer (g / L) Yield
(g/g xylose)
Yield
(g / g xylose)
ethanolethanol XylitolXylitol NO. 1NO. One Psxyl1Psxyl1 , , Psxyl2Psxyl2 , , Psxyl3Psxyl3 0.300.30 0.040.04 2.862.86 0.130.13 0.380.38 NO. 2NO. 2 Spxyl1Spxyl1 , , Psxyl2Psxyl2 , Psxyl3 , Psxyl3 0.390.39 0.100.10 7.637.63 0.270.27 0.200.20 NO. 3NO. 3 Spxyl1Spxyl1 COCO , , Psxyl2Psxyl2 , Psxyl3 , Psxyl3 0.460.46 0.130.13 9.449.44 0.290.29 0.130.13

그 결과, NADPH를 보조인자로 사용하는 Psxyl1을 발현하는 재조합 균주보다 NADH를 보조인자로 사용하는 Spxyl1을 발현하는 재조합 균주가 높은 에탄올 생성능과 낮은 자일리톨 생성능을 나타내었다.
As a result, the recombinant strain expressing Sp xyl1 using NADH as a cofactor showed higher ethanol production ability and lower xylitol generating ability than the recombinant strain expressing Ps xyl1 using NADPH as cofactor.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시의 일예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.The specific parts of the present invention have been described in detail above, and for those skilled in the art, these specific descriptions are merely examples of preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

<110> SK Innovation Co., Ltd. SK Energy Co., LTD. <120> Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast <130> P13-B093 <160> 17 <170> KopatentIn 2.0 <210> 1 <211> 317 <212> PRT <213> Spathaspora passalidarum <400> 1 Met Ser Phe Lys Leu Ser Ser Gly Tyr Glu Met Pro Lys Ile Gly Phe 1 5 10 15 Gly Thr Trp Lys Met Asp Lys Ala Thr Ile Pro Gln Gln Ile Tyr Asp 20 25 30 Ala Ile Lys Gly Gly Ile Arg Ser Phe Asp Gly Ala Glu Asp Tyr Gly 35 40 45 Asn Glu Lys Glu Val Gly Leu Gly Tyr Lys Lys Ala Ile Glu Asp Gly 50 55 60 Leu Val Lys Arg Glu Asp Leu Phe Ile Thr Ser Lys Leu Trp Asn Asn 65 70 75 80 Phe His Asp Pro Lys Asn Val Glu Lys Ala Leu Asp Arg Thr Leu Ala 85 90 95 Asp Leu Gln Leu Asp Tyr Val Asp Leu Phe Leu Ile His Phe Pro Ile 100 105 110 Ala Phe Lys Phe Val Pro Leu Glu Glu Arg Tyr Pro Pro Cys Phe Tyr 115 120 125 Cys Gly Asp Gly Asp Asn Phe His Tyr Glu Asp Val Pro Leu Leu Glu 130 135 140 Thr Trp Lys Ala Leu Glu Ala Leu Val Lys Lys Gly Lys Ile Arg Ser 145 150 155 160 Leu Gly Val Ser Asn Phe Thr Gly Ala Leu Leu Leu Asp Leu Leu Arg 165 170 175 Gly Ser Thr Ile Lys Pro Ala Val Leu Gln Val Glu His His Pro Tyr 180 185 190 Leu Gln Gln Pro Arg Leu Ile Glu Phe Ala Gln Lys Gln Gly Leu Val 195 200 205 Val Thr Ala Tyr Ser Ser Phe Gly Pro Gln Ser Phe Thr Glu Leu Asn 210 215 220 Gln Asn Arg Ala Asn Asn Thr Pro Arg Leu Phe Asp His Glu Val Ile 225 230 235 240 Lys Lys Ile Ala Ala Arg Arg Gly Arg Thr Pro Ala Gln Val Ile Leu 245 250 255 Arg Trp Ala Thr Gln Arg Asn Val Val Ile Ile Pro Lys Ser Asp Thr 260 265 270 Pro Glu Arg Leu Val Glu Asn Leu Ala Val Phe Asp Phe Asp Leu Thr 275 280 285 Glu Glu Asp Phe Lys Glu Ile Ala Ala Leu Asp Ala Asn Leu Arg Phe 290 295 300 Asn Asp Pro Trp Asp Trp Asp His Ile Pro Ile Phe Val 305 310 315 <210> 2 <211> 951 <212> DNA <213> Spathaspora passalidarum <400> 2 atgtctttta aatatcttca ggttatgaaa tgccaaaaat cggttttggt acttggaaga 60 tggacaaggc caccattcct cagcaaattt acgatgctat caagggtggt atcagatcat 120 tcgatggtgc tgaagattac ggtaacgaaa aggaagtggt cttggttaca agaaggctat 180 tgaagacggt cttgttaaga gagaagatct tttcattacc tccaagttat ggaataactt 240 tcatgaccca aagaatgtgg aaaaggcttt agacagaact ttagctgatt tacaattaga 300 tacgtcgact tatttttaat tcatttccca attgctttca agtttgttcc attagaagaa 360 agatacccac cttgcttcta ctgtggtgat ggtgacaact tccattatga agatgtccca 420 ttattggaaa cctggaaggc tttagaagcc ttggttaaga agggtaagat tagatcactt 480 ggtgtttcta acttcactgg tgctttgttg ttggatttac ttagaggttc taccattaag 540 ccagctgttt tgcaagtcga acatcatcca tacttgcaac aaccaagatt aattgaattt 600 gctcaaaagc aaggtcttgt tgtcactgct tactcttcat ttggtcctca atctttcact 660 gaattgaacc aaaacagagc taacaacacc ccaagattgt ttgaccacga agttatcaag 720 aagattgctg ctagaagggg cagaactcca gctcaagtta tcttaagatg ggccacccaa 780 agaaatgtcg tgattattcc aaaatccgat actccagaaa gattggtcga aaacttggct 840 gtctttgact ttgacttaac tgaagaagat ttcaaagaaa ttgccgcctt ggacgctaat 900 ttgagattta atgacccatg ggactgggac catattccaa tctttgttta a 951 <210> 3 <211> 955 <212> DNA <213> Artificial Sequence <220> <223> codon optimized Xylose reductase <400> 3 atgagcttta aactatctag tggttatgaa atgcctaaaa tcggttttgg cacttggaaa 60 atggataagg ccacgattcc tcagcaaata tatgatgcta taaagggtgg tatccgatca 120 ttcgatggtg ctgaagacta tgggaatgag aaagaggttg gattaggata taagaaagct 180 attgaagacg gtttggtgaa gagggaagat ctttttatta cctccaaatt gtggaataac 240 tttcacgatc caaagaatgt ggaaaaagct ctggacagaa ctttagctga tttacaactg 300 gattatgtag acttattttt aattcatttt ccgattgcgt tcaaatttgt acctttagaa 360 gaacgttacc caccttgctt ctactgtgga gatggcgata acttccatta tgaagatgtt 420 ccattattgg agacatggaa agctttagag gcattggtta agaagggtaa aattaggtcg 480 cttggggttt caaacttcac tggtgcactg ttactcgatc tattaagagg ttctaccatt 540 aagccggcag ttttgcaagt agaacatcat ccatacctac aacaaccacg tttaattgaa 600 ttcgcgcaaa aacaaggact tgtagtcaca gcctactctt cattcggtcc tcaaagtttc 660 acagagttga accagaatag agccaacaac acccctagat tgttcgatca cgaagttatc 720 aaaaagatag ctgccagaag gggcagaact cccgctcagg ttatcttaag atgggcaacg 780 caaagaaatg tcgtgataat accaaaatcc gatactcccg aacgcctagt cgagaatttg 840 gcagtctttg actttgatct tacagaagaa gattttaaag aaattgccgc tttggacgca 900 aatttgagat ttaatgaccc atgggactgg gatcatatac caatctttgt ttaac 955 <210> 4 <211> 318 <212> PRT <213> Pchia stipitis <400> 4 Met Pro Ser Ile Lys Leu Asn Ser Gly Tyr Asp Met Pro Ala Val Gly 1 5 10 15 Phe Gly Cys Trp Lys Val Asp Val Asp Thr Cys Ser Glu Gln Ile Tyr 20 25 30 Arg Ala Ile Lys Thr Gly Tyr Arg Leu Phe Asp Gly Ala Glu Asp Tyr 35 40 45 Ala Asn Glu Lys Leu Val Gly Ala Gly Val Lys Lys Ala Ile Asp Glu 50 55 60 Gly Ile Val Lys Arg Glu Asp Leu Phe Leu Thr Ser Lys Leu Trp Asn 65 70 75 80 Asn Tyr His His Pro Asp Asn Val Glu Lys Ala Leu Asn Arg Thr Leu 85 90 95 Ser Asp Leu Gln Val Asp Tyr Val Asp Leu Phe Leu Ile His Phe Pro 100 105 110 Val Thr Phe Lys Phe Val Pro Leu Glu Glu Lys Tyr Pro Pro Gly Phe 115 120 125 Tyr Cys Gly Lys Gly Asp Asn Phe Asp Tyr Glu Asp Val Pro Ile Leu 130 135 140 Glu Thr Trp Lys Ala Leu Glu Lys Leu Val Lys Ala Gly Lys Ile Arg 145 150 155 160 Ser Ile Gly Val Ser Asn Phe Pro Gly Ala Leu Leu Leu Asp Leu Leu 165 170 175 Arg Gly Ala Thr Ile Lys Pro Ser Val Leu Gln Val Glu His His Pro 180 185 190 Tyr Leu Gln Gln Pro Arg Leu Ile Glu Phe Ala Gln Ser Arg Gly Ile 195 200 205 Ala Val Thr Ala Tyr Ser Ser Phe Gly Pro Gln Ser Phe Val Glu Leu 210 215 220 Asn Gln Gly Arg Ala Leu Asn Thr Ser Pro Leu Phe Glu Asn Glu Thr 225 230 235 240 Ile Lys Ala Ile Ala Ala Lys His Gly Lys Ser Pro Ala Gln Val Leu 245 250 255 Leu Arg Trp Ser Ser Gln Arg Gly Ile Ala Ile Ile Pro Lys Ser Asn 260 265 270 Thr Val Pro Arg Leu Leu Glu Asn Lys Asp Val Asn Ser Phe Asp Leu 275 280 285 Asp Glu Gln Asp Phe Ala Asp Ile Ala Lys Leu Asp Ile Asn Leu Arg 290 295 300 Phe Asn Asp Pro Trp Asp Trp Asp Lys Ile Pro Ile Phe Val 305 310 315 <210> 5 <211> 957 <212> DNA <213> Pchia stipitis <400> 5 atgccttcta ttaagttgaa ctctggttac gacatgccag ccgtcggttt cggctgttgg 60 aaagtcgacg tcgacacctg ttctgaacag atctaccgtg ctatcaagac cggttacaga 120 ttgttcgacg gtgccgaaga ttacgccaac gaaaagttag ttggtgccgg tgtcaagaag 180 gccattgacg aaggtatcgt caagcgtgaa gacttgttcc ttacctccaa gttgtggaac 240 aactaccacc acccagacaa cgtcgaaaag gccttgaaca gaaccctttc tgacttgcaa 300 gttgactacg ttgacttgtt cttgatccac ttcccagtca ccttcaagtt cgttccatta 360 gaagaaaagt acccaccagg attctactgt ggtaagggtg acaacttcga ctacgaagat 420 gttccaattt tagagacctg gaaggctctt gaaaagttgg tcaaggccgg taagatcaga 480 tctatcggtg tttctaactt cccaggtgct ttgctcttgg acttgttgag aggtgctacc 540 atcaagccat ctgtcttgca agttgaacac cacccatact tacaacaacc aagattgatc 600 gaattcgctc aatcccgtgg tattgctgtc accgcttact cttcgttcgg tcctcaatct 660 ttcgttgaat tgaaccaagg tagagctttg aacacttctc cattgttcga gaacgaaact 720 atcaaggcta tcgctgctaa gcacggtaag tctccagctc aagtcttgtt gagatggtct 780 tcccaaagag gcattgccat cattccaaag tccaacactg tcccaagatt gttggaaaac 840 aaggacgtca acagcttcga cttggacgaa caagatttcg ctgacattgc caagttggac 900 atcaacttga gattcaacga cccatgggac tgggacaaga ttcctatctt cgtctaa 957 <210> 6 <211> 363 <212> PRT <213> Pichia stipitis <400> 6 Met Thr Ala Asn Pro Ser Leu Val Leu Asn Lys Ile Asp Asp Ile Ser 1 5 10 15 Phe Glu Thr Tyr Asp Ala Pro Glu Ile Ser Glu Pro Thr Asp Val Leu 20 25 30 Val Gln Val Lys Lys Thr Gly Ile Cys Gly Ser Asp Ile His Phe Tyr 35 40 45 Ala His Gly Arg Ile Gly Asn Phe Val Leu Thr Lys Pro Met Val Leu 50 55 60 Gly His Glu Ser Ala Gly Thr Val Val Gln Val Gly Lys Gly Val Thr 65 70 75 80 Ser Leu Lys Val Gly Asp Asn Val Ala Ile Glu Pro Gly Ile Pro Ser 85 90 95 Arg Phe Ser Asp Glu Tyr Lys Ser Gly His Tyr Asn Leu Cys Pro His 100 105 110 Met Ala Phe Ala Ala Thr Pro Asn Ser Lys Glu Gly Glu Pro Asn Pro 115 120 125 Pro Gly Thr Leu Cys Lys Tyr Phe Lys Ser Pro Glu Asp Phe Leu Val 130 135 140 Lys Leu Pro Asp His Val Ser Leu Glu Leu Gly Ala Leu Val Glu Pro 145 150 155 160 Leu Ser Val Gly Val His Ala Ser Lys Leu Gly Ser Val Ala Phe Gly 165 170 175 Asp Tyr Val Ala Val Phe Gly Ala Gly Pro Val Gly Leu Leu Ala Ala 180 185 190 Ala Val Ala Lys Thr Phe Gly Ala Lys Gly Val Ile Val Val Asp Ile 195 200 205 Phe Asp Asn Lys Leu Lys Met Ala Lys Asp Ile Gly Ala Ala Thr His 210 215 220 Thr Phe Asn Ser Lys Thr Gly Gly Ser Glu Glu Leu Ile Lys Ala Phe 225 230 235 240 Gly Gly Asn Val Pro Asn Val Val Leu Glu Cys Thr Gly Ala Glu Pro 245 250 255 Cys Ile Lys Leu Gly Val Asp Ala Ile Ala Pro Gly Gly Arg Phe Val 260 265 270 Gln Val Gly Asn Ala Ala Gly Pro Val Ser Phe Pro Ile Thr Val Phe 275 280 285 Ala Met Lys Glu Leu Thr Leu Phe Gly Ser Phe Arg Tyr Gly Phe Asn 290 295 300 Asp Tyr Lys Thr Ala Val Gly Ile Phe Asp Thr Asn Tyr Gln Asn Gly 305 310 315 320 Arg Glu Asn Ala Pro Ile Asp Phe Glu Gln Leu Ile Thr His Arg Tyr 325 330 335 Lys Phe Lys Asp Ala Ile Glu Ala Tyr Asp Leu Val Arg Ala Gly Lys 340 345 350 Gly Ala Val Lys Cys Leu Ile Asp Gly Pro Glu 355 360 <210> 7 <211> 1095 <212> DNA <213> Pichia stipitis <400> 7 atggtagcta atccctcatt agtacttaat aaaattgatg acattacatt cgaaacttat 60 gaagcaccag aaattgtgga gcctacagat gtaatagtgg aagtaaaaaa aacaggcata 120 tgtggatctg atatacatta ttatgctcat ggaaaaatag gtaactttat cttgaccaag 180 ccaatggttc taggacacga aagtgcaggt gttgtttccc aggttggtaa aggtgtcaaa 240 catttgaagg ttggagacag agtagcaatt gagccaggta ttccttcacg tttatctgat 300 gcttataagt ctggtcatta caacttgtgt cctcatatgt gctttgctgc tactccaaac 360 tccactgagg gtgaaccaaa cccccctggt acattgtgta aatatttcaa aagtccagaa 420 gatttcctcg ttaaattgcc cgaacacgtc tcattggaac taggtgccat ggttgaacca 480 ttgtctgttg gtgtccacgc gtcgaagtta ggtaaggtaa cttttggtga taacgttgcg 540 gttttcggtg ctggtccagt tggtctattg gctgctgcca ctgccaaaac ctttggagct 600 gcaagagtga tcgtgattga tatctttgac aataaattac aaatggccaa ggacattggt 660 gctgctacgc atacatttaa ttccaagacg ggtggagatt ataaagattt aatcgcagca 720 tttgatggtg ttgaacctaa tgttatactt gaatgtaccg gtgcggaacc ttgtatagcc 780 atgggagtgc aaatagcagc tccaggtggg agatttgtcc aagttggtaa tgctggtgcc 840 gctgtcaaat tcccaattac tgaatttgct actaaggagt tgaccttatt tggttctttt 900 agatatggtt acggtgatta ccaaactgcc gtgaatattt ttgatgcaaa ctacaaaaat 960 ggtaaagata aagctccaat tgacttcgaa caattgatta cacatagatt caagtttgac 1020 gatgcaatca aggcttacga cttggttagg gccggtagcg gtgctgtaaa atgccttatt 1080 gatggcccat tataa 1095 <210> 8 <211> 623 <212> PRT <213> Pichia stipitis <400> 8 Met Thr Thr Thr Pro Phe Asp Ala Pro Asp Lys Leu Phe Leu Gly Phe 1 5 10 15 Asp Leu Ser Thr Gln Gln Leu Lys Ile Ile Val Thr Asp Glu Asn Leu 20 25 30 Ala Ala Leu Lys Thr Tyr Asn Val Glu Phe Asp Ser Ile Asn Ser Ser 35 40 45 Val Gln Lys Gly Val Ile Ala Ile Asn Asp Glu Ile Ser Lys Gly Ala 50 55 60 Ile Ile Ser Pro Val Tyr Met Trp Leu Asp Ala Leu Asp His Val Phe 65 70 75 80 Glu Asp Met Lys Lys Asp Gly Phe Pro Phe Asn Lys Val Val Gly Ile 85 90 95 Ser Gly Ser Cys Gln Gln His Gly Ser Val Tyr Trp Ser Arg Thr Ala 100 105 110 Glu Lys Val Leu Ser Glu Leu Asp Ala Glu Ser Ser Leu Ser Ser Gln 115 120 125 Met Arg Ser Ala Phe Thr Phe Lys His Ala Pro Asn Trp Gln Asp His 130 135 140 Ser Thr Gly Lys Glu Leu Glu Glu Phe Glu Arg Val Ile Gly Ala Asp 145 150 155 160 Ala Leu Ala Asp Ile Ser Gly Ser Arg Ala His Tyr Arg Phe Thr Gly 165 170 175 Leu Gln Ile Arg Lys Leu Ser Thr Arg Phe Lys Pro Glu Lys Tyr Asn 180 185 190 Arg Thr Ala Arg Ile Ser Leu Val Ser Ser Phe Val Ala Ser Val Leu 195 200 205 Leu Gly Arg Ile Thr Ser Ile Glu Glu Ala Asp Ala Cys Gly Met Asn 210 215 220 Leu Tyr Asp Ile Glu Lys Arg Glu Phe Asn Glu Glu Leu Leu Ala Ile 225 230 235 240 Ala Ala Gly Val His Pro Glu Leu Asp Gly Val Glu Gln Asp Gly Glu 245 250 255 Ile Tyr Arg Ala Gly Ile Asn Glu Leu Lys Arg Lys Leu Gly Pro Val 260 265 270 Lys Pro Ile Thr Tyr Glu Ser Glu Gly Asp Ile Ala Ser Tyr Phe Val 275 280 285 Thr Arg Tyr Gly Phe Asn Pro Asp Cys Lys Ile Tyr Ser Phe Thr Gly 290 295 300 Asp Asn Leu Ala Thr Ile Ile Ser Leu Pro Leu Ala Pro Asn Asp Ala 305 310 315 320 Leu Ile Ser Leu Gly Thr Ser Thr Thr Val Leu Ile Ile Thr Lys Asn 325 330 335 Tyr Ala Pro Ser Ser Gln Tyr His Leu Phe Lys His Pro Thr Met Pro 340 345 350 Asp His Tyr Met Gly Met Ile Cys Tyr Cys Asn Gly Ser Leu Ala Arg 355 360 365 Glu Lys Val Arg Asp Glu Val Asn Glu Lys Phe Asn Val Glu Asp Lys 370 375 380 Lys Ser Trp Asp Lys Phe Asn Glu Ile Leu Asp Lys Ser Thr Asp Phe 385 390 395 400 Asn Asn Lys Leu Gly Ile Tyr Phe Pro Leu Gly Glu Ile Val Pro Asn 405 410 415 Ala Ala Ala Gln Ile Lys Arg Ser Val Leu Asn Ser Lys Asn Glu Ile 420 425 430 Val Asp Val Glu Leu Gly Asp Lys Asn Trp Gln Pro Glu Asp Asp Val 435 440 445 Ser Ser Ile Val Glu Ser Gln Thr Leu Ser Cys Arg Leu Arg Thr Gly 450 455 460 Pro Met Leu Ser Lys Ser Gly Asp Ser Ser Ala Ser Ser Ser Ala Ser 465 470 475 480 Pro Gln Pro Glu Gly Asp Gly Thr Asp Leu His Lys Val Tyr Gln Asp 485 490 495 Leu Val Lys Lys Phe Gly Asp Leu Tyr Thr Asp Gly Lys Lys Gln Thr 500 505 510 Phe Glu Ser Leu Thr Ala Arg Pro Asn Arg Cys Tyr Tyr Val Gly Gly 515 520 525 Ala Ser Asn Asn Gly Ser Ile Ile Arg Lys Met Gly Ser Ile Leu Ala 530 535 540 Pro Val Asn Gly Asn Tyr Lys Val Asp Ile Pro Asn Ala Cys Ala Leu 545 550 555 560 Gly Gly Ala Tyr Lys Ala Ser Trp Ser Tyr Glu Cys Glu Ala Lys Lys 565 570 575 Glu Trp Ile Gly Tyr Asp Gln Tyr Ile Asn Arg Leu Phe Glu Val Ser 580 585 590 Asp Glu Met Asn Ser Phe Glu Val Lys Asp Lys Trp Leu Glu Tyr Ala 595 600 605 Asn Gly Val Gly Met Leu Ala Lys Met Glu Ser Glu Leu Lys His 610 615 620 <210> 9 <211> 1872 <212> DNA <213> Pichia stipitis <400> 9 atgaccacta ccccatttga tgctccagat aagctcttcc tcgggttcga tctttcgact 60 cagcagttga agatcatcgt caccgatgaa aacctcgctg ctctcaaaac ctacaatgtc 120 gagttcgata gcatcaacag ctctgtccag aagggtgtca ttgctatcaa cgacgaaatc 180 agcaagggtg ccattatttc ccccgtttac atgtggttgg atgcccttga ccatgttttt 240 gaagacatga agaaggacgg attccccttc aacaaggttg ttggtatttc cggttcttgt 300 caacagcacg gttcggtata ctggtctaga acggccgaga aggtcttgtc cgaattggac 360 gctgaatctt cgttatcgag ccagatgaga tctgctttca ccttcaagca cgctccaaac 420 tggcaggatc actctaccgg taaagagctt gaagagttcg aaagagtgat tggtgctgat 480 gccttggctg atatctctgg ttccagagcc cattacagat tcacagggct ccagattaga 540 aagttgtcta ccagattcaa gcccgaaaag tacaacagaa ctgctcgtat ctctttagtt 600 tcgtcatttg ttgccagtgt gttgcttggt agaatcacct ccattgaaga agccgatgct 660 tgtggaatga acttgtacga tatcgaaaag cgcgagttca acgaagagct cttggccatc 720 gctgctggtg tccaccctga gttggatggt gtagaacaag acggtgaaat ttacagagct 780 ggtatcaatg agttgaagag aaagttgggt cctgtcaaac ctataacata cgaaagcgaa 840 ggtgacattg cctcttactt tgtcaccaga tacggcttca accccgactg taaaatctac 900 tcgttcaccg gagacaattt ggccacgatt atctcgttgc ctttggctcc aaatgatgct 960 ttgatctcat tgggtacttc tactacagtt ttaattatca ccaagaacta cgctccttct 1020 tctcaatacc atttgtttaa acatccaacc atgcctgacc actacatggg catgatctgc 1080 tactgtaacg gttccttggc cagagaaaag gttagagacg aagtcaacga aaagttcaat 1140 gtagaagaca agaagtcgtg ggacaagttc aatgaaatct tggacaaatc cacagacttc 1200 aacaacaagt tgggtattta cttcccactt ggcgaaattg tccctaatgc cgctgctcag 1260 atcaagagat cggtgttgaa cagcaagaac gaaattgtag acgttgagtt gggcgacaag 1320 aactggcaac ctgaagatga tgtttcttca attgtagaat cacagacttt gtcttgtaga 1380 ttgagaactg gtccaatgtt gagcaagagt ggagattctt ctgcttccag ctctgcctca 1440 cctcaaccag aaggtgatgg tacagatttg cacaaggtct accaagactt ggttaaaaag 1500 tttggtgact tgttcactga tggaaagaag caaacctttg agtctttgac cgccagacct 1560 aaccgttgtt actacgtcgg tggtgcttcc aacaacggca gcattatccs caagatgggt 1620 tccatcttgg ctcccgtcaa cggaaactac aaggttgaca ttcctaacgc ctgtgcattg 1680 ggtggtgctt acaaggccag ttggagttac gagtgtgaag ccaagaagga atggatcgga 1740 tacgatcagt atatcaacag attgtttgaa gtaagtgacg agatgaatct gttcgaagtc 1800 aaggataaat ggctcgaata tgccaacggg gttggaatgt tggccaagat ggaaagtgaa 1860 ttgaaacact aa 1872 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PsXR forward primer <400> 10 gatcggatcc atgccttcta ttaagttgaa 30 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PsXR reverse primer <400> 11 tcgactcgag ttagacgaag ataggaatct 30 <210> 12 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> SpXR forward primer <400> 12 gatcggatcc atgtctttta aattatcttc 30 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> SpXR reverse primer <400> 13 tcgactcgag ttaaacaaag attggaatat 30 <210> 14 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PsXDH forward primer <400> 14 gatcggatcc atgactgcta acccttcctt 30 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PsXDH reverse primer <400> 15 tcgactcgag ttactcaggg ccgtcaatga 30 <210> 16 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PsXK forward primer <400> 16 gatcggatcc atgaccacta ccccatttga 30 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PsXK reverse primer <400> 17 tcgactcgag ttagtgtttc aattcacttt 30 <110> SK Innovation Co., Ltd.          SK Energy Co., LTD. <120> Recombinant Yeast Producing Ethanol from Xylose and Method for          Producing Ethanol by Using the Recombinant Yeast <130> P13-B093 <160> 17 <170> KopatentIn 2.0 <210> 1 <211> 317 <212> PRT <213> Spathaspora passalidarum <400> 1 Met Ser Phe Lys Leu Ser Ser Gly Tyr Glu Met Pro Lys Ile Gly Phe   1 5 10 15 Gly Thr Trp Lys Met Asp Lys Ala Thr Ile Pro Gln Gln Ile Tyr Asp              20 25 30 Ala Ile Lys Gly Gly Ile Arg Ser Phe Asp Gly Ala Glu Asp Tyr Gly          35 40 45 Asn Glu Lys Glu Val Gly Leu Gly Tyr Lys Lys Ala Ile Glu Asp Gly      50 55 60 Leu Val Lys Arg Glu Asp Leu Phe Ile Thr Ser Lys Leu Trp Asn Asn  65 70 75 80 Phe His Asp Pro Lys Asn Val Glu Lys Ala Leu Asp Arg Thr Leu Ala                  85 90 95 Asp Leu Gln Leu Asp Tyr Val Asp Leu Phe Leu Ile His Phe Pro Ile             100 105 110 Ala Phe Lys Phe Val Pro Leu Glu Glu Arg Tyr Pro Pro Cys Phe Tyr         115 120 125 Cys Gly Asp Gly Asp Asn Phe His Tyr Glu Asp Val Pro Leu Leu Glu     130 135 140 Thr Trp Lys Ala Leu Glu Ala Leu Val Lys Lys Gly Lys Ile Arg Ser 145 150 155 160 Leu Gly Val Ser Asn Phe Thr Gly Ala Leu Leu Leu Asp Leu Leu Arg                 165 170 175 Gly Ser Thr Ile Lys Pro Ala Val Leu Gln Val Glu His His Pro Tyr             180 185 190 Leu Gln Gln Pro Arg Leu Ile Glu Phe Ala Gln Lys Gln Gly Leu Val         195 200 205 Val Thr Ala Tyr Ser Ser Phe Gly Pro Gln Ser Phe Thr Glu Leu Asn     210 215 220 Gln Asn Arg Ala Asn Asn Thr Pro Arg Leu Phe Asp His Glu Val Ile 225 230 235 240 Lys Lys Ile Ala Ala Arg Arg Gly Arg Thr Pro Ala Gln Val Ile Leu                 245 250 255 Arg Trp Ala Thr Gln Arg Asn Val Val Ile Pro Lys Ser Asp Thr             260 265 270 Pro Glu Arg Leu Val Glu Asn Leu Ala Val Phe Asp Phe Asp Leu Thr         275 280 285 Glu Glu Asp Phe Lys Glu Ile Ala Ala Leu Asp Ala Asn Leu Arg Phe     290 295 300 Asn Asp Pro Trp Asp Trp Asp His Ile Pro Ile Phe Val 305 310 315 <210> 2 <211> 951 <212> DNA <213> Spathaspora passalidarum <400> 2 atgtctttta aatatcttca ggttatgaaa tgccaaaaat cggttttggt acttggaaga 60 tggacaaggc caccattcct cagcaaattt acgatgctat caagggtggt atcagatcat 120 tcgatggtgc tgaagattac ggtaacgaaa aggaagtggt cttggttaca agaaggctat 180 tgaagacggt cttgttaaga gagaagatct tttcattacc tccaagttat ggaataactt 240 tcatgaccca aagaatgtgg aaaaggcttt agacagaact ttagctgatt tacaattaga 300 tacgtcgact tatttttaat tcatttccca attgctttca agtttgttcc attagaagaa 360 agatacccac cttgcttcta ctgtggtgat ggtgacaact tccattatga agatgtccca 420 ttattggaaa cctggaaggc tttagaagcc ttggttaaga agggtaagat tagatcactt 480 ggtgtttcta acttcactgg tgctttgttg ttggatttac ttagaggttc taccattaag 540 ccagctgttt tgcaagtcga acatcatcca tacttgcaac aaccaagatt aattgaattt 600 gctcaaaagc aaggtcttgt tgtcactgct tactcttcat ttggtcctca atctttcact 660 gaattgaacc aaaacagagc taacaacacc ccaagattgt ttgaccacga agttatcaag 720 aagattgctg ctagaagggg cagaactcca gctcaagtta tcttaagatg ggccacccaa 780 agaaatgtcg tgattattcc aaaatccgat actccagaaa gattggtcga aaacttggct 840 gtctttgact ttgacttaac tgaagaagat ttcaaagaaa ttgccgcctt ggacgctaat 900 ttgagattta atgacccatg ggactgggac catattccaa tctttgttta a 951 <210> 3 <211> 955 <212> DNA <213> Artificial Sequence <220> <223> codon optimized Xylose reductase <400> 3 atgagcttta aactatctag tggttatgaa atgcctaaaa tcggttttgg cacttggaaa 60 atggataagg ccacgattcc tcagcaaata tatgatgcta taaagggtgg tatccgatca 120 ttcgatggtg ctgaagacta tgggaatgag aaagaggttg gattaggata taagaaagct 180 attgaagacg gtttggtgaa gagggaagat ctttttatta cctccaaatt gtggaataac 240 tttcacgatc caaagaatgt ggaaaaagct ctggacagaa ctttagctga tttacaactg 300 gattatgtag acttattttt aattcatttt ccgattgcgt tcaaatttgt acctttagaa 360 gaacgttacc caccttgctt ctactgtgga gatggcgata acttccatta tgaagatgtt 420 ccattattgg agacatggaa agctttagag gcattggtta agaagggtaa aattaggtcg 480 cttggggttt caaacttcac tggtgcactg ttactcgatc tattaagagg ttctaccatt 540 aagccggcag ttttgcaagt agaacatcat ccatacctac aacaaccacg tttaattgaa 600 ttcgcgcaaa aacaaggact tgtagtcaca gcctactctt cattcggtcc tcaaagtttc 660 acagagttga accagaatag agccaacaac acccctagat tgttcgatca cgaagttatc 720 aaaaagatag ctgccagaag gggcagaact cccgctcagg ttatcttaag atgggcaacg 780 caaagaaatg tcgtgataat accaaaatcc gatactcccg aacgcctagt cgagaatttg 840 gcagtctttg actttgatct tacagaagaa gattttaaag aaattgccgc tttggacgca 900 aatttgagat ttaatgaccc atgggactgg gatcatatac caatctttgt ttaac 955 <210> 4 <211> 318 <212> PRT <213> Pchia stipitis <400> 4 Met Pro Ser Ile Lys Leu Asn Ser Gly Tyr Asp Met Pro Ala Val Gly   1 5 10 15 Phe Gly Cys Trp Lys Val Asp Val Asp Thr Cys Ser Glu Gln Ile Tyr              20 25 30 Arg Ala Ile Lys Thr Gly Tyr Arg Leu Phe Asp Gly Ala Glu Asp Tyr          35 40 45 Ala Asn Glu Lys Leu Val Gly Ala Gly Val Lys Lys Ala Ile Asp Glu      50 55 60 Gly Ile Val Lys Arg Glu Asp Leu Phe Leu Thr Ser Lys Leu Trp Asn  65 70 75 80 Asn Tyr His His Pro Asp Asn Val Glu Lys Ala Leu Asn Arg Thr Leu                  85 90 95 Ser Asp Leu Gln Val Asp Tyr Val Asp Leu Phe Leu Ile His Phe Pro             100 105 110 Val Thr Phe Lys Phe Val Pro Leu Glu Glu Lys Tyr Pro Pro Gly Phe         115 120 125 Tyr Cys Gly Lys Gly Asp Asn Phe Asp Tyr Glu Asp Val Pro Ile Leu     130 135 140 Glu Thr Trp Lys Ala Leu Glu Lys Leu Val Lys Ala Gly Lys Ile Arg 145 150 155 160 Ser Ile Gly Val Ser Asn Phe Pro Gly Ala Leu Leu Leu Asp Leu Leu                 165 170 175 Arg Gly Ala Thr Ile Lys Pro Ser Val Leu Gln Val Glu His His Pro             180 185 190 Tyr Leu Gln Gln Pro Arg Leu Ile Glu Phe Ala Gln Ser Arg Gly Ile         195 200 205 Ala Val Thr Ala Tyr Ser Ser Phe Gly Pro Gln Ser Phe Val Glu Leu     210 215 220 Asn Gln Gly Arg Ala Leu Asn Thr Ser Pro Leu Phe Glu Asn Glu Thr 225 230 235 240 Ile Lys Ala Ile Ala Ala Lys His Gly Lys Ser Pro Ala Gln Val Leu                 245 250 255 Leu Arg Trp Ser Ser Gln Arg Gly Ile Ala Ile Ile Pro Lys Ser Asn             260 265 270 Thr Val Pro Arg Leu Leu Glu Asn Lys Asp Val Asn Ser Phe Asp Leu         275 280 285 Asp Glu Gln Asp Phe Ala Asp Ile Ala Lys Leu Asp Ile Asn Leu Arg     290 295 300 Phe Asn Asp Pro Trp Asp Trp Asp Lys Ile Pro Ile Phe Val 305 310 315 <210> 5 <211> 957 <212> DNA <213> Pchia stipitis <400> 5 atgccttcta ttaagttgaa ctctggttac gacatgccag ccgtcggttt cggctgttgg 60 aaagtcgacg tcgacacctg ttctgaacag atctaccgtg ctatcaagac cggttacaga 120 ttgttcgacg gtgccgaaga ttacgccaac gaaaagttag ttggtgccgg tgtcaagaag 180 gccattgacg aaggtatcgt caagcgtgaa gacttgttcc ttacctccaa gttgtggaac 240 aactaccacc acccagacaa cgtcgaaaag gccttgaaca gaaccctttc tgacttgcaa 300 gttgactacg ttgacttgtt cttgatccac ttcccagtca ccttcaagtt cgttccatta 360 gaagaaaagt acccaccagg attctactgt ggtaagggtg acaacttcga ctacgaagat 420 gttccaattt tagagacctg gaaggctctt gaaaagttgg tcaaggccgg taagatcaga 480 tctatcggtg tttctaactt cccaggtgct ttgctcttgg acttgttgag aggtgctacc 540 atcaagccat ctgtcttgca agttgaacac cacccatact tacaacaacc aagattgatc 600 gaattcgctc aatcccgtgg tattgctgtc accgcttact cttcgttcgg tcctcaatct 660 ttcgttgaat tgaaccaagg tagagctttg aacacttctc cattgttcga gaacgaaact 720 atcaaggcta tcgctgctaa gcacggtaag tctccagctc aagtcttgtt gagatggtct 780 tcccaaagag gcattgccat cattccaaag tccaacactg tcccaagatt gttggaaaac 840 aaggacgtca acagcttcga cttggacgaa caagatttcg ctgacattgc caagttggac 900 atcaacttga gattcaacga cccatgggac tgggacaaga ttcctatctt cgtctaa 957 <210> 6 <211> 363 <212> PRT <213> Pichia stipitis <400> 6 Met Thr Ala Asn Pro Ser Leu Val Leu Asn Lys Ile Asp Asp Ile Ser   1 5 10 15 Phe Glu Thr Tyr Asp Ala Pro Glu Ile Ser Glu Pro Thr Asp Val Leu              20 25 30 Val Gln Val Lys Lys Thr Gly Ile Cys Gly Ser Asp Ile His Phe Tyr          35 40 45 Ala His Gly Arg Ile Gly Asn Phe Val Leu Thr Lys Pro Met Val Leu      50 55 60 Gly His Glu Ser Ala Gly Thr Val Val Gln Val Gly Lys Gly Val Thr  65 70 75 80 Ser Leu Lys Val Gly Asp Asn Val Ala Ile Glu Pro Gly Ile Pro Ser                  85 90 95 Arg Phe Ser Asp Glu Tyr Lys Ser Gly His Tyr Asn Leu Cys Pro His             100 105 110 Met Ala Phe Ala Ala Thr Pro Asn Ser Lys Glu Gly Glu Pro Asn Pro         115 120 125 Pro Gly Thr Leu Cys Lys Tyr Phe Lys Ser Pro Glu Asp Phe Leu Val     130 135 140 Lys Leu Pro Asp His Val Ser Leu Glu Leu Gly Ala Leu Val Glu Pro 145 150 155 160 Leu Ser Val Gly Val His Ala Ser Lys Leu Gly Ser Val Ala Phe Gly                 165 170 175 Asp Tyr Val Ala Val Phe Gly Ala Gly Pro Val Gly Leu Leu Ala Ala             180 185 190 Ala Val Ala Lys Thr Phe Gly Ala Lys Gly Val Ile Val Val Asp Ile         195 200 205 Phe Asp Asn Lys Leu Lys Met Ala Lys Asp Ile Gly Ala Ala Thr His     210 215 220 Thr Phe Asn Ser Lys Thr Gly Gly Ser Glu Glu Leu Ile Lys Ala Phe 225 230 235 240 Gly Gly Asn Val Pro Asn Val Val Leu Glu Cys Thr Gly Ala Glu Pro                 245 250 255 Cys Ile Lys Leu Gly Val Asp Ala Ile Ala Pro Gly Gly Arg Phe Val             260 265 270 Gln Val Gly Asn Ala Ala Gly Pro Val Ser Phe Pro Ile Thr Val Phe         275 280 285 Ala Met Lys Glu Leu Thr Leu Phe Gly Ser Phe Arg Tyr Gly Phe Asn     290 295 300 Asp Tyr Lys Thr Ala Val Gly Ile Phe Asp Thr Asn Tyr Gln Asn Gly 305 310 315 320 Arg Glu Asn Ala Pro Ile Asp Phe Glu Gln Leu Ile Thr His Arg Tyr                 325 330 335 Lys Phe Lys Asp Ala Ile Glu Ala Tyr Asp Leu Val Arg Ala Gly Lys             340 345 350 Gly Ala Val Lys Cys Leu Ile Asp Gly Pro Glu         355 360 <210> 7 <211> 1095 <212> DNA <213> Pichia stipitis <400> 7 atggtagcta atccctcatt agtacttaat aaaattgatg acattacatt cgaaacttat 60 gaagcaccag aaattgtgga gcctacagat gtaatagtgg aagtaaaaaa aacaggcata 120 tgtggatctg atatacatta ttatgctcat ggaaaaatag gtaactttat cttgaccaag 180 ccaatggttc taggacacga aagtgcaggt gttgtttccc aggttggtaa aggtgtcaaa 240 catttgaagg ttggagacag agtagcaatt gagccaggta ttccttcacg tttatctgat 300 gcttataagt ctggtcatta caacttgtgt cctcatatgt gctttgctgc tactccaaac 360 tccactgagg gtgaaccaaa cccccctggt acattgtgta aatatttcaa aagtccagaa 420 gatttcctcg ttaaattgcc cgaacacgtc tcattggaac taggtgccat ggttgaacca 480 ttgtctgttg gtgtccacgc gtcgaagtta ggtaaggtaa cttttggtga taacgttgcg 540 gttttcggtg ctggtccagt tggtctattg gctgctgcca ctgccaaaac ctttggagct 600 gcaagagtga tcgtgattga tatctttgac aataaattac aaatggccaa ggacattggt 660 gctgctacgc atacatttaa ttccaagacg ggtggagatt ataaagattt aatcgcagca 720 tttgatggtg ttgaacctaa tgttatactt gaatgtaccg gtgcggaacc ttgtatagcc 780 atgggagtgc aaatagcagc tccaggtggg agatttgtcc aagttggtaa tgctggtgcc 840 gctgtcaaat tcccaattac tgaatttgct actaaggagt tgaccttatt tggttctttt 900 agatatggtt acggtgatta ccaaactgcc gtgaatattt ttgatgcaaa ctacaaaaat 960 ggtaaagata aagctccaat tgacttcgaa caattgatta cacatagatt caagtttgac 1020 gatgcaatca aggcttacga cttggttagg gccggtagcg gtgctgtaaa atgccttatt 1080 gatggcccat tataa 1095 <210> 8 <211> 623 <212> PRT <213> Pichia stipitis <400> 8 Met Thr Thr Thr Pro Phe Asp Ala Pro Asp Lys Leu Phe Leu Gly Phe   1 5 10 15 Asp Leu Ser Thr Gln Gln Leu Lys Ile Ile Val Thr Asp Glu Asn Leu              20 25 30 Ala Ala Leu Lys Thr Tyr Asn Val Glu Phe Asp Ser Ile Asn Ser Ser          35 40 45 Val Gln Lys Gly Val Ile Ala Ile Asn Asp Glu Ile Ser Lys Gly Ala      50 55 60 Ile Ile Ser Pro Val Tyr Met Trp Leu Asp Ala Leu Asp His Val Phe  65 70 75 80 Glu Asp Met Lys Lys Asp Gly Phe Pro Phe Asn Lys Val Val Gly Ile                  85 90 95 Ser Gly Ser Cys Gln Gln His Gly Ser Val Tyr Trp Ser Arg Thr Ala             100 105 110 Glu Lys Val Leu Ser Glu Leu Asp Ala Glu Ser Ser Leu Ser Ser Gln         115 120 125 Met Arg Ser Ala Phe Thr Phe Lys His Ala Pro Asn Trp Gln Asp His     130 135 140 Ser Thr Gly Lys Glu Leu Glu Glu Phe Glu Arg Val Ile Gly Ala Asp 145 150 155 160 Ala Leu Ala Asp Ile Ser Gly Ser Arg Ala His Tyr Arg Phe Thr Gly                 165 170 175 Leu Gln Ile Arg Lys Leu Ser Thr Arg Phe Lys Pro Glu Lys Tyr Asn             180 185 190 Arg Thr Ala Arg Ile Ser Leu Val Ser Ser Phe Val Ala Ser Val Leu         195 200 205 Leu Gly Arg Ile Thr Ser Ile Glu Glu Ala Asp Ala Cys Gly Met Asn     210 215 220 Leu Tyr Asp Ile Glu Lys Arg Glu Phe Asn Glu Glu Leu Leu Ala Ile 225 230 235 240 Ala Ala Gly Val His Pro Glu Leu Asp Gly Val Glu Gln Asp Gly Glu                 245 250 255 Ile Tyr Arg Ala Gly Ile Asn Glu Leu Lys Arg Lys Leu Gly Pro Val             260 265 270 Lys Pro Ile Thr Tyr Glu Ser Glu Gly Asp Ile Ala Ser Tyr Phe Val         275 280 285 Thr Arg Tyr Gly Phe Asn Pro Asp Cys Lys Ile Tyr Ser Phe Thr Gly     290 295 300 Asp Asn Leu Ala Thr Ile Ile Ser Leu Pro Leu Ala Pro Asn Asp Ala 305 310 315 320 Leu Ile Ser Leu Gly Thr Ser Thr Thr Val Leu Ile Ile Thr Lys Asn                 325 330 335 Tyr Ala Pro Ser Ser Gln Tyr His Leu Phe Lys His Pro Thr Met Pro             340 345 350 Asp His Tyr Met Gly Met Ile Cys Tyr Cys Asn Gly Ser Leu Ala Arg         355 360 365 Glu Lys Val Arg Asp Glu Val Asn Glu Lys Phe Asn Val Glu Asp Lys     370 375 380 Lys Ser Trp Asp Lys Phe Asn Glu Ile Leu Asp Lys Ser Thr Asp Phe 385 390 395 400 Asn Asn Lys Leu Gly Ile Tyr Phe Pro Leu Gly Glu Ile Val Pro Asn                 405 410 415 Ala Ala Ala Gln Ile Lys Arg Ser Val Leu Asn Ser Lys Asn Glu Ile             420 425 430 Val Asp Val Glu Leu Gly Asp Lys Asn Trp Gln Pro Glu Asp Asp Val         435 440 445 Ser Ser Ile Val Glu Ser Gln Thr Leu Ser Cys Arg Leu Arg Thr Gly     450 455 460 Pro Met Leu Ser Lys Ser Gly Asp Ser Ser Ala Ser Ser Ser Ala Ser 465 470 475 480 Pro Gln Pro Glu Gly Asp Gly Thr Asp Leu His Lys Val Tyr Gln Asp                 485 490 495 Leu Val Lys Lys Phe Gly Asp Leu Tyr Thr Asp Gly Lys Lys Gln Thr             500 505 510 Phe Glu Ser Leu Thr Ala Arg Pro Asn Arg Cys Tyr Tyr Val Gly Gly         515 520 525 Ala Ser Asn Asn Gly Ser Ile Ile Arg Lys Met Gly Ser Ile Leu Ala     530 535 540 Pro Val Asn Gly Asn Tyr Lys Val Asp Ile Pro Asn Ala Cys Ala Leu 545 550 555 560 Gly Gly Ala Tyr Lys Ala Ser Trp Ser Tyr Glu Cys Glu Ala Lys Lys                 565 570 575 Glu Trp Ile Gly Tyr Asp Gln Tyr Ile Asn Arg Leu Phe Glu Val Ser             580 585 590 Asp Glu Met Asn Ser Phe Glu Val Lys Asp Lys Trp Leu Glu Tyr Ala         595 600 605 Asn Gly Val Gly Met Leu Ala Lys Met Glu Ser Glu Leu Lys His     610 615 620 <210> 9 <211> 1872 <212> DNA <213> Pichia stipitis <400> 9 atgaccacta ccccatttga tgctccagat aagctcttcc tcgggttcga tctttcgact 60 cagcagttga agatcatcgt caccgatgaa aacctcgctg ctctcaaaac ctacaatgtc 120 gagttcgata gcatcaacag ctctgtccag aagggtgtca ttgctatcaa cgacgaaatc 180 agcaagggtg ccattatttc ccccgtttac atgtggttgg atgcccttga ccatgttttt 240 gaagacatga agaaggacgg attccccttc aacaaggttg ttggtatttc cggttcttgt 300 caacagcacg gttcggtata ctggtctaga acggccgaga aggtcttgtc cgaattggac 360 gctgaatctt cgttatcgag ccagatgaga tctgctttca ccttcaagca cgctccaaac 420 tggcaggatc actctaccgg taaagagctt gaagagttcg aaagagtgat tggtgctgat 480 gccttggctg atatctctgg ttccagagcc cattacagat tcacagggct ccagattaga 540 aagttgtcta ccagattcaa gcccgaaaag tacaacagaa ctgctcgtat ctctttagtt 600 tcgtcatttg ttgccagtgt gttgcttggt agaatcacct ccattgaaga agccgatgct 660 tgtggaatga acttgtacga tatcgaaaag cgcgagttca acgaagagct cttggccatc 720 gctgctggtg tccaccctga gttggatggt gtagaacaag acggtgaaat ttacagagct 780 ggtatcaatg agttgaagag aaagttgggt cctgtcaaac ctataacata cgaaagcgaa 840 ggtgacattg cctcttactt tgtcaccaga tacggcttca accccgactg taaaatctac 900 tcgttcaccg gagacaattt ggccacgatt atctcgttgc ctttggctcc aaatgatgct 960 ttgatctcat tgggtacttc tactacagtt ttaattatca ccaagaacta cgctccttct 1020 tctcaatacc atttgtttaa acatccaacc atgcctgacc actacatggg catgatctgc 1080 tactgtaacg gttccttggc cagagaaaag gttagagacg aagtcaacga aaagttcaat 1140 gtagaagaca agaagtcgtg ggacaagttc aatgaaatct tggacaaatc cacagacttc 1200 aacaacaagt tgggtattta cttcccactt ggcgaaattg tccctaatgc cgctgctcag 1260 atcaagagat cggtgttgaa cagcaagaac gaaattgtag acgttgagtt gggcgacaag 1320 aactggcaac ctgaagatga tgtttcttca attgtagaat cacagacttt gtcttgtaga 1380 ttgagaactg gtccaatgtt gagcaagagt ggagattctt ctgcttccag ctctgcctca 1440 cctcaaccag aaggtgatgg tacagatttg cacaaggtct accaagactt ggttaaaaag 1500 tttggtgact tgttcactga tggaaagaag caaacctttg agtctttgac cgccagacct 1560 aaccgttgtt actacgtcgg tggtgcttcc aacaacggca gcattatccs caagatgggt 1620 tccatcttgg ctcccgtcaa cggaaactac aaggttgaca ttcctaacgc ctgtgcattg 1680 ggtggtgctt acaaggccag ttggagttac gagtgtgaag ccaagaagga atggatcgga 1740 tacgatcagt atatcaacag attgtttgaa gtaagtgacg agatgaatct gttcgaagtc 1800 aaggataaat ggctcgaata tgccaacggg gttggaatgt tggccaagat ggaaagtgaa 1860 ttgaaacact aa 1872 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PsXR forward primer <400> 10 gatcggatcc atgccttcta ttaagttgaa 30 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PsXR reverse primer <400> 11 tcgactcgag ttagacgaag ataggaatct 30 <210> 12 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> SpXR forward primer <400> 12 gatcggatcc atgtctttta aattatcttc 30 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> SpXR reverse primer <400> 13 tcgactcgag ttaaacaaag attggaatat 30 <210> 14 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PsXDH forward primer <400> 14 gatcggatcc atgactgcta acccttcctt 30 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PsXDH reverse primer <400> 15 tcgactcgag ttactcaggg ccgtcaatga 30 <210> 16 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PsXK forward primer <400> 16 gatcggatcc atgaccacta ccccatttga 30 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PsXK reverse primer <400> 17 tcgactcgag ttagtgtttc aattcacttt 30

Claims (11)

Spathaspora passalidarum 유래의 서열번호 1의 아미노산 서열로 표시되는 NADH를 보조인자로 사용하는 자일로스 환원효소를 코딩하는 유전자, Pichia stipitis 유래의 NAD+를 보조인자로 사용하는 자일리톨 탈수소효소를 코딩하는 유전자 및 Pichia stipitis 유래의 자이룰로카이나아제를 코딩하는 유전자가 도입되어 있는, 자일로스로부터 에탄올 생성능을 가지는 재조합 사카로마이세스 세레비지에(Saccharomyces cerevisiae).
A gene encoding xylose reductase using NADH represented by amino acid sequence of SEQ ID NO: 1 from Spathaspora passalidarum as a cofactor, a gene encoding xylitol dehydrogenase using NAD + from Pichia stipitis as a cofactor, and a derivative from Pichia stipitis Recombinant Saccharomyces cerevisiae with ethanol-producing ability from xylose, into which a gene encoding xylolokinase is introduced.
삭제delete 삭제delete 제1항에 있어서, NADH를 보조인자로 사용하는 자일로스 환원효소를 코딩하는 유전자는 서열번호 2 또는 서열번호 3의 염기서열을 가지는 것을 특징으로 하는 재조합 사카로마이세스 세레비지에.
The recombinant Saccharomyces cerevisiae of claim 1, wherein the gene encoding the xylose reductase using NADH as a cofactor has a nucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 3.
삭제delete 제1항에 있어서, NAD+를 보조인자로 사용하는 자일리톨 탈수소효소를 코딩하는 유전자는 서열번호 6의 아미노산 서열을 코딩하는 유전자인 것을 특징으로 하는 재조합 사카로마이세스 세레비지에.
The recombinant Saccharomyces cerevisiae of claim 1, wherein the gene encoding xylitol dehydrogenase using NAD + as a cofactor is a gene encoding the amino acid sequence of SEQ ID NO: 6.
제6항에 있어서, NAD+를 보조인자로 사용하는 자일리톨 탈수소효소를 코딩하는 유전자는 서열번호 7의 염기서열을 가지는 것을 특징으로 하는 재조합 사카로마이세스 세레비지에.
The recombinant Saccharomyces cerevisiae according to claim 6, wherein the gene encoding xylitol dehydrogenase using NAD + as a cofactor has a nucleotide sequence of SEQ ID NO.
삭제delete 제1항에 있어서, 자이룰로카이나아제를 코딩하는 유전자는 서열번호 8의 아미노산 서열을 코딩하는 유전자인 것을 특징으로 하는 재조합 사카로마이세스 세레비지에.
The recombinant Saccharomyces cerevisiae according to claim 1, wherein the gene encoding gyrullokinase is a gene encoding the amino acid sequence of SEQ ID NO: 8.
제9항에 있어서, 자이룰로카이나아제를 코딩하는 유전자는 서열번호 9의 염기서열을 가지는 것을 특징으로 하는 재조합 사카로마이세스 세레비지에.
10. The recombinant Saccharomyces cerevisiae of claim 9, wherein the gene encoding the xyrulokinase has a nucleotide sequence of SEQ ID NO: 9.
다음 단계를 포함하는 자일로스로부터 에탄올을 제조하는 방법;
(a) 제1항의 재조합 사카로마이세스 세레비지에를 자일로스 함유 배지에서 배양하여 에탄올을 생성시키는 단계; 및
(b) 상기 생성된 에탄올을 수득하는 단계.
A process for preparing ethanol from xylose comprising the following steps;
(a) culturing the recombinant Saccharomyces cerevisiae of claim 1 in a xylose-containing medium to produce ethanol; And
(b) obtaining the resulting ethanol.
KR1020130055913A 2013-05-16 2013-05-16 Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast KR102075400B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020130055913A KR102075400B1 (en) 2013-05-16 2013-05-16 Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast
PCT/KR2014/003477 WO2014185635A1 (en) 2013-05-16 2014-04-22 Recombinant yeast capable of producing ethanol from xylose and method for producing ethanol using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130055913A KR102075400B1 (en) 2013-05-16 2013-05-16 Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast

Publications (2)

Publication Number Publication Date
KR20140137470A KR20140137470A (en) 2014-12-03
KR102075400B1 true KR102075400B1 (en) 2020-03-02

Family

ID=52457222

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130055913A KR102075400B1 (en) 2013-05-16 2013-05-16 Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast

Country Status (1)

Country Link
KR (1) KR102075400B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789210A (en) * 1993-11-08 1998-08-04 Purdue Research Foundation Recombinant yeasts for effective fermentation of glucose and xylose

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Appl Environ Microbiol,제69권,1호,495-503면(2003) 1부.*
Appl Microbiol Biotechnol,제94권,205-214면(2012) 1부.*
Metabolic Engineering,제3권,236-249면(2001) 1부.*

Also Published As

Publication number Publication date
KR20140137470A (en) 2014-12-03

Similar Documents

Publication Publication Date Title
US11624057B2 (en) Glycerol free ethanol production
US7833764B2 (en) DNA encoding xylitol dehydrogenase
EP2179036B1 (en) Polypeptide having nadh dependent hmf reductase activity
AU2009318173B2 (en) Saccharomyces strain with ability to grow on pentose sugars under anaerobic cultivation conditions
WO2018172328A1 (en) Improved glycerol free ethanol production
EP3559234B1 (en) Recombinant yeast strains for pentose fermentation
Lönn et al. Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus
Reshamwala et al. Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae
JP5796138B2 (en) Yeast producing ethanol from xylose
KR102075400B1 (en) Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast
KR102136841B1 (en) Recombinant Yeast Producing Ethanol from Xylose and Method for Producing Ethanol by Using the Recombinant Yeast
US8603776B2 (en) Method for preparing xylose-utilizing strain
JP5671339B2 (en) Yeast producing ethanol from xylose
WO2016060171A1 (en) Yeast capable of producing ethanol from xylose
WO2017078156A1 (en) Yeast producing ethanol from xylose
JP7365770B2 (en) Yeast that suppresses xylitol accumulation
WO2023208762A2 (en) Mutant yeast cell and process for the production of ethanol
TW201623619A (en) Recombinant yeast cell and preparation method and uses thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant