KR102031604B1 - 화상생성방법, 화상생성장치 및 컴퓨터프로그램 - Google Patents

화상생성방법, 화상생성장치 및 컴퓨터프로그램

Info

Publication number
KR102031604B1
KR102031604B1 KR1020160051881A KR20160051881A KR102031604B1 KR 102031604 B1 KR102031604 B1 KR 102031604B1 KR 1020160051881 A KR1020160051881 A KR 1020160051881A KR 20160051881 A KR20160051881 A KR 20160051881A KR 102031604 B1 KR102031604 B1 KR 102031604B1
Authority
KR
South Korea
Prior art keywords
motion contrast
image
layer
threshold
motion
Prior art date
Application number
KR1020160051881A
Other languages
English (en)
Other versions
KR20160130155A (ko
Inventor
유키오 사카가와
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20160130155A publication Critical patent/KR20160130155A/ko
Application granted granted Critical
Publication of KR102031604B1 publication Critical patent/KR102031604B1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1225Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation
    • A61B3/1233Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation for measuring blood flow, e.g. at the retina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0041Operational features thereof characterised by display arrangements
    • A61B3/0058Operational features thereof characterised by display arrangements for multiple images
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0073Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
    • G06T5/008
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/94Dynamic range modification of images or parts thereof based on local image properties, e.g. for local contrast enhancement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pathology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Eye Examination Apparatus (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Signal Processing (AREA)

Abstract

화상생성방법은, 피검체의 대략 동일 위치에 있어서의 단면을 나타내는 상기 피검체의 복수의 단층화상 데이터를 취득하는 취득단계; 취득된 상기 복수의 단층화상 데이터간에 서로에 대응한 화소 데이터를 사용해서 모션 콘트라스트를 산출하는 산출단계; 상기 모션 콘트라스트와 역치를 비교하는 비교단계; 상기 역치이하인 상기 모션 콘트라스트에 대응한 휘도가 상기 역치이상인 상기 모션 콘트라스트에 대응한 휘도이하인 모션 콘트라스트 화상을 생성하는 생성단계; 및 상기 역치를 변경하는 변경단계를 포함한다.

Description

화상생성방법, 화상생성장치 및 컴퓨터프로그램{IMAGE GENERATION METHOD, IMAGE GENERATION APPARATUS AND COMPUTER PROGRAM}
여기서 개시된 기술은, 화상생성방법 및 화상생성장치에 관한 것이다.
생체 등의 측정 대상의 단층화상을 비파괴 및 비침습으로 취득하는 방법으로서, 광간섭 단층 촬상법(OCT)이 실용화되어 있다. OCT는, 특히 안과분야에서 피검안의 안저에 있어서의 망막의 단층화상이 취득되는, 망막의 안과진단 등에 있어서 널리 이용된다.
OCT에서는, 측정 대상에서 반사한 광과 참조 거울에서 반사한 광을 서로 간섭시키고, 간섭신호를 검출하고, 간섭된 광 강도의 시간 의존성 또는 파수 의존성을 해석하여 단층화상을 취득하고 있다. 광간섭 단층화상 취득 장치의 일례는, 참조 거울의 위치를 바꾸는 것으로 측정 대상에 대한 깊이 정보를 취득하는 타임 도메인 OCT(TD-OCT) 장치가 있다. 다른 예는, 광대역 광원을 사용한 스펙트럴 도메인 OCT(SD-OCT) 장치가 있다. 또 다른 예는, 발진 파장을 바꿀 수 있는 파장 가변 광원장치를 광원으로서 사용한 파장 소인 OCT(Swept Source OCT) 장치가 있다. SD-OCT와 SS-OCT는 총칭하여 푸리에 도메인 OCT(FD-OCT)라고 불린다.
최근, FD-OCT를 사용한 의사 혈관조영법이 제안되어 있고, OCT앤지오그래피(OCTA)이라고 부르고 있다.
현대의 임상 의료에 일반적으로 이용된 혈관조영법인 형광조영은, 체내 또는 그 일부에 형광색소(예를 들면, 플루오레세인 또는 인도시아닌 그린)을 주입하여서 행해진다. 형광조영에서는, 형광색소가 흐르는 혈관을 2차원적으로 표시한다. 이에 대하여, OCT앤지오그래피는 비침습으로 의사 혈관조영을 가능하게 하고, 또 혈류 네트워크를 3차원적으로 표시 가능하게 한다. 또한, OCT앤지오그래피는, 형광조영보다 고분해능 결과를 생성하고, 안저의 미소 혈관 또는 혈류를 묘출할 수 있다.
OCT앤지오그래피는 혈류 검출 방법의 차이에 따라 복수의 방법이 제안되어 있다. Fingler et al."MoBility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography" Optics Express. Vol.15, No.20. pp 12637-12653(2007)에는, OCT신호로부터 시간변조가 일어나는 신호성분만을 추출하여서 혈류로부터의 OCT신호를 분리하는 방법이 개시되어 있다. Optics Letters Vol. 33, ISS. 13, pp. 1530-1532(2008) "Speckle variance detection of microvasculature using swept-source optical coherence tomography"에는 혈류에 의한 위상의 변화를 이용한 방법이 개시되어 있다. 또한, Mariampillai et al., "Optimized speckle variance OCT imaging of microvasculature",Optics Letters 35,1257-1259(2010) 및 미국 특허출원 공개 제2014/221827호에는 혈류에 의한 강도의 변화를 이용한 방법이 개시되어 있다. 본 명세서에서는, OCT신호에서의 시간변조를 가리키는 신호성분을 나타내는 화상을 모션 콘트라스트 화상이라고 하고, 그 모션 콘트라스트 화상의 화소값을 모션 콘트라스트 값이라고 하며, 그 모션 콘트라스트 값의 데이터 세트를 모션 콘트라스토 데이터라고 하기도 한다.
그러나, 상기 OCT앤지오그래피에서는, 예를 들면, 망막색소상피(RPE)로부터의 강한 반사광이나 여러 가지의 노이즈로 인해 안저의 혈류부위가 충분히 명료하게 묘출되지 않기 때문에, 진단에 적합한 모션 콘트라스트 화상을 용이하게 취득하는 것이 어렵다.
또한, 일본 공표특허 2015-511146호 공보에는, OCT 신호의 진폭의 분산 등으로부터 탈상관신호(본 발명의「모션콘트라스트」에 해당)를 산출하여, 그것에 근거해서 혈관화상을 생성하는 방법에 관하여, 얻어진 탈상관신호를 고정 역치에 근거해서 2값 화상으로 하는 것이 기재되어 있다.
하지만, 본 발명의 특징 사항인「역치가 가변 또는 복수인 것」및 그 효과인「진단에 적합한 모션 콘트라스트를 용이하게 얻은 것」에 대하여 개시하거나 시사하고 있지 않다.
여기서 개시된 기술은, 모션 콘트라스트 화상의 신속하고 적절한 묘출에 착수한다.
여기서 개시된 기술은, 상기 과제를 감안하여 이루어진 것으로, 적절한 모션 콘트라스트 화상을 생성하는 것을 목적으로 한다.
또한, 여기서 개시된 기술은, 아래에 설명된 실시예들에 따른 구성으로 얻어지고 종래기술로부터 얻어지지 않는 효과를 얻는 것을 목적으로 한다.
여기서 개시된 화상생성장치에 의해 실행되는 화상생성방법은, 피검체의 동일 위치에서 복수의 단층화상 데이터가 얻어지도록 측정광의 주사를 제어하는 것에 의해 얻어진 상기 피검체의 복수의 단층화상 데이터간에 서로에 대응하는 화소 데이터를 사용해서 모션 콘트라스트를 산출하는 산출단계; 상기 모션 콘트라스트와 역치를 비교하는 비교단계; 상기 역치이하인 상기 모션 콘트라스트에 대응한 휘도가 상기 역치이상인 상기 모션 콘트라스트에 대응한 휘도이하인 모션 콘트라스트 화상을 생성하는 생성단계; 및 상기 역치를 변경하는 변경단계를 포함한다.
본 발명의 또 다른 특징들은, 첨부도면을 참조하여 이하의 실시예들의 설명으로부터 명백해질 것이다.
도 1은 제1 실시예에 따른 장치의 전체구성의 일례의 개요를 도시한 도다.
도 2는 제1 실시예에 따른 스캔 패턴의 일례를 나타내는 도다.
도 3은 제1 실시예에 따른 전체 처리 수순의 일례를 도시한 도다.
도 4는 제1 실시예에 따른 간섭신호 취득 수순의 일례를 도시한 도다.
도 5는 제1 실시예에 따른 신호 처리 수순의 일례를 도시한 도다.
도 6은 제1 실시예에 따른 3차원 혈류부위 정보 취득 수순의 일례를 도시한 도다.
도 7a 및 7b는 제1 실시예에 따른 모션 콘트라스트 화소값을 표시 화소값으로 변환하는 방법의 일례를 도시한 도다.
도 8a 및 8b는 제1 실시예에 따른 GUI의 일례를 설명하기 위한 도다.
도 9a 내지 9c는 제1 실시예에 따라 역치를 변경했을 경우의 모션 콘트라스트 화상의 예들을 도시한 도다.
도 10a 내지 10c는 제1 실시예에 따른 모션 영역과 비모션 영역의 히스토그램의 예들을 도시한 도다.
도 11은 제2 실시예에 따른 세그먼테이션 결과의 일례를 도시한 도다.
도 12는 제2 실시예에 따른 표시정보 생성 수순의 일례를 도시한 도다.
도 13은 제2 실시예에 따른 GUI의 일례를 도시한 도다.
도 14는 제3 실시예에 따른 장치의 전체 구성의 일례의 개요를 도시한 도다.
이하, 첨부된 도면을 참조하여 실시예에 따른 촬상 장치를 설명한다. 이하의 실시예에 있어서 나타낸 구성은 일례이고, 본 발명은 그 실시예에 한정되는 것이 아니다. 본 실시예에서는 피검체로서 사람 눈(안저)을 사용하지만, 그 피검체는 이것에 한정되지 않고, 신체의 일부의 피부는 피검체로서 사용되어도 된다. 또한, 본 실시예에 있어서 촬상 대상으로서 안저를 사용하지만, 전안부를 촬영 대상으로서 사용하여도 된다.
제1 실시예
제1 실시예에서는, (후술하는) 제어부(143)가 촬영을 통해 취득된 3차원 광 간섭신호로부터 단층화상을 생성하고, 모션 콘트라스트를 산출한다. 또한, 제어부(143)는, 상기 피검체의 부위에 대한 구조정보를 사용해서 노이즈 역치를 조정하고, 명료화된 상기 피검체의 부위에서 3차원 혈류에 대한 정보를 취득한다.
화상형성장치의 전체 구성
도 1은, 본 실시예에 따른 광간섭 단층촬상법(OCT)을 사용한 화상형성장치의 구성 예를 도시한 도다. 도 1에 도시된 장치는, OCT신호를 취득하는 OCT신호 취득부(100)와 제어부(143)를 구비한다. 제어부(143)는, 신호 처리부(144), 신호 취득 제어부(145), 표시부(146) 및 표시 제어부(149)를 구비한다. 신호 처리부(144)는, 화상생성부(147)와 맵 생성부(148)를 구비한다. 여기에서, 제어부(143)는, 예를 들면 컴퓨터다. 그 컴퓨터에 구비된 중앙처리장치(CPU)가 (도시되지 않은) 기억장치에 기억된 프로그램을 실행하는 경우, 제어부(143)는, 신호 처리부(144), 신호 취득 제어부(145), 화상생성부(147), 맵 생성부(148) 및 표시 제어부(149)로서 기능한다.
제어부(143)는, 하나의 CPU 및 하나의 기억장치를 구비하여도 되거나, 복수의 CPU 및 복수의 기억장치를 구비하여도 된다. 즉, 1이상의 처리 장치(CPU)와 1이상의 기억장치(랜덤 액세스 메모리(RAM) 및 판독전용 메모리(ROM))가 서로 접속되어 있다. 그 1이상의 처리 장치가 그 1이상의 기억장치에 기억된 프로그램을 실행하는 경우에, 제어부(143)는 상기의 부들로서 기능한다. 상기 처리 장치는 CPU에 한정되는 것이 아니고, 필드 프로그래머블 게이트 어레이(FPGA)등이어도 된다.
상기 OCT 신호 취득부(100)의 구성에 대해서 설명한다. 도 1은, 본 실시예에 따른 OCT 신호 취득부(100)의 예인 OCT장치의 구성 예를 도시한 도다. OCT장치는, 예를 들면, SD-OCT 장치 또는 SS-OCT장치다. 본 실시예에서는 그 OCT장치가 SS-OCT장치라고 가정한다.
OCT장치(100)의 구성
그 OCT장치(100)의 구성에 대해서 설명한다.
광원(101)은, 파장소인(SS:Swept Source)형 광원이고, 소인 중심파장 1050nm, 소인폭 100nm로 파장소인하면서 광을 출사한다. 이러한 파장과 소인폭의 값들은, 예시들이며, 본 발명은 이들 값에 한정되는 것이 아니다. 또한, 상기 실시예들에서 아래에 기재된 값은 예시들이며, 본 발명은 이러한 값들에 한정되는 것이 아니다.
광원(101)으로부터 출사된 광은 광파이버(102)를 통하여 빔 스플리터(110)에 인도되어, 측정 광(OCT측정 광이라고도 말한다)과 참조 광(OCT측정 광에 대응하는 참조 광이라고도 말한다)으로 분기되어진다. 빔 스플리터(110)의 분기비는, 90(참조 광) : 10(측정 광)이다. 분기를 통해 생성된 측정 광은, 광파이버(111)를 통해 출사되어, 콜리메이터(112)에 의해 평행 광으로 형성된다. 평행 광이 된 측정 광은, 피검안(118)의 안저Er에 있어서 측정 광으로 주사하는 갈바노 스캐너(114), 스캔 렌즈(115), 및 포커스 렌즈(116)를 통해 피검안(118)에 입사한다. 갈바노 스캐너(114)가 단일의 미러로서 도시되어 있지만, 실제는 피검안(118)의 안저Er를 래스터 스캔하도록 (도시되지 않은) 2매의 갈바노 스캐너, 즉, X축 스캐너(114a)와 Y축 스캐너(114b)를 구비한다. 포커스 렌즈(116)는 스테이지(117) 위에 고정되어 있고, 광축방향으로 이동되어서 포커스 조정을 행할 수 있다. 갈바노 스캐너(114)와 스테이지(117)는 신호 취득 제어부(145)에 의해 제어되고, 피검안(118)의 안저Er의 원하는 범위(단층화상의 취득 범위, 단층화상의 취득 위치, 또는 측정 광의 조사 위치라고도 말한다)에서 측정 광으로 주사할 수 있다.
본 실시예에서는 상세한 설명은 하지 않고 있지만, 안저Er의 움직임을 검출하고, 갈바노 스캐너(114)의 미러가 안저Er의 움직임을 추적하여 주사시키는 트랙킹 기능이 제공되어도 된다. 트랙킹은 일반적인 기술을 사용해서 행해져도 되고, 실시간 또는 포스트 프로세싱으로 행해져도 된다. 예를 들면, 주사형 레이저 검안경(SLO)을 사용하는 방법이 있다. 이 방법에 있어서, SLO를 사용해서 안저Er의 광축에 대하여 수직한 면내의 2차원 화상(안저 표면화상)을 경시적으로 취득하고, 그 화상으로부터 혈관의 분기등의 특징부분을 추출한다. 그 취득된 2차원 화상중의 특징부분에서의 움직임이 안저Er의 이동량으로서 산출되고, 그 산출된 이동량이 갈바노 스캐너(114)에 피드백됨으로써, 실시간 트랙킹을 행할 수 있다.
측정 광은, 스테이지(117) 위에 포커스 렌즈(116)에 의해, 피검안(118)에 입사하고, 안저Er에 포커싱된다. 안저Er를 조사한 측정 광은 각 망막층에서 반사 또는 산란되고, 상술한 광학경로를 따라 빔 스플리터(110)에 귀환한다. 빔 스플리터(110)에 입사한 상기 귀환된 측정 광은, 광파이버(126)를 거쳐 빔 스플리터(128)에 입사한다.
한편, 빔 스플리터(110)에서 분기되어진 참조 광은, 광파이버 119a, 편광 제어기(150) 및 광파이버 119b를 통해 출사되어, 콜리메이터(120)에 의해 평행 광으로 형성된다. 편광 제어기(150)는 참조 광의 편광 상태를 원하는 편광상태로 변화시킬 수 있다. 참조 광은 분산 보상 유리(122), ND필터(123), 및 콜리메이터(124)를 통하여 광파이버(127)에 입사한다. 콜리메이터 렌즈(124)의 일단과 광파이버(127)의 일단은 코히어런스 게이트 스테이지(125) 위에 고정되어 있고, 피검자의 안축 길이의 차이에 따라 광축방향으로 구동되도록, 신호 취득 제어부(145)에 의해 제어된다. 본 실시예에서는, 참조 광의 광로길이를 변경하지만, 측정 광의 광로와 참조 광의 광로간의 광로 길이 차이를 변경할 수 있으면 된다.
광파이버(127)를 통과한 참조 광은 빔 스플리터(128)에 입사한다. 빔 스플리터(128)에서는, 귀환된 참조 광과 참조 광이 간섭광으로 합파되고 나서, 2개의 간섭광 빔으로 분할된다. 분할에 의해 생성된 2개의 간섭 광빔은 서로 반전된 위상을 갖는다(이하, 정의 성분 및 부의 성분이라고 한다). 그 간섭 광빔의 정의 성분은 광파이버(129)를 거쳐 검출기(141)의 한쪽의 입력 포트에 입사한다. 한편, 그 간섭 광빔의 부의 성분은 광파이버(130)를 거쳐 검출기(141)의 다른쪽 입력 포트에 입사한다. 검출기(141)는 차동검출기다. 위상이 180°반전한 2개의 간섭 광빔이 검출기(141)에 입력되면, 검출기(141)는 직류 성분을 제거하고, 간섭 성분만을 포함하는 간섭신호를 출력한다.
검출기(141)에 의해 검출된 간섭 광은 광의 강도에 대응한 전기신호(간섭신호)로서 출력되고, 단층화상 생성부의 일례인 신호 처리부(144)에 입력된다.
제어부(143)
본 장치 전체를 제어하기 위한 제어부(143)에 대해서 설명한다.
제어부(143)는 신호 처리부(144), 신호 취득 제어부(145), 표시부(146), 및 표시 제어부(149)를 구비한다. 신호 처리부(144)는, 화상생성부(147)와 맵 생성부(148)를 구비한다. 화상생성부(147)는 검출기(141)로부터 송신된 전기신호(간섭신호)로부터 휘도화상 및 모션 콘트라스트 화상을 생성하는 기능을 갖는다. 맵 생성부(148)는 휘도화상으로부터 층 정보(망막 세그먼테이션)를 생성하는 기능을 갖는다.
신호 취득 제어부(145)는 상술한 방식으로 개개의 부를 제어한다. 신호 처리부(144)는 검출기(141)로부터 출력된 간섭신호에 근거하여, 화상의 생성, 그 생성된 화상의 해석, 해석 결과를 나타내는 가시 정보의 생성을 행한다.
신호 처리부(144)로 생성된 화상 및 해석 결과는 표시 제어부(149)에 송신된다. 표시 제어부(149)는 표시부(146)의 표시 화면에 그 화상 및 해석 결과를 표시시킨다. 여기에서, 표시부(146)는, 예를 들면 액정 디스플레이 등이다. 신호 처리부(144)로 생성된 화상 데이터는, 표시 제어부(149)에 송신된 후, 표시부(146)에 유선 또는 무선으로 송신되어도 된다. 본 실시예에 있어서, 표시부(146)는 제어부(143)에 포함되어 있지만, 본 발명은 이것에 한정되지 않는다. 표시부(146)는, 제어부(143)로부터 따로따로 설치되어도 되고, 예를 들면 유저가 휴대가 쉬운 장치의 일례인 타블렛이어도 된다. 이 경우, 표시부(146)에 터치패널 기능을 탑재시켜, 터치패널상에서 화상의 표시 위치가 변경될 수 있고, 화상이 확대 또는 축소될 수 있거나, 표시되는 화상이 변경될 수 있다.
이상, 피검안(118)의 1점에 있어서의 단면에 관한 정보를 취득하는 프로세스를 설명하였다. 피검안(118)의 깊이 방향의 단면에 관한 정보를 취득하는 그 프로세스를 A스캔이라고 부른다. A스캔의 방향과 직교하는 방향으로 피검안(118)의 단면에 관한 정보, 즉 2차원 화상을 취득하기 위한 스캔을 B스캔이라고 한다. 그 B스캔에 의해 취득된 단층화상에 직교하는 방향으로의 스캔을 C스캔이라고 한다. 보다 구체적으로, 3차원 단층화상을 취득하기 위해서 안저면내에 2차원 래스터 주사를 행하는 경우에, 고속 스캔을 B스캔이라고 하는 반면에, B스캔의 방향에 직교하는 방향으로의 저속 B스캔을 C스캔이라고 한다. A스캔 및 B스캔에 의해 2차원의 단층화상을 취득할 수 있다. A스캔, B스캔 및 C스캔에 의해 3차원의 단층화상을 취득할 수 있다. B스캔 및 C스캔은, 상술한 갈바노 스캐너(114)에 의해 행해진다.
(도시되지 않은) X축 스캐너(114a) 및 Y축 스캐너(114b)는, 각각 회전축이 서로 직교하도록 위치된 편향 미러로 형성되어 있다. X축 스캐너(114a)는 X축방향의 주사를 행하고, Y축 스캐너(114b)는 Y축방향의 주사를 행한다. X축방향 및 Y축방향은, 안구의 눈축방향에 대하여 수직하고, 서로 수직한다. B스캔 및 C스캔의 방향과 같은 라인 주사 방향은, X축방향 및 Y축방향과 반드시 일치하지는 않는다. 이 때문에, B스캔 및 C스캔의 라인 주사 방향은, 촬상하고 싶은 2차원의 단층화상 혹은 3차원의 단층화상에 따라 적절하게 결정될 수 있다.
스캔 패턴
다음에, 도 2를 참조하여 본 실시예에 따른 스캔 패턴의 일례를 설명한다.
OCT앤지오그래피에서는 혈류에 의해 생긴 OCT간섭신호의 시간변화를 계측하여서, 같은 장소(또는 대략 같은 장소)에서 복수의 계측이 필요하다. 본 실시예에서는, OCT장치는 같은 장소에서의 B스캔을 m회 반복하고, n위치의 y포지션으로 이동하는 스캔을 행한다.
구체적인 스캔 패턴이 도 2에 도시되어 있다. 안저 평면상에서 n위치의 y포지션(y1∼yn)에 대해서, B스캔을 반복적으로 m회 행한다.
m이 증가함에 따라, 같은 장소에서의 계측 횟수가 증가하고, 이에 따라 혈류의 검출 정밀도가 향상한다. 한편, 스캔 시간이 길어져, 스캔중의 눈의 움직임(고시미동)으로 인한 화상에서의 모션 아티팩트와 증가된 피검체의 부담이 발생하기도 한다. 본 실시예에서는, 양자간의 밸런스를 고려하여 m은 4로 설정한다. 상기 OCT장치에서 행한 A스캔의 속도와, 피검안(118)의 안저표면화상의 운동 해석에 따라, 제어부(143)는 m을 변경해도 된다.
도 2에 있어서, p는 각 B스캔에 있어서의 A스캔의 샘플들의 수를 나타낸다. 즉, p×n에 의해 평면화상 사이즈가 결정된다. p×n이 크다면, 계측 피치가 같은 광범위에 대해서 스캔할 수 있지만, 스캔 시간이 길어져 상술한 모션 아티팩트 및 환자부담이 생기게 된다. 본 실시예에서는, 양자간의 밸런스를 고려하여, n=p=300으로 주사를 행한다. 이때, 상기 n 및 p의 값은 자유롭게 변경될 수 있다.
도 2에 있어서, Δx는 인접하는 x포지션간의 간격(x피치)이며, Δy는 인접하는 y포지션간의 간격(y피치)이다. 본 실시예에서는, 상기 x피치 및 y피치는 안저가 조사되는 광의 빔 스폿 지름의 1/2로 결정된다. 상기 x피치 및 y피치는 10μm다. 그 x피치 및 y피치를 상기 안저의 빔 스폿 지름의 1/2로 함으로써, 고선명 화상이 생성될 수 있다. 상기 x피치 및 y피치를 안저의 빔 스폿 지름의 1/2보다 작게 하는 것은, 생성되는 화상의 선명도를 향상시키는 효과가 작다.
상기 x피치 및 y피치를 안저의 빔 스폿 지름의 1/2보다 크게 증가시키면 선명도는 악화하지만, 작은 데이터 용량으로 넓은 범위의 화상을 취득할 수 있다. 임상 요구에 따라서 x피치와 y피치를 자유롭게 변경해도 된다.
본 실시예에 따른 스캔 범위는, x방향이 p×Δx=3mm, y방향이 n×Δy=3mm이다.
다음에, 도 3을 참조하여 본 실시예에 따른 화상형성방법의 구체적인 처리의 수순을 설명한다.
단계S101에 있어서, 신호 취득 제어부(145)는 OCT 신호 취득부(100)를 제어하여, OCT 신호(간섭신호라고도 함)를 취득한다. 이 단계의 상세설명은 후술한다. 단계S102에 있어서, 제어부(143)는 표시 정보(피검체 부위의 3차원 혈류의 정보라고도 함)를 생성한다. 이 단계의 상세설명을 후술한다. 이들의 단계를 행한 후, 본 실시예에 따른 화상형성방법의 처리의 수순을 종료한다.
간섭신호 취득 수순
다음에, 도 4를 참조하여 본 실시예에 따른 단계S101의 간섭신호 취득의 구체적인 처리의 수순을 설명한다. 단계S109에 있어서, 신호 취득 제어부(145)는 도 2의 포지션yi의 인덱스i를 1에 설정한다. 단계S110에 있어서, OCT장치는 스캔 위치를 yi로 이동한다. 단계S119에 있어서, 신호 취득 제어부(145)는 반복된 B스캔의 인덱스j를 1에 설정한다. 단계S120에 있어서, OCT장치는 B스캔을 행한다.
단계S130에 있어서, 검출기(141)는 A스캔마다 간섭신호를 검출하고, (도시되지 않은) A/D변환기를 거쳐 상기 간섭신호가 신호 처리부(144)에 기억된다. 신호 처리부(144)는 A스캔을 통해 취득된 간섭신호들의 p샘플들을 취득하여, 한번의 B스캔의 간섭신호로서 간주한다.
단계S139에 있어서, 신호 취득 제어부(145)는 반복된 B스캔의 인덱스j를 증분한다.
단계S140에 있어서, 신호 취득 제어부(145)는 인덱스j가 소정 횟수(m회)보다 큰지 아닌지를 판단한다. 즉, 신호 취득 제어부(145)는 포지션yi에서의 B스캔이 m회 반복되었는지 아닌지를 판단한다. B스캔이 m회 반복되지 않았을 경우, 처리는 단계S120에 되돌아가고, 동일위치의 B스캔 계측을 반복한다. B스캔이 m회 반복되었을 경우, 처리는 S149에 진행된다. 단계S149에 있어서, 신호 취득 제어부(145)는 포지션yi의 인덱스i를 증분한다. 단계S150에 있어서, 신호 취득 제어부(145)는, 인덱스i가 소정의 Y위치의 계측 횟수(n)보다 큰지, 다시 말해 n위치의 모든 y포지션에서 B스캔을 실시했는지를 판단한다. 인덱스i가 소정의 Y위치의 계측 횟수 이하인 경우(단계S150에서 NO), 처리는 단계S110에 되돌아가고, 다음 계측 포지션에서 계측하는 것을 반복한다. 그 소정의 Y위치의 계측을 n회 실시한 경우(단계S150에서 YES), 처리는 단계S160에 진행된다.
단계S160에 있어서, 상기 OCT장치는 백그라운드 데이터를 취득한다. 그 OCT장치는 셔터(85)를 닫은 상태로 100회 A스캔을 행한다. 신호 취득 제어부(145)는 100회의 A스캔을 평균화해서 기억한다. 백그라운드의 계측 횟수는 100회에 한정되지 않는다.
이상의 단계를 실시한 후, 본 실시예에 따른 간섭신호 취득 수순을 종료한다.
신호 처리 수순
다음에, 도 5를 참조하여 본 실시예에 따른 단계S102에서, 피검체의 부위에서 3차원 혈류에 대한 정보를 생성하는(3차원 혈류부위 정보를 생성하는) 처리의 상세를 설명한다.
본 실시예에서는, OCT앤지오그래피 정보로부터 3차원 혈류부위 정보를 생성하기 위해서, OCT앤지오그래피의 모션 콘트라스트를 계산할 필요가 있다.
여기서, 모션 콘트라스트는, 피검체 조직 중 흐름이 있는 조직(예를 들면, 혈액)과 흐름이 없는 조직간의 대비로서 정의된다. 모션 콘트라스트를 표현하는 특징값은, 간단히 모션 콘트라스트(혹은 모션 콘트라스트 특징값이나 모션 콘트라스트 값)로서 정의된다. 모션 콘트라스트에 대해서는 도 5를 참조하여 후술한다.
도 5의 단계S210에 있어서, 신호 처리부(144)는 포지션yi의 인덱스i를 1에 설정한다. 단계S220에 있어서, 신호 처리부(144)는 포지션yi에 있어서의 반복된 B스캔 간섭신호(m회)를 추출한다. 단계S230에 있어서, 신호 처리부(144)는 반복된 B스캔의 인덱스j를 1에 설정한다. 단계S240에 있어서, 신호 처리부(144)는 j번째의 B스캔 데이터를 추출한다.
단계S250에 있어서, 신호 처리부(144)는 단계S240에서 취득된 B스캔 데이터의 간섭신호에 대하여, 일반적인 재구성 처리를 행하는 것으로 단층화상의 휘도화상을 생성한다.
우선, 화상생성부(147)는, 그 간섭신호로부터 백그라운드 데이터로 이루어진 고정 패턴 노이즈를 제거한다. 고정 패턴 노이즈 제거는 검출한 복수의 백그라운드 데이터의 A스캔 신호를 평균하고 그 고정 패턴 노이즈를 그 입력된 간섭신호로부터 감산한다. 그 후, 화상생성부(147)는, 유한구간에서 푸리에 변환했을 경우에 트레이드오프(trade-off)의 관계가 되는, 깊이 분해능과 다이내믹 레인지를 최적화하기 위해서, 원하는 창(window) 함수처리를 행한다. 그 후, 화상생성부(147)는, FFT처리를 행하여 단층화상의 휘도화상을 생성한다. 단계S260에 있어서, 신호 처리부(144)는 반복된 B스캔의 인덱스j를 증분한다. 단계S270에 있어서, 신호 처리부(144)는 인덱스j가 m보다 큰지 판단한다, 즉, 포지션yi에서의 B스캔의 휘도계산이 m회 반복되었는지를 판단한다. 네가티브라고 판단되었을 경우, 처리는 단계S240에 되돌아가고, 동일한 Y위치에서의 반복된 B스캔의 휘도계산을 반복한다. 즉, 화상생성부(147)는, 피검체의 대략 동일위치에 있어서의 단면을 나타내는 피검체의 복수의 단층화상 데이터(단층화상)를 취득한다. "대략 동일위치"는, 실제의 동일 위치와 거의 동일한 위치를 포함한다. 이상적인 주사는 실제의 동일 위치에서 복수회 행해진다. 하지만, 실제로는, 고시미동 때문에 거의 동일 위치에서 복수회 주사하기도 한다. 그 고시미동을 추적하는데 추적 기술을 사용하는 경우, 그 추적 기술의 불완전함 때문에 거의 동일 위치에서 복수회 주사를 행하기도 한다.
한편, 단계S270에서 포지티브라고 판단되었을 경우, 처리는 단계S280에 진행된다. 단계S280에 있어서, 신호 처리부(144)는 소정의 yi포지션에 있어서의 반복된 B스캔의 m프레임을 위치 맞춤한다. 구체적으로는, 신호 처리부(144)는 m프레임 중 하나를 템플릿으로서 선택한다. 템플릿으로서 사용되는 프레임은, 프레임의 모든 조합간의 상관을 계산하고, 프레임별로 상관계수의 합을 산출하고, 최대 합에 해당한 프레임을 선택하여서 선택되어도 된다. 그 다음에, 신호 처리부(144)는 템플릿과 각 프레임을 비교하여 위치 편차량(δX, δY, δθ)을 취득한다. 구체적으로는, 신호 처리부(144)는, 템플릿 화상의 위치와 각도를 변경하여서 유사도를 가리키는 지표인 정규화된 상호 상관(NCC)을 계산하고, 이 NCC값이 최대가 될 때의 화상위치의 차이를 위치 편차량으로서 취득한다.
본 발명의 실시예에서는, 유사도를 가리키는 지표는, 템플릿과 각 프레임간의 화상의 특징의 유사성을 가리키면 변경되어도 된다. 예를 들면, 절대차의 합(SAD), 제곱차의 합(SSD), 또는 제로 평균의 정규화된 상호 상관(zero-means normalized cross-correlation: ZNCC)을 사용해도 된다. 이와는 달리, 위상 한정 상관법(Phase Only Correlation: POC) 또는 회전불변 위상 한정 상관법(Rotation Invariant Phase Only Correlation: RIPOC)을 사용해도 된다.
다음에, 신호 처리부(144)는 위치 편차량(δX, δY, δθ)에 따라 위치 보정을 템플릿이외의 m-1프레임에 적용하고, m프레임의 위치 맞춤을 행한다.
단계S290에 있어서, 신호 처리부(144)는 단계S280에서 위치 맞춤된 휘도화상을 평균화하여서, 휘도 평균화 화상을 생성한다.
단계S300에 있어서, 맵 생성부(148)는, 신호 처리부(144)가 단계S290에서 생성한 휘도 평균화 화상을 사용하여서 망막의 세그먼테이션(부위정보 취득)을 행한다. 제1 실시예에서는 이 단계를 건너뛴다. 이 단계의 설명은 제2 실시예에서 행한다.
단계S310에 있어서, 화상생성부(147)는 모션 콘트라스트를 계산한다. 본 실시예에서는, 단계S300에서 신호 처리부(144)가 출력한 m프레임의 단층화상의 휘도화상들에서 같은 위치의 화소마다 신호 강도(휘도)의 분산 값을 계산하고, 그 분산 값을 모션 콘트라스트로서 간주한다. 즉, 화상생성부(147)는 취득된 복수의 단층화상 데이터중에서 서로 대응하는 화소 데이터를 사용해서 모션 콘트라스트를 산출한다. 그 분산 값 대신에, 표준편차, 차분값, 비상관값 및 상관 값 중 어느 하나를 사용하여도 된다. 신호 강도가 아닌 위상을 사용하여도 된다.
모션 콘트라스트를 산출하는 방식은 여러 가지가 있다. 본 발명의 실시예에 있어서, 모션 콘트라스트의 특징값으로서 동일 Y위치에서의 복수의 B스캔 화상의 각 화소의 휘도값의 변화를 가리키는 어떠한 지표도 사용하여도 된다. 또는, 모션 콘트라스트로서, m프레임의 단층화상의 휘도화상의 같은 위치의 화소들의 분산 값 대신에, 개개의 프레임의 동일 화소들의 평균값으로 정규화된 변동 계수를 사용하여도 된다. 이 경우, 망막의 구조를 나타내는 화소 값에 모션 콘트라스트가 독립적이고, 보다 감도가 높은 모션 콘트라스트를 취득할 수 있다. 그러나, 모션 콘트라스트에 있어서, 위치 맞춤 오차 및 카메라 노이즈 등의 여러 가지 요인으로 인한 작은 화소값에 있어서의 노이즈 성분이 상대적으로 강조된다. 그 때문에, 예를 들면 모세혈관을 그다지 포함하지 않는 층에 있어서, 혈류영역으로부터 노이즈를 분리시키는 것이 곤란하다. 이렇게 하여, 본 발명의 실시예에 따른 화상처리방법은 보다 효과적으로 작용한다.
단계S320에 있어서, 신호 처리부(144)는, 화상생성부(147)에서 산출된 모션 콘트라스트의 제1역치 처리를 행한다. 제1역치의 값은, 신호 처리부(144)로부터 단계S290에서 출력된 휘도 평균화 화상으로부터, 노이즈 플로어(floor)에서 랜덤 노이즈만이 표시되어 있는 에어리어를 추출하고, 표준편차σ을 계산하여서, 노이즈 플로어의 평균 휘도+2σ로 설정된다. 신호 처리부(144)는, 상기 휘도가 상기 역치이하의 영역에 대응한 모션 콘트라스트의 값을 0에 설정한다.
단계S320의 제1역치 처리에 의해, 랜덤 노이즈에 의한 휘도변화로부터 유래하는 모션 콘트라스트를 제거함으로써 노이즈를 경감할 수 있다.
제1역치의 값이 작을수록, 모션 콘트라스트의 검출 감도는 증가하고, 노이즈 성분도 증가한다. 제1역치의 값이 클수록, 노이즈는 감소하고, 모션 콘트라스트의 검출 감도는 저하한다.
본 실시예에서는, 상기 역치를 노이즈 플로어의 평균 휘도+2σ로서 설정했지만, 그 역치는 이것에 한정되지 않는다.
단계S330에 있어서, 신호 처리부(144)는, 포지션yi의 인덱스i를 증분한다.
단계S340에 있어서, 신호 처리부(144)는, 인덱스i가 n보다 큰지를 판단한다, 즉, n위치의 모든 y포지션에서 위치 맞춤, 휘도 평균화 화상의 계산, 모션 콘트라스트의 계산, 및 역치처리를 행했는지를 판단한다. 네가티브라고 판단되었을 경우, 처리는 단계S220에 되돌아간다. 포지티브라고 판단되었을 경우, 처리는 단계S350에 진행된다.
단계S340의 완료는, 모든 Y위치에서의 B스캔 화상(Z깊이 대 X방향 데이터)의 각 화소의 휘도 평균 화상과 모션 콘트라스트의 3차원 데이터가 취득된 것을 의미한다. 복수의 Y위치에서의 B스캔 화상은 3차원의 단층화상 데이터에 해당한다.
단계S350에 있어서, 신호 처리부(144)는, 모션 콘트라스트의 3차원 데이터를 사용해서 3차원 혈류부위 정보를 생성하는 처리를 행한다. 도 6은, 단계S350의 상세를 나타낸 것이다.
단계S351에 있어서, 신호 처리부(144)는, 이미 취득된 모션 콘트라스트의 3차원 데이터를 취득한다.
단계S352에 있어서, 신호 처리부(144)는, 혈류부위 정보를 유지하면서 노이즈를 제거하기 위해서, 모션 콘트라스트의 3차원 데이터에 대하여 평활화 처리를 실시한다.
비록 모션 콘트라스트의 성질에 따라 최적의 평활화 처리가 달라지지만, 이하의 방법들이 이용 가능하다.
주목 화소 근방의 nx×ny×nz개의 복셀로부터 모션 콘트라스트의 최댓값을 출력하는 평활화 방법; 주목 화소 근방의 nx×ny×nz개의 복셀의 모션 콘트라스트의 평균값을 출력하는 평활화 방법; 주목 화소 근방의 nx×ny×nz개의 복셀의 모션 콘트라스트의 중간값을 출력하는 평활화 방법; 주목 화소 근방의 nx×ny×nz개의 복셀의 모션 콘트라스트에 대하여, 거리에 근거한 가중치를 할당하는 평활화 방법; 주목 화소 근방의 nx×ny×nz개의 복셀의 모션 콘트라스트에 대하여, 거리에 근거한 가중치와 주목 화소의 화소값간의 차이에 따라 가중치를 할당하는 평활화 방법; 및 주목 화소 주변의 소영역의 모션 콘트라스트 패턴과, 주변화소의 주변의 소영역의 모션 콘트라스트 패턴과의 유사도에 대응한 가중치를 사용한 값을 출력하는 평활화 방법이 있다.
또한, 그 밖의 혈류부위 정보를 유지하면서 평활화를 행하는 방법을 사용해도 된다.
단계S353에 있어서, 신호 처리부(144)는, 표시 제어부(149)로부터, 표시되는 화소를 결정하는 역치 및 표시되는 깊이 방향의 범위의 초기값을 취득한다. 그 표시 범위의 초기값은, 통상 깊이 방향의 1/4정도이고, 거의 망막표층의 범위를 포함하는 위치에 해당한다. 표시 범위의 초기값은, 표층부에 있어서의 주요 혈관망과 모세혈관망을 보기 쉽게 표시하고 싶기 때문에 깊이 방향의 전체 범위에 해당하지 않는다. 주요 혈관망과 모세혈관망을 포함하는 표층부와, 혈관을 갖지 않는 노이즈가 큰 RPE층을, 동시에 표시하면, 표층부에 있어서의 주요 혈관망과 모세혈관망을 식별하는 것이 어렵다. 표시 역치의 초기값의 결정법은 후술한다.
단계S354에 있어서, 표시 역치의 초기값을 사용해 평활화 처리된 3차원 데이터에 대하여 이 초기값을 넘는 화소를 표시하는 표시 역치 처리를 실시한다. 본 처리에서의 모션 콘트라스트 화소값을 표시용 화소값으로 변환하는 예는 도 7a 및 도 7b에 도시되어 있다. 도 7a는, 표시 역치이하의 화소값이 제로이고, 역치상의 화소값으로부터 최대강도의 화소값까지의 화소에 비례하는 표시 화소값을 할당하는 예를 도시한 도다. 도 7b는 표시 역치이하의 화소값에 대하여 0을 곱하고, 표시 역치이상의 화소값에 대하여 1을 곱하여서, 취득된 표시 값을 할당한 예를 도시한 도다. 즉, 역치보다 낮은 모션 콘트라스트에 대응하는 화소값(휘도)은 역치보다도 높은 모션 콘트라스트에 대응하는 화소값(휘도)보다도 낮다. 어쨌든, 표시 역치이하의 모션 콘트라스트가 무효화되고, 표시되는 연결을 가지는 모션 콘트라스트를 가지는 영역이 분리되도록 표시가 행해진다. 즉, 모션 콘트라스트와 역치간의 비교 결과에 따라 모션 콘트라스트의 값이 제어된다. 단계S354에 있어서의 처리는 모션 콘트라스트와 역치를 비교하는 비교 단계 및 그 비교의 결과에 근거해서 역치이하의 모션 콘트라스트를 무효화하는 무효화 단계의 일례에 해당한다.
단계S355에서는, 도 7a 및 도 7b에 도시된 표시 역치 처리된 모션 콘트라스트 화상을 표시 제어부(149)가 표시부(146)에 표시시킨다. 구체적으로는, 역치보다 낮은 모션 콘트라스트에 대응하는 휘도는, 역치보다도 높은 모션 콘트라스트에 대응하는 휘도보다도 낮은 모션 콘트라스트 화상이 표시부(146)에 표시된다. 즉, 단계S355에 있어서의 처리는, 무효화 처리가 행해진 후에, 모션 콘트라스트에 근거해서 모션 콘트라스트 화상을 생성하는 생성 단계의 일례에 해당한다. 예를 들면, 상기 표시 단계S355는, 도 8b에 도시된 GUI 및 3차원 모션 콘트라스트 화상을 표시하도록 설계되어, 표시부(146) 위에 그것들을 표시한다. 참조부호 400은 표시부(146)에 준비된 평행사변형 영역이며, 산출된 3차원 모션 콘트라스트 화상을 투영하여 표시하기 위한 표시 영역 프레임이다. 그 프레임 측방에는, 표시하는 3차원 모션 콘트라스트 화상의 깊이 방향의 범위를 조정하는 슬라이더(407)가 표시된다. 검자는 슬라이더(407)의 조작부 끝 401 또는 402를 예를 들면 마우스로 드래그 하여서, 표시부(146)에 표시하는 3차원 모션 콘트라스트 화상의 깊이 방향의 범위를 지정할 수 있다. 또한, 검자(조작자)는, 슬라이더(407)의 조작부의 중앙부를 드래그하여서, 표시하는 깊이 범위의 폭을 변경하지 않고 표시의 깊이 위치를 변경할 수 있다. 도 8a에는, 대응한 깊이를 설명하기 위해, 3차원 모션 콘트라스트 화상의 단층화상이 도시되어 있다. 단층화상상의 휘선 403, 404는 조작부 끝 401, 402에 대응하는 단층화상상의 위치다. 상기 표시 단계에서는, 상기 휘선 403과 404 사이에 끼워진 영역 405의 모션 콘트라스트 화상만을 표시 영역 프레임(400)에 표시한다. 예를 들면, 표시 제어부(149)는, 표시부(146)에 도 8a 및 8b에 도시된 모든 화상을 표시시키거나, 도 8b에 도시된 화상만을 표시시켜도 된다.
또한, 이 표시 영역 프레임(400)의 아래쪽에는 또 하나의 슬라이더(406)가 표시되는 화소를 결정하는 역치를 조정하기 위해서 설치된다. 검자가 이 슬라이더(406)를 예를 들면 마우스로 드래그하면, 도 6의 단계S356에서는 표시 역치를 변경하고, 단계S354에 처리를 되돌려, 표시되는 3차원 모션 콘트라스트 화상을 갱신하게 된다. 단계S356의 처리는, 그 역치를 변경하는 변경 단계의 일례에 해당한다. 단계S354와 S355의 반복된 실행은, 상기 역치의 변경에 따라서 모션 콘트라스트 화상을 생성하는 생성단계와 상기 모션 콘트라스트 화상을 표시하는 표시 단계와의 반복된 실행에 해당한다.
이 경우에, 상기 역치가 초기값에 대한 상대값으로 변경될 수 있도록 설정해두면, 다른 피검안이나 부위 등의 대상이 다른 데이터에 대하여도 동등한 효과를 취득할 수 있다. 이상의 구성에 의해, 검자는, 표시하기 위한 깊이 범위를 자발적으로 변경할 수 있고, 또한 그 선택된 깊이 범위에 최적의 표시 역치를 설정할 수 있다. 검자가 깊이 방향의 표시 범위를 변경하기 위해서 조작부 끝 401 또는 402를 마우스로 드래그 하면, 단계S357에서는 그 표시 범위를 변경한다. 그리고, 단계S354에 처리를 되돌려, 표시되는 3차원 모션 콘트라스트 화상을 갱신하게 된다. 즉, 표시 범위의 변경에 따라 표시되는 모션 콘트라스트 화상이 갱신된다. 여기에서, 단계S357에서의 처리는 모션 콘트라스트 화상의 깊이 방향의 표시 범위를 설정하는 설정 단계의 일례에 해당한다. 단계S357의 실행 후의 단계S355의 실행은, 설정된 표시 범위에 근거해서 모션 콘트라스트 화상을 표시하는 표시 단계의 일례에 해당한다.
이상의 설명에서는, 도 8a에 도시된 단층화상은 설명을 위해서만 사용하였다. 상기 표시단계에서 이 단층화상을 동시에 표시하면, 검자는 표시하기 위한 깊이 범위를 용이하게 설정할 수 있다. 상기 단층화상은, 깊이 방향을 명시하기 위해서 표시 영역 프레임(400)의 측방에 설치되어도 된다. 표시되는 단층화상에 대응하는 위치는, 3차원 모션 콘트라스트 화상에 포개지도록 표시되어도 된다. 예를 들면, 상기 표시 제어부(149)는, 3차원 모션 콘트라스트 화상 위에 그 단층화상에 대응하는 라인을 포개어도 된다.
도 9a 내지 9c는 상기 선택된 깊이 범위의 3차원 모션 콘트라스트 화상의 각 화소값을 깊이 방향으로 투영 또는 적산하여서 생성된 2차원 모션 콘트라스트 화상의 예들을 도시한 도다.
본 실시예에서는, 도 8b에 도시된 3차원 모션 콘트라스트 화상을 표시시키지만, 이 실시예는 이것에 한정되지 않고, 2차원 모션 콘트라스트 화상이 표시되어도 된다. 예를 들면, 3차원 모션 콘트라스트 화상 대신에 2차원 모션 콘트라스트 화상을 표시시켜도 되거나, 양쪽의 화상을 동시에 표시시켜도 된다.
2차원 모션 콘트라스트 화상을 생성하기 위해서는, 대응한 화소의 모션 콘트라스트 값을 적산하거나, 최댓값, 최솟값 또는 중간값 등의 대푯값을 추출해 투영하여도 된다. 여기에서는, 적산에 의해 생성된 2차원 모션 콘트라스트 화상의 예들은 도 9a 내지 9c에 도시되어 있다. 물론, 검자가 도 8b에 도시된 슬라이더(406)를 조작하여서 표시 역치를 변경할 수 있다. 도 9b는 역치가 경험적으로 최적이 된다고 생각된 초기값일 경우에 해당하고, 도 9a는 도 9b보다 역치가 작은 경우에 해당하며, 도 9c는 도 9b보다 역치가 큰 경우에 해당한다. 도 9a에서는 혈류부위의 구조를 파악하는데 어렵게 하는 노이즈가 있다. 도 9b에 도시된 화상은 미세 혈류부위의 구조를 파악하는데 적합하고, 도 9c에 도시된 화상은 종래기술에 따른 플루오레세인 앤지오그래피에 의해 촬영된 화상과의 비교를 행하는 경우에 적합하기도 하다.
이제, 역치를 자동적으로 결정하는 방법에 대해서 도 10a 내지 10c를 참조하여 설명한다. 도 10a는 선택된 소정의 깊이 범위에 있는 모션 콘트라스트의 히스토그램을 도시한 도다. 저휘도측에 노이즈의 피크N1이 관측되고, 고휘도측에 혈류영역의 신호의 피크S1이 관측된다. 표시 역치 처리는, 이 2개의 피크의 교점에 해당하는 값Th1이 상기 표시 역치의 초기값이 되도록 프로그래밍 된다. 물론, 경험적으로 일정한 비율 혹은 일정량의 쉬프트를 주는 것도 가능하다. 도 10b 및 도 10c는 검자가 표시의 깊이 방향의 범위를 변경하는 경우의 히스토그램의 변화를 도시한 도다. 도 10b는 혈류가 적은 범위가 선택되는 경우를 도시한 도이고, 도 10c는 혈류가 많은 범위가 선택되는 경우를 도시한 도다. 도 10b 및 도 10c에 도시된 것처럼, 노이즈 피크N2 및 N3와 혈류영역의 신호 피크S2 및 S3은 이동하고, 거기에 알맞은 표시 역치의 초기값Th2 및 Th3이 설정된다. 즉, 모션 콘트라스트 화상의 표시 범위에 연동해서 자동적으로 표시 역치가 변경된다. 상술한 것처럼, 본 실시예에 의하면, 소정영역의 모션 콘트라스트의 히스토그램에 근거하여 모션 영역과 비모션 영역을 추정하고, 모션 영역의 히스토그램 및 비모션 영역의 히스토그램에 근거하여 역치를 결정할 수 있다.
이상, 대상영역인 깊이 방향의 표시 범위에 있는 모션 콘트라스트의 히스토그램을 사용하여서 상기 대상영역에 대하여 일률적인 역치를 결정하는 방법에 대해서 설명을 하였지만, 그 방법은 이것에 한정되는 것이 아니다. 예를 들면, 동일 영역에 대하여 일률적인 역치가 주어지지 않고, 동일 표시 영역의 소정영역에 대하여, 모션 콘트라스트의 평균값과 분산에 근거해서 역치가 결정되는, 국소적 결정법을 사용하여도 된다.
상술한 것처럼 검자가 슬라이더(406)를 조작하는 경우, 그 값을 기억하고, 그 이후의 표시 역치로서 사용하여도 된다. 이와는 달리, 초기 설정으로 되돌리는 스위치가 설치되어도 된다.
상기 제1 실시예에 의하면, OCT앤지오그래피를 구성하는 모션 콘트라스트 데이터에 대하여 적절한 표시 역치를 가변 또는 복수로 함에 따라, 모션 콘트라스트 산출에서 생성된 노이즈를 제거하고, 보기 쉬운 혈류부위 정보를 신속하게 제공할 수 있다.
상기 모션 콘트라스트를 산출하는 산출 단계가 모션 콘트라스트를 상기 산출에 사용한 복수의 단층화상 데이터의 서로에 대응하는 화소 데이터의 평균값을 사용해서 정규화하는 정규화 단계를 포함하는 경우, 그 모션 콘트라스트의 산출에서 일어나는 노이즈를 효과적으로 제거할 수 있다.
또한, 그 산출된 모션 콘트라스트 화상을 표시하는데 깊이 방향의 표시 범위를 설정함으로써, 그 표시 범위를 쉽게 변경 가능하고 또한 적절한 표시 역치를 설정할 수 있다.
그 표시 범위를 단층화상의 깊이 방향의 소정폭으로 제한함으로써, 모션 콘트라스트 화상의 불필요한 포개진 부분을 제거할 수 있기 때문에, 이해하기 쉬운 화상을 취득할 수 있다. 즉, 본 실시예에서는, 설정 가능한 표시 범위가 깊이 방향의 소정의 폭으로 제한될 수 있다.
이 경우, 3차원 단층화상 데이터로부터 피검안의 단층화상의 층 구조를 검출하는 검출 단계를 한층 더 제공함으로써, 깊이 방향의 표시 범위를 피검안의 망막의 구조에 따라서 선택 및 제한할 수 있고, 피검안의 해부학적 구조에 적절한 표시 처리를 행할 수 있어, 보다 효과적이다.
게다가, 상기 표시 범위의 선택에 따라 3차원 모션 콘트라스트를 투영 및 적산해서 2차원 모션 콘트라스트 화상을 생성하면, 직관적으로 이해하기 쉬운 모션 콘트라스트 화상을 제공할 수 있다.
표시부가 모션 콘트라스트 화상에서 지정된 위치에 대응하는 위치의 단층화상을 3차원 모션 콘트라스트로부터 선택 또는 생성해서 표시하면, 현재 정보가 표시된 층이 보다 직관적으로 식별될 수 있다. 즉, 본 실시예에서는, 모션 콘트라스트 화상을 표시하는 표시 단계에 있어서, 모션 콘트라스트 화상상에서 지정된 위치에 대응하는 위치의 단층화상을 3차원 모션 콘트라스트로부터 선택 또는 생성해서 표시한다.
더욱이, 소정영역의 역치는, 역치가 적용되는 모션 콘트라스트 화상의 각 화소의 주변 화소의 모션 콘트라스트 값에 근거해서 적응적으로 결정될 수 있다. 예를 들면, 소정영역의 모션 콘트라스트의 히스토그램에 근거하여 모션 영역과 비모션 영역을 추정해, 개개의 영역의 히스토그램에 근거하여 역치를 적응적으로 결정할 수 있다. 또는, 소정영역의 모션 콘트라스트의 평균값과 분산에 근거해서 국소적으로 역치를 결정할 수 있다. 따라서, 보다 보기 쉽고 이해하기 쉬운 모션 콘트라스트 화상을 제공할 수 있다.
제2 실시예
상술한 제1 실시예에서는, 검자가 깊이 방향의 표시 범위를 직접 선택하는 경우에 대해서 설명하였다. 그렇지만, 촬상 대상인 피검안의 안저는, 도 11에 도시된 바와 같이 층 구조를 갖는다. 깊이 방향의 망막층간 혈관밀도의 차이를 고려하면, 층마다 혈류부위 검출을 위한 역치는 가변적이어도 된다. 제1 실시예에서는 사용하지 않은 도 5의 단계S300은, 이 층구조를 세그먼테이션 하는 단계다. 본 실시예에서는 6층을 검출하는 것이 가능하다. 단계S300에 있어서의 처리는 단층화상 데이터로부터 층들을 검출하는 검출 단계의 일례에 해당한다. 검출하는 층들의 수는 6층에 한정되는 것이 아니다. 여기에서, 6층은, (1) 신경섬유층(NFL), (2) 신경절 세포층 (GCL)과 내망상층(IPL)으로 형성된 합성층, (3) 내과립층(INL)과 외망상층(OPL)으로 형성된 합성층, (4) 외과립층(ONL)과 외경계막(ELM)으로 형성된 합성층, (5) 타원체 존(EZ), 상호교차(interdigitation) 존(IZ), 및 망막색소상피(RPE)으로 형성된 합성층, 및 (6) 맥락막으로 이루어진다.
본 실시예에 따른 단계S102의 3차원 혈류부위 정보의 생성의 구체적인 처리는 도 5에 도시된 제1 실시예와 거의 같기 때문에, 그 상세한 설명은 생략한다. 이후, 본 실시예에서의 특징적인 단계S300에 있어서의 망막의 세그먼테이션에 대해서 설명한다.
맵 생성부(148)는, 휘도 평균화 화상으로부터 추출된 처리 대상으로 삼는 대상 단층화상에 대하여, 메디안 필터와 소벨(Sobel) 필터를 각각 적용해서 화상을 작성한다(이하, 각각 메디안 화상, 소벨 화상이라고 한다). 그 다음에, 맵 생성부(148)는, 작성한 메디안 화상과 소벨 화상으로부터, A스캔마다 프로파일을 작성한다. 메디안 화상으로부터 휘도 프로파일을 작성하는 한편, 소벨 화상으로부터는 경사 프로파일을 작성한다. 이어서, 맵 생성부(148)는, 소벨 화상으로부터 작성된 프로파일내의 피크를 검출한다. 검출한 피크의 전후나 피크간에 대응하는 메디안 화상의 프로파일을 참조하여, 망막층의 개개의 영역의 경계를 추출한다. 단계S300에서 취득된 세그먼테이션 결과는, 이때 한번 유지된다. 제1 실시예와 마찬가지로 처리가 행해진 후, 단계S350의 3차원 혈류부위 정보 생성 단계가 행해진다.
제2 실시예에 따른 단계S350의 3차원 혈류부위 정보 생성 단계에 대해서 도 12를 참조하여 설명한다. 제2 실시예에 있어서는, 모션 콘트라스트 화상의 깊이 방향의 표시 범위는, 단계S300에 있어서의 망막의 세그먼테이션의 결과에 근거하여 층을 선택하여서 설정된다. 즉, 검출된 층들에 근거해서 표시 범위를 선택하는 것이 가능하다.
도 12는, 단계S350의 상세를 도시한 것이다. 이 단계는, 기본적으로 상기 제1 실시예와 같다. 즉, 단계S351에 있어서 모션 콘트라스트의 3차원 데이터를 취득하고, 단계S352에 있어서 혈류부위 정보를 유지하면서 노이즈를 제거하기 위해서, 3차원 모션 콘트라스트 데이터에 대하여 평활화 처리를 실시한다.
단계S353에 있어서, 신호 처리부(144)는, 표시하는 화소를 결정하기 위한 표시 역치의 초기값과 표시하는 층의 초기값을 취득한다. 표시 역치의 초기값의 결정법은 제1 실시예와 같다. 표시 범위의 초기값으로서는, 예를 들면, 표층으로부터의 4층, 즉 신경섬유층(NFL), 신경절 세포층(GCL), 내망상층(IPL), 및 내과립층(INL)이 설정된다. 그 초기값으로서, 표층으로부터의 4층 중 적어도 3층을 선택하여도 된다. 이때, 초기값으로서 선택된 복수의 층은 연속적인 층들이다. 망막층의 세그먼테이션에서 분리될 수 없는 층들의 경우, 그 층들은, 합성층으로서 간주되어도 된다. 여기서, 표시 범위의 초기값으로서 망막층 전층이 설정되지 않는 것은, 표층부에 있어서의 주요 혈관망과 모세혈관망을 보기 쉽게 표시하고 싶기 때문이다. 즉, 주요 혈관망과 모세혈관망을 포함하는 표층부와, 혈관을 포함하지 않는 노이즈가 많은 RPE층을 동시에 표시하면, 표층부에 있어서의 주요 혈관망과 모세혈관망을 식별하는 것이 어렵다.
단계S354에서는, 동일 초기값을 사용해 평활화 처리된 3차원 데이터에 대하여 이 초기값을 초과하는 화소를 표시하는 표시 역치 처리를 실시한다. 단계S355에서는, 표시 역치 처리된 도 13에 도시된 모션 콘트라스트 화상을 표시하는 단계가 행해진다. 예를 들면, 도 13에 도시된 것처럼, 2차원 모션 콘트라스트 화상(71)은, 표시 제어부(149)에 의해 표시부(146)에 표시된다. 그 2차원 모션 콘트라스트 화상(71) 측방에, 2차원 모션 콘트라스트 화상(71)에 도시된 마커A-A'로 나타낸 위치에 대응한 단층화상(72)과 GUI(73)가 표시된다.
단층화상(72)의 측방에는 GUI(73)이 설치된다. 그 구성은, 우측으로부터, 2차원 모션 콘트라스트 화상 표시에 이용하는 망막층의 명칭, 그 망막층을 선택하기 위한 체크 박스, 및 그 선택된 층에 대해 표시되는 화소를 결정하는 역치를 각각 조정하기 위한 슬라이더를 구비한다. 검자가 이 슬라이더 중 어느 하나를 마우스로 드래그 하면, 도 12의 단계S356에서는 표시 역치를 변경하고, 단계S354에 처리를 되돌려, 표시하는 2차원 모션 콘트라스트 화상을 갱신한다. 즉, GUI(73)에 나타낸 바와 같이, 본 실시예에서는 역치는 검출된 층마다 설정되어 있다.
검자가 층의 선택을 변경하기 위해서 체크 박스의 체크를 변경하면(제1 실시예에서 깊이 방향의 표시 범위의 변경에 해당함), 단계S357에서는 모션 콘트라스트 화상에서 표시되는 범위를 변경하고, 단계S354에 처리를 되돌려, 그 2차원 모션 콘트라스트 화상을 갱신하게 된다.
이 경우, 층의 선택의 수는 5층까지로 제한됨과 아울러 망막 상부층이 선택되는 경우(예를 들면, 신경섬유층(NFL), 신경절 세포층(GCL), 내망상층(IPL), 내과립층(INL), 외망상층(OPL), 외과립층(ONL), 외경계막(ELM) 중 어느 한쪽), 적어도 타원체 존(EZ), 상호교차 존(IZ), RPE층 및 맥락막 중 하나는 선택불가능하다. 혹은, 망막 하부층이 선택되는 경우(예를 들면, 내과립층(INL), 외망상층(OPL), 외과립층(ONL), 외경계막(ELM), 타원체 존(EZ), 상호교차 존(IZ), 망막색소상피(RPE)층 및 맥락막 중 어느 한쪽), 적어도 신경섬유층(NFL), 신경절 세포층(GCL), 내망상층(IPL), 내과립층(INL), 외망상층(OPL), 외과립층(ONL) 및 외경계막(ELM) 중 하나가 선택 불가능할 수도 있다. 이러한 제어도 표시되는 모션 콘트라스트 화상의 진단값을 유지하는데 효과적이다. 상술한 바와 같이, 본 실시예에서는, 표시 범위의 설정에 있어서, 검출된 층에 근거해서 임의의 층을 선택 가능함과 아울러, 선택 가능한 층의 수를 제한할 수 있다.
단층화상에는 세그먼테이션의 결과로서 개개의 층의 경계가 포개지도록 그 단층화상이 표시되어도 되고, 선택된 층이 용이하게 인식되도록 상기 단층화상에 마킹이 행해져도 된다. 상기 GUI(73)의 최하부에서의 "층" 및 "경계"를 나타내는 라디오 버튼(74)은, 2차원 모션 콘트라스트 화상을 생성하는 방법을 선택하는데 사용된다. "층"이 선택되는 경우에는, 상기 선택된 층들의 전체 영역의 3차원 모션 콘트라스트 화상의 개개의 화소값을 나타내는 정보에 의거하여 2차원 모션 콘트라스트 화상을 생성한다. "경계"가 선택되어 있는 경우, 상기 선택 가능한 체크 박스는 2개의 인접한 체크 박스에 한정되도록 제어되고, 선택된 2개의 층의 경계를 사이로 하는 소정깊이의 3차원 모션 콘트라스트 화상의 개개의 화소값을 나타내는 정보에 근거하여 2차원 모션 콘트라스트 화상이 생성된다.
제1 실시예와 제2 실시예를 조합하여도 된다. 예를 들면, 도 8b에 도시된 슬라이더(406)를 도 13에 도시된 화면에 표시시켜도 된다.
본 실시예에 의하면, 세그먼테이션 결과를 사용해서 쉽게 모션 콘트라스트 화상의 표시 범위를 설정할 수 있다.
제3 실시예
상기 제2 실시예에 있어서는, 3차원 혈류부위 정보를 명료화하기 위해서 부위 구조 정보로서 휘도정보에 근거해서 취득된 세그먼테이션 결과를 사용한 예를 설명했다. 그에 반해서, 제3 실시예에서는, 부위 구조 정보로서 광간섭 단층 촬상법의 편광정보를 사용한 부위 구조 정보를 취득하는 예를 설명한다.
도 14는, 제3 실시예에 따른 광간섭 단층 촬상법(OCT)을 사용한 화상형성장치의 구성 예를 도시한 도다. 화상형성장치는, OCT 신호를 취득하는 OCT 신호 취득부(800)와 제어부(143)로 구성된다. 제어부(143)는, 신호 처리부(144), 신호 취득 제어부(145), 표시 제어부(149) 및 표시부(146)로 구성된다. 신호 처리부(144)는, 상기 화상생성부(147)와 맵 생성부(148)로 구성된다.
상기 OCT 신호 취득부(800)의 구성에 대해서 설명한다. 본 실시예에서는 SS-OCT에 근거한 편광 OCT장치에 대해서 설명한다. 또한, 본 발명의 실시예는, SD-OCT에 근거한 편광 OCT장치에 적용 가능하다.
편광 OCT장치(800)의 구성
이하, 편광 OCT장치(800)의 구성에 대해서 설명한다.
광원(801)은 파장소인(SS)형 광원이며, 소인중심파장 1050nm, 소인폭 100nm로 파장소인하면서 광을 출사한다.
광원(801)으로부터 출사된 광은, 싱글 모드 파이버(SM파이버)(802), 편광제어기(803), 커넥터 804, SM파이버(805), 편광기(806), 편광유지(PM)파이버(PM파이버)(807), 커넥터808, PM파이버(809)를 거쳐 빔 스플리터(810)에 인도되고, 측정 광(OCT측정 광이라고도 말한다)과 참조 광(OCT측정 광에 대응하는 참조 광이라고도 말한다)으로 분기되어진다. 빔 스플리터(810)의 분기비는, 90(참조 광):10(측정 광)이다. 편광제어기(803)는, 광원(801)으로부터 출사된 광의 편광상태를 원하는 편광상태로 변화시키도록 프로그램되어 있다. 편광기(806)는 특정한 직선 편광성분만을 통과시키는 특성을 갖는 광학소자다. 보통, 광원(801)으로부터 출사된 광은 편광도가 높고, 특정한 편광방향을 갖는 광 성분이 지배적이다. 그렇지만, 그 광은, 랜덤 편광성분이라고 불리는, 특정한 편광방향을 갖지 않는 광 성분이 포함되어 있다. 상기 랜덤 편광성분은, 편광 OCT화상의 화질을 악화시키기 때문에, 편광기(806)에 의해 제거된다. 특정한 직선 편광상태의 광만이 편광기(806)를 통과할 수 있다. 이렇게 하여, 원하는 광량이 피검안(118)에 입사하도록 편광제어기(803)에 의해 편광상태를 조정한다.
분기되어진 측정 광은, PM파이버(811)를 통해 출사되어, 콜리메이터(812)에 의해 평행 광으로 형성된다. 평행 광이 된 측정 광은, 1/4파장판(813)을 투과한 뒤, 피검안(118)의 안저Er에 있어서 주사를 행하는 갈바노 스캐너(814), 스캔 렌즈(815) 및 포커스 렌즈(816)를 통해 피검안(118)에 입사한다. 갈바노 스캐너(814)는 단일의 미러로서 도시되어 있지만, 실제로는 피검안(118)의 안저Er를 래스터 스캔하도록 2매의 갈바노 스캐너로 구성된다. 포커스 렌즈(816)는, 스테이지(817) 위에 고정되어 있고, 광축방향으로 이동하여서 포커스 조정을 행하도록 제어된다. 갈바노 스캐너(814)와 스테이지(817)는 신호 취득 제어부(145)에 의해 제어되고, 피검안(118)의 안저Er의 원하는 범위(단층화상의 취득 범위, 단층화상의 취득 위치, 또는 측정 광의 조사 위치라고도 말한다)에서 측정 광으로 주사할 수 있다. 1/4파장판(813)은, 1/4파장판의 광학축과, 그 광학축에 대하여 직교하는 축과의 사이의 위상을 1/4파장분만큼 지연시키는 특성을 갖는 광학소자다. 본 실시예에서는, PM파이버(811)로부터 출사된 측정 광의 직선편광의 방향에 대하여 1/4파장판(813)의 광학축을 45도 광축을 회전축으로서 사용하여서 회전시켜, 원편광은 피검안(118)에 입사한다. 본 실시예에서는 상세한 설명은 하지 않고 있지만, 안저Er의 움직임을 검출하고, 갈바노 스캐너(814)의 미러를 안저Er의 움직임을 추적하여 주사시키는 트랙킹 기능이 부여되어도 된다. 트랙킹은, 일반적인 기술을 사용해서 행해져도 되고, 실시간으로 또는 후처리로 행해져도 된다. 예를 들면, 주사형 레이저 검안경(SLO)을 사용하는 방법이 있다. 이 방법에서는, SLO를 사용해서 안저Er의 광축에 대하여 수직한 면내의 2차원 화상을 경시적으로 취득하고, 상기 화상으로부터 혈관 분기등의 특징부분을 추출한다. 취득된 2차원 화상중의 특징 부분의 움직임은 안저Er의 이동량으로서 산출되고, 그 산출된 이동량은 갈바노 스캐너(814)에 피드백됨으로써, 실시간 트랙킹을 행할 수 있다.
측정 광은, 스테이지(817) 위에 포커스 렌즈(816)에 의해, 피검안(118)에 입사하고, 안저Er에 포커싱 된다. 안저Er를 조사한 측정 광은, 각 망막층에서 반사 또는 산란하고, 상술한 광학경로를 따라 빔 스플리터(810)에 되돌아간다. 빔 스플리터(810)에 입사한 귀환된 측정 광은 PM파이버(826)를 거쳐 빔 스플리터(828)에 입사한다.
한편, 빔 스플리터(810)에서의 분기에 의해 생성된 참조 광은, PM파이버(819)를 통해 출사되어, 콜리메이터(820)에 의해 평행 광으로 형성된다. 참조 광은 1/2파장판(821), 분산 보상 유리(822), ND필터(823) 및 콜리메이터(824)를 거쳐 PM파이버(827)에 입사한다. 콜리메이터 렌즈(824)의 일단과 PM파이버(827)의 일단은, 코히어런스 게이트 스테이지(825) 위에 고정되어 있고, 피검체의 안축 길이의 차이에 따라 광축방향으로 구동되도록, 신호 취득 제어부(145)로 제어된다. 1/2파장판(821)은, 1/2파장판의 광학축과, 그 광학축에 대하여 직교하는 축과의 사이의 위상을 1/2파장분 만큼 지연시키는 특성을 갖는 광학소자다. 본 실시예에서는, PM파이버(819)로부터 사출된 참조 광의 직선편광이 PM파이버(827)에 있어서 장축이 45도 기운 편광상태가 되도록 조정한다. 본 실시예에서는, 참조 광의 광로 길이를 변경하고 있지만, 측정 광의 광로와 참조 광의 광로간의 광로 길이 차이를 변경할 수 있으면 된다.
PM파이버(827)를 통과한 참조 광은 빔 스플리터(828)에 입사한다. 빔 스플리터(828)에서는, 귀환된 측정 광과 참조 광이 간섭 광으로 합파된 뒤에 2개의 간섭 광빔으로 분할된다. 분할에 의해 취득된 간섭 광빔은, 서로 반전된 위상을 갖는다(이하, 정의 성분 및 부의 성분이라고 한다). 상기 간섭 광빔의 정의 성분은 PM파이버829, 커넥터(831) 및 PM파이버833을 거쳐 편광 빔 스플리터(835)에 입사한다. 한편, 간섭 광빔의 부의 성분은 PM파이버830, 커넥터(832) 및 PM파이버834를 거쳐, 편광 빔 스플리터(836)에 입사한다.
편광 빔 스플리터835 및 836에서는, 서로 직교하는 2개의 편광축에 따라, 수직 편광성분(V편광성분)과 수평 편광성분(H편광성분)에 해당한 2개의 광빔으로 간섭 광이 분할된다. 편광 빔 스플리터(835)에 입사한 정의 간섭 광은, 편광 빔 스플리터(835)에 의해 정의 V편광성분과 정의 H편광성분에 해당한 2개의 간섭 광빔으로 분할된다. 분할에 의해 취득된 정의 V편광성분은 PM파이버837을 거쳐 검출기841에 입사하고, 정의 H편광성분은 PM파이버838을 거쳐 검출기842에 입사한다. 한편, 편광 빔 스플리터(836)에 입사한 부의 간섭 광은 편광 빔 스플리터(836)에 의해 부의 V편광성분과 부의 H편광성분으로 분할된다. 부의 V편광성분은 PM파이버839를 거쳐 검출기841에 입사하고, 부의 H편광성분은 PM파이버840을 거쳐 검출기842에 입사한다.
검출기841 및 842는 모두 차동검출기로서의 역할을 한다. 위상이 180도 반전한 2개의 간섭신호가 입력되면, 검출기841 및 842는 직류 성분을 제거하고, 간섭 성분만을 출력한다.
검출기841로 검출된 간섭신호의 V편광성분과 검출기842로 검출된 간섭신호의 H편광성분은, 광의 강도에 대응한 전기신호로서 출력되고, 단층화상 생성부의 일례인 신호 처리부(144)에 입력된다.
제어부(143)
본 장치전체를 제어하기 위한 제어부(143)에 대해서 설명한다.
제어부(143)는, 신호 처리부(144), 신호 취득 제어부(145), 표시부(146), 및 표시 제어부(149)로 구성된다. 신호 처리부(144)는, 화상생성부(147)와 맵 생성부(148)로 구성된다. 화상생성부(147)는 신호 처리부(144)에 송신된 전기신호로부터 휘도화상 및 편광특성 화상을 생성하는 기능을 갖는다. 맵 생성부(148)는 신경섬유다발이나 망막색소상피를 검출하는 기능을 가진다.
신호 취득 제어부(145)는 상술한 대로 개개의 부를 제어한다. 신호 처리부(144)는, 검출기(841, 842)로부터 출력된 신호에 근거하여, 화상의 생성, 생성된 화상의 해석, 해석 결과를 나타내는 가시화 정보의 생성을 행한다.
표시부(146)와 표시 제어부(149)는, 상기 제1 실시예에 따른 것들과 거의 같기 때문에, 상세한 설명은 생략한다.
화상처리
다음에, 신호 처리부(144)에 의해 행해진 화상생성에 대해서 설명한다. 신호 처리부(144)는 검출기(841, 842)로부터 출력된 간섭신호에 대하여, 화상생성부(147)에 있어서 일반적인 재구성 처리를 행한다. 이 처리에 의해, 신호 처리부(144)는, 개개의 편광성분에 근거한 2개의 단층화상, 즉 H편광성분에 대응하는 단층화상과, V편광성분에 대응하는 단층화상을 생성한다.
우선, 화상생성부(147)는, 간섭신호에 대한 고정 패턴 노이즈 제거를 행한다. 고정 패턴 노이즈 제거는, 검출된 복수의 A스캔 신호를 평균함으로써 고정 패턴 노이즈를 추출하고, 이 고정 패턴 노이즈를 상기 입력된 간섭신호로부터 감산하여서 행해진다. 다음에, 화상생성부(147)는, 유한구간에서 푸리에 변환했을 경우에 트레이드오프의 관계를 갖는 깊이 분해능과 다이내믹 레인지를 최적화하기 위해서, 원하는 창 함수처리를 행한다. 그 후, 화상생성부(147)는, FFT처리를 행하여 단층신호를 생성한다.
이상의 처리를 2개의 편광성분의 간섭신호에 대하여 행하는 것에 의해, 2개의 단층화상이 생성된다. 상기 단층신호들 및 단층화상들에 근거하여, 휘도화상 및 편광특성 화상을 생성한다. 편광특성 화상은, 피검안의 편광특성을 나타내는 화상, 예를 들면 리타데이션(retardation) 정보에 근거하는 화상, 오리엔테이션 정보에 근거하는 화상, 및 복굴절 정보에 근거하는 화상을 포함한다.
휘도화상의 생성
화상생성부(147)는, 상술한 2개의 단층신호로부터 휘도화상을 생성한다. 휘도화상은, 종래기술에 따른 OCT의 단층화상과 기본적으로 같고(제1 실시예에 따른 단계S250과 같이), 그 화소값r은 검출기(841, 842)로부터 취득된 H편광성분의 단층신호AH 및 V편광성분의 단층신호AV로부터 식 1을 사용하여서 계산된다.
...식 1
또한, 갈바노 스캐너(814)를 사용하여서 래스터 스캔하여, 피검안(118)의 안저Er의 B스캔 화상을 부주사 방향으로 배치함으로써, 휘도화상의 3차원 데이터를 생성한다.
상기 제1 실시예에서 설명한 처리를 적용하는 것에 의해, OCT앤지오그래피용의 스캔 패턴으로 안저Er의 화상을 촬영하고, 상술한 방식으로 산출한 휘도화상으로부터 OCT앤지오그래피를 취득한다.
망막색소상피(RPE)는 편광을 해소하는 성질을 갖기 때문에, 신호 처리부(144)는 그 성질에 근거해서 그 RPE를 검출한다.
RPE 세그먼테이션
DOPU화상 생성
화상생성부(147)는, 취득된 단층신호AH, AV와 그것들의 사이의 위상차이ΔΦ로부터, 화소마다 스토크스(Stokes) 벡터S를 식 2에 의해 계산한다.
...식 2
단, ΔΦ는 2개의 단층화상을 계산하는 경우에 취득된 각 신호의 위상ΦH와 Φv로부터 ΔΦ = ΦVH로서 계산된다.
다음에, 화상생성부(147)는, 개개의 B스캔 화상의 윈도우를 설정하고, 각 윈도우는 측정 광의 주 주사 방향으로 70μm와 심도방향으로 18μm의 크기를 갖고, 각 윈도우내에 있어서 식 2로 화소마다 계산된 스토크스 벡터의 개개의 요소를 평균하고, 해당 윈도우내의 편광의 균일도(DOPU: Degree Of Polarization Uniformity)를 식 3을 사용하여서 계산한다.
...식 3
단, Qm, Um, Vm은 각 윈도우내의 스토크스 벡터의 요소Q, U, V의 평균값이다. 이 처리를 B스캔 화상내의 모든 윈도우에 대하여 행하는 것으로, DOPU화상(편광의 균일도를 나타내는 단층화상이라고도 말한다)이 생성된다.
DOPU는 편광의 균일도를 나타내는 수치이며, 편광이 유지되어 있는 위치에 있어서는 1에 가까운 수치가 되고, 편광이 유지되지 않는 위치에 있어서는 1보다도 작은 수치가 되는 것이다. 망막내의 구조에 있어서는, RPE가 편광상태를 해소하는 성질이 있기 때문에, DOPU화상에 있어서 RPE에 대응하는 부분은, 다른 영역에 대하여 작은 값을 갖는다. DOPU화상은, RPE등의 편광을 해소하는 층을 나타내는 화상이다. 따라서, 질병에 의해 RPE가 변형되는 경우에도, 휘도의 변화의 화상보다도 확실히 RPE의 화상을 생성할 수 있다.
이 DOPU화상으로부터 RPE에 대한 세그먼테이션 정보를 취득한다.
이 처리에 의해, 촬영된 간섭신호(3차원 데이터)를 사용하여서 각 위치가 RPE에 해당하는가 아닌가를 판단한다.
처리 동작
다음에, 본 실시예에 따른 화상형성방법의 구체적인 처리의 수순을 설명한다. 본 실시예에 따른 기본적인 처리 플로우는, 제1 실시예에 따른 처리 플로우와 같기 때문에, 개요 설명을 생략한다. 그렇지만, 단계S250, S300, S320의 상세가 다르기 때문에, 각각의 단계에 대응하는 본 실시예에 따른 단계S250A, S300A, S320A에 대해서, 이하에 상세설명을 한다.
단계S250A에 있어서, 신호 처리부(144)는 단층화상AH 및 단층화상AV를 생성하고, 휘도화상을 생성한다. 또한, 신호 처리부(144)는 DOPU화상을 생성한다.
단계S300A에 있어서, 맵 생성부(148)는, 휘도화상과 DOPU화상을 사용하여서 RPE세그먼테이션을 행한다.
단계S320A에 있어서, 신호 처리부(144)는, 단계S300A에서 취득된 부위정보(망막 세그먼테이션 정보)를 사용하여서 OCT앤지오그래피 정보(여기서는, 모션 콘트라스트)를 보정한다. 여기에서는, 그 망막 세그먼테이션 정보로부터 취득된 화소의 DOPU정보(RPE인 정보)를 사용하여서 RPE에 있어서의 모션 콘트라스트의 노이즈 역치(제1역치)를 증가시킨다. 예를 들면, 그 RPE의 상부의 영역에 관련된 역치보다 상기 RPE에 관련된 역치를 크게 한다. 또는, 모션 콘트라스트를 저하시켜, 혈류부위가 표시되지 않는다. 이에 따라, 단계S320A에서 행한 역치처리는, 보다 정확히 행해질 수 있다. 또한, RPE보다 깊은 영역의 역치를 다른 영역의 역치보다 크게 하여, 깊은 위치에서의 노이즈를 감소시켜도 된다.
이상 설명한 편광 OCT장치를 사용하는 것으로, RPE의 세그먼테이션이 취득되고, 모션 콘트라스트의 3차원 데이터로부터 보다 정확하게 노이즈를 삭감할 수 있고, 명료화된 3차원 혈류부위 정보를 취득할 수 있다. 또한, 불명료화된 혈류부위를 표시하지 않도록 할 수 있다.
단계S354에 있어서의 표시 역치를 상기한 노이즈 역치의 경우와 같이 제어하여도 된다. 예를 들면, RPE보다 깊은 부분의 표시 역치를 다른 영역의 역치보다 크게 함으로써 깊은 위치의 노이즈를 감소하여도 된다. 또는, RPE보다 상부의 영역의 표시 역치보다 RPE에 관련되는 표시 역치를 크게 설정하여도 된다.
제4 실시예
상기 제3 실시예에서는, 부위 구조 정보로서 광간섭 단층 촬상법에 대한 편광정보를 사용한 RPE의 구조 정보를 취득하는 일례를 설명하였다. 제4 실시예에서는, 망막 신경 섬유층(RNFL)의 구조정보를 취득하는 일례를 설명하겠다.
본 실시예에 따른 화상형성장치의 구성 예는, 상기 제3 실시예의 도 14와 같으므로, 여기에서 그에 대한 설명을 생략한다.
복굴절성을 갖는 층의 일례는, 망막 신경 섬유층(RNFL)이다. 본 실시예에 따른 신호 처리부(144)는 그 성질에 근거해서 RNFL을 검출한다.
리타데이션 화상의 생성
화상생성부(147)는, 서로 직교하는 편광성분을 갖는 단층화상으로부터 리타데이션 화상을 생성한다.
리타데이션 화상의 각 화소의 값δ은, 단층화상을 구성하는 그 화소의 위치에 있어서, 수직편광성분과 수평편광성분간의 위상차이를 나타내는 값이고, 단층신호AH 및 AV로부터 식 4를 사용하여서 계산된다.
...식 4
리타데이션 화상을 생성하는 것에 의해, 망막 신경 섬유층(RNFL)과 같이 복굴절성을 갖는 층을 파악한다.
신호 처리부(144)는, 복수의 B스캔 화상에 대하여 취득된 리타데이션 화상으로부터 망막 신경 섬유층(RNFL)을 검출한다.
리타데이션 맵의 생성
신호 처리부(144)는, 복수의 B스캔 화상에 대하여 취득된 리타데이션 화상들로부터 리타데이션 맵을 생성한다.
우선, 신호 처리부(144)는, 각 B스캔 화상에 있어서, 망막색소상피(RPE)를 검출한다. 그 RPE는 편광을 해소하는 성질을 가지므로, 각 A스캔에서의 리타데이션의 분포는, 그 RPE에 대한 내경계막(ILM)을 포함하지 않는 범위에서 심도방향을 따라서 조사되고, 그 최댓값을 해당 A스캔에 있어서의 리타데이션의 대푯값으로서 간주한다.
맵 생성부(148)는, 이상의 처리를 모든 리타데이션 화상에 대하여 행하는 것에 의해, 리타데이션 맵을 생성한다.
RNFL 세그먼테이션
복굴절 맵의 생성
화상생성부(147)는, 상기 생성된 리타데이션 화상의 각 A스캔 화상에 있어서, ILM으로부터 상기 RNFL까지의 범위에서 리타데이션δ의 값을 선형근사하고, 그 기울기를 해당 A스캔 화상의 망막상의 위치에 있어서의 복굴절로서 결정한다. 이 처리는, 취득된 모든 리타데이션 화상에 대하여 행해져서, 복굴절을 나타내는 맵을 생성한다. 그 후, 맵 생성부(148)는 복굴절값을 사용하여서 RNFL의 세그먼테이션을 행한다.
처리 동작
다음에, 본 실시예에 따른 화상형성방법의 구체적인 처리의 수순을 설명한다. 본 실시예에 따른 기본적인 처리 플로우는, 상기 제3의 실시예의 처리 플로우와 같기 때문에, 개요 설명을 생략한다. 그렇지만, 단계S250A, S300A, S320A의 상세처리가 다르기 때문에, 각 단계들에 대응하는 본 실시예에 따른 단계S250B, S300B, S320B에 대해서, 이하에 상세설명을 한다.
단계S250B에 있어서, 신호 처리부(144)는 단층화상AH 및 단층화상AV를 생성하고, 휘도화상을 생성한다. 또한, 신호 처리부(144)는 리타데이션 화상을 생성한다.
단계S300B에 있어서, 맵 생성부(148)는, 휘도화상과 리타데이션 화상을 사용하여서 리타데이션 맵의 생성과, RNFL세그먼테이션을 행한다.
단계S320B에 있어서, 신호 처리부(144)는, 단계S300B에서 취득된 부위정보(망막 세그먼테이션 정보)를 사용하여서 OCT앤지오그래피 정보(여기서는, 모션 콘트라스트)를 보정한다. 여기에서는, 망막 세그먼테이션 정보로부터 취득된 화소의 리타데이션 정보(RNFL인 정보)를 사용하여서 상기 RNFL에서의 모션 콘트라스트의 노이즈 역치(제1역치)를 증가시킨다. 또는, 모션 콘트라스트를 저하시켜, 혈류부위가 표시되지 않는다. 이에 따라, 단계S320B에서 행해진 역치 처리는, 보다 정확하게 행해질 수 있다.
이상 설명한 편광 OCT장치를 사용하는 것으로, RNFL의 세그먼테이션이 취득될 수 있고, 모션 콘트라스트의 3차원 데이터로부터 보다 정확하게 노이즈를 삭감할 수 있고, 명료화된 3차원 혈류부위 정보를 취득할 수 있다.
단계S354에 있어서의 표시 역치를 상기한 노이즈 역치와 같이 제어하여도 된다.
편광 OCT의 정보를 사용해서 RPE나, RNFL의 세그먼테이션을 행하여서 보다 명료한 3차원 혈류부위 정보를 취득하는 방법을 설명하였다. 본 실시예는 RPE나 RNFL에 한정되지 않고, 그 밖의 부위에 적용되어도 된다.
또한, 혈관벽의 편광특성을 사용하여서 혈관을 특정하고, 모션 콘트라스트 정보와의 조합 결과의 신뢰성을 향상시킬 수 있다.
그 밖의 실시예
또한, 본 발명의 실시예들은, 기억매체(보다 완전하게는 '비일시적 컴퓨터 판독 가능한 기억매체'라고도 함)에 레코딩된 컴퓨터 실행가능한 명령어들(예를 들면, 하나 이상의 프로그램)을 판독하고 실행하여 상술한 실시예들의 하나 이상의 기능을 수행하는 것 및/또는 상술한 실시예들의 하나 이상의 기능을 수행하기 위한 하나 이상의 회로(예를 들면, 주문형 반도체(ASIC))를 구비하는 것인, 시스템 또는 장치를 갖는 컴퓨터에 의해 실현되고, 또 예를 들면 상기 기억매체로부터 상기 컴퓨터 실행가능한 명령어를 판독하고 실행하여 상기 실시예들의 하나 이상의 기능을 수행하는 것 및/또는 상술한 실시예들의 하나 이상의 기능을 수행하는 상기 하나 이상의 회로를 제어하는 것에 의해 상기 시스템 또는 상기 장치를 갖는 상기 컴퓨터에 의해 행해지는 방법에 의해 실현될 수 있다. 상기 컴퓨터는, 하나 이상의 프로세서(예를 들면, 중앙처리장치(CPU), 마이크로처리장치(MPU))를 구비하여도 되고, 컴퓨터 실행 가능한 명령어를 판독하여 실행하기 위해 별개의 컴퓨터나 별개의 프로세서의 네트워크를 구비하여도 된다. 상기 컴퓨터 실행가능한 명령어를, 예를 들면 네트워크나 상기 기억매체로부터 상기 컴퓨터에 제공하여도 된다. 상기 기억매체는, 예를 들면, 하드 디스크, 랜덤액세스 메모리(RAM), 판독전용 메모리(ROM), 분산형 컴퓨팅 시스템의 스토리지, 광디스크(콤팩트 디스크(CD), 디지털 다기능 디스크(DVD) 또는 블루레이 디스크(BD)TM등), 플래시 메모리 소자, 메모리 카드 등 중 하나 이상을 구비하여도 된다.
본 발명을 실시예들을 참조하여 기재하였지만, 본 발명은 상기 개시된 실시예들에 한정되지 않는다는 것을 알 것이다. 아래의 청구항의 범위는, 모든 변형예, 동등한 구조 및 기능을 포함하도록 폭 넓게 해석해야 한다.

Claims (16)

  1. 화상생성장치에 의해 실행되는 화상생성방법으로서,
    피검체의 동일 위치에서 복수의 단층화상 데이터가 얻어지도록 측정광의 주사를 제어하는 것에 의해 얻어진 상기 피검체의 복수의 단층화상 데이터간에 서로에 대응하는 화소 데이터를 사용해서 모션 콘트라스트를 산출하는 산출단계;
    상기 모션 콘트라스트와 역치를 비교하는 비교단계;
    상기 역치이하인 상기 모션 콘트라스트에 대응한 휘도가 상기 역치이상인 상기 모션 콘트라스트에 대응한 휘도이하인 모션 콘트라스트 화상을 생성하는 생성단계; 및
    상기 역치를 변경하는 변경단계를 포함하는, 화상생성방법.
  2. 제 1 항에 있어서,
    상기 산출단계는, 모션 콘트라스트를, 상기 산출단계에서 사용된 상기 복수의 단층화상 데이터간에 서로에 대응한 화소 데이터의 평균값을 사용해서 정규화하는 정규화 단계를 포함하는, 화상생성방법.
  3. 제 1 항에 있어서,
    상기 모션 콘트라스트 화상의 깊이 방향의 표시 범위를 설정하는 설정단계; 및
    상기 설정된 표시 범위에 따라 상기 모션 콘트라스트 화상을 표시하는 표시단계를 더 포함하고,
    상기 표시 범위의 변경에 따라, 표시되는 상기 모션 콘트라스트 화상을 갱신하는, 화상생성방법.
  4. 제 3 항에 있어서,
    상기 설정단계는, 설정 가능한 표시 범위를 깊이 방향의 소정의 폭으로 제한하는, 화상생성방법.
  5. 제 3 항에 있어서,
    상기 단층화상 데이터로부터 층을 검출하는 검출단계를 더 포함하고,
    상기 설정단계는, 상기 검출된 층에 따라 표시 범위를 선택하는, 화상생성방법.
  6. 제 5 항에 있어서,
    상기 설정단계는, 상기 검출된 층에 따라 층을 선택하고 선택 가능한 층의 총 수를 제한하는, 화상생성방법.
  7. 제 6 항에 있어서,
    상기 피검체는 안저이고,
    상기 설정단계는, 상기 안저의 망막 상부층을 선택하고,
    신경 섬유층(NFL), 신경절 세포층(GCL), 내망상층(IPL), 내과립층(INL), 외망상층(OPL), 외과립층(ONL) 및 외경계막(ELM) 중 어느 하나가 선택되는 경우, 적어도 타원체 존(EZ), 상호교차 존(IZ), 망막색소상피(RPE)층 및 맥락막 중 하나가 선택 불가능한, 화상생성방법.
  8. 제 6 항에 있어서,
    상기 피검체는 안저이고,
    상기 설정단계는, 망막 하부층을 선택하고,
    내과립층(INL), 외망상층(OPL), 외과립층(ONL), 외경계막(ELM), 타원체 존(EZ), 상호교차 존(IZ), 망막색소상피(RPE)층 및 맥락막 중 어느 하나가 선택되는 경우, 적어도 신경섬유층(NFL), 신경절 세포층(GCL), 내망상층(IPL), 내과립층(INL), 외망상층(OPL), 외과립층(ONL) 및 외경계막(ELM) 중 하나가 선택 불가능한, 화상생성방법.
  9. 제 3 항에 있어서,
    상기 복수의 단층화상 데이터 각각은 3차원 단층화상 데이터이고,
    상기 산출단계는, 3차원 모션 콘트라스트를 산출하는 것을 포함하고,
    상기 생성단계는, 상기 3차원 모션 콘트라스트를 상기 표시 범위에 있어서 깊이 방향으로 투영 또는 적산해서 2차원 모션 콘트라스트 화상을 생성하는 것을 포함하고,
    상기 표시단계는, 상기 2차원 모션 콘트라스트 화상을 표시하는 것을 포함하는, 화상생성방법.
  10. 제 9 항에 있어서,
    상기 표시단계는, 상기 모션 콘트라스트 화상상에서 지정된 위치에 대응하는 위치에서의 단층화상을, 상기 3차원 모션 콘트라스트에 근거하여 선택 또는 생성해서 표시하는 것을 포함하는, 화상생성방법.
  11. 제 3 항 내지 제 10 항 중 어느 한 항에 있어서,
    상기 생성단계와 상기 표시단계를 상기 역치의 변경에 따라 반복적으로 실행하는, 화상생성방법.
  12. 제 5 항에 있어서,
    상기 역치는 상기 검출된 층마다 설정되는, 화상생성방법.
  13. 제 1 항에 있어서,
    상기 역치는, 상기 역치와 비교되는 상기 모션 콘트라스트에 대응하는 화상의 주변화소의 모션 콘트라스트에 따라 결정되는, 화상생성방법.
  14. 제 1 항에 있어서,
    소정영역의 모션 콘트라스트의 히스토그램으로부터 모션 영역과 비모션 영역을 추정하고, 상기 모션 영역의 히스토그램 및 상기 비모션 영역의 히스토그램에 근거하여 상기 역치를 결정하는, 화상생성방법.
  15. 피검체의 동일 위치에서 복수의 단층화상 데이터가 얻어지도록 측정광의 주사를 제어하는 것에 의해 얻어진 상기 피검체의 복수의 단층화상 데이터간에 서로에 대응하는 화소 데이터를 사용해서 모션 콘트라스트를 산출하는 산출부;
    상기 모션 콘트라스트와 역치를 비교하는 비교부;
    상기 역치이하인 상기 모션 콘트라스트에 대응한 휘도가 상기 역치이상인 상기 모션 콘트라스트에 대응한 휘도이하인 모션 콘트라스트 화상을 생성하는 생성부; 및
    상기 역치를 변경하는 변경부를 구비하는, 화상생성장치.
  16. 컴퓨터에, 피검체의 동일 위치에서 복수의 단층화상 데이터가 얻어지도록 측정광의 주사를 제어하는 것에 의해 얻어진 상기 피검체의 복수의 단층화상 데이터간에 서로에 대응하는 화소 데이터를 사용해서 모션 콘트라스트를 산출하는 산출단계;
    상기 모션 콘트라스트와 역치를 비교하는 비교단계;
    상기 역치이하인 상기 모션 콘트라스트에 대응한 휘도가 상기 역치이상인 상기 모션 콘트라스트에 대응한 휘도이하인 모션 콘트라스트 화상을 생성하는 생성단계; 및
    상기 역치를 변경하는 변경단계를 포함하는 화상생성방법을 실행시키기 위하여 기억매체에 저장된 컴퓨터프로그램.
KR1020160051881A 2015-05-01 2016-04-28 화상생성방법, 화상생성장치 및 컴퓨터프로그램 KR102031604B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2015-094339 2015-05-01
JP2015094339A JP6598502B2 (ja) 2015-05-01 2015-05-01 画像生成装置、画像生成方法およびプログラム

Publications (2)

Publication Number Publication Date
KR20160130155A KR20160130155A (ko) 2016-11-10
KR102031604B1 true KR102031604B1 (ko) 2019-10-14

Family

ID=57204321

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160051881A KR102031604B1 (ko) 2015-05-01 2016-04-28 화상생성방법, 화상생성장치 및 컴퓨터프로그램

Country Status (4)

Country Link
US (1) US10383516B2 (ko)
JP (1) JP6598502B2 (ko)
KR (1) KR102031604B1 (ko)
CN (1) CN106073700B (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3232908B1 (en) * 2014-12-16 2022-09-21 Oxford University Innovation Limited Method and apparatus for measuring and displaying a haemodynamic parameter
JP6765786B2 (ja) * 2015-05-01 2020-10-07 キヤノン株式会社 撮像装置、撮像装置の作動方法、情報処理装置、及び情報処理装置の作動方法
JP6768624B2 (ja) * 2017-01-11 2020-10-14 キヤノン株式会社 画像処理装置、光干渉断層撮像装置、画像処理方法、及びプログラム
JP6909109B2 (ja) * 2017-03-17 2021-07-28 キヤノン株式会社 情報処理装置、情報処理方法、及びプログラム
US10888220B2 (en) * 2017-03-17 2021-01-12 Canon Kabushiki Kaisha Information processing apparatus, image generation method, and computer-readable medium, with acquisition of correction coefficient by performing arithmetic operation on first and second parameters
JP6949628B2 (ja) * 2017-09-04 2021-10-13 キヤノン株式会社 画像処理装置、光干渉断層撮像装置、画像処理方法、及びプログラム
KR102029768B1 (ko) * 2018-01-23 2019-10-08 홍석우 안축장 산출을 위한 시신경 유두의 형태학적 변화 추출 시스템 및 방법
JP7204345B2 (ja) * 2018-06-04 2023-01-16 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
WO2020049828A1 (ja) 2018-09-06 2020-03-12 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
US11751762B2 (en) 2018-12-19 2023-09-12 Topcon Corporation Method and apparatus for low coherence interferometry
KR102225540B1 (ko) 2019-05-21 2021-03-09 한국과학기술연구원 망막 이미지 촬영 방법 및 장치, 및 망막 및 시신경 기능 평가 시스템
TWI703863B (zh) * 2019-06-13 2020-09-01 瑞昱半導體股份有限公司 視頻品質偵測方法與影像處理電路
CN112118439B (zh) * 2019-06-20 2024-01-23 瑞昱半导体股份有限公司 视频品质检测方法与影像处理电路
JP6992030B2 (ja) * 2019-10-02 2022-01-13 キヤノン株式会社 画像生成装置、画像生成方法およびプログラム
JP7344847B2 (ja) * 2020-06-30 2023-09-14 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104271031A (zh) 2012-05-10 2015-01-07 卡尔蔡司医疗技术股份公司 Oct血管造影数据的分析和可视化

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3731507B2 (ja) * 2001-08-10 2006-01-05 松下電工株式会社 瞳孔縁抽出装置及びその作動方法並びに瞳孔縁抽出プログラム
WO2008002839A2 (en) * 2006-06-26 2008-01-03 California Institute Of Technology Dynamic motion contrast and transverse flow estimation using optical coherence tomography
WO2012170722A2 (en) * 2011-06-07 2012-12-13 California Institute Of Technology Enhanced optical angiography using intensity contrast and phase contrast imaging methods
US8433393B2 (en) * 2011-07-07 2013-04-30 Carl Zeiss Meditec, Inc. Inter-frame complex OCT data analysis techniques
JP6200902B2 (ja) * 2012-02-03 2017-09-20 オレゴン ヘルス アンド サイエンス ユニバーシティ 生体内の光学的流れイメージング
JP5995217B2 (ja) * 2012-09-20 2016-09-21 国立研究開発法人産業技術総合研究所 瞳孔部分を近似する楕円の検出を行う方法
US9025159B2 (en) * 2012-12-10 2015-05-05 The Johns Hopkins University Real-time 3D and 4D fourier domain doppler optical coherence tomography system
US9046339B2 (en) * 2013-09-30 2015-06-02 Carl Zeiss Meditec, Inc. Systems and methods for bidirectional functional optical coherence tomography

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104271031A (zh) 2012-05-10 2015-01-07 卡尔蔡司医疗技术股份公司 Oct血管造影数据的分析和可视化

Also Published As

Publication number Publication date
US20160317018A1 (en) 2016-11-03
CN106073700B (zh) 2019-11-15
KR20160130155A (ko) 2016-11-10
US10383516B2 (en) 2019-08-20
CN106073700A (zh) 2016-11-09
JP2016209198A (ja) 2016-12-15
JP6598502B2 (ja) 2019-10-30

Similar Documents

Publication Publication Date Title
KR102031604B1 (ko) 화상생성방법, 화상생성장치 및 컴퓨터프로그램
US10660515B2 (en) Image display method of providing diagnosis information using three-dimensional tomographic data
US10420461B2 (en) Image generating apparatus, image generating method, and storage medium
US9839351B2 (en) Image generating apparatus, image generating method, and program
US10769789B2 (en) Image processing apparatus and image processing method
WO2016120933A1 (en) Tomographic imaging apparatus, tomographic imaging method, image processing apparatus, image processing method, and program
US10123698B2 (en) Ophthalmic apparatus, information processing method, and storage medium
US10672127B2 (en) Information processing apparatus, information processing method, and program
US20180003479A1 (en) Image processing apparatus and image processing method
JP2017158687A (ja) 光干渉断層データの処理方法、該方法を実行するためのプログラム、及び処理装置
US10470653B2 (en) Image processing apparatus, image processing method, and storage medium that generate a motion contrast enface image
WO2016110917A1 (en) Image processing apparatus and image processing method for polarization-sensitive optical coherence tomography
JP6849776B2 (ja) 情報処理装置及び情報処理方法
WO2021155268A1 (en) Systems and methods for self-tracking real-time high resolution wide-field optical coherence tomography angiography
US20190073776A1 (en) Image processing apparatus, optical coherence tomography apparatus, image processing method, and computer-readable medium
JP2018191761A (ja) 情報処理装置、情報処理方法及びプログラム
JP6992030B2 (ja) 画像生成装置、画像生成方法およびプログラム
JP2019150554A (ja) 画像処理装置およびその制御方法
JP6992031B2 (ja) 画像生成装置、画像生成方法及びプログラム
JP2021087817A (ja) 画像処理装置及び画像処理方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant