WO2016060171A1 - Yeast capable of producing ethanol from xylose - Google Patents

Yeast capable of producing ethanol from xylose Download PDF

Info

Publication number
WO2016060171A1
WO2016060171A1 PCT/JP2015/079070 JP2015079070W WO2016060171A1 WO 2016060171 A1 WO2016060171 A1 WO 2016060171A1 JP 2015079070 W JP2015079070 W JP 2015079070W WO 2016060171 A1 WO2016060171 A1 WO 2016060171A1
Authority
WO
WIPO (PCT)
Prior art keywords
yeast
gene
gene encoding
xylose
present
Prior art date
Application number
PCT/JP2015/079070
Other languages
French (fr)
Japanese (ja)
Inventor
仁 小西
梢栄 牟田口
福田 明
上村 毅
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to BR112017005959A priority Critical patent/BR112017005959A2/en
Priority to AU2015331353A priority patent/AU2015331353B2/en
Priority to JP2016554106A priority patent/JP6616311B2/en
Publication of WO2016060171A1 publication Critical patent/WO2016060171A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a yeast that produces ethanol from xylose.
  • bioalcohol has attracted attention as an alternative fuel for petroleum from the viewpoint of reducing CO 2 emissions.
  • bioalcohol using vegetation as a resource has been actively studied. Since about one-third of the sugar obtained from cellulosic biomass such as plants is occupied by xylose, various researches have been conducted on xylose-assimilating yeast used in the production of bioalcohol.
  • Saccharomyces cerevisiae For the production of bioethanol, yeasts represented by Saccharomyces cerevisiae are mainly used. Saccharomyces cerevisiae has a high ability to produce ethanol from hexoses such as glucose and mannose, and has high resistance to ethanol. However, Saccharomyces cerevisia cannot use pentoses such as xylose.
  • Saccharomyces cerevisiae As a yeast having xylose utilization ability, Schiffosomyces stipitis is known. Saccharomyces cerevisiae has a gene group corresponding to the gene group for assimilating xylose possessed by Syphazomyces stipitis, but many of these genes in Saccharomyces cerevisiae are not expressed or expressed. Even if so, the amount is considered to be very small. Therefore, improvement of Saccharomyces cerevisiae by gene introduction derived from xylose-assimilating yeast is being promoted.
  • yeast prepared by the above method falls under the category of recombinants, and there is a need for means to prevent the leakage of bacterial cells to the outside world. Since various restrictions arise, it is not preferable.
  • Patent Document 1 So far, production of yeast imparted with xylose utilization ability by activating a xylose utilization gene endogenous to Saccharomyces cerevisiae has been studied (WO2010 / 001906 (Patent Document 1), WO2014 / 058034). No. (Patent Document 2)). Yeasts produced using these techniques have the advantage that they are not genetic recombinants because they utilize xylose-utilizing genes derived from the yeasts themselves.
  • An object of the present invention is to provide a yeast having an improved ability to produce ethanol from xylose.
  • the present invention is a yeast that has further improved ethanol-producing ability over conventional xylose-utilizing yeast using a gene encoding a xylose-degrading enzyme, preferably by using a gene derived from the yeast itself. It aims at providing the transformed yeast which has ethanol productivity.
  • a gene encoding xylose reductase As a result of intensive studies to solve the above problems, the present inventors have found that there are three genes: a gene encoding xylose reductase, a gene encoding xylulose phosphorylase, and a gene encoding xylitol dehydrogenase.
  • the present invention relates to the following.
  • a gene encoding xylose reductase, a gene encoding xylulose phosphorylase, a gene encoding xylitol dehydrogenase, a gene encoding transaldolase, a gene encoding transketolase, and alcohol dehydrogenase A transformed yeast into which a gene to be encoded has been introduced so that it can be expressed.
  • the yeast according to [1] wherein the gene is an endogenous gene of the yeast.
  • [4] The yeast according to any one of [1] to [3], wherein the gene encoding xylose reductase is GRE3.
  • [5] The yeast according to any one of [1] to [4], wherein the gene encoding xylulose kinase is XKS1.
  • [6] The yeast according to any one of [1] to [5], wherein the gene encoding xylitol dehydrogenase is SOR1.
  • [7] The yeast according to any one of [1] to [6], wherein the gene encoding transaldolase is TAL1.
  • [8] The yeast according to any one of [1] to [7], wherein the gene encoding transketolase is TKL1.
  • a method for producing ethanol comprising culturing the transformed yeast according to any one of [1] to [13] in a xylose-containing medium and collecting ethanol from the resulting culture.
  • a gene encoding xylose reductase, a gene encoding xylulose kinase, a gene encoding xylitol dehydrogenase, a gene encoding transaldolase, a gene encoding transketolase, and alcohol dehydrogenase A transformed yeast into which a gene encoding is introduced is provided.
  • the transformed yeast of the present invention is produced by transforming with a gene possessed by the yeast itself. For this reason, the transformed yeast of the present invention does not correspond to a gene recombinant, and is preferable in terms of safety and ease of handling.
  • the transformed yeast of the present invention can efficiently produce ethanol from xylose. Therefore, the present invention provides a method for producing ethanol from xylose and a transformed yeast capable of producing ethanol from xylose that can be used in the method.
  • the black color represents the result of the xylose-assimilating yeast obtained in Example 2
  • the gray color represents the result of the TAL1 ⁇ TKL1 gene overexpression strain obtained in Example 3
  • the results of TAL1, TKL1, and ADH1 gene overexpression strains are shown. It is the figure which showed the ethanol yield of the transformed yeast (shochu yeast) in the culture medium which contains glucose and ethanol as a substrate.
  • Gray represents the result of the TAL1 ⁇ TKL1 gene overexpression strain obtained in Example 3
  • white represents the result of the TAL1 ⁇ TKL1 ⁇ ADH1 gene overexpression strain obtained in Example 4. It is a figure which shows the result of having analyzed the expression level of ADH1 gene.
  • Gray represents the result of the TAL1 ⁇ TKL1 gene overexpression strain obtained in Example 3, and white represents the result of the TAL1 ⁇ TKL1 ⁇ ADH1 gene overexpression strain obtained in Example 4. It is a figure which shows the result of having measured the ADH1 activity of yeast. Gray represents the result of the TAL1 ⁇ TKL1 gene overexpression strain obtained in Example 3, and white represents the result of the TAL1 ⁇ TKL1 ⁇ ADH1 gene overexpression strain obtained in Example 4.
  • the present invention relates to genes relating to six enzymes relating to xylose utilization and the pentose phosphate pathway and ethanol production pathway, that is, genes encoding xylose reductase, genes encoding xylulose kinase, xylitol dehydration
  • genes encoding an elementary enzyme, a gene encoding a transaldolase, a gene encoding a transketolase, and a gene encoding an alcohol dehydrogenase have been introduced so that they can be expressed has excellent ethanol production ability Based on knowledge.
  • the transformed yeast of the present invention comprises a xylose utilization gene such as a gene encoding xylose reductase, a gene encoding xylulose phosphorylase and a gene encoding xylitol dehydrogenase, a gene encoding transaldolase, It can be prepared by introducing a gene encoding a ketolase and a gene encoding an alcohol dehydrogenase in an expressible manner.
  • a xylose utilization gene such as a gene encoding xylose reductase, a gene encoding xylulose phosphorylase and a gene encoding xylitol dehydrogenase, a gene encoding transaldolase, It can be prepared by introducing a gene encoding a ketolase and a gene encoding an alcohol dehydrogenase in an expressible manner.
  • the transformed yeast of the present invention may comprise a gene encoding a xylose reductase, a gene encoding xylulose kinase, a gene encoding xylitol dehydrogenase, a trans It can also be produced by increasing the expression level of a gene encoding an aldolase, a gene encoding a transketolase and / or a gene encoding an alcohol dehydrogenase.
  • the “xylose utilization gene” is a gene encoding an enzyme involved in utilization of xylose.
  • the xylose utilization gene introduced into the host yeast in the present invention is at least three genes: a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose kinase.
  • the gene encoding xylitol dehydrogenase is preferably a gene encoding sorbitol dehydrogenase.
  • At least three genes are also introduced into the host yeast. These three genes are genes encoding enzymes related to the pentose phosphate pathway and the ethanol production pathway.
  • these genes introduced into the host yeast are genes derived from the host yeast. That is, in another embodiment of the present invention, one of the features is to activate the expression of an enzyme gene inherent in yeast (endogenous) and enhance the activity of the enzyme possessed by the yeast itself.
  • one of the characteristics of these genes introduced into the host yeast is that they are introduced into the host yeast chromosome.
  • the transformed yeast introduced with the genes for the above six enzymes has an excellent productivity from xylose to ethanol.
  • yeasts do not have pentose assimilation ability such as xylose because they are in a so-called dormant state in which the xylose assimilating enzyme group does not substantially function.
  • yeast belonging to the genus Saccharomyces cannot produce ethanol using xylose, despite having a gene group encoding a xylose-utilizing enzyme group.
  • yeast-derived xylose utilization genes yeast-derived enzyme genes related to the pentose phosphate pathway and ethanol production pathway (transaldolase-encoding gene, transketolase-encoding gene, and alcohol dehydrogenase) When the activity of these genes is also increased by introducing the encoding genes) or replacing the promoters of these genes, the efficiency of ethanol production from xylose is further improved.
  • a gene encoding transaldolase, a gene encoding transketolase, and a gene encoding alcohol dehydrogenase were introduced into yeast in which a xylose utilization gene was inserted on the chromosome. It may be yeast.
  • ethanol can be efficiently produced using xylose in a yeast that does not have ethanol-producing ability.
  • the present invention can be effectively applied to yeasts that do not have ethanol-producing ability and yeasts that want to improve ethanol-producing ability.
  • the transformed yeast of the present invention since the transformed yeast of the present invention has an excellent ability to produce ethanol from xylose, the present invention cultivates the transformed yeast and produces ethanol by collecting ethanol from the resulting culture. A method is also provided.
  • the transformed yeast of the present invention comprises a xylose utilization gene such as a gene encoding xylose reductase, a gene encoding xylulose phosphorylase and a gene encoding xylitol dehydrogenase, and a transaldolase.
  • a gene encoding a transketolase, and a gene encoding an alcohol dehydrogenase have been introduced so as to allow expression.
  • the yeast to be subjected to gene transfer or transformation is a yeast that does not have the ability to assimilate pentoses such as xylose.
  • the yeast may have any ability to assimilate pentose before gene introduction or transformation, and may have ability to assimilate hexose such as glucose.
  • “5 carbon sugar assimilation ability” refers to the ability to grow using 5 carbon sugars such as xylose as a carbon source. Since yeast having pentose assimilation ability can grow in a medium to which only pentose is added as a carbon source, the pentose utilization ability is in a medium to which only pentose is added as a carbon source. The degree of yeast growth in can be confirmed by measuring turbidity at a wavelength such as 600 nm or 660 nm.
  • the yeast to be subjected to gene transfer or transformation can be selected for the purpose of improving ethanol productivity.
  • yeasts include yeasts imparted with xylose utilization ability and yeasts with activated xylose utilization ability.
  • the target yeast for gene transfer or transformation is not particularly limited, and examples thereof include yeast belonging to the genus Saccharomyces.
  • yeast belonging to the genus Saccharomyces include Saccharomyces cerevisia species such as laboratory yeast strains.
  • the yeast to be the target of gene transfer or transformation can be not only haploid but also diploid yeast.
  • the diploid yeast is excellent as a practical yeast, and examples thereof include brewing yeast such as baker's yeast, sake yeast, shochu yeast, and wine yeast.
  • the yeast to be subjected to gene transfer or transformation is preferably a brewing yeast having resistance to ethanol, and such yeast is not particularly limited, Examples include yeast belonging to the genus Saccharomyces (for example, Saccharomyces cerevisiae).
  • the yeast that is the target of gene transfer or transformation in the present invention is preferably a yeast belonging to the genus Saccharomyces, more preferably Saccharomyces cerevisiae.
  • the xylose utilization gene is at least three genes, a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose kinase.
  • the xylitol dehydrogenase is preferably sorbitol dehydrogenase. More specifically, the gene encoding xylose reductase, the gene encoding xylitol dehydrogenase, and the gene encoding xylulose phosphorylase are respectively GRE3 (Aldo keto reductase gene 3) and SOR1 (sorbitol). Dehydrogenase gene 1) and XKS1 (xylulose kinase gene 1) are preferred.
  • a gene encoding transaldolase, a gene encoding transketolase, and a gene encoding alcohol dehydrogenase are also introduced into yeast. More specifically, the gene encoding transaldolase, the gene encoding transketolase, and the gene encoding alcohol dehydrogenase are TAL1 (transaldolase gene 1), TKL1 (transketolase gene 1) and ADH1 (alcohol dehydrogenase gene 1) is preferably introduced into the yeast.
  • the xylose utilization gene, the gene encoding transaldolase, the gene encoding transketolase, and the gene encoding alcohol dehydrogenase can be any foreign gene or endogenous gene. It is preferably a sex gene.
  • Endogenous gene means a gene of a yeast to be gene-inserted, a gene derived from a yeast to be gene-inserted, or a gene derived from a yeast of the same kind as the yeast to be gene-inserted. Therefore, yeast introduced with an endogenous gene is not a recombinant.
  • GRE3, YJR096w, YPR1, GCY1, ARA1 and YDR124w are known as genes encoding xylose reductase in yeast. Therefore, in the present invention, GRE3, YJR096w, YPR1, GCY1, ARA1 or YDR124w can be used as a gene encoding xylose reductase.
  • GRE3 is described as an example of a gene encoding xylose reductase, but YJR096w, YPR1, GCY1, ARA1, and YDR124w apply the description in this specification regarding GRE3, and similarly in the present invention. Can be used.
  • the base sequence information of GRE3, YJR096w, YPR1, GCY1, ARA1 and YDR124w can be obtained from a known database such as Genbank by those skilled in the art.
  • Genbank The accession numbers for the sequence information of each gene in Saccharomyces cerevisia are shown below.
  • GRE3 U00059, YJR096w: Z49596, YPR1: X80642, GCY1: X13228, ARA1: M95580, YDR124w: Z48758.
  • GRE3 (Aldo keto reductase gene 3) is a gene containing a base sequence encoding aldo keto reductase, for example, a DNA comprising the base sequence represented by SEQ ID NO: 21 derived from Saccharomyces cerevisiae, Or it is DNA which codes the protein which consists of an amino acid sequence shown by sequence number 22. It is known that the protein encoded by GRE3 also functions as a xylose reductase in yeast.
  • the GRE3 protein is a protein having amino acid sequence identity (homology) with XYL1 (xylose reductase (XR)) of Shephasomyces staphytis.
  • GRE3 can be obtained from a yeast library or a genomic library by gene amplification technology by designing a primer based on the base sequence represented by SEQ ID NO: 21, for example.
  • GRE3 used in the present invention includes a gene encoding a mutant of GRE3 protein.
  • a gene encoding a mutant of the GRE3 protein hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 21, and exhibits xylose reductase activity.
  • a DNA encoding a protein having the same; The xylose reductase activity will be described later.
  • DNA encoding a mutant of GRE3 protein is obtained by cDNA live by a known hybridization method such as colony hybridization, plaque hybridization, Southern blotting, etc. using the DNA consisting of the nucleotide sequence shown in SEQ ID NO: 21 or a fragment thereof as a probe.
  • Libraries and genomic libraries Regarding the method for preparing the library, “Molecular Cloning, A Laboratory Manual 4th ed.” (Cold Spring Spring Press (2012)) and the like can be referred to. Commercially available cDNA libraries and genomic libraries may also be used.
  • the stringent conditions are, for example, “2 ⁇ SSC, 0.1% SDS, 42 ° C.”, “1 ⁇ SSC, 0.1% SDS, 37 ° C.”, and more stringent conditions.
  • Examples of the conditions include “1 ⁇ SSC, 0.1% SDS, 65 ° C.”, “0.5 ⁇ SSC, 0.1% SDS, 50 ° C.”, and the like.
  • Hybridization can be performed by a known method. Hybridization methods include, for example, “Molecular Cloning, A Laboratory Manual 4th ed.” (Cold Spring Harbor Laboratory Press (2012)), “Current Protocols in Molecular Biology” (John Wiley & Sons (1987-1997)), etc. You can refer to it.
  • the DNA hybridizing under stringent conditions includes, for example, at least 50% or more, preferably 70% or more, 80% or more, or 85% or more with the base sequence represented by SEQ ID NO: 21, More preferably 90% or more, 95% or more, 96% or more, 97% or more or 98% or more, more preferably 99% or more, still more preferably 99.7% or more, particularly preferably 99.9% identity (homology)
  • DNA containing a base sequence having A value indicating identity can be calculated by using a known program such as BLAST.
  • the DNA that hybridizes under stringent conditions with the DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 21 is, for example, one or several nucleic acids in the base sequence shown in SEQ ID NO: 21 DNA containing a nucleotide sequence in which mutation such as deletion, substitution or addition occurs.
  • Examples of such DNA include (i) 1 to several (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1) in the nucleotide sequence represented by SEQ ID NO: 21 Is a DNA in which 1 to 2 bases are deleted, (ii) 1 to several (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 1) of the base sequence represented by SEQ ID NO: 21 DNA in which 3 bases, more preferably 1 to 2 bases are substituted with other bases, (iii) 1 to several (eg 1 to 10, preferably 1 to 3) in the base sequence represented by SEQ ID NO: 21 A DNA having 5 bases, more preferably 1 to 3 bases, more preferably 1 to 2 bases) and (iv) a DNA having a combination of these mutations and having xylose reductase activity. Examples include DNA to be encoded.
  • the nucleotide sequence can be confirmed by sequencing by a conventional method.
  • the dideoxynucleotide chain termination method (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA 74: 5463) can be used. It is also possible to analyze the sequence using an appropriate DNA sequencer.
  • GRE3 Aldo keto reductase gene 3
  • Saccharomyces cerevisia includes a protein encoding a protein having the amino acid sequence represented by SEQ ID NO: 22.
  • a gene encoding a GRE3 protein derived from Saccharomyces cerevisiae or a mutant thereof is also included in GRE3 (Aldo keto reductase gene 3).
  • the GRE3 protein mutant has (i) 1 to several (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1) in the amino acid sequence represented by SEQ ID NO: 22.
  • a protein in which 1 to 2 amino acids are substituted with other amino acids (iii) 1 to several (for example, 1 to 10, preferably 1 to 5) in the amino acid sequence represented by SEQ ID NO: 22 More preferably 1 to 3, more preferably 1 to 2 amino acids) and
  • xylose reductase activity means the activity of converting xylose to xylitol in the presence of NAD + (or NADP +).
  • a mutant of GRE3 protein is not particularly limited in its activity as long as it has xylose reductase activity.
  • the GRE3 protein variant has an activity of about 10% or more of a protein consisting of the amino acid sequence represented by SEQ ID NO: 22. If you do.
  • the xylose reductase activity of the protein can be measured by a known method.
  • SOR1, SOR2, and YLR070c are known as genes encoding xylitol dehydrogenase of yeast. Therefore, in the present invention, SOR1, SOR2, or YLR070c can be used as a gene encoding xylitol dehydrogenase, and SOR1 is preferred.
  • SOR1 is described as an example of a gene encoding xylitol dehydrogenase, but SOR2 and YLR070c can apply the description in this specification regarding SOR1.
  • SOR1 and SOR2 have 99.9% identity in gene sequence.
  • SOR1 L11039
  • SOR2 Z74294
  • YLR070c Z73242.
  • SOR1 sorbitol dehydrogenase gene 1
  • SOR1 is a gene including a base sequence encoding sorbitol dehydrogenase, for example, a DNA comprising the base sequence represented by SEQ ID NO: 23 derived from Saccharomyces cerevisiae, or a sequence DNA encoding a protein consisting of the amino acid sequence shown by No. 24. It is known that the protein encoded by SOR1 also functions as xylitol dehydrogenase in yeast.
  • the SOR1 protein is a protein having amino acid sequence identity (homology) (53%) with XYL2 (Xylitol dehydrogenase (XDH)) of Shephasomyces staphytis.
  • SOR1 used in the present invention includes a gene encoding a mutant of SOR1 protein.
  • a gene encoding a mutant of SOR1 protein hybridizes under stringent conditions with, for example, a DNA comprising a base sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 23 derived from Saccharomyces cerevisiae, and DNA encoding a protein having xylitol dehydrogenase activity is included.
  • the SOR1 used in the present invention may be a gene encoding a mutant of the following SOR1 protein: (i) 1 to several (for example, 1 to 10) in the amino acid sequence represented by SEQ ID NO: 24 (Ii) 1 to several amino acids in the amino acid sequence represented by SEQ ID NO: 24, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) A protein in which an amino acid (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) is substituted with another amino acid, (iii) is represented by SEQ ID NO: 24 A protein to which 1 to several amino acids (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) amino acids are added in the amino acid sequence, and (iv) Mutation combined A protein, and a protein having xylitol dehydrogenase activity.
  • xylitol dehydrogenase activity means the activity of dehydrogenating xylitol to xylulose.
  • the mutant of SOR1 protein is not particularly limited as long as it has xylitol dehydrogenase activity.
  • the mutant of SOR1 protein has an activity of about 10% or more of a protein consisting of the amino acid sequence represented by SEQ ID NO: 24. It only has to have.
  • the xylitol dehydrogenase activity of the protein can be measured by a known method.
  • SOR1 can be obtained or manufactured by the same method as described for GRE3.
  • XKS1 xylulose kinase gene 1
  • Genbank accession number of XKS1 of Saccharomyces cerevisia is Z72979.
  • XKS1 xylulose phosphorylase gene 1
  • XKS1 xylulose phosphorylase gene 1
  • SEQ ID NO: 25 derived from Saccharomyces cerevisiae
  • SEQ ID NO: 26 DNA which codes the protein which consists of an amino acid sequence shown by sequence number 26.
  • XKS1 used in the present invention includes a gene encoding a mutant of XKS1 protein.
  • a gene encoding a mutant of the XKS1 protein hybridizes under stringent conditions with, for example, a DNA comprising a base sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 25 derived from Saccharomyces cerevisiae, and DNA encoding a protein having xylulose kinase activity is included.
  • XKS1 used in the present invention may be a gene encoding a variant of the following XKS1 protein: (i) 1 to several (for example, 1 to 10) in the amino acid sequence represented by SEQ ID NO: 26 (Ii) 1 to several amino acids in the amino acid sequence represented by SEQ ID NO: 26, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) A protein in which an amino acid (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) is substituted with another amino acid, (iii) is represented by SEQ ID NO: 26 A protein to which 1 to several amino acids (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) amino acids are added in the amino acid sequence, and (iv) Mutation combined A protein, and a protein having xylulose kinase activity.
  • xylulose kinase activity means an activity of phosphorylating xylulose.
  • the mutant of the XKS1 protein is not particularly limited as long as it has xylulose phosphatase activity.
  • the xylulose kinase activity of the protein can be measured by a known method.
  • XKS1 can also be obtained or produced by a method similar to that described for GRE3.
  • TAL1 transaldolase gene 1
  • TAL2 transaldolase gene 2
  • Genbank a known database
  • Saccharomyces cerevisiae TAL1 and TAL2 accession numbers are X15953 and X59720, respectively.
  • TAL1 is described as an example of a gene encoding transaldolase, but the description in the present specification regarding TAL1 can be similarly applied to TAL2.
  • TAL1 transaldolase gene 1
  • DNA comprising the base sequence represented by SEQ ID NO: 27 derived from Saccharomyces cerevisiae, or represented by SEQ ID NO: 28 DNA encoding a protein consisting of an amino acid sequence.
  • TAL1 used in the present invention includes a gene encoding a mutant of the TAL1 protein.
  • a gene encoding a mutant of TAL1 protein hybridizes under stringent conditions with, for example, a DNA comprising a base sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 27 derived from Saccharomyces cerevisiae, and DNA encoding a protein having transaldolase activity is included.
  • TAL1 used in the present invention may be a gene encoding the following mutant of TAL1 protein: (i) 1 to several (for example, 1 to 10) in the amino acid sequence represented by SEQ ID NO: 28 (Ii) 1 to several amino acids in the amino acid sequence shown in SEQ ID NO: 28, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) A protein in which an amino acid (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) is substituted with another amino acid, (iii) is represented by SEQ ID NO: 28 A protein to which 1 to several amino acids (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) amino acids are added in the amino acid sequence, and (iv) Mutation combined A protein, and a protein having transaldolase activity.
  • SEQ ID NO: 28 A protein in which an amino acid (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) amino acids are added in
  • transaldolase activity means an activity that catalyzes the reaction of cedoheptulose-7-phosphate + glyceraldehyde-3-phosphate-erythrose-4-phosphate + fructose-6-phosphate.
  • a mutant of the TAL1 protein is not particularly limited to the extent of its activity as long as it has transaldolase activity. It only has to be.
  • the transaldolase activity of the protein can be measured by a known method.
  • TAL1 can be obtained or produced by a method similar to that described for GRE3.
  • TKL1 transketolase gene 1
  • TKL2 transketolase gene 2
  • the base sequence information of TKL1 and TKL2 can be obtained from a known database such as Genbank by those skilled in the art.
  • the accession numbers of Saccharomyces cerevisiae TKL1 and TKL2 are X73224 and X73532, respectively.
  • TKL1 is described as an example of a gene encoding a transketolase, but the description in this specification regarding TKL1 can be similarly applied to TKL2.
  • TKL1 transketolase gene 1
  • SEQ ID NO: 29 derived from Saccharomyces cerevisiae
  • SEQ ID NO: 30 DNA encoding a protein consisting of the amino acid sequence represented by
  • TKL1 used in the present invention includes a gene encoding a mutant of TKL1 protein.
  • the gene encoding the mutant of TKL1 protein hybridizes under stringent conditions with, for example, a DNA comprising a base sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 29 derived from Saccharomyces cerevisiae, and DNA encoding a protein having transketolase activity is included.
  • TKL1 used in the present invention may be a gene encoding a variant of the following TKL1 protein: (i) 1 to several (for example, 1 to 10) in the amino acid sequence represented by SEQ ID NO: 30 (Ii) 1 to several amino acids in the amino acid sequence represented by SEQ ID NO: 30, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) A protein in which an amino acid (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) is substituted with another amino acid, (iii) shown in SEQ ID NO: 30 A protein to which 1 to several amino acids (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) amino acids are added in the amino acid sequence, and (iv) Mutation combined A protein, and a protein having transketolase activity.
  • transketolase activity means an activity that catalyzes the reaction of sedoheptulose-7-phosphate + glyceraldehyde-3-phosphate xylulose-5-phosphate + ribose-5-phosphate.
  • the mutant of TKL1 protein is not particularly limited as long as it has transketolase activity, but has, for example, an activity of about 10% or more of the protein consisting of the amino acid sequence shown by SEQ ID NO: 30. If you do.
  • the transketolase activity possessed by the protein can be measured by a known method.
  • TKL1 can also be obtained or produced by a method similar to that described for GRE3.
  • ADH1 (alcohol dehydrogenase gene 1) can be used as a gene encoding alcohol dehydrogenase.
  • a person skilled in the art can obtain the base sequence information of ADH1 from a known database such as Genbank.
  • Genbank the accession number of Saccharomyces cerevisia ADH1 is X83121.
  • ADH1 alcohol dehydrogenase gene 1
  • SEQ ID NO: 31 derived from Saccharomyces cerevisiae, or a sequence This is a DNA encoding a protein consisting of the amino acid sequence shown by No. 32.
  • ADH1 used in the present invention includes a gene encoding a mutant of ADH1 protein.
  • a gene encoding a mutant of ADH1 protein hybridizes under stringent conditions with, for example, a DNA comprising a base sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 31 derived from Saccharomyces cerevisiae, and DNA encoding a protein having alcohol dehydrogenase activity is included.
  • ADH1 used in the present invention may be a gene encoding a variant of the following ADH1 protein: (i) 1 to several (for example, 1 to 10) in the amino acid sequence represented by SEQ ID NO: 32 (Ii) 1 to several amino acids in the amino acid sequence represented by SEQ ID NO: 32, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) A protein in which (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) amino acids are substituted with other amino acids, (iii) SEQ ID NO: 32 A protein to which 1 to several amino acids (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) amino acids are added in the amino acid sequence, and (iv) Mutation combined A protein, and a protein having an alcohol dehydrogenase activity.
  • alcohol dehydrogenase activity means the activity of oxidizing alcohol to aldehyde.
  • the ADH1 protein mutant is not particularly limited in its activity as long as it has alcohol dehydrogenase activity. It only has to have.
  • the alcohol dehydrogenase activity of the protein can be measured by a known method.
  • ADH1 can be obtained or produced by a method similar to the method described for GRE3.
  • the enzyme activity of the yeast itself is improved more than before the gene introduction.
  • the alcohol dehydrogenase activity is increased in the yeast of the present invention.
  • the six genes introduced into the host yeast are endogenous genes.
  • a xylose utilization gene for example, a gene encoding xylose reductase, a gene encoding xylulose kinase, and a gene encoding xylitol dehydrogenase
  • a gene encoding transaldolase for example, a gene encoding xylose reductase, a gene encoding xylulose kinase, and a gene encoding xylitol dehydrogenase
  • transaldolase for example, a gene encoding xylose reductase, a gene encoding xylulose kinase, and a gene encoding xylitol dehydrogenase
  • transketolase for example, a gene encoding transketolase, and a gene encoding alcohol dehydrogenase
  • the transformed yeast of the present invention is preferably a yeast into which GRE3, SOR1, XKS1, TAL1, TKL1, and ADH1 have been introduced so that they can be expressed.
  • the expression “being expressible (introduction or insertion)” means that the introduced or inserted gene is introduced or inserted in such a form that it can be expressed in a transformant under a predetermined condition.
  • a gene encoding xylose reductase, a gene encoding xylulose kinase, and a gene encoding xylitol dehydrogenase are preferably inserted so as to be expressible on the yeast chromosome.
  • a gene encoding transaldolase, a gene encoding transketolase, and a gene encoding alcohol dehydrogenase are preferably inserted in a yeast chromosome so that they can be expressed. That is, in the present invention, introduction of a gene into yeast includes insertion of the gene onto the yeast chromosome.
  • the transformed yeast of the present invention is preferably a gene encoding xylose reductase, a gene encoding xylulose kinase, xylitol dehydrogenase, a gene encoding transaldolase, a gene encoding transketolase, and alcohol
  • a yeast into which a gene encoding a dehydrogenase is inserted so as to be expressed on a chromosome is more preferable, and a yeast into which GRE3, SOR1, XKS1, TAL1, TKL1, and ADH1 are inserted so as to be expressed on a chromosome is more preferable.
  • the number of each gene inserted into a chromosome is not limited and is one or more. Moreover, the order of each gene inserted in a chromosome is not specifically limited. Further, the position of the chromosome into which the gene is inserted is not particularly limited, but a site that does not function in yeast is preferable. For example, an XYL2 site (Genbank accession number Z73242), HXT13 site, HXT17 site, AUR1 site, etc. Can be mentioned. It is also possible to insert at a site on a chromosome that does not encode a gene. An example of a site on a chromosome that does not encode a gene is a ⁇ sequence that is one of Ty factors.
  • ⁇ sequences are present on the yeast chromosome.
  • the position and sequence information of the ⁇ sequence in the yeast chromosome are known (for example, Science 265, 2077 (1994)).
  • a plasmid having a xylose-assimilating gene inserted in the middle of the ⁇ sequence into yeast, one or more copies of the gene can be inserted at a desired position on the chromosome.
  • it can also be inserted into the ⁇ and ⁇ sequences, which are also Ty factors. It can also be inserted into a ribosomal gene site such as NTS2.
  • each gene When inserting genes into chromosomes, each gene may be inserted into the chromosome individually, or an expression cassette in which two or more genes are linked in tandem under the control of a promoter is created and inserted into the chromosome. May be. In the case of tandem linkage, the order of gene arrangement and the number of genes to be linked are not particularly limited, and any conceivable combination may be used.
  • a plasmid can be used for introduction of a gene into yeast.
  • the plasmid may contain one or more of the enzyme genes used in the present invention.
  • one plasmid can contain three genes: a gene encoding xylose reductase, a gene encoding xylulose kinase, and a gene encoding xylitol dehydrogenase.
  • three genes, a gene encoding transaldolase, a gene encoding transketolase, and a gene encoding alcohol dehydrogenase can be contained in one plasmid.
  • the order and number of each gene on the plasmid are not particularly limited.
  • the present invention includes plasmids or expression cassettes containing these genes.
  • a plasmid or expression cassette include a plasmid or expression cassette in which GRE3, SOR1 and XLS1 are linked under the control of a promoter, or a plasmid or expression cassette in which TAL1 and TKL are linked under the control of a promoter.
  • a plurality of genes are linked so that each gene can be expressed when introduced into yeast, particularly when inserted into a chromosome. If necessary when linking two genes and preparing a fusion gene, a linker sequence or a restriction enzyme site may be added as appropriate.
  • the plasmid used in the present invention can be prepared by inserting the above gene into a yeast expression vector so that the gene can be expressed.
  • the gene can be inserted into the vector using a ligase reaction, a topoisomerase reaction, or the like.
  • the plasmid used in the present invention is not particularly limited to the origin of the basic vector, and for example, a plasmid derived from E. coli, a plasmid derived from Bacillus subtilis, a plasmid derived from yeast, and the like can be used.
  • a plasmid derived from E. coli a plasmid derived from Bacillus subtilis, a plasmid derived from yeast, and the like can be used.
  • commercially available vectors such as pGADT7 and pAUR135 can also be used.
  • the transformed yeast of the present invention is prepared using a plasmid derived from a host yeast, the transformed yeast of the present invention does not correspond to a genetic recombinant.
  • the plasmid of the present invention may contain a multicloning site, a promoter, an enhancer, a terminator, a selection marker cassette and the like as long as the target gene can be expressed. If necessary when inserting DNA, a linker or a restriction enzyme site may be added as appropriate. These manipulations can be performed using conventional genetic manipulation techniques well known in the art.
  • Promoter can be incorporated upstream of target gene.
  • the promoter is not particularly limited as long as the target protein can be appropriately expressed in the transformant.
  • the PGK promoter, ADH promoter, TDH promoter, ENO promoter, CIT promoter, TEF promoter, CDC promoter, GPM promoter or PDC promoter Etc. can be used.
  • the terminator can be incorporated downstream of the target gene.
  • a PGK terminator a CIT terminator, a TEF terminator, a CDC terminator, a GPM terminator, a PDC terminator, or the like can be used.
  • selection markers include drug resistance genes such as ampicillin resistance gene, kanamycin resistance gene, neomycin resistance gene, hygromycin resistance gene, dihydrofolate reductase gene, leucine synthase gene, uracil synthase gene, and the like.
  • drug resistance genes such as ampicillin resistance gene, kanamycin resistance gene, neomycin resistance gene, hygromycin resistance gene, dihydrofolate reductase gene, leucine synthase gene, uracil synthase gene, and the like.
  • an amino acid synthesis gene cassette such as leucine, histidine, tryptophan, or a uracil synthesis gene cassette
  • a transformed yeast can be produced by introducing the plasmid or expression cassette of the present invention into the host yeast of the present invention to be introduced.
  • the method for introducing the plasmid of the present invention into the host yeast is not particularly limited, and examples thereof include known methods such as lithium acetate method, electroporation method, calcium phosphate method, lipofection method, DEAE dextran method and the like. . By these methods, the transformed yeast of the present invention is provided.
  • the transformed yeast of the present invention can also be produced by integrating the target gene into the host yeast chromosome by homologous recombination.
  • a person skilled in the art can produce the transformed yeast of the present invention by homologous recombination by a known method.
  • yeast that does not have pentose utilization ability does not express all three genes, a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose kinase, Xylose availability is not provided. Therefore, by culturing the gene-transferred yeast as described above in a xylose-containing (glucose-free) medium, a transformed yeast into which at least the xylose-utilizing enzyme gene has been introduced can be selected.
  • the transformed yeast of the present invention can be prepared by introducing six genes so that they can be expressed in yeast, and preferably by introducing six genes onto the yeast chromosome.
  • the transformed yeast of the present invention includes a gene encoding xylose reductase, a gene encoding xylulose phosphorylase, a gene encoding xylitol dehydrogenase, a gene encoding transaldolase,
  • the expression of the gene encoding ketolase and the gene encoding alcohol dehydrogenase may be activated. That is, the present invention also includes yeast in which the expression level of the gene originally present on the host yeast chromosome is increased. By introducing a promoter from the outside or replacing the promoter of the gene itself with a stronger promoter, the gene originally possessed by yeast can be activated in a form that can be expressed, and the target protein can be expressed appropriately. .
  • the method for activating the expression of the endogenous gene in this way is not limited, but a promoter capable of appropriately expressing the target protein is incorporated into the chromosome by gene replacement using a known gene recombination technique. Methods and the like.
  • a gene replacement method the method of Akada et al. Yeast 23: 399-405 (2006) (non-patent document) can be used.
  • a known promoter such as PGK promoter, ADH promoter, TDH promoter, ENO promoter, CIT promoter, TEF promoter, CDC promoter, GPM promoter or PDC promoter can be used.
  • Transformed yeast of the present invention comprises a xylose utilization gene, a gene encoding transaldolase, a gene encoding transketolase, and a gene encoding alcohol dehydrogenase, such as GRE3, SOR1, XKS1, TAL1, Since TKL1 and ADH1 are introduced, the transformed yeast of the present invention has the ability to assimilate xylose and can produce ethanol with high efficiency. Therefore, the transformed yeast of the present invention can be used in a method for producing ethanol from xylose.
  • the transformed yeast of the present invention can be cultured according to a usual method used for yeast culture.
  • a person skilled in the art can select an appropriate medium from known media such as SD media, SCX media, YPD media, YPX media, CBS media, etc., and cultivate yeast under favorable culture conditions.
  • shaking culture is preferred.
  • Ethanol can be produced by culturing the transformed yeast of the present invention and collecting ethanol from the resulting culture.
  • the transformed yeast of the present invention is cultured in the presence of 2-66 g / L, preferably 4-55 g / L, of xylose as a carbon source.
  • the transformed yeast of the present invention is cultured in the presence of 40 to 330 g / L, preferably 80 to 275 g / L.
  • the transformed yeast of the present invention may use a known culture method such as batch culture without additional supply of sugar as a carbon source, fed-batch culture in which additional supply of sugar is continuously / intermittently, or continuous culture. it can.
  • the transformed yeast Prior to the main culture, the transformed yeast may be precultured.
  • the transformed yeast of the present invention may be inoculated into a small amount of medium and cultured for 12 to 24 hours.
  • the main culture is started by adding 0.1 to 10%, preferably 1%, of the preculture solution to the culture medium of the main culture.
  • the main culture is carried out in a xylose-containing medium for 0.5 to 200 hours, preferably 10 to 150 hours, more preferably 24 to 137 hours at 20 to 40 ° C, preferably 30 ° C.
  • the produced ethanol can be collected from the culture obtained by culturing the yeast of the present invention as described above.
  • the culture means a culture solution (culture supernatant), cultured yeast, a disrupted culture yeast, or the like.
  • Ethanol can be purified and collected from the culture by a known purification method.
  • ethanol since ethanol is mainly secreted from the transformed yeast into the culture supernatant, it is preferably collected from the culture supernatant.
  • the amount of ethanol produced can be measured by analyzing ethanol contained in the medium with liquid chromatography, gas chromatography, or a commercially available ethanol measurement kit. Moreover, the ethanol production ability of the transformed yeast of the present invention can be confirmed by measuring the production amount of ethanol.
  • a conventional xylose-assimilating yeast eg, GRE3, SOR1, and XKS1-introduced yeast
  • TAL1 and TKL1 are overexpressed in the xylose-assimilating yeast
  • SEQ ID NOs: 1 to 20 This shows the base sequences of primers used in the examples.
  • SEQ ID NO: 21 This shows the base sequence of Saccharomyces cerevisiae GRE3.
  • SEQ ID NO: 22 This shows the amino acid sequence of Saccharomyces cerevisiae GRE3 protein.
  • SEQ ID NO: 23 This shows the base sequence of Saccharomyces cerevisiae SOR1.
  • SEQ ID NO: 24 This shows the amino acid sequence of Saccharomyces cerevisiae SOR1 protein.
  • SEQ ID NO: 25 This shows the base sequence of Saccharomyces cerevisiae XKS1.
  • SEQ ID NO: 26 This shows the amino acid sequence of Saccharomyces cerevisiae XKS1 protein.
  • SEQ ID NO: 27 This shows the base sequence of Saccharomyces cerevisiae TAL1.
  • SEQ ID NO: 28 This shows the amino acid sequence of Saccharomyces cerevisiae TAL1 protein.
  • SEQ ID NO: 29 This shows the base sequence of Saccharomyces cerevisiae TKL1.
  • SEQ ID NO: 30 This shows the amino acid sequence of Saccharomyces cerevisiae TKL1 protein.
  • SEQ ID NO: 31 This shows the base sequence of Saccharomyces cerevisiae ADH1.
  • SEQ ID NO: 32 This shows the amino acid sequence of Saccharomyces cerevisiae ADH1 protein.
  • GRE3, SOR1, XKS1, TAL1, TKL1, ADH1, PGK1 promoter and PGK1 terminator are derived from Saccharomyces cerevisiae.
  • the GRE3 protein has amino acid sequence identity (homology) with XYL1 (xylose reductase (XR)) from Shephasomyces stipitsis, and SOR1 protein is XYL2 (xylitol dehydrogenation) from schephamyces stipitsis Enzyme (XDH)) is a protein having amino acid sequence identity (homology).
  • XKS1 protein is xylulose kinase
  • TAL1 protein is transaldolase
  • TKL1 protein is transketolase
  • ADH1 protein is alcohol dehydrogenase.
  • the PGK1 promoter and PGK1 terminator are known to function in Saccharomyces cerevisiae.
  • the gene fragment of the first half of HXT17 amplified in Example 1 was inserted into the Xho I and EcoR I cleavage sites of the obtained pUC18, and the gene of the second half of HXT17 amplified in Example 1 was inserted into the Sph I and Bgl II cleavage sites. Fragments were introduced.
  • the obtained expression cassette I was cleaved with EcoR I and Sph I, and inserted between the gene fragments of the first half and the second half of HXT17 to prepare expression cassette II.
  • the above gene was introduced into the HXT17 site on the chromosome by the lithium acetate method to obtain a xylose-assimilating yeast.
  • Shochu yeast was used as a host for imparting xylose utilization ability.
  • TAL1 / TKL1 gene overexpression strain A gene fragment of TAL1 placed under the control of the PGK1 promoter and PGK1 terminator was introduced into the SmaI site of a commercially available expression vector pAUR135 (Takara Bio Inc.). In addition, the TKL1 gene fragment placed under the control of the PGK1 promoter and PGK1 terminator was introduced into the SphI site of the pAUR13 vector into which the TAL1 gene fragment was introduced.
  • the gene fragment obtained by cleaving the obtained TAL1 / TKL1 expression vector with StuI was introduced into the AUR1 site on the chromosome of the xylose-assimilating yeast prepared in Example 2 by the lithium acetate method.
  • the obtained strain was designated as a TAL1 / TKL1 gene overexpression strain.
  • a gene fragment of ADH1 placed under the control of the PGK1 promoter and PGK1 terminator was introduced into the EcoRI site of the TAL1 ⁇ TKL1 expression vector produced in Example 3.
  • the gene fragment obtained by cleaving the obtained expression vector with StuI was introduced into the AUR1 site on the chromosome of the xylose-assimilating yeast prepared in Example 2 by the lithium acetate method.
  • the obtained strain was designated as a TAL1 / TKL1 / ADH1 gene overexpression strain.
  • the sampled culture solution was centrifuged to remove the cells, and the supernatant was filtered through a 0.2 ⁇ m polypropylene filter to obtain a measurement sample.
  • the amounts of glucose, xylose, and ethanol in the measurement sample were quantified by HPLC. Table 4 shows the analytical conditions in HPLC.
  • FIG. 1 shows the result of a medium containing only xylose as a substrate
  • FIG. 2 shows the result of a medium containing glucose and xylose as substrates. Fermentation performance is evaluated as ethanol yield (%), and the amount of ethanol produced corresponds to the amount of ethanol calculated by multiplying the administered basic mass by the theoretical yield (0.51 for both glucose and xylose). 100%.
  • TAL1, TKL1 and ADH1 overexpressed strains (white, TAL1, TKL1 and ADH1 genes, white) on the chromosome of xylose-assimilating yeast in which GRE3, SOR1 and XKS1 have been introduced on the chromosome, It was shown that xylose can be further used compared to the original xylose-assimilating yeast (black) and the TAL1 / TKL1 gene overexpression strain (gray), and ethanol production was increased (FIG. 1). And FIG. 2).
  • Yeast with TAL1, TKL1, and ADH1 introduced into the chromosome of xylose-assimilating yeast contains glucose and xylose as substrates.
  • TAL1, TKL1, ADH1 gene overexpressing strain, white contains glucose and xylose as substrates.
  • a higher ethanol yield was achieved compared to the medium containing only xylose as a substrate (Fig. 1), and xylose-assimilating yeast (black) and TAL1 ⁇ TKL1 gene overexpression strain The improvement in ethanol yield compared to (gray) was also significant.
  • the strains obtained in Examples 3 and 4 were pre-cultured in a YPD (glucose 20 g / L) medium, and then YPDX (glucose 80 g / L, xylose 40 g / L) containing glucose and xylose as substrates.
  • the cells were cultured in a 1 L jar containing 600 mL of medium at an initial inoculum of 1 ⁇ 10 7 cells / mL, 380 rpm, 30 ° C. Sampling was performed over time, and the supernatant was analyzed by the method described in Example 5.
  • yeast cells were collected for measurement of ADH1 activity and expression analysis of the ADH1 gene.
  • the ethanol yield of the yeast into which TAL1, TKL1 and ADH1 were introduced was determined by the TAL1 ⁇ TKL1 gene overexpressing strain (Example 3, It was shown that ethanol production was increased by enhancing the ADH1 gene.
  • yeast cells were collected from the cells cultured in jar culture, the medium was removed, the cells were washed twice with 2 ml of sterile distilled water, and then 400 ⁇ l of acetate buffer (50 mM sodium acetate pH 5.3, 10 mM EDTA) It was suspended in. 40 ⁇ l of SDS (sodium dodecyl sulfate) was added, 440 ⁇ l of phenol kept at 65 ° C. was added, and the mixture was stirred well, then kept at 65 ° C. for 4 minutes and rapidly cooled in ice.
  • SDS sodium dodecyl sulfate
  • the mixture was centrifuged at 12000 ⁇ g for 5 minutes, the supernatant was transferred to a 1.5 ml tube, an equal amount of a phenol / chloroform mixture was added, and the mixture was stirred well. After centrifugation at 12000 ⁇ g for 5 minutes, the supernatant was transferred to a 1.5 ml tube, and 1/10 amount of 3M sodium acetate (pH 5.3) was added, followed by ethanol precipitation. The pellet obtained by centrifugation at 12000 ⁇ g for 10 minutes was washed twice with 80% ethanol and dried, and then dissolved in RNase-free water to obtain an RNA solution.
  • ADH1 gene expression in TAL1 / TKL1 gene overexpressing strains and TAL1, TKL1 and ADH1 gene overexpressing strains (white) at any sampling time The amount exceeded that of the TAL1 / TKL1 gene overexpression strain (gray). For example, in 48 hours of culture, it was shown that the ADH1 gene expression level doubled due to enhancement of the ADH1 gene.
  • ADH1 activity Collect yeast cells from cells cultured in jar culture, remove the medium, wash the cells with 2 ml distilled water, and then add 1 Y-PER Yeast Protein Extraction Reagent (Pierce, Rockford, IL). After adding ml and suspending, the mixture was shaken at room temperature for 20 minutes. The cell extract was obtained by centrifugation at 13,000 rpm for 10 minutes. ADH1 activity was measured as follows. 10 ⁇ l of crude yeast extract was added to 960 ⁇ l of a solution containing 50 mM Tris-HCl (pH 8.5) and 1 mM NAD +, and 30 ⁇ l of ethanol was added to initiate the reaction.
  • the increase in NADH was calculated by measuring the absorbance at 340 nm using ethanol as a substrate.
  • the activity for reducing 1 ⁇ mol of NAD + per minute was defined as 1 U, and the activity per 1 mg of protein in the cell extract (U / mg) was determined.
  • Table 7 and FIG. 5 show the ADH1 activity of the TAL1 ⁇ TKL1 gene overexpression strain (Example 3) and the TAL1 ⁇ TKL1 ⁇ ADH1 gene overexpression strain (Example 4). The test was performed in duplicate.
  • the ADH1 activity of the TAL1 ⁇ TKL1 gene overexpressing strain and the TAL1 ⁇ TKL1 ⁇ ADH1 gene overexpressing strain was measured, the ADH1 activity of the TAL1 ⁇ TKL1 ⁇ ADH1 gene overexpressing strain (white) was TAL1 at any sampling time. ⁇ It exceeded TKL1 gene overexpression strain (gray). For example, in 24 hours of culture, it was shown that ADH1 activity increased about 6-fold by enhancing the ADH1 gene.
  • the present invention can be applied not only to culture at a laboratory level using a flask but also to culture at an industrial level using a culture tank or culture conditions close to the industrial level.
  • a gene encoding xylose reductase, a gene encoding xylulose kinase, a gene encoding xylitol dehydrogenase, a gene encoding transaldolase, a gene encoding transketolase, and alcohol dehydrogenase A transformed yeast into which a gene encoding is introduced is provided.
  • the transformed yeast of the present invention is produced by transforming with a gene possessed by the yeast itself. For this reason, the transformed yeast of the present invention does not correspond to a gene recombinant, and is preferable in terms of safety and ease of handling.
  • the transformed yeast of the present invention can efficiently produce ethanol from xylose. Therefore, the present invention provides a method for producing ethanol from xylose and a transformed yeast capable of producing ethanol from xylose that can be used in the method.

Abstract

 The purpose of the present invention is to provide a yeast having an improved capability to produce ethanol from xylose. The present invention provides a transformed yeast in which a xylose utilization gene and enzyme genes of a pentose phosphate pathway and ethanol production pathway are expressibly introduced into a host yeast.

Description

キシロースからエタノールを生産する酵母Yeast producing ethanol from xylose
 本発明は、キシロースからエタノールを生産する酵母に関する。 The present invention relates to a yeast that produces ethanol from xylose.
 近年、CO2排出削減の観点から、石油の代替燃料としてバイオアルコールの利用が注目されている。特に、草木を資源とするバイオアルコールは盛んに検討されている。草木などのセルロース系バイオマスから得られる糖の約三分の一はキシロースが占めることから、バイオアルコールの製造に使用されるキシロース資化性酵母が様々に研究されている。 In recent years, the use of bioalcohol has attracted attention as an alternative fuel for petroleum from the viewpoint of reducing CO 2 emissions. In particular, bioalcohol using vegetation as a resource has been actively studied. Since about one-third of the sugar obtained from cellulosic biomass such as plants is occupied by xylose, various researches have been conducted on xylose-assimilating yeast used in the production of bioalcohol.
 バイオエタノールの生産には、サッカロマイセス・セレビシア(Saccharomyces cerevisiae)に代表される酵母が主に使用されている。サッカロマイセス・セレビシアはグルコースやマンノースなどの六炭糖からのエタノール生産能が高く、エタノールに対する高い耐性を有している。しかしながら、サッカロマイセス・セレビシアは、キシロースなどの五炭糖を利用することができない。 For the production of bioethanol, yeasts represented by Saccharomyces cerevisiae are mainly used. Saccharomyces cerevisiae has a high ability to produce ethanol from hexoses such as glucose and mannose, and has high resistance to ethanol. However, Saccharomyces cerevisia cannot use pentoses such as xylose.
 キシロース資化能を有する酵母としてシファゾマイセス・スティピティス(Scheffersomyces stipitis)が知られている。サッカロマイセス・セレビシアは、シファゾマイセス・スティピティスの有するキシロースを資化するための遺伝子群に対応する遺伝子群を内在するが、サッカロマイセス・セレビシアにおけるこれらの遺伝子の多くは発現していないか、あるいは、発現していたとしてもその量は極めて少ないと考えられている。そのため、キシロース資化性酵母由来の遺伝子導入によるサッカロマイセス・セレビシアの改良が進められている。 As a yeast having xylose utilization ability, Schiffosomyces stipitis is known. Saccharomyces cerevisiae has a gene group corresponding to the gene group for assimilating xylose possessed by Syphazomyces stipitis, but many of these genes in Saccharomyces cerevisiae are not expressed or expressed. Even if so, the amount is considered to be very small. Therefore, improvement of Saccharomyces cerevisiae by gene introduction derived from xylose-assimilating yeast is being promoted.
 しかし、これらの遺伝子はサッカロマイセス・セレビシアにとって外来遺伝子であるので、上記の方法で作製した酵母は組換え体に該当し、外界への菌体の漏出を防ぐ手段が必要になるなど、その利用に様々な制約が生じるため好ましいものではない。 However, since these genes are foreign genes for Saccharomyces cerevisiae, the yeast prepared by the above method falls under the category of recombinants, and there is a need for means to prevent the leakage of bacterial cells to the outside world. Since various restrictions arise, it is not preferable.
 これまでに、サッカロマイセス・セレビシアに内在するキシロース資化遺伝子を活性化することにより、キシロース資化能を付与した酵母の作製が検討されている(WO2010/001906号(特許文献1)、WO2014/058034号(特許文献2))。これらの手法を用いて作製された酵母は、酵母自身に由来するキシロース資化遺伝子を利用していることから、遺伝子組換え体ではないという長所を有する。 So far, production of yeast imparted with xylose utilization ability by activating a xylose utilization gene endogenous to Saccharomyces cerevisiae has been studied (WO2010 / 001906 (Patent Document 1), WO2014 / 058034). No. (Patent Document 2)). Yeasts produced using these techniques have the advantage that they are not genetic recombinants because they utilize xylose-utilizing genes derived from the yeasts themselves.
 しかしながら、依然として、キシロースからのエタノール生産能をさらに向上させた酵母の開発が望まれている。 However, there is still a demand for the development of yeast that further improves the ability to produce ethanol from xylose.
WO2010/001906号WO2010 / 001906 WO2014/058034号WO2014 / 058034
 本発明は、キシロースからのエタノール生産能の改善された酵母を提供することを目的とする。本発明は、キシロース分解酵素をコードする遺伝子を利用した従来のキシロース資化性酵母よりもエタノール生産能をさらに向上させた酵母、好ましくは、酵母自身に由来する遺伝子を利用することにより、優れたエタノール生産性を有する形質転換酵母を提供することを目的とする。 An object of the present invention is to provide a yeast having an improved ability to produce ethanol from xylose. The present invention is a yeast that has further improved ethanol-producing ability over conventional xylose-utilizing yeast using a gene encoding a xylose-degrading enzyme, preferably by using a gene derived from the yeast itself. It aims at providing the transformed yeast which has ethanol productivity.
 本発明者らは、上記の課題を解決するために鋭意研究を重ねた結果、キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子およびキシリトール脱水素酵素をコードする遺伝子の3つの遺伝子を導入した従来のキシロース資化性酵母に、さらに、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子を導入すると、キシロースからのエタノール生産能が増強された酵母が得られることを見出した。すなわち、本発明者は、上記6つの遺伝子の組合せを導入した酵母は、キシロースからエタノールを効率よく生産できることを見出した。そして、このようにして得られた酵母は、従来のキシロース資化性酵母に比べてキシロース利用能が高く、キシロースからのエタノールの生産効率を改善できることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors have found that there are three genes: a gene encoding xylose reductase, a gene encoding xylulose phosphorylase, and a gene encoding xylitol dehydrogenase. Introducing a gene encoding transaldolase, a gene encoding transketolase, and a gene encoding alcohol dehydrogenase into conventional xylose-assimilating yeast introduced with the gene enhances the ability to produce ethanol from xylose. It was found that the obtained yeast was obtained. That is, the present inventor has found that yeast introduced with the combination of the above six genes can efficiently produce ethanol from xylose. And it discovered that the yeast obtained in this way had high xylose utilization ability compared with the conventional xylose utilization yeast, and it could improve the production efficiency of ethanol from xylose, and completed this invention.
 すなわち、本発明は以下に関する。
[1] キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子が発現可能に導入された、形質転換酵母。
[2] 前記遺伝子が、当該酵母の内在性遺伝子である、[1]に記載の酵母。
[3] 前記遺伝子が宿主酵母の染色体上に発現可能に挿入されたものである、[1]又は[2]に記載の酵母。
[4] キシロース還元酵素をコードする遺伝子がGRE3である、[1]~[3]のいずれか1つに記載の酵母。
[5] キシルロースリン酸化酵素をコードする遺伝子がXKS1である、[1]~[4]のいずれか1つに記載の酵母。
[6] キシリトール脱水素酵素をコードする遺伝子がSOR1である、[1]~[5]のいずれか1つに記載の酵母。
[7] トランスアルドラーゼをコードする遺伝子がTAL1である、[1]~[6]のいずれか1つに記載の酵母。
[8] トランスケトラーゼをコードする遺伝子がTKL1である、[1]~[7]のいずれか1つに記載の酵母。
[9] アルコール脱水素酵素をコードする遺伝子がADH1である、[1]~[8]のいずれか1つに記載の酵母。
[10] キシロースからエタノールを生産する能力を有するものである、[1]~[9]のいずれか1つに記載の酵母。
[11] 宿主酵母が、六炭糖資化能を有するが五炭糖資化能を有しないものである、[1]~[10]のいずれか1つに記載の酵母。
[12] 宿主酵母が、サッカロマイセス属に属する酵母である、[1]~[11]のいずれか1つに記載の酵母。
[13] 宿主酵母が、サッカロマイセス・セレビシア種に属する酵母である、[1]~[12]のいずれか1つに記載の酵母。
[14] [1]~[13]のいずれか1つに記載の形質転換酵母をキシロース含有培地で培養し、得られる培養物からエタノールを採取することを含む、エタノールの生産方法。

That is, the present invention relates to the following.
[1] A gene encoding xylose reductase, a gene encoding xylulose phosphorylase, a gene encoding xylitol dehydrogenase, a gene encoding transaldolase, a gene encoding transketolase, and alcohol dehydrogenase A transformed yeast into which a gene to be encoded has been introduced so that it can be expressed.
[2] The yeast according to [1], wherein the gene is an endogenous gene of the yeast.
[3] The yeast according to [1] or [2], wherein the gene is inserted into a chromosome of a host yeast so that the gene can be expressed.
[4] The yeast according to any one of [1] to [3], wherein the gene encoding xylose reductase is GRE3.
[5] The yeast according to any one of [1] to [4], wherein the gene encoding xylulose kinase is XKS1.
[6] The yeast according to any one of [1] to [5], wherein the gene encoding xylitol dehydrogenase is SOR1.
[7] The yeast according to any one of [1] to [6], wherein the gene encoding transaldolase is TAL1.
[8] The yeast according to any one of [1] to [7], wherein the gene encoding transketolase is TKL1.
[9] The yeast according to any one of [1] to [8], wherein the gene encoding alcohol dehydrogenase is ADH1.
[10] The yeast according to any one of [1] to [9], which has an ability to produce ethanol from xylose.
[11] The yeast according to any one of [1] to [10], wherein the host yeast has hexose assimilability but not pentose assimilability.
[12] The yeast according to any one of [1] to [11], wherein the host yeast is a yeast belonging to the genus Saccharomyces.
[13] The yeast according to any one of [1] to [12], wherein the host yeast is a yeast belonging to the species Saccharomyces cerevisiae.
[14] A method for producing ethanol, comprising culturing the transformed yeast according to any one of [1] to [13] in a xylose-containing medium and collecting ethanol from the resulting culture.

 本発明により、キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子が導入された形質転換酵母が提供される。
 本発明の一態様において、本発明の形質転換酵母は、酵母自身の有する遺伝子で形質転換して作製される。このため、本発明の形質転換酵母は遺伝子組換え体に該当せず、安全性や取り扱いの容易さの点で好ましい。
 また、本発明の形質転換酵母は、キシロースからエタノールを効率的に生産することが可能である。したがって、本発明により、キシロースからエタノールを生産する方法および当該方法に使用可能な、キシロースからエタノールを生産可能な形質転換酵母が提供される。
According to the present invention, a gene encoding xylose reductase, a gene encoding xylulose kinase, a gene encoding xylitol dehydrogenase, a gene encoding transaldolase, a gene encoding transketolase, and alcohol dehydrogenase A transformed yeast into which a gene encoding is introduced is provided.
In one embodiment of the present invention, the transformed yeast of the present invention is produced by transforming with a gene possessed by the yeast itself. For this reason, the transformed yeast of the present invention does not correspond to a gene recombinant, and is preferable in terms of safety and ease of handling.
In addition, the transformed yeast of the present invention can efficiently produce ethanol from xylose. Therefore, the present invention provides a method for producing ethanol from xylose and a transformed yeast capable of producing ethanol from xylose that can be used in the method.
キシロースを基質として含む培地における、形質転換酵母(焼酎酵母)のエタノール収率を示した図である。黒色は実施例2で得られたキシロース資化能付与酵母の結果を表し、灰色は実施例3で得られたTAL1・TKL1遺伝子過剰発現株の結果を表し、白色は実施例4で得られたTAL1・TKL1・ADH1遺伝子過剰発現株の結果を表す。It is the figure which showed the ethanol yield of the transformed yeast (shochu yeast) in the culture medium which contains xylose as a substrate. The black color represents the result of the xylose-assimilating yeast obtained in Example 2, the gray color represents the result of the TAL1 · TKL1 gene overexpression strain obtained in Example 3, and the white color was obtained in Example 4. The result of the TAL1 / TKL1 / ADH1 gene overexpression strain is shown. グルコースおよびエタノールを基質として含む培地における、形質転換酵母(焼酎酵母)のエタノール収率を示した図である。黒色は実施例2で得られたキシロース資化能付与酵母の結果を表し、灰色は実施例3で得られたTAL1・TKL1遺伝子過剰発現株の結果を表し、白色は、実施例4で得られたTAL1・TKL1・ADH1遺伝子過剰発現株の結果を表す。It is the figure which showed the ethanol yield of the transformed yeast (shochu yeast) in the culture medium which contains glucose and ethanol as a substrate. The black color represents the result of the xylose-assimilating yeast obtained in Example 2, the gray color represents the result of the TAL1 · TKL1 gene overexpression strain obtained in Example 3, and the white color obtained in Example 4. The results of TAL1, TKL1, and ADH1 gene overexpression strains are shown. グルコースおよびエタノールを基質として含む培地における、形質転換酵母(焼酎酵母)のエタノール収率を示した図である。灰色は実施例3で得られたTAL1・TKL1遺伝子過剰発現株の結果を表し、白色は、実施例4で得られたTAL1・TKL1・ADH1遺伝子過剰発現株の結果を表す。It is the figure which showed the ethanol yield of the transformed yeast (shochu yeast) in the culture medium which contains glucose and ethanol as a substrate. Gray represents the result of the TAL1 · TKL1 gene overexpression strain obtained in Example 3, and white represents the result of the TAL1 · TKL1 · ADH1 gene overexpression strain obtained in Example 4. ADH1遺伝子の発現量を解析した結果を示す図である。灰色は実施例3で得られたTAL1・TKL1遺伝子過剰発現株の結果を表し、白色は、実施例4で得られたTAL1・TKL1・ADH1遺伝子過剰発現株の結果を表す。It is a figure which shows the result of having analyzed the expression level of ADH1 gene. Gray represents the result of the TAL1 · TKL1 gene overexpression strain obtained in Example 3, and white represents the result of the TAL1 · TKL1 · ADH1 gene overexpression strain obtained in Example 4. 酵母のADH1活性を測定した結果を示す図である。灰色は実施例3で得られたTAL1・TKL1遺伝子過剰発現株の結果を表し、白色は、実施例4で得られたTAL1・TKL1・ADH1遺伝子過剰発現株の結果を表す。It is a figure which shows the result of having measured the ADH1 activity of yeast. Gray represents the result of the TAL1 · TKL1 gene overexpression strain obtained in Example 3, and white represents the result of the TAL1 · TKL1 · ADH1 gene overexpression strain obtained in Example 4.
 以下、本発明を詳細に説明する。本発明の範囲はこれらの説明に限定されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で当業者であれば適宜変更し実施することができる。 Hereinafter, the present invention will be described in detail. The scope of the present invention is not limited to these descriptions, and those skilled in the art can appropriately modify and implement other than the following examples without departing from the spirit of the present invention.
1.本発明の概要
 本発明は、キシロースの資化およびペントースリン酸経路とエタノール生産経路に関する6種の酵素に関する遺伝子、すなわち、キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子を、発現可能に導入した形質転換酵母が、優れたエタノール生産能を有するという知見に基づくものである。
1. SUMMARY OF THE INVENTION The present invention relates to genes relating to six enzymes relating to xylose utilization and the pentose phosphate pathway and ethanol production pathway, that is, genes encoding xylose reductase, genes encoding xylulose kinase, xylitol dehydration A transformed yeast into which a gene encoding an elementary enzyme, a gene encoding a transaldolase, a gene encoding a transketolase, and a gene encoding an alcohol dehydrogenase have been introduced so that they can be expressed has excellent ethanol production ability Based on knowledge.
 本発明の形質転換酵母は、キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子およびキシリトール脱水素酵素をコードする遺伝子などのキシロース資化遺伝子と、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子を発現可能に導入することにより作製することができる。あるいは、本発明の形質転換酵母は、プロモーターを置換することなどによって、宿主酵母の有するキシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子および/またはアルコール脱水素酵素をコードする遺伝子の発現量を増大させることにより、作製することもできる。 The transformed yeast of the present invention comprises a xylose utilization gene such as a gene encoding xylose reductase, a gene encoding xylulose phosphorylase and a gene encoding xylitol dehydrogenase, a gene encoding transaldolase, It can be prepared by introducing a gene encoding a ketolase and a gene encoding an alcohol dehydrogenase in an expressible manner. Alternatively, the transformed yeast of the present invention may comprise a gene encoding a xylose reductase, a gene encoding xylulose kinase, a gene encoding xylitol dehydrogenase, a trans It can also be produced by increasing the expression level of a gene encoding an aldolase, a gene encoding a transketolase and / or a gene encoding an alcohol dehydrogenase.
 本明細書において、「キシロース資化遺伝子」とは、キシロースの資化に関与する酵素をコードする遺伝子である。本発明において宿主酵母に導入されるキシロース資化遺伝子は、キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の少なくとも3つの遺伝子である。本発明において、キシリトール脱水素酵素をコードする遺伝子は、ソルビトール脱水素酵素をコードする遺伝子を用いることが好ましい。 In the present specification, the “xylose utilization gene” is a gene encoding an enzyme involved in utilization of xylose. The xylose utilization gene introduced into the host yeast in the present invention is at least three genes: a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose kinase. In the present invention, the gene encoding xylitol dehydrogenase is preferably a gene encoding sorbitol dehydrogenase.
 また、本明細書において、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子の少なくとも3つの遺伝子も宿主酵母に導入される。これら3つの遺伝子は、ペントースリン酸経路およびエタノール生産経路に関する酵素をコードする遺伝子である。 In this specification, at least three genes, a gene encoding transaldolase, a gene encoding transketolase, and a gene encoding alcohol dehydrogenase, are also introduced into the host yeast. These three genes are genes encoding enzymes related to the pentose phosphate pathway and the ethanol production pathway.
 本発明の別の態様において、宿主酵母に導入されるこれら遺伝子は、宿主酵母に由来する遺伝子である。すなわち、本発明の別の態様において、酵母が本来有する(内在性の)酵素遺伝子の発現を活性化し、酵母自身の有する酵素の活性を高めることを特徴の一つとされる。 In another embodiment of the present invention, these genes introduced into the host yeast are genes derived from the host yeast. That is, in another embodiment of the present invention, one of the features is to activate the expression of an enzyme gene inherent in yeast (endogenous) and enhance the activity of the enzyme possessed by the yeast itself.
 本発明の別の態様において、宿主酵母に導入されるこれら遺伝子は、宿主酵母の染色体上に導入されることを特徴の一つとするものである。 In another aspect of the present invention, one of the characteristics of these genes introduced into the host yeast is that they are introduced into the host yeast chromosome.
 また、本発明の別の態様において、上記6種の酵素に関する遺伝子を導入した形質転換酵母は、キシロースからのエタノールへの優れた生産能を有する。 In another embodiment of the present invention, the transformed yeast introduced with the genes for the above six enzymes has an excellent productivity from xylose to ethanol.
 酵母の中には、キシロース資化酵素群が実質的に機能していない、いわゆる休眠状態にあるために、キシロースなどの五炭糖資化能を有さない酵母が存在する。例えば、サッカロマイセス属に属する酵母は、キシロース資化酵素群をコードする遺伝子群を有しているにもかかわらず、キシロースを利用してエタノールを生産することができない。 Some yeasts do not have pentose assimilation ability such as xylose because they are in a so-called dormant state in which the xylose assimilating enzyme group does not substantially function. For example, yeast belonging to the genus Saccharomyces cannot produce ethanol using xylose, despite having a gene group encoding a xylose-utilizing enzyme group.
 このようなエタノール生産能を有さないとされる酵母に、自身由来のキシロース資化遺伝子を導入することまたはプロモーターを置換することによって、キシロース資化内在性遺伝子の活性を高め、キシロース資化能を付与することができる。また、酵母自身由来のキシロース資化遺伝子だけでなく、酵母自身由来のペントースリン酸経路およびエタノール生産経路に関する酵素の遺伝子(トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子)を導入することまたはこれら遺伝子のプロモーターを置換することによって、これら遺伝子の活性も高めると、キシロースからのエタノール生成効率はさらに向上する。したがって、本発明の形質転換酵母は、キシロース資化遺伝子が染色体上に挿入された酵母に、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子を導入した酵母であってもよい。また、本発明により、エタノール生産能を有さないとされる酵母において、キシロースを利用してエタノールを効率よく生産させることができる。また、本発明は、エタノール生産能を有さないとされる酵母やエタノール生産能を向上させたい酵母に有効に適用することができる。 By introducing the xylose-utilizing gene derived from itself or replacing the promoter into yeast that does not have such ethanol-producing ability, the activity of the xylose-utilizing endogenous gene is increased and the xylose-utilizing ability is increased. Can be granted. In addition to yeast-derived xylose utilization genes, yeast-derived enzyme genes related to the pentose phosphate pathway and ethanol production pathway (transaldolase-encoding gene, transketolase-encoding gene, and alcohol dehydrogenase) When the activity of these genes is also increased by introducing the encoding genes) or replacing the promoters of these genes, the efficiency of ethanol production from xylose is further improved. Therefore, in the transformed yeast of the present invention, a gene encoding transaldolase, a gene encoding transketolase, and a gene encoding alcohol dehydrogenase were introduced into yeast in which a xylose utilization gene was inserted on the chromosome. It may be yeast. In addition, according to the present invention, ethanol can be efficiently produced using xylose in a yeast that does not have ethanol-producing ability. In addition, the present invention can be effectively applied to yeasts that do not have ethanol-producing ability and yeasts that want to improve ethanol-producing ability.
 また、本発明の形質転換酵母は、キシロースからのエタノールへの優れた生産能を有するため、本発明は、上記形質転換酵母を培養し、得られる培養物からエタノールを採取することによるエタノールの生産方法も提供する。 Moreover, since the transformed yeast of the present invention has an excellent ability to produce ethanol from xylose, the present invention cultivates the transformed yeast and produces ethanol by collecting ethanol from the resulting culture. A method is also provided.
2.本発明の形質転換酵母
 本発明の形質転換酵母は、キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子およびキシリトール脱水素酵素をコードする遺伝子などのキシロース資化遺伝子と、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子とが、発現可能に導入された酵母である。
2. Transformed yeast of the present invention The transformed yeast of the present invention comprises a xylose utilization gene such as a gene encoding xylose reductase, a gene encoding xylulose phosphorylase and a gene encoding xylitol dehydrogenase, and a transaldolase. , A gene encoding a transketolase, and a gene encoding an alcohol dehydrogenase have been introduced so as to allow expression.
(1)宿主酵母
 本発明において、遺伝子導入または形質転換の対象となる酵母は、キシロースなどの五炭糖の資化能を有していない酵母であることが好ましい。前記酵母は遺伝子導入または形質転換の前に五炭糖資化能を有していないものであればよく、グルコースなどの六炭糖の資化能を有していてもよい。「五炭糖資化能」は、キシロースなどの五炭糖を炭素源として生育する能力をいう。五炭糖資化能を有する酵母は、炭素源として五炭糖のみを添加した培地中で生育可能であるため、五炭糖資化能は、炭素源として五炭糖のみを添加した培地中における酵母の生育程度を600 nmまたは660 nmなどの波長での濁度を測定することで確認することができる。
(1) Host Yeast In the present invention, it is preferable that the yeast to be subjected to gene transfer or transformation is a yeast that does not have the ability to assimilate pentoses such as xylose. The yeast may have any ability to assimilate pentose before gene introduction or transformation, and may have ability to assimilate hexose such as glucose. “5 carbon sugar assimilation ability” refers to the ability to grow using 5 carbon sugars such as xylose as a carbon source. Since yeast having pentose assimilation ability can grow in a medium to which only pentose is added as a carbon source, the pentose utilization ability is in a medium to which only pentose is added as a carbon source. The degree of yeast growth in can be confirmed by measuring turbidity at a wavelength such as 600 nm or 660 nm.
 あるいは、本発明において、遺伝子導入または形質転換の対象となる酵母は、エタノールの生産性を向上する目的で選択することもできる。このような酵母としては、例えば、キシロース資化能を付与された酵母やキシロース資化能を賦活化された酵母を挙げることができる。 Alternatively, in the present invention, the yeast to be subjected to gene transfer or transformation can be selected for the purpose of improving ethanol productivity. Examples of such yeasts include yeasts imparted with xylose utilization ability and yeasts with activated xylose utilization ability.
 本発明において、遺伝子導入または形質転換の対象となる酵母は、特に限定されるわけではないが、例えば、サッカロマイセス属に属する酵母などを挙げることができる。サッカロマイセス属に属する酵母としては、研究室酵母株などのサッカロマイセス・セレビシア種を挙げることができる。また、本発明において、遺伝子導入または形質転換の対象となる酵母は1倍体だけでなく2倍体の酵母を使用することができる。2倍体の酵母は実用酵母として優れており、例えば、パン酵母や日本酒酵母、焼酎酵母、ワイン酵母などの醸造酵母などを挙げることができる。 In the present invention, the target yeast for gene transfer or transformation is not particularly limited, and examples thereof include yeast belonging to the genus Saccharomyces. Examples of yeast belonging to the genus Saccharomyces include Saccharomyces cerevisia species such as laboratory yeast strains. In the present invention, the yeast to be the target of gene transfer or transformation can be not only haploid but also diploid yeast. The diploid yeast is excellent as a practical yeast, and examples thereof include brewing yeast such as baker's yeast, sake yeast, shochu yeast, and wine yeast.
 また、本発明において、遺伝子導入または形質転換の対象となる酵母は、エタノールへの耐性を備えた醸造用酵母であることが好ましく、そのような酵母としては、特に限定されるわけではないが、サッカロマイセス属に属する酵母(例えば、サッカロマイセス・セレビシア)などを挙げることができる。 In the present invention, the yeast to be subjected to gene transfer or transformation is preferably a brewing yeast having resistance to ethanol, and such yeast is not particularly limited, Examples include yeast belonging to the genus Saccharomyces (for example, Saccharomyces cerevisiae).
 したがって、本発明において遺伝子導入または形質転換の対象となる酵母は、好ましくはサッカロマイセス属に属する酵母、より好ましくはサッカロマイセス・セレビシアである。 Therefore, the yeast that is the target of gene transfer or transformation in the present invention is preferably a yeast belonging to the genus Saccharomyces, more preferably Saccharomyces cerevisiae.
(2)導入遺伝子
 本発明において、キシロース資化遺伝子は、キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の少なくとも3つの遺伝子であり、中でもキシリトール脱水素酵素は好ましくはソルビトール脱水素酵素である。より具体的には、キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子は、それぞれ、GRE3(アルド・ケト還元酵素遺伝子3)、SOR1(ソルビトール脱水素酵素遺伝子1)およびXKS1(キシルロースリン酸化酵素遺伝子1)が好ましい。
(2) Transgene In the present invention, the xylose utilization gene is at least three genes, a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose kinase. The xylitol dehydrogenase is preferably sorbitol dehydrogenase. More specifically, the gene encoding xylose reductase, the gene encoding xylitol dehydrogenase, and the gene encoding xylulose phosphorylase are respectively GRE3 (Aldo keto reductase gene 3) and SOR1 (sorbitol). Dehydrogenase gene 1) and XKS1 (xylulose kinase gene 1) are preferred.
 また、本明細書において、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子も酵母に導入される。より具体的には、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子は、それぞれ、TAL1(トランスアルドラーゼ遺伝子1)、TKL1(トランスケトラーゼ遺伝子1)およびADH1(アルコール脱水素酵素遺伝子1)が好ましく酵母に導入される。 In this specification, a gene encoding transaldolase, a gene encoding transketolase, and a gene encoding alcohol dehydrogenase are also introduced into yeast. More specifically, the gene encoding transaldolase, the gene encoding transketolase, and the gene encoding alcohol dehydrogenase are TAL1 (transaldolase gene 1), TKL1 (transketolase gene 1) and ADH1 (alcohol dehydrogenase gene 1) is preferably introduced into the yeast.
 本発明において当該キシロース資化遺伝子並びにトランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子は、外来の遺伝子または内在性の遺伝子のいずれも使用できるが、内在性の遺伝子であることが好ましい。「内在性遺伝子」とは、遺伝子挿入対象の酵母の有する遺伝子、遺伝子挿入対象の酵母由来の遺伝子、遺伝子挿入対象の酵母と同種の酵母由来の遺伝子を意味する。したがって、内在性遺伝子を導入された酵母は組換え体に該当しない。 In the present invention, the xylose utilization gene, the gene encoding transaldolase, the gene encoding transketolase, and the gene encoding alcohol dehydrogenase can be any foreign gene or endogenous gene. It is preferably a sex gene. “Endogenous gene” means a gene of a yeast to be gene-inserted, a gene derived from a yeast to be gene-inserted, or a gene derived from a yeast of the same kind as the yeast to be gene-inserted. Therefore, yeast introduced with an endogenous gene is not a recombinant.
(キシロース還元酵素をコードする遺伝子)
 酵母の有するキシロース還元酵素をコードする遺伝子として、GRE3、YJR096w、YPR1、GCY1、ARA1およびYDR124wが知られている。したがって、本発明において、キシロース還元酵素をコードする遺伝子として、GRE3、YJR096w、YPR1、GCY1、ARA1またはYDR124wを使用することができる。本明細書ではGRE3をキシロース還元酵素をコードする遺伝子の例に挙げて説明するが、YJR096w、YPR1、GCY1、ARA1およびYDR124wは、GRE3に関する本明細書での記載を適用し、本発明において同様に使用することができる。
(Gene encoding xylose reductase)
GRE3, YJR096w, YPR1, GCY1, ARA1 and YDR124w are known as genes encoding xylose reductase in yeast. Therefore, in the present invention, GRE3, YJR096w, YPR1, GCY1, ARA1 or YDR124w can be used as a gene encoding xylose reductase. In this specification, GRE3 is described as an example of a gene encoding xylose reductase, but YJR096w, YPR1, GCY1, ARA1, and YDR124w apply the description in this specification regarding GRE3, and similarly in the present invention. Can be used.
 GRE3、YJR096w、YPR1、GCY1、ARA1およびYDR124wの塩基配列情報は、当業者であれば、Genbankなどの公知のデータベースから入手することができる。以下にサッカロマイセス・セレビシアにおける各遺伝子の配列情報についてのアクセッション番号を示す。
GRE3:U00059、YJR096w:Z49596、YPR1:X80642、GCY1:X13228、ARA1:M95580、YDR124w:Z48758。
The base sequence information of GRE3, YJR096w, YPR1, GCY1, ARA1 and YDR124w can be obtained from a known database such as Genbank by those skilled in the art. The accession numbers for the sequence information of each gene in Saccharomyces cerevisia are shown below.
GRE3: U00059, YJR096w: Z49596, YPR1: X80642, GCY1: X13228, ARA1: M95580, YDR124w: Z48758.
 本発明において、GRE3(アルド・ケト還元酵素遺伝子3)は、アルド・ケト還元酵素をコードする塩基配列を含む遺伝子であり、例えばサッカロマイセス・セレビシア由来の配列番号21で示される塩基配列からなるDNA、または配列番号22で示されるアミノ酸配列からなるタンパク質をコードするDNAである。GRE3がコードするタンパク質は、酵母においてキシロース還元酵素としても機能することが知られている。また、GRE3タンパク質は、シェファソマイセス・スティピティスのXYL1(キシロース還元酵素(XR))とアミノ酸配列の同一性(相同性)を有するタンパク質である。 In the present invention, GRE3 (Aldo keto reductase gene 3) is a gene containing a base sequence encoding aldo keto reductase, for example, a DNA comprising the base sequence represented by SEQ ID NO: 21 derived from Saccharomyces cerevisiae, Or it is DNA which codes the protein which consists of an amino acid sequence shown by sequence number 22. It is known that the protein encoded by GRE3 also functions as a xylose reductase in yeast. The GRE3 protein is a protein having amino acid sequence identity (homology) with XYL1 (xylose reductase (XR)) of Shephasomyces staphytis.
 本発明において、GRE3は、例えば、配列番号21で示される塩基配列を基にプライマーを設計し、酵母ライブラリー又はゲノムライブラリーから遺伝子増幅技術により得ることができる。 In the present invention, GRE3 can be obtained from a yeast library or a genomic library by gene amplification technology by designing a primer based on the base sequence represented by SEQ ID NO: 21, for example.
 本発明で使用されるGRE3は、GRE3タンパク質の変異体をコードする遺伝子を含む。GRE3タンパク質の変異体をコードする遺伝子は、例えば、配列番号21で示される塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつキシロース還元酵素活性を有するタンパク質をコードするDNAを含む。キシロース還元酵素活性については後述する。 GRE3 used in the present invention includes a gene encoding a mutant of GRE3 protein. A gene encoding a mutant of the GRE3 protein hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 21, and exhibits xylose reductase activity. A DNA encoding a protein having the same; The xylose reductase activity will be described later.
 GRE3タンパク質の変異体をコードするDNAは、配列番号21で示される塩基配列からなるDNA又はその断片をプローブとして、コロニーハイブリダイゼーション、プラークハイブリダイゼーション、サザンブロット等の公知のハイブリダイゼーション法により、cDNAライブラリー及びゲノムライブラリーから得ることができる。ライブラリーの作製方法については、「Molecular Cloning, A Laboratory Manual 4th ed.」(Cold Spring Harbor Press(2012))等を参照することができる。また、市販のcDNAライブラリー及びゲノムライブラリーを用いてもよい。 DNA encoding a mutant of GRE3 protein is obtained by cDNA live by a known hybridization method such as colony hybridization, plaque hybridization, Southern blotting, etc. using the DNA consisting of the nucleotide sequence shown in SEQ ID NO: 21 or a fragment thereof as a probe. Libraries and genomic libraries. Regarding the method for preparing the library, “Molecular Cloning, A Laboratory Manual 4th ed.” (Cold Spring Spring Press (2012)) and the like can be referred to. Commercially available cDNA libraries and genomic libraries may also be used.
 ここで、ストリンジェントな条件は、ハイブリダイゼーション後の洗浄条件として、例えば、「2×SSC、0.1%SDS、42℃」、「1×SSC、0.1%SDS、37℃」、よりストリンジェントな条件としては、例えば、「1×SSC、0.1%SDS、65℃」、「0.5×SSC、0.1%SDS、50℃」等の条件を挙げることができる。 Here, the stringent conditions are, for example, “2 × SSC, 0.1% SDS, 42 ° C.”, “1 × SSC, 0.1% SDS, 37 ° C.”, and more stringent conditions. Examples of the conditions include “1 × SSC, 0.1% SDS, 65 ° C.”, “0.5 × SSC, 0.1% SDS, 50 ° C.”, and the like.
 ハイブリダイゼーションは、公知の方法によって行うことができる。ハイブリダイゼーションの方法は、例えば、「Molecular Cloning, A Laboratory Manual 4th ed.」(Cold Spring Harbor Laboratory Press(2012))、「Current Protocols in Molecular Biology」(John Wiley & Sons(1987-1997))等を参照することができる。 Hybridization can be performed by a known method. Hybridization methods include, for example, “Molecular Cloning, A Laboratory Manual 4th ed.” (Cold Spring Harbor Laboratory Press (2012)), “Current Protocols in Molecular Biology” (John Wiley & Sons (1987-1997)), etc. You can refer to it.
 また、本明細書において、ストリンジェントな条件下でハイブリダイズするDNAには、例えば、配列番号21で示される塩基配列と少なくとも50%以上、好ましくは70%以上、80%以上または85%以上、より好ましくは90%以上、95%以上、96%以上、97%以上または98%以上、さらに好ましくは99%以上、さらに一層好ましくは99.7%以上、特に好ましくは99.9%の同一性(相同性)を有する塩基配列を含むDNAが含まれる。同一性を示す値は、BLASTなどの公知のプログラムを利用することにより算出することができる。 In the present specification, the DNA hybridizing under stringent conditions includes, for example, at least 50% or more, preferably 70% or more, 80% or more, or 85% or more with the base sequence represented by SEQ ID NO: 21, More preferably 90% or more, 95% or more, 96% or more, 97% or more or 98% or more, more preferably 99% or more, still more preferably 99.7% or more, particularly preferably 99.9% identity (homology) DNA containing a base sequence having A value indicating identity can be calculated by using a known program such as BLAST.
 また、配列番号21で示される塩基配列に相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAは、例えば、配列番号21で示される塩基配列において1個又は数個の核酸に欠失、置換又は付加などの変異の生じた塩基配列を含むDNAが挙げられる。このようなDNAとしては、例えば、(i) 配列番号21で示される塩基配列中の1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)の塩基が欠失したDNA、(ii) 配列番号21で示される塩基配列中の1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)の塩基が他の塩基に置換したDNA、(iii) 配列番号21で示される塩基配列中に1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)の塩基が付加したDNAおよび(iv) それらの変異が組み合わされたDNAであって、かつキシロース還元酵素活性を有するタンパク質をコードするDNAなどが挙げられる。 The DNA that hybridizes under stringent conditions with the DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 21 is, for example, one or several nucleic acids in the base sequence shown in SEQ ID NO: 21 DNA containing a nucleotide sequence in which mutation such as deletion, substitution or addition occurs. Examples of such DNA include (i) 1 to several (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1) in the nucleotide sequence represented by SEQ ID NO: 21 Is a DNA in which 1 to 2 bases are deleted, (ii) 1 to several (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 1) of the base sequence represented by SEQ ID NO: 21 DNA in which 3 bases, more preferably 1 to 2 bases are substituted with other bases, (iii) 1 to several (eg 1 to 10, preferably 1 to 3) in the base sequence represented by SEQ ID NO: 21 A DNA having 5 bases, more preferably 1 to 3 bases, more preferably 1 to 2 bases) and (iv) a DNA having a combination of these mutations and having xylose reductase activity. Examples include DNA to be encoded.
 本発明において、塩基配列の確認は、慣用の方法により配列決定することにより行うことができる。例えば、ジデオキシヌクレオチドチェーンターミネーション法(Sanger et al.(1977)Proc. Natl. Acad. Sci. USA 74: 5463)等により行うことができる。また、適当なDNAシークエンサーを利用して配列を解析することも可能である。 In the present invention, the nucleotide sequence can be confirmed by sequencing by a conventional method. For example, the dideoxynucleotide chain termination method (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA 74: 5463) can be used. It is also possible to analyze the sequence using an appropriate DNA sequencer.
 本発明において、例えばサッカロマイセス・セレビシア由来のGRE3(アルド・ケト還元酵素遺伝子3)は、配列番号22で示されるアミノ酸配列からなるタンパク質をコードするものも含まれる。本発明では、サッカロマイセス・セレビシア由来のGRE3タンパク質又はそれらの変異体をコードする遺伝子も、GRE3(アルド・ケト還元酵素遺伝子3)に含まれる。 In the present invention, for example, GRE3 (Aldo keto reductase gene 3) derived from Saccharomyces cerevisia includes a protein encoding a protein having the amino acid sequence represented by SEQ ID NO: 22. In the present invention, a gene encoding a GRE3 protein derived from Saccharomyces cerevisiae or a mutant thereof is also included in GRE3 (Aldo keto reductase gene 3).
 GRE3タンパク質の変異体は、(i) 配列番号22で示されるアミノ酸配列中の1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が欠失したタンパク質、(ii) 配列番号22で示されるアミノ酸配列中の1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が他のアミノ酸に置換したタンパク質、(iii) 配列番号22で示されるアミノ酸配列中に1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が付加したタンパク質および(iv) それらの変異が組み合わされたタンパク質であって、かつキシロース還元酵素活性を有するタンパク質などが挙げられる。 The GRE3 protein mutant has (i) 1 to several (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1) in the amino acid sequence represented by SEQ ID NO: 22. (2) a protein in which amino acids are deleted, (ii) 1 to several (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3) in the amino acid sequence represented by SEQ ID NO: 22 Further, a protein in which 1 to 2 amino acids are substituted with other amino acids, (iii) 1 to several (for example, 1 to 10, preferably 1 to 5) in the amino acid sequence represented by SEQ ID NO: 22 More preferably 1 to 3, more preferably 1 to 2 amino acids) and (iv) a protein having a combination of these mutations and having xylose reductase activity And the like.
 ここで、「キシロース還元酵素活性」とは、NAD+(またはNADP+)の存在下でキシロースをキシリトールに変換する活性を意味する。本発明において、GRE3タンパク質の変異体は、キシロース還元酵素活性を有する限り、その活性の程度に特に限定されないが、例えば配列番号22で示されるアミノ酸配列からなるタンパク質の約10%以上の活性を有していればよい。タンパク質の有するキシロース還元酵素活性は、公知の方法で測定することができる。 Here, “xylose reductase activity” means the activity of converting xylose to xylitol in the presence of NAD + (or NADP +). In the present invention, a mutant of GRE3 protein is not particularly limited in its activity as long as it has xylose reductase activity. For example, the GRE3 protein variant has an activity of about 10% or more of a protein consisting of the amino acid sequence represented by SEQ ID NO: 22. If you do. The xylose reductase activity of the protein can be measured by a known method.
(キシリトール脱水素酵素をコードする遺伝子)
 酵母の有するキシリトール脱水素酵素をコードする遺伝子として、SOR1、SOR2およびYLR070cが知られている。したがって、本発明において、キシリトール脱水素酵素をコードする遺伝子として、SOR1、SOR2またはYLR070cを使用することができるが、好ましくはSOR1である。本明細書ではSOR1をキシリトール脱水素酵素をコードする遺伝子の例に挙げて説明するが、SOR2およびYLR070cはSOR1に関する本明細書での記載を適用することができる。なお、SOR1およびSOR2は互いに99.9%の遺伝子配列における同一性を有する。
(Gene encoding xylitol dehydrogenase)
SOR1, SOR2, and YLR070c are known as genes encoding xylitol dehydrogenase of yeast. Therefore, in the present invention, SOR1, SOR2, or YLR070c can be used as a gene encoding xylitol dehydrogenase, and SOR1 is preferred. In the present specification, SOR1 is described as an example of a gene encoding xylitol dehydrogenase, but SOR2 and YLR070c can apply the description in this specification regarding SOR1. SOR1 and SOR2 have 99.9% identity in gene sequence.
 SOR1、SOR2およびYLR070cの塩基配列情報は、当業者であれば、Genbankなどの公知のデータベースから入手することができる。以下にサッカロマイセス・セレビシアにおける各遺伝子の配列情報についてのアクセッション番号を示す。
SOR1:L11039、SOR2:Z74294、YLR070c:Z73242。
Those skilled in the art can obtain the nucleotide sequence information of SOR1, SOR2, and YLR070c from a known database such as Genbank. The accession numbers for the sequence information of each gene in Saccharomyces cerevisia are shown below.
SOR1: L11039, SOR2: Z74294, YLR070c: Z73242.
 本発明において、SOR1(ソルビトール脱水素酵素遺伝子1)は、ソルビトール脱水素酵素をコードする塩基配列を含む遺伝子であり、例えばサッカロマイセス・セレビシア由来の配列番号23で示される塩基配列からなるDNA、または配列番号24で示されるアミノ酸配列からなるタンパク質をコードするDNAである。SOR1がコードするタンパク質は、酵母においてキシリトール脱水素酵素としても機能することが知られている。また、SOR1タンパク質は、シェファソマイセス・スティピティスのXYL2(キシリトール脱水素酵素(XDH))とアミノ酸配列の同一性(相同性)(53%)を有するタンパク質である。 In the present invention, SOR1 (sorbitol dehydrogenase gene 1) is a gene including a base sequence encoding sorbitol dehydrogenase, for example, a DNA comprising the base sequence represented by SEQ ID NO: 23 derived from Saccharomyces cerevisiae, or a sequence DNA encoding a protein consisting of the amino acid sequence shown by No. 24. It is known that the protein encoded by SOR1 also functions as xylitol dehydrogenase in yeast. The SOR1 protein is a protein having amino acid sequence identity (homology) (53%) with XYL2 (Xylitol dehydrogenase (XDH)) of Shephasomyces staphytis.
 本発明で使用されるSOR1は、SOR1タンパク質の変異体をコードする遺伝子を含む。SOR1タンパク質の変異体をコードする遺伝子は、例えば、サッカロマイセス・セレビシア由来の配列番号23で示される塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつキシリトール脱水素酵素活性を有するタンパク質をコードするDNAを含む。 SOR1 used in the present invention includes a gene encoding a mutant of SOR1 protein. A gene encoding a mutant of SOR1 protein hybridizes under stringent conditions with, for example, a DNA comprising a base sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 23 derived from Saccharomyces cerevisiae, and DNA encoding a protein having xylitol dehydrogenase activity is included.
 また、本発明で使用されるSOR1は、以下のSOR1タンパク質の変異体をコードする遺伝子であってもよい:(i) 配列番号24で示されるアミノ酸配列中の1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が欠失したタンパク質、(ii) 配列番号24で示されるアミノ酸配列中の1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が他のアミノ酸に置換したタンパク質、(iii) 配列番号24で示されるアミノ酸配列中に1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が付加したタンパク質および(iv) それらの変異が組み合わされたタンパク質であって、かつキシリトール脱水素酵素活性を有するタンパク質。 The SOR1 used in the present invention may be a gene encoding a mutant of the following SOR1 protein: (i) 1 to several (for example, 1 to 10) in the amino acid sequence represented by SEQ ID NO: 24 (Ii) 1 to several amino acids in the amino acid sequence represented by SEQ ID NO: 24, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) A protein in which an amino acid (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) is substituted with another amino acid, (iii) is represented by SEQ ID NO: 24 A protein to which 1 to several amino acids (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) amino acids are added in the amino acid sequence, and (iv) Mutation combined A protein, and a protein having xylitol dehydrogenase activity.
 ここで「キシリトール脱水素酵素活性」は、キシリトールをキシルロースに脱水素化する活性を意味する。本発明において、SOR1タンパク質の変異体は、キシリトール脱水素酵素活性を有する限り、その活性の程度に特に限定されないが、例えば配列番号24で示されるアミノ酸配列からなるタンパク質の約10%以上の活性を有していればよい。タンパク質の有するキシリトール脱水素酵素活性は、公知の方法で測定することができる。 Here, “xylitol dehydrogenase activity” means the activity of dehydrogenating xylitol to xylulose. In the present invention, the mutant of SOR1 protein is not particularly limited as long as it has xylitol dehydrogenase activity. For example, the mutant of SOR1 protein has an activity of about 10% or more of a protein consisting of the amino acid sequence represented by SEQ ID NO: 24. It only has to have. The xylitol dehydrogenase activity of the protein can be measured by a known method.
 上記ハイブリダイズするDNAに含まれるDNA、およびハイブリダイズの条件等は、前述の説明が同様に適用できる。また、本発明において、SOR1は、GRE3に対して記載された方法と同様の方法により取得または製造することができる。 The above description can be similarly applied to the DNA contained in the hybridizing DNA, the hybridization conditions, and the like. In the present invention, SOR1 can be obtained or manufactured by the same method as described for GRE3.
(キシルロースリン酸化酵素をコードする遺伝子)
 本発明において、キシルロースリン酸化酵素をコードする遺伝子として、XKS1(キシルロースリン酸化酵素遺伝子1)を使用することができる。XKS1の塩基配列情報は、当業者であれば、Genbankなどの公知のデータベースから入手することができる。例えば、サッカロマイセス・セレビシアのXKS1のアクセッション番号は、Z72979である。
(Gene encoding xylulose kinase)
In the present invention, XKS1 (xylulose kinase gene 1) can be used as a gene encoding xylulose kinase. Those skilled in the art can obtain the base sequence information of XKS1 from a known database such as Genbank. For example, the accession number of XKS1 of Saccharomyces cerevisia is Z72979.
 本発明において、XKS1(キシルロースリン酸化酵素遺伝子1)は、キシルロースリン酸化酵素をコードする塩基配列を含む遺伝子であり、例えばサッカロマイセス・セレビシア由来の配列番号25で示される塩基配列からなるDNA、または配列番号26で示されるアミノ酸配列からなるタンパク質をコードするDNAである。 In the present invention, XKS1 (xylulose phosphorylase gene 1) is a gene comprising a base sequence encoding xylulose phosphorylase, for example, a DNA comprising the base sequence represented by SEQ ID NO: 25 derived from Saccharomyces cerevisiae, Or it is DNA which codes the protein which consists of an amino acid sequence shown by sequence number 26.
 本発明で使用されるXKS1は、XKS1タンパク質の変異体をコードする遺伝子を含む。XKS1タンパク質の変異体をコードする遺伝子は、例えば、サッカロマイセス・セレビシア由来の配列番号25で示される塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつキシルロースリン酸化酵素活性を有するタンパク質をコードするDNAを含む。 XKS1 used in the present invention includes a gene encoding a mutant of XKS1 protein. A gene encoding a mutant of the XKS1 protein hybridizes under stringent conditions with, for example, a DNA comprising a base sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 25 derived from Saccharomyces cerevisiae, and DNA encoding a protein having xylulose kinase activity is included.
 また、本発明で使用されるXKS1は、以下のXKS1タンパク質の変異体をコードする遺伝子であってもよい:(i) 配列番号26で示されるアミノ酸配列中の1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が欠失したタンパク質、(ii) 配列番号26で示されるアミノ酸配列中の1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が他のアミノ酸に置換したタンパク質、(iii) 配列番号26で示されるアミノ酸配列中に1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が付加したタンパク質および(iv) それらの変異が組み合わされたタンパク質であって、かつキシルロースリン酸化酵素活性を有するタンパク質。 XKS1 used in the present invention may be a gene encoding a variant of the following XKS1 protein: (i) 1 to several (for example, 1 to 10) in the amino acid sequence represented by SEQ ID NO: 26 (Ii) 1 to several amino acids in the amino acid sequence represented by SEQ ID NO: 26, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) A protein in which an amino acid (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) is substituted with another amino acid, (iii) is represented by SEQ ID NO: 26 A protein to which 1 to several amino acids (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) amino acids are added in the amino acid sequence, and (iv) Mutation combined A protein, and a protein having xylulose kinase activity.
 ここで「キシルロースリン酸化酵素活性」は、キシルロースをリン酸化する活性を意味する。本発明において、XKS1タンパク質の変異体は、キシルロースリン酸化酵素活性を有する限り、その活性の程度に特に限定されないが、例えば配列番号26で示されるアミノ酸配列からなるタンパク質の約10%以上の活性を有していればよい。タンパク質の有するキシルロースリン酸化酵素活性は、公知の方法で測定することができる。 Here, “xylulose kinase activity” means an activity of phosphorylating xylulose. In the present invention, the mutant of the XKS1 protein is not particularly limited as long as it has xylulose phosphatase activity. For example, the activity of about 10% or more of the protein consisting of the amino acid sequence represented by SEQ ID NO: 26 As long as it has. The xylulose kinase activity of the protein can be measured by a known method.
 上記ハイブリダイズするDNAに含まれるDNA、およびハイブリダイズの条件等は、前述の説明が同様に適用できる。また、本発明において、XKS1は、GRE3に対して記載された方法と同様の方法により取得または製造することができる。 The above description can be similarly applied to the DNA contained in the hybridizing DNA, the hybridization conditions, and the like. In the present invention, XKS1 can also be obtained or produced by a method similar to that described for GRE3.
(トランスアルドラーゼをコードする遺伝子)
 本発明において、トランスアルドラーゼをコードする遺伝子として、TAL1(トランスアルドラーゼ遺伝子1)またはTAL2(トランスアルドラーゼ遺伝子2)を使用することができる。TAL1およびTAL2の塩基配列情報は、当業者であれば、Genbankなどの公知のデータベースから入手することができる。例えば、サッカロマイセス・セレビシアのTAL1およびTAL2のアクセッション番号は、それぞれX15953およびX59720である。本明細書ではTAL1をトランスアルドラーゼをコードする遺伝子の例に挙げて説明するが、TAL2についてもTAL1に関する本明細書での記載を同様に適用することができる。
(Gene encoding transaldolase)
In the present invention, TAL1 (transaldolase gene 1) or TAL2 (transaldolase gene 2) can be used as a gene encoding transaldolase. Those skilled in the art can obtain the base sequence information of TAL1 and TAL2 from a known database such as Genbank. For example, Saccharomyces cerevisiae TAL1 and TAL2 accession numbers are X15953 and X59720, respectively. In the present specification, TAL1 is described as an example of a gene encoding transaldolase, but the description in the present specification regarding TAL1 can be similarly applied to TAL2.
 本発明において、TAL1(トランスアルドラーゼ遺伝子1)は、トランスアルドラーゼをコードする塩基配列を含む遺伝子であり、例えばサッカロマイセス・セレビシア由来の配列番号27で示される塩基配列からなるDNA、または配列番号28で示されるアミノ酸配列からなるタンパク質をコードするDNAである。 In the present invention, TAL1 (transaldolase gene 1) is a gene containing a base sequence encoding transaldolase. For example, DNA comprising the base sequence represented by SEQ ID NO: 27 derived from Saccharomyces cerevisiae, or represented by SEQ ID NO: 28 DNA encoding a protein consisting of an amino acid sequence.
 本発明で使用されるTAL1は、TAL1タンパク質の変異体をコードする遺伝子を含む。TAL1タンパク質の変異体をコードする遺伝子は、例えば、サッカロマイセス・セレビシア由来の配列番号27で示される塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつトランスアルドラーゼ活性を有するタンパク質をコードするDNAを含む。 TAL1 used in the present invention includes a gene encoding a mutant of the TAL1 protein. A gene encoding a mutant of TAL1 protein hybridizes under stringent conditions with, for example, a DNA comprising a base sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 27 derived from Saccharomyces cerevisiae, and DNA encoding a protein having transaldolase activity is included.
 また、本発明で使用されるTAL1は、以下のTAL1タンパク質の変異体をコードする遺伝子であってもよい:(i) 配列番号28で示されるアミノ酸配列中の1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が欠失したタンパク質、(ii) 配列番号28で示されるアミノ酸配列中の1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が他のアミノ酸に置換したタンパク質、(iii) 配列番号28で示されるアミノ酸配列中に1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が付加したタンパク質および(iv) それらの変異が組み合わされたタンパク質であって、かつトランスアルドラーゼ活性を有するタンパク質。 TAL1 used in the present invention may be a gene encoding the following mutant of TAL1 protein: (i) 1 to several (for example, 1 to 10) in the amino acid sequence represented by SEQ ID NO: 28 (Ii) 1 to several amino acids in the amino acid sequence shown in SEQ ID NO: 28, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) A protein in which an amino acid (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) is substituted with another amino acid, (iii) is represented by SEQ ID NO: 28 A protein to which 1 to several amino acids (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) amino acids are added in the amino acid sequence, and (iv) Mutation combined A protein, and a protein having transaldolase activity.
 ここで「トランスアルドラーゼ活性」は、セドヘプツロース-7-リン酸+グリセルアルデヒド-3-リン酸⇔エリスロース-4-リン酸+フルクトース-6-リン酸の反応を触媒する活性を意味する。本発明において、TAL1タンパク質の変異体は、トランスアルドラーゼ活性を有する限り、その活性の程度に特に限定されないが、例えば配列番号28で示されるアミノ酸配列からなるタンパク質の約10%以上の活性を有していればよい。タンパク質の有するトランスアルドラーゼ活性は、公知の方法で測定することができる。 Here, “transaldolase activity” means an activity that catalyzes the reaction of cedoheptulose-7-phosphate + glyceraldehyde-3-phosphate-erythrose-4-phosphate + fructose-6-phosphate. In the present invention, a mutant of the TAL1 protein is not particularly limited to the extent of its activity as long as it has transaldolase activity. It only has to be. The transaldolase activity of the protein can be measured by a known method.
 上記ハイブリダイズするDNAに含まれるDNA、およびハイブリダイズの条件等は、前述の説明が同様に適用できる。また、本発明において、TAL1は、GRE3に対して記載された方法と同様の方法により取得または製造することができる。 The above description can be similarly applied to the DNA contained in the hybridizing DNA, the hybridization conditions, and the like. In the present invention, TAL1 can be obtained or produced by a method similar to that described for GRE3.
(トランスケトラーゼをコードする遺伝子)
 本発明において、トランスケトラーゼをコー
ドする遺伝子として、TKL1(トランスケトラーゼ遺伝子1)またはTKL2(トランスケトラーゼ遺伝子2)を使用することができる。TKL1およびTKL2の塩基配列情報は、当業者であれば、Genbankなどの公知のデータベースから入手することができる。例えば、サッカロマイセス・セレビシアのTKL1およびTKL2のアクセッション番号は、それぞれX73224およびX73532である。本明細書ではTKL1をトランスケトラーゼをコードする遺伝子の例に挙げて説明するが、TKL2についてもTKL1に関する本明細書での記載を同様に適用することができる。
(Gene encoding transketolase)
In the present invention, TKL1 (transketolase gene 1) or TKL2 (transketolase gene 2) can be used as a gene encoding transketolase. The base sequence information of TKL1 and TKL2 can be obtained from a known database such as Genbank by those skilled in the art. For example, the accession numbers of Saccharomyces cerevisiae TKL1 and TKL2 are X73224 and X73532, respectively. In the present specification, TKL1 is described as an example of a gene encoding a transketolase, but the description in this specification regarding TKL1 can be similarly applied to TKL2.
 本発明において、TKL1(トランスケトラーゼ遺伝子1)は、トランスケトラーゼをコードする塩基配列を含む遺伝子であり、例えばサッカロマイセス・セレビシア由来の配列番号29で示される塩基配列からなるDNA、または配列番号30で示されるアミノ酸配列からなるタンパク質をコードするDNAである。 In the present invention, TKL1 (transketolase gene 1) is a gene including a base sequence encoding transketolase. For example, DNA comprising the base sequence represented by SEQ ID NO: 29 derived from Saccharomyces cerevisiae, or SEQ ID NO: 30 DNA encoding a protein consisting of the amino acid sequence represented by
 本発明で使用されるTKL1は、TKL1タンパク質の変異体をコードする遺伝子を含む。TKL1タンパク質の変異体をコードする遺伝子は、例えば、サッカロマイセス・セレビシア由来の配列番号29で示される塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつトランスケトラーゼ活性を有するタンパク質をコードするDNAを含む。 TKL1 used in the present invention includes a gene encoding a mutant of TKL1 protein. The gene encoding the mutant of TKL1 protein hybridizes under stringent conditions with, for example, a DNA comprising a base sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 29 derived from Saccharomyces cerevisiae, and DNA encoding a protein having transketolase activity is included.
 また、本発明で使用されるTKL1は、以下のTKL1タンパク質の変異体をコードする遺伝子であってもよい:(i) 配列番号30で示されるアミノ酸配列中の1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が欠失したタンパク質、(ii) 配列番号30で示されるアミノ酸配列中の1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が他のアミノ酸に置換したタンパク質、(iii) 配列番号30で示されるアミノ酸配列中に1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が付加したタンパク質および(iv) それらの変異が組み合わされたタンパク質であって、かつトランスケトラーゼ活性を有するタンパク質。 Further, TKL1 used in the present invention may be a gene encoding a variant of the following TKL1 protein: (i) 1 to several (for example, 1 to 10) in the amino acid sequence represented by SEQ ID NO: 30 (Ii) 1 to several amino acids in the amino acid sequence represented by SEQ ID NO: 30, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) A protein in which an amino acid (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) is substituted with another amino acid, (iii) shown in SEQ ID NO: 30 A protein to which 1 to several amino acids (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) amino acids are added in the amino acid sequence, and (iv) Mutation combined A protein, and a protein having transketolase activity.
 ここで「トランスケトラーゼ活性」は、セドヘプツロース-7-リン酸+グリセルアルデヒド-3-リン酸⇔キシルロース-5-リン酸+リボース-5-リン酸の反応を触媒する活性を意味する。本発明において、TKL1タンパク質の変異体は、トランスケトラーゼ活性を有する限り、その活性の程度に特に限定されないが、例えば配列番号30で示されるアミノ酸配列からなるタンパク質の約10%以上の活性を有していればよい。タンパク質の有するトランスケトラーゼ活性は、公知の方法で測定することができる。 Here, “transketolase activity” means an activity that catalyzes the reaction of sedoheptulose-7-phosphate + glyceraldehyde-3-phosphate xylulose-5-phosphate + ribose-5-phosphate. In the present invention, the mutant of TKL1 protein is not particularly limited as long as it has transketolase activity, but has, for example, an activity of about 10% or more of the protein consisting of the amino acid sequence shown by SEQ ID NO: 30. If you do. The transketolase activity possessed by the protein can be measured by a known method.
 上記ハイブリダイズするDNAに含まれるDNA、およびハイブリダイズの条件等は、前述の説明が同様に適用できる。また、本発明において、TKL1は、GRE3に対して記載された方法と同様の方法により取得または製造することができる。 The above description can be similarly applied to the DNA contained in the hybridizing DNA, the hybridization conditions, and the like. In the present invention, TKL1 can also be obtained or produced by a method similar to that described for GRE3.
(アルコール脱水素酵素をコードする遺伝子)
 本発明において、アルコール脱水素酵素をコードする遺伝子として、ADH1(アルコール脱水素酵素遺伝子1)を使用することができる。ADH1の塩基配列情報は、当業者であれば、Genbankなどの公知のデータベースから入手することができる。例えば、サッカロマイセス・セレビシアのADH1のアクセッション番号は、X83121である。
(Gene encoding alcohol dehydrogenase)
In the present invention, ADH1 (alcohol dehydrogenase gene 1) can be used as a gene encoding alcohol dehydrogenase. A person skilled in the art can obtain the base sequence information of ADH1 from a known database such as Genbank. For example, the accession number of Saccharomyces cerevisia ADH1 is X83121.
 本発明において、ADH1(アルコール脱水素酵素遺伝子1)は、アルコール脱水素酵素をコードする塩基配列を含む遺伝子であり、例えばサッカロマイセス・セレビシア由来の配列番号31で示される塩基配列からなるDNA、または配列番号32で示されるアミノ酸配列からなるタンパク質をコードするDNAである。 In the present invention, ADH1 (alcohol dehydrogenase gene 1) is a gene containing a base sequence encoding alcohol dehydrogenase. For example, DNA comprising the base sequence represented by SEQ ID NO: 31 derived from Saccharomyces cerevisiae, or a sequence This is a DNA encoding a protein consisting of the amino acid sequence shown by No. 32.
 本発明で使用されるADH1は、ADH1タンパク質の変異体をコードする遺伝子を含む。ADH1タンパク質の変異体をコードする遺伝子は、例えば、サッカロマイセス・セレビシア由来の配列番号31で示される塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつアルコール脱水素酵素活性を有するタンパク質をコードするDNAを含む。 ADH1 used in the present invention includes a gene encoding a mutant of ADH1 protein. A gene encoding a mutant of ADH1 protein hybridizes under stringent conditions with, for example, a DNA comprising a base sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 31 derived from Saccharomyces cerevisiae, and DNA encoding a protein having alcohol dehydrogenase activity is included.
 また、本発明で使用されるADH1は、以下のADH1タンパク質の変異体をコードする遺伝子であってもよい:(i) 配列番号32で示されるアミノ酸配列中の1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が欠失したタンパク質、(ii) 配列番号32で示されるアミノ酸配列中の1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が他のアミノ酸に置換したタンパク質、(iii) 配列番号32で示されるアミノ酸配列中に1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が付加したタンパク質および(iv) それらの変異が組み合わされたタンパク質であって、かつアルコール脱水素酵素活性を有するタンパク質。 In addition, ADH1 used in the present invention may be a gene encoding a variant of the following ADH1 protein: (i) 1 to several (for example, 1 to 10) in the amino acid sequence represented by SEQ ID NO: 32 (Ii) 1 to several amino acids in the amino acid sequence represented by SEQ ID NO: 32, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) A protein in which (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) amino acids are substituted with other amino acids, (iii) SEQ ID NO: 32 A protein to which 1 to several amino acids (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) amino acids are added in the amino acid sequence, and (iv) Mutation combined A protein, and a protein having an alcohol dehydrogenase activity.
 ここで「アルコール脱水素酵素活性」は、アルコールを酸化してアルデヒドにする活性を意味する。本発明において、ADH1タンパク質の変異体は、アルコール脱水素酵素活性を有する限り、その活性の程度に特に限定されないが、例えば配列番号32で示されるアミノ酸配列からなるタンパク質の約10%以上の活性を有していればよい。タンパク質の有するアルコール脱水素酵素活性は、公知の方法で測定することができる。 Here, “alcohol dehydrogenase activity” means the activity of oxidizing alcohol to aldehyde. In the present invention, the ADH1 protein mutant is not particularly limited in its activity as long as it has alcohol dehydrogenase activity. It only has to have. The alcohol dehydrogenase activity of the protein can be measured by a known method.
 上記ハイブリダイズするDNAに含まれるDNA、およびハイブリダイズの条件等は、前述の説明が同様に適用できる。また、本発明において、ADH1は、GRE3に対して記載された方法と同様の方法により取得または製造することができる。 The above description can be similarly applied to the DNA contained in the hybridizing DNA, the hybridization conditions, and the like. In the present invention, ADH1 can be obtained or produced by a method similar to the method described for GRE3.
 本発明において、上記6種の遺伝子を当該遺伝子の由来と同種の宿主酵母に導入することにより、酵母自身の酵素活性が遺伝子導入前よりも向上することが期待される。例えば、実施例で示すように、本発明の酵母において、アルコール脱水素酵素活性は増大している。また、非組換え酵母を作製する場合は、宿主酵母に導入される上記6種の遺伝子は、内在性の遺伝子であることが必要である。 In the present invention, by introducing the above six genes into the same host yeast as the origin of the gene, it is expected that the enzyme activity of the yeast itself is improved more than before the gene introduction. For example, as shown in the Examples, the alcohol dehydrogenase activity is increased in the yeast of the present invention. Moreover, when producing non-recombinant yeast, it is necessary that the six genes introduced into the host yeast are endogenous genes.
(3)酵母への遺伝子の導入
 本発明において、キシロース資化遺伝子(例えば、キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子およびキシリトール脱水素酵素をコードする遺伝子の3つの遺伝子)、並びにトランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子を宿主酵母に発現可能に導入することにより、本発明の形質転換酵母を作製することができる。また、これらの遺伝子のプロモーターを、遺伝子の発現量を増大させるプロモーターに置換することにより、本発明の形質転換酵母を作製することもできる。
(3) Introduction of gene into yeast In the present invention, three genes, a xylose utilization gene (for example, a gene encoding xylose reductase, a gene encoding xylulose kinase, and a gene encoding xylitol dehydrogenase) ), And a gene encoding transaldolase, a gene encoding transketolase, and a gene encoding alcohol dehydrogenase so that they can be expressed in a host yeast, the transformed yeast of the present invention can be produced. . Moreover, the transformed yeast of the present invention can also be produced by replacing the promoters of these genes with promoters that increase the expression level of the genes.
 本発明の形質転換酵母は、好ましくは、GRE3、SOR1、XKS1、TAL1、TKL1およびADH1が発現可能に導入された酵母である。本明細書において、「発現可能に(導入または挿入)」とは、導入または挿入された遺伝子が形質転換体において所定の条件で発現できるような形で導入または挿入されることを意味する。 The transformed yeast of the present invention is preferably a yeast into which GRE3, SOR1, XKS1, TAL1, TKL1, and ADH1 have been introduced so that they can be expressed. In the present specification, the expression “being expressible (introduction or insertion)” means that the introduced or inserted gene is introduced or inserted in such a form that it can be expressed in a transformant under a predetermined condition.
 本発明において、キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子およびキシリトール脱水素酵素をコードする遺伝子は、好ましくは酵母の染色体上に発現可能に挿入される。また、本発明において、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子は、好ましくは酵母の染色体上に発現可能に挿入される。すなわち、本発明において、酵母への遺伝子の導入は、酵母の染色体上への遺伝子の挿入を含む。本発明の形質転換酵母は、好ましくは、キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子、キシリトール脱水素酵素、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子が染色体上に発現可能に挿入された酵母であり、より好ましくは、GRE3、SOR1、XKS1、TAL1、TKL1およびADH1が染色体上に発現可能に挿入された酵母である。 In the present invention, a gene encoding xylose reductase, a gene encoding xylulose kinase, and a gene encoding xylitol dehydrogenase are preferably inserted so as to be expressible on the yeast chromosome. In the present invention, a gene encoding transaldolase, a gene encoding transketolase, and a gene encoding alcohol dehydrogenase are preferably inserted in a yeast chromosome so that they can be expressed. That is, in the present invention, introduction of a gene into yeast includes insertion of the gene onto the yeast chromosome. The transformed yeast of the present invention is preferably a gene encoding xylose reductase, a gene encoding xylulose kinase, xylitol dehydrogenase, a gene encoding transaldolase, a gene encoding transketolase, and alcohol A yeast into which a gene encoding a dehydrogenase is inserted so as to be expressed on a chromosome is more preferable, and a yeast into which GRE3, SOR1, XKS1, TAL1, TKL1, and ADH1 are inserted so as to be expressed on a chromosome is more preferable.
 本発明において、染色体に挿入されるそれぞれの遺伝子の個数は限定されず、1個または複数個である。また、染色体に挿入される各遺伝子の順番は特に限定されない。また、遺伝子を挿入する染色体の位置は、特に限定されないが、酵母内で機能していない部位が好ましく、例えば、XYL2部位(Genbankアクセッション番号Z73242)、HXT13部位、HXT17部位、AUR1部位、などが挙げられる。遺伝子をコードしていない染色体上の部位に挿入することも可能である。遺伝子をコードしていない染色体上の部位としてTy因子の1つであるδ配列が挙げられる。δ配列は、酵母の染色体上に複数(約100コピー)存在することが知られている。酵母染色体におけるδ配列の位置および配列情報は、公知である(例えば、Science 265, 2077 (1994))。例えばδ配列の途中にキシロース資化性遺伝子を挿入したプラスミドを酵母に導入することで、染色体上の目的の位置に1または複数コピーの当該遺伝子を挿入することができる。またδ配列のほかに同じくTy因子であるσ配列、τ配列に挿入することもできる。またNTS2などのリボソーム遺伝子部位に挿入することもできる。 In the present invention, the number of each gene inserted into a chromosome is not limited and is one or more. Moreover, the order of each gene inserted in a chromosome is not specifically limited. Further, the position of the chromosome into which the gene is inserted is not particularly limited, but a site that does not function in yeast is preferable. For example, an XYL2 site (Genbank accession number Z73242), HXT13 site, HXT17 site, AUR1 site, etc. Can be mentioned. It is also possible to insert at a site on a chromosome that does not encode a gene. An example of a site on a chromosome that does not encode a gene is a δ sequence that is one of Ty factors. It is known that a plurality of (approximately 100 copies) δ sequences are present on the yeast chromosome. The position and sequence information of the δ sequence in the yeast chromosome are known (for example, Science 265, 2077 (1994)). For example, by introducing a plasmid having a xylose-assimilating gene inserted in the middle of the δ sequence into yeast, one or more copies of the gene can be inserted at a desired position on the chromosome. In addition to the δ sequence, it can also be inserted into the σ and τ sequences, which are also Ty factors. It can also be inserted into a ribosomal gene site such as NTS2.
 遺伝子を染色体上に挿入する場合、それぞれの遺伝子は個別に染色体上に挿入してもよいし、またはプロモーターの支配下に2以上の遺伝子をタンデムに連結した発現カセットを作製して染色体上に挿入してもよい。タンデムに連結する場合、遺伝子の配置の順番および連結する遺伝子の数は特に限定されず、考えられる組合せのいずれでも良い。 When inserting genes into chromosomes, each gene may be inserted into the chromosome individually, or an expression cassette in which two or more genes are linked in tandem under the control of a promoter is created and inserted into the chromosome. May be. In the case of tandem linkage, the order of gene arrangement and the number of genes to be linked are not particularly limited, and any conceivable combination may be used.
 酵母への遺伝子の導入は、プラスミドを利用することができる。プラスミドは、本発明で使用する酵素遺伝子の1つ以上を含み得る。例えば、キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子およびキシリトール脱水素酵素をコードする遺伝子の3つの遺伝子を1つのプラスミドに含有させることができる。また、例えば、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子の3つの遺伝子を1つのプラスミドに含有させることができる。複数の遺伝子が1つのプラスミドに含まれる場合、プラスミド上のそれぞれの遺伝子の順番および数は特に限定されない。本発明はこれらの遺伝子を含有するプラスミドまたは発現カセットを含む。このようなプラスミドまたは発現カセットの例として、プロモーターの支配下にGRE3、SOR1およびXLS1を連結したプラスミドまたは発現カセット、またはプロモーターの支配下にTAL1およびTKLを連結したプラスミドまたは発現カセットなどが挙げられる。複数の遺伝子は、酵母に導入された際、特に、染色体に挿入された際に、それぞれの遺伝子が発現可能となるように連結される。2つの遺伝子を連結し、融合遺伝子を作製する際に必要であれば、リンカー配列や制限酵素部位等を適宜付加してもよい。これらの操作は、当分野でよく知られている慣用の遺伝子操作技術を用いて行うことができる。これらのプラスミドまたは発現カセットを用いることによって、3種のキシロース資化遺伝子並びに/またはトランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子および/もしくはアルコール脱水素酵素をコードする遺伝子を酵母の染色体上に導入してもよい。 A plasmid can be used for introduction of a gene into yeast. The plasmid may contain one or more of the enzyme genes used in the present invention. For example, one plasmid can contain three genes: a gene encoding xylose reductase, a gene encoding xylulose kinase, and a gene encoding xylitol dehydrogenase. Further, for example, three genes, a gene encoding transaldolase, a gene encoding transketolase, and a gene encoding alcohol dehydrogenase, can be contained in one plasmid. When a plurality of genes are included in one plasmid, the order and number of each gene on the plasmid are not particularly limited. The present invention includes plasmids or expression cassettes containing these genes. Examples of such a plasmid or expression cassette include a plasmid or expression cassette in which GRE3, SOR1 and XLS1 are linked under the control of a promoter, or a plasmid or expression cassette in which TAL1 and TKL are linked under the control of a promoter. A plurality of genes are linked so that each gene can be expressed when introduced into yeast, particularly when inserted into a chromosome. If necessary when linking two genes and preparing a fusion gene, a linker sequence or a restriction enzyme site may be added as appropriate. These manipulations can be performed using conventional genetic manipulation techniques well known in the art. By using these plasmids or expression cassettes, three types of xylose utilization genes and / or genes encoding transaldolase, genes encoding transketolase and / or genes encoding alcohol dehydrogenase can be transformed into yeast chromosomes. It may be introduced above.
 本発明で使用されるプラスミドは、酵母発現用のベクターに上記遺伝子を発現可能に挿入することで作製することができる。ベクターへの遺伝子の挿入は、リガーゼ反応、トポイソメラーゼ反応などを利用することができる。例えば、精製したDNAを適当な制限酵素で切断し、得られたDNA断片を、ベクター中の適当な制限酵素部位またはマルチクローニングサイトなどに挿入することでベクターに連結する方法などを採用することができる。 The plasmid used in the present invention can be prepared by inserting the above gene into a yeast expression vector so that the gene can be expressed. The gene can be inserted into the vector using a ligase reaction, a topoisomerase reaction, or the like. For example, a method in which purified DNA is cleaved with an appropriate restriction enzyme, and the resulting DNA fragment is inserted into an appropriate restriction enzyme site or a multicloning site in the vector to be ligated to the vector, etc. it can.
 本発明で使用されるプラスミドは、その基本となるベクターの由来には特に限定されず、例えば、大腸菌由来のプラスミド、枯草菌由来のプラスミド、酵母由来のプラスミドなどを使用することができる。例えば、pGADT7、pAUR135などの市販のベクターを使用することもできる。宿主酵母由来のプラスミドを用いて本発明の形質転換酵母を調整する場合は、本発明の形質転換酵母は遺伝子組換え体に該当しない。 The plasmid used in the present invention is not particularly limited to the origin of the basic vector, and for example, a plasmid derived from E. coli, a plasmid derived from Bacillus subtilis, a plasmid derived from yeast, and the like can be used. For example, commercially available vectors such as pGADT7 and pAUR135 can also be used. When the transformed yeast of the present invention is prepared using a plasmid derived from a host yeast, the transformed yeast of the present invention does not correspond to a genetic recombinant.
 本発明のプラスミドは、目的遺伝子を発現させ得る限り、マルチクローニングサイト、プロモーター、エンハンサー、ターミネーター、選択マーカーカセットなどを含んでもよい。また、DNAを挿入する際に必要であれば、適宜リンカーや制限酵素部位を付加してもよい。これらの操作は、当分野でよく知られている慣用の遺伝子操作技術を用いて行うことができる。 The plasmid of the present invention may contain a multicloning site, a promoter, an enhancer, a terminator, a selection marker cassette and the like as long as the target gene can be expressed. If necessary when inserting DNA, a linker or a restriction enzyme site may be added as appropriate. These manipulations can be performed using conventional genetic manipulation techniques well known in the art.
 プロモーターは、目的遺伝子の上流に組み込むことができる。プロモーターは、形質転換体において目的タンパク質を適切に発現できるものであれば、特に限定されないが、PGKプロモーター、ADHプロモーター、TDHプロモーター、ENOプロモーター、CITプロモーター、TEFプロモーター、CDCプロモーター、GPMプロモーターまたはPDCプロモーターなどを使用することができる。 Promoter can be incorporated upstream of target gene. The promoter is not particularly limited as long as the target protein can be appropriately expressed in the transformant. However, the PGK promoter, ADH promoter, TDH promoter, ENO promoter, CIT promoter, TEF promoter, CDC promoter, GPM promoter or PDC promoter Etc. can be used.
 ターミネーターは、目的遺伝子の下流に組み込むことができ、例えばPGKターミネーター、CITターミネーター、TEFターミネーター、CDCターミネーター、GPMターミネーターまたはPDCターミネーターなどを使用することができる。
 本発明において、酵母で目的遺伝子を効率よく発現させるために、PGKプロモーター及び/又はPGKターミネーターを用いることが好ましい。
The terminator can be incorporated downstream of the target gene. For example, a PGK terminator, a CIT terminator, a TEF terminator, a CDC terminator, a GPM terminator, a PDC terminator, or the like can be used.
In the present invention, it is preferable to use a PGK promoter and / or PGK terminator in order to efficiently express a target gene in yeast.
 選択マーカーとしては、アンピシリン耐性遺伝子、カナマイシン耐性遺伝子、ネオマイシン耐性遺伝子、ハイグロマイシン耐性遺伝子などの薬剤耐性遺伝子、ジヒドロ葉酸還元酵素遺伝子、ロイシン合成酵素遺伝子、ウラシル合成酵素遺伝子などを挙げることができる。ベクターにロイシン、ヒスチジン、トリプトファンなどのアミノ酸合成遺伝子カセット又はウラシル合成遺伝子カセットが含まれる場合は、当該アミノ酸又はウラシルを含まない培地で酵母を培養することにより、形質転換酵母を選択することができる。 Examples of selection markers include drug resistance genes such as ampicillin resistance gene, kanamycin resistance gene, neomycin resistance gene, hygromycin resistance gene, dihydrofolate reductase gene, leucine synthase gene, uracil synthase gene, and the like. When the vector contains an amino acid synthesis gene cassette such as leucine, histidine, tryptophan, or a uracil synthesis gene cassette, a transformed yeast can be selected by culturing the yeast in a medium not containing the amino acid or uracil.
 本発明のプラスミドや発現カセットを遺伝子導入対象の本発明の宿主酵母に導入することで、形質転換酵母を作製することができる。 A transformed yeast can be produced by introducing the plasmid or expression cassette of the present invention into the host yeast of the present invention to be introduced.
 宿主酵母に本発明のプラスミドを導入する方法は、特に限定されるものではないが、例えば、酢酸リチウム法、エレクトロポレーション法、リン酸カルシウム法、リポフェクション法、DEAEデキストラン法などの公知の方法が挙げられる。これらの方法により、本発明の形質転換酵母が提供される。 The method for introducing the plasmid of the present invention into the host yeast is not particularly limited, and examples thereof include known methods such as lithium acetate method, electroporation method, calcium phosphate method, lipofection method, DEAE dextran method and the like. . By these methods, the transformed yeast of the present invention is provided.
 また、本発明の形質転換酵母は、相同組換えにより目的遺伝子を宿主酵母の染色体上に組み込むことにより作製することもできる。当業者であれば、公知の方法により相同組換えにより本発明の形質転換酵母を作製することができる。 The transformed yeast of the present invention can also be produced by integrating the target gene into the host yeast chromosome by homologous recombination. A person skilled in the art can produce the transformed yeast of the present invention by homologous recombination by a known method.
 五炭糖資化能を有していない酵母は、キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の3つの遺伝子を全て発現しないと、キシロース利用能が付与されない。したがって、上記のように遺伝子導入した酵母をキシロース含有(グルコース不含)培地で培養することにより、少なくともキシロース資化酵素遺伝子が発現可能に導入された形質転換酵母を選択することができる。 If yeast that does not have pentose utilization ability does not express all three genes, a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose kinase, Xylose availability is not provided. Therefore, by culturing the gene-transferred yeast as described above in a xylose-containing (glucose-free) medium, a transformed yeast into which at least the xylose-utilizing enzyme gene has been introduced can be selected.
 このように、6つの遺伝子を酵母に発現可能に導入することで、好ましくは6つの遺伝子を酵母の染色体上に導入することで、本発明の形質転換酵母を作製することができる。 Thus, the transformed yeast of the present invention can be prepared by introducing six genes so that they can be expressed in yeast, and preferably by introducing six genes onto the yeast chromosome.
 さらに、本発明の形質転換酵母としては、宿主細胞の有するキシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子の発現が活性化されたものであってもよい。すなわち、本発明は、宿主酵母の染色体上にもともと存在する上記遺伝子の発現量が増大した酵母も含まれる。外部からプロモーターを導入すること、又は当該遺伝子自身の持つプロモーターをより強力なプロモーターに置換すること等によって、酵母がもともと有する遺伝子が発現可能な形で活性化され、目的タンパク質を適切に発現し得る。例えば、このように内在性遺伝子の発現を活性化させる方法としては、限定はされないが、目的タンパク質を適切に発現できるプロモーターを、公知の遺伝子組換え技術を用いて、染色体上に遺伝子置換により組み込む方法等が挙げられる。遺伝子置換の方法としては、Akada et al. Yeast 23: 399-405 (2006)(非特許文献)の方法を用いることができる。置換するプロモーターとしては、PGKプロモーター、ADHプロモーター、TDHプロモーター、ENOプロモーター、CITプロモーター、TEFプロモーター、CDCプロモーター、GPMプロモーターまたはPDCプロモーター等の公知のプロモーターを使用することができる。 Furthermore, the transformed yeast of the present invention includes a gene encoding xylose reductase, a gene encoding xylulose phosphorylase, a gene encoding xylitol dehydrogenase, a gene encoding transaldolase, The expression of the gene encoding ketolase and the gene encoding alcohol dehydrogenase may be activated. That is, the present invention also includes yeast in which the expression level of the gene originally present on the host yeast chromosome is increased. By introducing a promoter from the outside or replacing the promoter of the gene itself with a stronger promoter, the gene originally possessed by yeast can be activated in a form that can be expressed, and the target protein can be expressed appropriately. . For example, the method for activating the expression of the endogenous gene in this way is not limited, but a promoter capable of appropriately expressing the target protein is incorporated into the chromosome by gene replacement using a known gene recombination technique. Methods and the like. As a gene replacement method, the method of Akada et al. Yeast 23: 399-405 (2006) (non-patent document) can be used. As the promoter to be replaced, a known promoter such as PGK promoter, ADH promoter, TDH promoter, ENO promoter, CIT promoter, TEF promoter, CDC promoter, GPM promoter or PDC promoter can be used.
3.エタノールの生産方法
 本発明の形質転換酵母は、キシロース資化遺伝子並びにトランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子、例えばGRE3、SOR1、XKS1、TAL1、TKL1およびADH1を導入したものであるため、本発明の形質転換酵母はキシロースの資化能を有し、高効率でエタノールを生産することができる。したがって、本発明の形質転換酵母は、キシロースからエタノールの生産方法に使用することができる。
3. Method for producing ethanol Transformed yeast of the present invention comprises a xylose utilization gene, a gene encoding transaldolase, a gene encoding transketolase, and a gene encoding alcohol dehydrogenase, such as GRE3, SOR1, XKS1, TAL1, Since TKL1 and ADH1 are introduced, the transformed yeast of the present invention has the ability to assimilate xylose and can produce ethanol with high efficiency. Therefore, the transformed yeast of the present invention can be used in a method for producing ethanol from xylose.
 本発明の形質転換酵母は、酵母の培養に用いられる通常の方法に従って培養することができる。当業者であれば、SD培地、SCX培地、YPD培地、YPX培地、CBS培地などの公知の培地から適切な培地を選択し、好ましい培養条件の下で酵母を培養することができる。液体培地で酵母を培養する場合は、振盪培養が好ましい。 The transformed yeast of the present invention can be cultured according to a usual method used for yeast culture. A person skilled in the art can select an appropriate medium from known media such as SD media, SCX media, YPD media, YPX media, CBS media, etc., and cultivate yeast under favorable culture conditions. When culturing yeast in a liquid medium, shaking culture is preferred.
 本発明の形質転換酵母を培養し、得られる培養物からエタノールを採取することにより、エタノールを生産させることができる。エタノールを生産させる場合、炭素源としてキシロースの2~66 g/L、好ましくは4~55g/Lの存在下に本発明の形質転換酵母を培養する。あるいは、炭素源としてグルコースおよびキシロースの両方を含む場合、あわせて40~330 g/L、好ましくは80~275 g/Lの存在下に本発明の形質転換酵母を培養する。本発明の形質転換酵母は、炭素源である糖の追加供給を伴わないバッチ培養、糖を連続的/断続的に追加供給するフェドバッチ培養、または連続培養など、公知の培養方法を使用することができる。炭素源である糖を追加供給する場合、糖の濃度が上記の濃度範囲に維持されるようにモニターされ、糖の供給が制御されることが望ましい。 Ethanol can be produced by culturing the transformed yeast of the present invention and collecting ethanol from the resulting culture. When ethanol is produced, the transformed yeast of the present invention is cultured in the presence of 2-66 g / L, preferably 4-55 g / L, of xylose as a carbon source. Alternatively, when both glucose and xylose are included as a carbon source, the transformed yeast of the present invention is cultured in the presence of 40 to 330 g / L, preferably 80 to 275 g / L. The transformed yeast of the present invention may use a known culture method such as batch culture without additional supply of sugar as a carbon source, fed-batch culture in which additional supply of sugar is continuously / intermittently, or continuous culture. it can. In the case of additionally supplying sugar as a carbon source, it is desirable that the sugar supply be controlled by monitoring the sugar concentration so as to be maintained in the above-mentioned concentration range.
 本培養の前に、形質転換酵母を前培養しても良い。前培養は、例えば、本発明の形質転換酵母を少量の培地に接種し、12~24時間培養すればよい。本培養の培養量の0.1~10%、好ましくは1%の前培養液を本培養の培地に加え、本培養を開始する。本培養は、キシロース含有培地で、0.5~200時間、好ましくは10~150時間、より好ましくは24~137時間、20~40℃、好ましくは30℃で振盪培養する。 Prior to the main culture, the transformed yeast may be precultured. For the preculture, for example, the transformed yeast of the present invention may be inoculated into a small amount of medium and cultured for 12 to 24 hours. The main culture is started by adding 0.1 to 10%, preferably 1%, of the preculture solution to the culture medium of the main culture. The main culture is carried out in a xylose-containing medium for 0.5 to 200 hours, preferably 10 to 150 hours, more preferably 24 to 137 hours at 20 to 40 ° C, preferably 30 ° C.
 生産されたエタノールは、上記のように本発明の酵母を培養して得られる培養物から採取することができる。培養物とは、培養液(培養上清)、培養酵母または培養酵母の破砕物等を意味する。エタノールは公知の精製方法により培養物から精製し、採取することができる。本発明において、エタノールは形質転換酵母から主に培養上清中に分泌されるため、培養上清から採取することが好ましい。 The produced ethanol can be collected from the culture obtained by culturing the yeast of the present invention as described above. The culture means a culture solution (culture supernatant), cultured yeast, a disrupted culture yeast, or the like. Ethanol can be purified and collected from the culture by a known purification method. In the present invention, since ethanol is mainly secreted from the transformed yeast into the culture supernatant, it is preferably collected from the culture supernatant.
 エタノールの生産量は、培地に含まれるエタノールを液体クロマトグラフィー、ガスクロマトグラフィー、市販のエタノール測定キットで分析することで測定できる。
 また、エタノールの生産量を測定することにより、本発明の形質転換酵母のエタノール生産能を確認することができる。
The amount of ethanol produced can be measured by analyzing ethanol contained in the medium with liquid chromatography, gas chromatography, or a commercially available ethanol measurement kit.
Moreover, the ethanol production ability of the transformed yeast of the present invention can be confirmed by measuring the production amount of ethanol.
 本発明の形質転換酵母を用いてエタノールを生産する場合、従来のキシロース資化酵母(例えば、GRE3、SOR1およびXKS1導入酵母)や、上記キシロース資化酵母にTAL1およびTKL1を過剰発現させた酵母と比較して、エタノールを高収率で生産することができる。 When ethanol is produced using the transformed yeast of the present invention, a conventional xylose-assimilating yeast (eg, GRE3, SOR1, and XKS1-introduced yeast), a yeast in which TAL1 and TKL1 are overexpressed in the xylose-assimilating yeast, and In comparison, ethanol can be produced in high yield.
 以下に本明細書における配列番号で示される塩基配列またはアミノ酸配列について記述する。
 配列番号1~20:実施例で使用されるプライマーの塩基配列を示す。
 配列番号21:サッカロマイセス・セレビシアGRE3の塩基配列を示す。
 配列番号22:サッカロマイセス・セレビシアGRE3タンパク質のアミノ酸配列を示す。
 配列番号23:サッカロマイセス・セレビシアSOR1の塩基配列を示す。
 配列番号24:サッカロマイセス・セレビシアSOR1タンパク質のアミノ酸配列を示す。
 配列番号25:サッカロマイセス・セレビシアXKS1の塩基配列を示す。
 配列番号26:サッカロマイセス・セレビシアXKS1タンパク質のアミノ酸配列を示す。
 配列番号27:サッカロマイセス・セレビシアTAL1の塩基配列を示す。
 配列番号28:サッカロマイセス・セレビシアTAL1タンパク質のアミノ酸配列を示す。
 配列番号29:サッカロマイセス・セレビシアTKL1の塩基配列を示す。
 配列番号30:サッカロマイセス・セレビシアTKL1タンパク質のアミノ酸配列を示す。
 配列番号31:サッカロマイセス・セレビシアADH1の塩基配列を示す。
 配列番号32:サッカロマイセス・セレビシアADH1タンパク質のアミノ酸配列を示す。
The base sequence or amino acid sequence shown by SEQ ID NO in this specification is described below.
SEQ ID NOs: 1 to 20: This shows the base sequences of primers used in the examples.
SEQ ID NO: 21: This shows the base sequence of Saccharomyces cerevisiae GRE3.
SEQ ID NO: 22: This shows the amino acid sequence of Saccharomyces cerevisiae GRE3 protein.
SEQ ID NO: 23: This shows the base sequence of Saccharomyces cerevisiae SOR1.
SEQ ID NO: 24: This shows the amino acid sequence of Saccharomyces cerevisiae SOR1 protein.
SEQ ID NO: 25: This shows the base sequence of Saccharomyces cerevisiae XKS1.
SEQ ID NO: 26: This shows the amino acid sequence of Saccharomyces cerevisiae XKS1 protein.
SEQ ID NO: 27: This shows the base sequence of Saccharomyces cerevisiae TAL1.
SEQ ID NO: 28: This shows the amino acid sequence of Saccharomyces cerevisiae TAL1 protein.
SEQ ID NO: 29: This shows the base sequence of Saccharomyces cerevisiae TKL1.
SEQ ID NO: 30 This shows the amino acid sequence of Saccharomyces cerevisiae TKL1 protein.
SEQ ID NO: 31: This shows the base sequence of Saccharomyces cerevisiae ADH1.
SEQ ID NO: 32: This shows the amino acid sequence of Saccharomyces cerevisiae ADH1 protein.
 以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
GRE3, SOR1, XKS1, TAL1, TKL1, ADH1, PGK1プロモーターおよびPGK1ターミネーターのPCRによる合成
 表1に示すオリゴヌクレオチド1~16を合成し、PCR反応のためのプライマーとして使用し、GRE3, SOR1, XKS1, TAL1, TKL1, ADH1, PGK1プロモーターおよびPGK1ターミネーターの各DNA断片を得た。また、表1に示すオリゴヌクレオチド17~20を合成し、HXT17(前半および後半)のDNA断片を得た。PCR反応のテンプレートとしてサッカロマイセス・セレビシアCEN.PK2-1C株から抽出された染色体DNAを使用した。PCR反応は、PrimeSTAR HS DNA polymerase(タカラバイオ社)を用いて、TaKaRa PCR Thermal Cycler Dice Gradient TP600(タカラバイオ社)で行った。PCRにおける増幅条件を表2に示す。
Synthesis of GRE3, SOR1, XKS1, TAL1, TKL1, ADH1, PGK1 promoter and PGK1 terminator by PCR. Oligonucleotides 1 to 16 shown in Table 1 were synthesized and used as primers for the PCR reaction. GRE3, SOR1, XKS1, DNA fragments of TAL1, TKL1, ADH1, PGK1 promoter and PGK1 terminator were obtained. In addition, oligonucleotides 17 to 20 shown in Table 1 were synthesized to obtain DNA fragments of HXT17 (first half and second half). Chromosomal DNA extracted from Saccharomyces cerevisiae CEN.PK2-1C strain was used as a template for PCR reaction. PCR reaction was performed with TaKaRa PCR Thermal Cycler Dice Gradient TP600 (Takara Bio Inc.) using PrimeSTAR HS DNA polymerase (Takara Bio Inc.). Table 2 shows the amplification conditions in PCR.
 GRE3, SOR1, XKS1, TAL1, TKL1, ADH1, PGK1プロモーターおよびPGK1ターミネーターは、サッカロマイセス・セレビシア由来である。GRE3タンパク質は、シェファソマイセス・スティピティスのXYL1(キシロース還元酵素(XR))とアミノ酸配列の同一性(相同性)を有し、SOR1タンパク質は、シェファソマイセス・スティピティスのXYL2(キシリトール脱水素酵素(XDH))とアミノ酸配列の同一性(相同性)を有するタンパク質である。XKS1タンパク質はキシルロースリン酸化酵素、TAL1タンパク質はトランスアルドラーゼ、TKL1タンパク質はトランスケトラーゼ、ADH1タンパク質はアルコール脱水素酵素である。PGK1プロモーターおよびPGK1ターミネーターは、サッカロマイセス・セレビシアにおいて機能することが知られている。 GRE3, SOR1, XKS1, TAL1, TKL1, ADH1, PGK1 promoter and PGK1 terminator are derived from Saccharomyces cerevisiae. The GRE3 protein has amino acid sequence identity (homology) with XYL1 (xylose reductase (XR)) from Shephasomyces stipitsis, and SOR1 protein is XYL2 (xylitol dehydrogenation) from schephamyces stipitsis Enzyme (XDH)) is a protein having amino acid sequence identity (homology). XKS1 protein is xylulose kinase, TAL1 protein is transaldolase, TKL1 protein is transketolase, and ADH1 protein is alcohol dehydrogenase. The PGK1 promoter and PGK1 terminator are known to function in Saccharomyces cerevisiae.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
キシロース資化能付与酵母の作製
 実施例1で増幅されたGRE3, SOR1, XKS1の各遺伝子断片を、PGK1プロモーターおよびPGK1ターミネーターの支配下にGRE3, SOR1, XKS1の順に連結し、発現カセットIを作製した。
 また、市販のベクターpUC18に部位特異的変異によりXho I, Bgl II切断部位を導入した。部位特異的変異にはPrimeSTAR Mutagenesis Basal Kit(タカラバイオ社)を使用した。得られたpUC18のXho I, EcoR I切断部位に実施例1で増幅されたHXT17前半部分の遺伝子断片を挿入し、Sph I, Bgl II切断部位に実施例1で増幅されたHXT17後半部分の遺伝子断片を導入した。
 得られた発現カセットIをEcoR I, Sph Iで切断し、HXT17前半部分と後半部分の遺伝子断片の間に挿入し、発現カセットIIを作製した。
Production of yeast with xylose utilization ability GRE3, SOR1, and XKS1 gene fragments amplified in Example 1 were ligated in the order of GRE3, SOR1, and XKS1 under the control of PGK1 promoter and PGK1 terminator to produce expression cassette I. did.
In addition, Xho I and Bgl II cleavage sites were introduced into a commercially available vector pUC18 by site-directed mutagenesis. For the site-specific mutation, PrimeSTAR Mutagenesis Basal Kit (Takara Bio Inc.) was used. The gene fragment of the first half of HXT17 amplified in Example 1 was inserted into the Xho I and EcoR I cleavage sites of the obtained pUC18, and the gene of the second half of HXT17 amplified in Example 1 was inserted into the Sph I and Bgl II cleavage sites. Fragments were introduced.
The obtained expression cassette I was cleaved with EcoR I and Sph I, and inserted between the gene fragments of the first half and the second half of HXT17 to prepare expression cassette II.
 作製した発現カセットIIを用いて上記遺伝子を酢酸リチウム法により染色体上HXT17部位に導入し、キシロース資化能付与酵母を得た。キシロース資化能付与の宿主としては、焼酎酵母を用いた。 Using the prepared expression cassette II, the above gene was introduced into the HXT17 site on the chromosome by the lithium acetate method to obtain a xylose-assimilating yeast. Shochu yeast was used as a host for imparting xylose utilization ability.
TAL1・TKL1遺伝子過剰発現株の作製
 市販の発現ベクターpAUR135(タカラバイオ株式会社)のSmaI部位に、PGK1プロモーターおよびPGK1ターミネーター支配下に置いたTAL1の遺伝子断片を導入した。また、このようにTAL1の遺伝子断片を導入したpAUR13ベクターのSphI部位に、PGK1プロモーターおよびPGK1ターミネーター支配下に置いたTKL1の遺伝子断片を導入した。得られたTAL1・TKL1発現ベクターをStuIで切断して得られた遺伝子断片を、酢酸リチウム法により、実施例2で作製したキシロース資化能付与酵母の染色体上AUR1部位に導入した。得られた株をTAL1・TKL1遺伝子過剰発現株とした。
Preparation of TAL1 / TKL1 gene overexpression strain A gene fragment of TAL1 placed under the control of the PGK1 promoter and PGK1 terminator was introduced into the SmaI site of a commercially available expression vector pAUR135 (Takara Bio Inc.). In addition, the TKL1 gene fragment placed under the control of the PGK1 promoter and PGK1 terminator was introduced into the SphI site of the pAUR13 vector into which the TAL1 gene fragment was introduced. The gene fragment obtained by cleaving the obtained TAL1 / TKL1 expression vector with StuI was introduced into the AUR1 site on the chromosome of the xylose-assimilating yeast prepared in Example 2 by the lithium acetate method. The obtained strain was designated as a TAL1 / TKL1 gene overexpression strain.
TAL1・TKL1・ADH1遺伝子過剰発現株の作製
 実施例3で作製したTAL1・TKL1発現ベクターのEcoRI部位に、PGK1プロモーターおよびPGK1ターミネーター支配下に置いたADH1の遺伝子断片を導入した。得られた発現ベクターをStuIで切断して得られた遺伝子断片を、酢酸リチウム法により、実施例2で作製したキシロース資化能付与酵母の染色体上AUR1部位に導入した。得られた株をTAL1・TKL1・ADH1遺伝子過剰発現株とした。
Production of TAL1, TKL1, ADH1 gene overexpression strain A gene fragment of ADH1 placed under the control of the PGK1 promoter and PGK1 terminator was introduced into the EcoRI site of the TAL1 · TKL1 expression vector produced in Example 3. The gene fragment obtained by cleaving the obtained expression vector with StuI was introduced into the AUR1 site on the chromosome of the xylose-assimilating yeast prepared in Example 2 by the lithium acetate method. The obtained strain was designated as a TAL1 / TKL1 / ADH1 gene overexpression strain.
発酵性能評価
 実施例2、3および4で得られた株を、YPD(グルコース20 g/L)培地で前培養した後、キシロースのみを基質として含む培地と、グルコースおよびキシロースを基質として含む改変CBS培地((H. B. Klinke et al., Biotechnol. Bioeng., 2003年, Vol. 81, pp. 738-747:pH 5.0)、表3)15 mLを入れた50 mLフラスコに、初期植菌量2×108個/mL、140 rpm、30℃で振とう培養し、経時的にサンプリングを行い発酵性能を評価した。また、導入遺伝子を含まないベクターのみを組み込んだ株を同様に作製し、以下の実験で対照株として用いた。
Evaluation of Fermentation Performance After the strains obtained in Examples 2, 3 and 4 were pre-cultured in a YPD (glucose 20 g / L) medium, a medium containing only xylose as a substrate, and a modified CBS containing glucose and xylose as substrates Medium ((HB Klinke et al., Biotechnol. Bioeng., 2003, Vol. 81, pp. 738-747: pH 5.0), Table 3) Into a 50 mL flask containing 15 mL, the initial inoculum was 2 ×. The cells were cultured with shaking at 10 8 cells / mL, 140 rpm, 30 ° C., and sampled over time to evaluate the fermentation performance. In addition, a strain in which only a vector containing no transgene was incorporated was similarly prepared and used as a control strain in the following experiment.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 サンプリングした培養液を遠心分離して菌体を除き、上清を0.2μmポリプロピレン製フィルターでろ過し、測定サンプルとした。測定サンプル中のグルコース、キシロース、およびエタノール量をHPLCにより定量した。HPLCでの分析条件を表4に示す。 The sampled culture solution was centrifuged to remove the cells, and the supernatant was filtered through a 0.2 μm polypropylene filter to obtain a measurement sample. The amounts of glucose, xylose, and ethanol in the measurement sample were quantified by HPLC. Table 4 shows the analytical conditions in HPLC.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 各株についての発酵性能評価結果を図1と図2に示す。図1はキシロースのみを基質として含む培地、図2はグルコースおよびキシロースを基質として含む培地の結果を示す。発酵性能は、エタノール収率(%)として評価し、生成するエタノール量が投与した基質量に理論収率(グルコース、キシロース共に0.51)を乗して算出されるエタノール量と一致する場合を100%とした。 The fermentation performance evaluation results for each strain are shown in FIG. 1 and FIG. FIG. 1 shows the result of a medium containing only xylose as a substrate, and FIG. 2 shows the result of a medium containing glucose and xylose as substrates. Fermentation performance is evaluated as ethanol yield (%), and the amount of ethanol produced corresponds to the amount of ethanol calculated by multiplying the administered basic mass by the theoretical yield (0.51 for both glucose and xylose). 100%.
 GRE3, SOR1およびXKS1が染色体上に導入されたキシロース資化能付与酵母に、TAL1およびTKL1を染色体上に導入すると(TAL1・TKL1遺伝子過剰発現株、灰色)、もとのキシロース資化能付与酵母(黒色)に比べてキシロースをより利用できることが可能となり、エタノール生産量が増大することが示された(図1および図2)。さらに、GRE3, SOR1およびXKS1が染色体上に導入されたキシロース資化能付与酵母の染色体上に、TAL1, TKL1およびADH1が導入された酵母(TAL1・TKL1・ADH1遺伝子過剰発現株、白色)は、もとのキシロース資化能付与酵母(黒色)およびTAL1・TKL1遺伝子過剰発現株(灰色)に比べてキシロースをさらに利用することが可能となり、エタノール生産量が増大することが示された(図1および図2)。
 また、キシロース資化能付与酵母(焼酎酵母を用いた)にTAL1, TKL1およびADH1を染色体上に導入した酵母(TAL1・TKL1・ADH1遺伝子過剰発現株、白色)は、グルコースおよびキシロースを基質として含む培地において(図2)、キシロースのみを基質として含む培地(図1)に比べて、より高いエタノール収率が達成され、また、キシロース資化能付与酵母(黒色)およびTAL1・TKL1遺伝子過剰発現株(灰色)と比べたエタノール収率の改善も顕著であった。
When TAL1 and TKL1 are introduced onto the chromosome (Gal3, SOR1 and XKS1), the original xylose-assimilating yeast It became possible to use xylose more than (black), and it was shown that ethanol production increased (FIGS. 1 and 2). In addition, TAL1, TKL1 and ADH1 overexpressed strains (white, TAL1, TKL1 and ADH1 genes, white) on the chromosome of xylose-assimilating yeast in which GRE3, SOR1 and XKS1 have been introduced on the chromosome, It was shown that xylose can be further used compared to the original xylose-assimilating yeast (black) and the TAL1 / TKL1 gene overexpression strain (gray), and ethanol production was increased (FIG. 1). And FIG. 2).
Yeast with TAL1, TKL1, and ADH1 introduced into the chromosome of xylose-assimilating yeast (using shochu yeast) (TAL1, TKL1, ADH1 gene overexpressing strain, white) contains glucose and xylose as substrates. In the medium (Fig. 2), a higher ethanol yield was achieved compared to the medium containing only xylose as a substrate (Fig. 1), and xylose-assimilating yeast (black) and TAL1 · TKL1 gene overexpression strain The improvement in ethanol yield compared to (gray) was also significant.
 この結果から、キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子を含む酵母は、従来のキシロース資化能付与酵母よりも、キシロースからエタノールをさらに効率よく生産させることが可能であることが示された。 From this result, a gene encoding xylose reductase, a gene encoding xylulose phosphorylase, a gene encoding xylitol dehydrogenase, a gene encoding transaldolase, a gene encoding transketolase and alcohol dehydrogenase It was shown that the yeast containing the gene encoding can more efficiently produce ethanol from xylose than the conventional xylose-assimilating yeast.
ADH1遺伝子増強効果の検証
 実施例3および4で得られた株をYPD(グルコース20g/L)培地で前培養した後、グルコースおよびキシロースを基質として含むYPDX(グルコース80g/L、キシロース40g/L)培地600 mLを入れた1Lジャーに、初期植菌量1×107個/mL、380rpm、30℃で培養した。経時的にサンプリングを行い、実施例5に記載の方法で上清を分析した。また、ADH1活性の測定とADH1遺伝子の発現解析のために酵母菌体を回収した。
Verification of ADH1 gene enhancement effect The strains obtained in Examples 3 and 4 were pre-cultured in a YPD (glucose 20 g / L) medium, and then YPDX (glucose 80 g / L, xylose 40 g / L) containing glucose and xylose as substrates. The cells were cultured in a 1 L jar containing 600 mL of medium at an initial inoculum of 1 × 10 7 cells / mL, 380 rpm, 30 ° C. Sampling was performed over time, and the supernatant was analyzed by the method described in Example 5. In addition, yeast cells were collected for measurement of ADH1 activity and expression analysis of the ADH1 gene.
 培養上清のエタノール分析結果を表5および図3に示す。実施例5に記載の方法でエタノール収率を算出した。 The results of ethanol analysis of the culture supernatant are shown in Table 5 and FIG. The ethanol yield was calculated by the method described in Example 5.
 いずれのサンプリング時間においてもTAL1, TKL1およびADH1が導入された酵母(実施例4 TAL1・TKL1・ADH1遺伝子過剰発現株、白色)のエタノール収率は、TAL1・TKL1遺伝子過剰発現株(実施例3、灰色)を上回っておりADH1遺伝子の増強によりエタノール生産量が増大することが示された。 At any sampling time, the ethanol yield of the yeast into which TAL1, TKL1 and ADH1 were introduced (Example 4 TAL1, TKL1, ADH1 gene overexpressing strain, white) was determined by the TAL1 · TKL1 gene overexpressing strain (Example 3, It was shown that ethanol production was increased by enhancing the ADH1 gene.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
ADH1遺伝子の発現解析-
 ジャー培養で培養した菌体から酵母細胞を回収し培地を除去し、菌体を2 ml滅菌蒸留水で2回洗浄したのち、400μlの酢酸緩衝液(50mM 酢酸ナトリウム pH5.3, 10 mM EDTA)に懸濁した。40μlのSDS(sodium dodecyl sulfate)を加え、65℃に保温しておいた440μlのフェノールを加えよく撹拌したのち、65℃で4分間保温し氷中で急冷した。12000 ×gで5分間遠心し、上清を1.5 mlチューブに移し、等量のフェノール、クロロホルム混液を加え、よく撹拌した。12000 ×gで5分間遠心し、上清を1.5 mlチューブに移し、1/10量の3M 酢酸ナトリウム(pH 5.3)を加え、エタノール沈殿をおこなった。12000×gで10分間遠心して得られたペレットを80%エタノールで2回洗浄し乾固させたのち、RNaseフリー水で溶解し、これをRNA溶液とした。RNAからcDNAの合成はTranscriptor First Strand cDNA Synthesis Kit(Roche)によりおこなった。発現解析はSYBR Greenを使用したリアルタイムPCR(スタンダードカーブによる相対定量法)によりおこなった。蛍光試薬の調製はLightCycler FastStart DNA Master PLUS SYBR Green I(Roche)によりおこなった。解析装置はLightCycler 1.5(Roche)を使用した。TAL1・TKL1遺伝子過剰発現株(実施例3)とTAL1・TKL1・ADH1遺伝子過剰発現株(実施例4)のADH1発現解析結果を表6および図4に示す。
Expression analysis of ADH1 gene
The yeast cells were collected from the cells cultured in jar culture, the medium was removed, the cells were washed twice with 2 ml of sterile distilled water, and then 400 μl of acetate buffer (50 mM sodium acetate pH 5.3, 10 mM EDTA) It was suspended in. 40 μl of SDS (sodium dodecyl sulfate) was added, 440 μl of phenol kept at 65 ° C. was added, and the mixture was stirred well, then kept at 65 ° C. for 4 minutes and rapidly cooled in ice. The mixture was centrifuged at 12000 × g for 5 minutes, the supernatant was transferred to a 1.5 ml tube, an equal amount of a phenol / chloroform mixture was added, and the mixture was stirred well. After centrifugation at 12000 × g for 5 minutes, the supernatant was transferred to a 1.5 ml tube, and 1/10 amount of 3M sodium acetate (pH 5.3) was added, followed by ethanol precipitation. The pellet obtained by centrifugation at 12000 × g for 10 minutes was washed twice with 80% ethanol and dried, and then dissolved in RNase-free water to obtain an RNA solution. Synthesis of cDNA from RNA was performed by Transcriptor First Strand cDNA Synthesis Kit (Roche). Expression analysis was performed by real-time PCR using SYBR Green (relative quantification method using a standard curve). The fluorescent reagent was prepared using LightCycler FastStart DNA Master PLUS SYBR Green I (Roche). The analyzer used was LightCycler 1.5 (Roche). Table 6 and FIG. 4 show the ADH1 expression analysis results of the TAL1 · TKL1 gene overexpression strain (Example 3) and the TAL1 · TKL1 · ADH1 gene overexpression strain (Example 4).
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
TAL1・TKL1遺伝子過剰発現株とTAL1・TKL1・ADH1遺伝子過剰発現株のADH1遺伝子の発現を解析したところ、いずれのサンプリング時間においても、TAL1・TKL1・ADH1遺伝子過剰発現株(白色)のADH1遺伝子発現量はTAL1・TKL1遺伝子過剰発現株(灰色)を上回った。例えば培養48時間においては、ADH1遺伝子の増強によりADH1遺伝子発現量が2倍に増大することが示された。
Analysis of ADH1 gene expression in TAL1 / TKL1 gene overexpressing strains and TAL1, TKL1 and ADH1 gene overexpressing strains, ADH1 gene expression in TAL1, TKL1 and ADH1 overexpressing strains (white) at any sampling time The amount exceeded that of the TAL1 / TKL1 gene overexpression strain (gray). For example, in 48 hours of culture, it was shown that the ADH1 gene expression level doubled due to enhancement of the ADH1 gene.
ADH1活性の測定
 ジャー培養で培養した菌体から酵母細胞を回収し培地を除去し、菌体を2 ml蒸留水で洗浄したのち、Y-PER Yeast Protein Extraction Reagent (Pierce, Rockford, IL)を1 ml加え懸濁したのち、室温で20分振とうした。13,000 rpmで10分間遠心して細胞抽出液を得た。ADH1活性測定は以下のようにおこなった。50 mM Tris-HCl(pH 8.5)、1 mM NAD+を含む溶液960μlに酵母粗抽出液10μlを添加し、エタノール30μlを添加して反応を開始した。エタノールを基質としてNADHの増加量を340 nmの吸光度を測定することにより算出した。1分あたり1μmolのNAD+を還元する活性を1 Uとし、細胞抽出液中のタンパク質1 mgあたりの活性(U/mg)を求めた。TAL1・TKL1遺伝子過剰発現株(実施例3)とTAL1・TKL1・ADH1遺伝子過剰発現株(実施例4)のADH1活性を表7および図5に示す。なお、試験は二連で実施した。
Measurement of ADH1 activity Collect yeast cells from cells cultured in jar culture, remove the medium, wash the cells with 2 ml distilled water, and then add 1 Y-PER Yeast Protein Extraction Reagent (Pierce, Rockford, IL). After adding ml and suspending, the mixture was shaken at room temperature for 20 minutes. The cell extract was obtained by centrifugation at 13,000 rpm for 10 minutes. ADH1 activity was measured as follows. 10 μl of crude yeast extract was added to 960 μl of a solution containing 50 mM Tris-HCl (pH 8.5) and 1 mM NAD +, and 30 μl of ethanol was added to initiate the reaction. The increase in NADH was calculated by measuring the absorbance at 340 nm using ethanol as a substrate. The activity for reducing 1 μmol of NAD + per minute was defined as 1 U, and the activity per 1 mg of protein in the cell extract (U / mg) was determined. Table 7 and FIG. 5 show the ADH1 activity of the TAL1 · TKL1 gene overexpression strain (Example 3) and the TAL1 · TKL1 · ADH1 gene overexpression strain (Example 4). The test was performed in duplicate.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
TAL1・TKL1遺伝子過剰発現株とTAL1・TKL1・ADH1遺伝子過剰発現株のADH1活性を測定したところ、いずれのサンプリング時間においても、TAL1・TKL1・ADH1遺伝子過剰発現株(白色)のADH1活性は、TAL1・TKL1遺伝子過剰発現株(灰色)を上回った。例えば、培養24時間においては、ADH1遺伝子の増強によりADH1活性が約6倍に増大することが示された。
When the ADH1 activity of the TAL1 · TKL1 gene overexpressing strain and the TAL1 · TKL1 · ADH1 gene overexpressing strain was measured, the ADH1 activity of the TAL1 · TKL1 · ADH1 gene overexpressing strain (white) was TAL1 at any sampling time.・ It exceeded TKL1 gene overexpression strain (gray). For example, in 24 hours of culture, it was shown that ADH1 activity increased about 6-fold by enhancing the ADH1 gene.
これらの結果によって、ADH1遺伝子を増強することにより、ADH1遺伝子発現量とADH1活性が増大し、TAL1・TKL1・ADH1遺伝子過剰発現株のエタノール生産性は、TAL1・TKL1遺伝子過剰発現株よりも増大することが示された。
Based on these results, by enhancing the ADH1 gene, the ADH1 gene expression level and ADH1 activity increase, and the ethanol productivity of the TAL1, TKL1, and ADH1 gene overexpressing strains is higher than that of the TAL1 and TKL1 gene overexpressing strains. It was shown that.
 また、フラスコによる実験室レベルでの培養だけでなく、培養槽を用いる工業レベルまたは工業レベルに近い培養条件での培養においても、本発明を適用できることが示された。 Further, it was shown that the present invention can be applied not only to culture at a laboratory level using a flask but also to culture at an industrial level using a culture tank or culture conditions close to the industrial level.
 本発明により、キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子が導入された形質転換酵母が提供される。
 本発明の一態様において、本発明の形質転換酵母は、酵母自身の有する遺伝子で形質転換して作製される。このため、本発明の形質転換酵母は遺伝子組換え体に該当せず、安全性や取り扱いの容易さの点で好ましい。
 また、本発明の形質転換酵母は、キシロースからエタノールを効率的に生産することが可能である。したがって、本発明により、キシロースからエタノールを生産する方法および当該方法に使用可能な、キシロースからエタノールを生産可能な形質転換酵母が提供される。
According to the present invention, a gene encoding xylose reductase, a gene encoding xylulose kinase, a gene encoding xylitol dehydrogenase, a gene encoding transaldolase, a gene encoding transketolase, and alcohol dehydrogenase A transformed yeast into which a gene encoding is introduced is provided.
In one embodiment of the present invention, the transformed yeast of the present invention is produced by transforming with a gene possessed by the yeast itself. For this reason, the transformed yeast of the present invention does not correspond to a gene recombinant, and is preferable in terms of safety and ease of handling.
In addition, the transformed yeast of the present invention can efficiently produce ethanol from xylose. Therefore, the present invention provides a method for producing ethanol from xylose and a transformed yeast capable of producing ethanol from xylose that can be used in the method.
 配列番号1~20:プライマー Sequence numbers 1 to 20: Primer

Claims (14)

  1.  キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子、トランスアルドラーゼをコードする遺伝子、トランスケトラーゼをコードする遺伝子およびアルコール脱水素酵素をコードする遺伝子が発現可能に導入された、形質転換酵母。 Gene encoding xylose reductase, gene encoding xylulose phosphorylase, gene encoding xylitol dehydrogenase, gene encoding transaldolase, gene encoding transketolase and gene encoding alcohol dehydrogenase Transformed yeast introduced so that can be expressed.
  2.  前記遺伝子が、当該酵母の内在性遺伝子である、請求項1に記載の酵母。 The yeast according to claim 1, wherein the gene is an endogenous gene of the yeast.
  3.  前記遺伝子が宿主酵母の染色体上に発現可能に挿入されたものである、請求項1又は2に記載の酵母。 The yeast according to claim 1 or 2, wherein the gene is inserted so as to be expressible on the chromosome of the host yeast.
  4.  キシロース還元酵素をコードする遺伝子がGRE3である、請求項1~3のいずれか1項に記載の酵母。 The yeast according to any one of claims 1 to 3, wherein the gene encoding xylose reductase is GRE3.
  5.  キシルロースリン酸化酵素をコードする遺伝子がXKS1である、請求項1~4のいずれか1項に記載の酵母。 The yeast according to any one of claims 1 to 4, wherein the gene encoding xylulose kinase is XKS1.
  6.  キシリトール脱水素酵素をコードする遺伝子がSOR1である、請求項1~5のいずれか1項に記載の酵母。 The yeast according to any one of claims 1 to 5, wherein the gene encoding xylitol dehydrogenase is SOR1.
  7.  トランスアルドラーゼをコードする遺伝子がTAL1である、請求項1~6のいずれか1項に記載の酵母。 The yeast according to any one of claims 1 to 6, wherein the gene encoding transaldolase is TAL1.
  8.  トランスケトラーゼをコードする遺伝子がTKL1である、請求項1~7のいずれか1項に記載の酵母。 The yeast according to any one of claims 1 to 7, wherein the gene encoding transketolase is TKL1.
  9.  アルコール脱水素酵素をコードする遺伝子がADH1である、請求項1~8のいずれか1項に記載の酵母。 The yeast according to any one of claims 1 to 8, wherein the gene encoding alcohol dehydrogenase is ADH1.
  10.  キシロースからエタノールを生産する能力を有するものである、請求項1~9のいずれか1項に記載の酵母。 The yeast according to any one of claims 1 to 9, which has an ability to produce ethanol from xylose.
  11.  宿主酵母が、六炭糖資化能を有するが五炭糖資化能を有しないものである、請求項1~10のいずれか1項に記載の酵母。 The yeast according to any one of claims 1 to 10, wherein the host yeast has hexose sugar assimilation ability but does not have pentose sugar assimilation ability.
  12.  宿主酵母が、サッカロマイセス属に属する酵母である、請求項1~11のいずれか1項に記載の酵母。 The yeast according to any one of claims 1 to 11, wherein the host yeast is a yeast belonging to the genus Saccharomyces.
  13.  宿主酵母が、サッカロマイセス・セレビシア種に属する酵母である、請求項1~12のいずれか1項に記載の酵母。 The yeast according to any one of claims 1 to 12, wherein the host yeast is a yeast belonging to the species Saccharomyces cerevisiae.
  14.  請求項1~13のいずれか1項に記載の形質転換酵母をキシロース含有培地で培養し、得られる培養物からエタノールを採取することを含む、エタノールの生産方法。 A method for producing ethanol, comprising culturing the transformed yeast according to any one of claims 1 to 13 in a xylose-containing medium and collecting ethanol from the resulting culture.
PCT/JP2015/079070 2014-10-15 2015-10-14 Yeast capable of producing ethanol from xylose WO2016060171A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112017005959A BR112017005959A2 (en) 2014-10-15 2015-10-14 yeast capable of producing ethanol from xylose
AU2015331353A AU2015331353B2 (en) 2014-10-15 2015-10-14 Yeast capable of producing ethanol from xylose
JP2016554106A JP6616311B2 (en) 2014-10-15 2015-10-14 Yeast producing ethanol from xylose

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014211204 2014-10-15
JP2014-211204 2014-10-15

Publications (1)

Publication Number Publication Date
WO2016060171A1 true WO2016060171A1 (en) 2016-04-21

Family

ID=55746713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079070 WO2016060171A1 (en) 2014-10-15 2015-10-14 Yeast capable of producing ethanol from xylose

Country Status (4)

Country Link
JP (1) JP6616311B2 (en)
AU (1) AU2015331353B2 (en)
BR (1) BR112017005959A2 (en)
WO (1) WO2016060171A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020115827A (en) * 2019-01-28 2020-08-06 Jxtgエネルギー株式会社 Yeast with inhibited accumulation of xylitol

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202001127TA (en) * 2017-10-16 2020-03-30 Regeneron Pharma In situ raman spectroscopy systems and methods for controlling process variables in cell cultures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011024500A (en) * 2009-07-27 2011-02-10 Toyota Central R&D Labs Inc Yeast with improved fermentation ability and use thereof
WO2014133092A1 (en) * 2013-02-27 2014-09-04 トヨタ自動車株式会社 Production method for ethanol using recombined yeast

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001906A1 (en) * 2008-07-01 2010-01-07 新日本石油株式会社 Yeast capable of producing ethanol from xylose
WO2014058034A1 (en) * 2012-10-10 2014-04-17 Jx日鉱日石エネルギー株式会社 Yeast capable of producing ethanol from xylose

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011024500A (en) * 2009-07-27 2011-02-10 Toyota Central R&D Labs Inc Yeast with improved fermentation ability and use thereof
WO2014133092A1 (en) * 2013-02-27 2014-09-04 トヨタ自動車株式会社 Production method for ethanol using recombined yeast
JP2014193152A (en) * 2013-02-27 2014-10-09 Toyota Motor Corp Production method for ethanol using recombined yeast

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKIRA FUKUDA ET AL.: "Naizaisei Idenshi o Katsuyo shita Xylose Shikasei Kobo o Mochiita Ethanol Seisansei no Baiyoso ni yoru Hyoka", DAI 44 KAI SEKIYU·SEKIYU KAGAKU TORONKAI (ASAHIKAWA TAIKAI) KOEN YOSHI, 16 October 2014 (2014-10-16), pages 128 *
KOZUE MUTAGUCHI ET AL.: "Selection of <I>Saccharomyces</I> yeast suitable for xylose fermentation", THE JAPAN PETROLEUM INSTITUTE DAI 54 KAI NENKAI (TOKUBETSU KOEN, JUSHO KOEN, DAI 60 KAI KENKYU HAPPYOKAI) KOEN YOSHI, 17 May 2011 (2011-05-17), pages 70 *
MASASHI KONISHI ET AL.: "Senshokutai Taju Kumikomi ni yoru Xylose Shikasei Saccharomyces Kobo no Ethanol Shuritsu Kojo", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY 2014 NENDO (HEISEI 26 NENDO) TAIKAI KOEN YOSHISHU, 5 March 2014 (2014-03-05), pages 3A01a10, ISSN: 2186-7976, [retrieved on 20151215] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020115827A (en) * 2019-01-28 2020-08-06 Jxtgエネルギー株式会社 Yeast with inhibited accumulation of xylitol
JP7365770B2 (en) 2019-01-28 2023-10-20 Eneos株式会社 Yeast that suppresses xylitol accumulation

Also Published As

Publication number Publication date
JPWO2016060171A1 (en) 2017-07-27
AU2015331353A1 (en) 2017-04-06
JP6616311B2 (en) 2019-12-04
AU2015331353B2 (en) 2021-11-25
BR112017005959A2 (en) 2017-12-19

Similar Documents

Publication Publication Date Title
CN114774477B (en) Method for producing ethanol using recombinant yeast
US8445243B2 (en) Hexose-pentose cofermenting yeast having excellent xylose fermentability and method for highly efficiently producing ethanol using the same
JP5321320B2 (en) Yeast with improved fermentation ability and use thereof
CN107074918B (en) Variants of GAL2 transporter and uses thereof
JP5496356B2 (en) Xylitol producing strain introduced with arabinose metabolic pathway and xylitol producing method using the same
JP6483916B2 (en) Mutant xylose-metabolizing enzyme and its use
JP5796138B2 (en) Yeast producing ethanol from xylose
JP6616311B2 (en) Yeast producing ethanol from xylose
WO2012133275A1 (en) Kluyveromyces yeast mutant and method for producing ethanol using same
MX2010014529A (en) Microorganism expressing aldose-1-epimerase.
JP5671339B2 (en) Yeast producing ethanol from xylose
WO2017078156A1 (en) Yeast producing ethanol from xylose
JP7365770B2 (en) Yeast that suppresses xylitol accumulation
Gao et al. Increased Ethanol Production by Disrupting the Competitive Phosphoenolpyruvate Synthesis Pathway and Enhancing the Expression of Ethanol-producing Genes in Synechocystis Sp. PCC6803
WO2020032233A1 (en) Recombinant yeast, and method for producing ethanol using same
CN105802990B (en) Recombinant saccharomycete cell and its prepn and use
CN107532136B (en) High-efficiency ethanol zymocyte
JP2015000007A (en) Recombinant yeast and method for producing ethanol using the same
JP7078900B2 (en) Transformed yeast and method for producing ethanol using it
JP5850418B2 (en) An effective ethanol production method by modifying xylose metabolism
TWI526536B (en) Recombinant yeast cell, and the preparation process and uses thereof
JP2015062357A (en) Yeast
WO2020138020A1 (en) Recombinant yeast and method for producing ethanol using same
BR112015007234B1 (en) PROCESSED YEAST AND METHOD FOR ETHANOL PRODUCTION
US9540663B2 (en) Xylose-fermenting microorganism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850036

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017005959

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015331353

Country of ref document: AU

Date of ref document: 20151014

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016554106

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112017005959

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170323