KR102016594B1 - 셀레노펜 단량체를 가지는 공액 공중합체 및 그 제조방법, 이를 이용한 유기 태양전지 디바이스 - Google Patents

셀레노펜 단량체를 가지는 공액 공중합체 및 그 제조방법, 이를 이용한 유기 태양전지 디바이스 Download PDF

Info

Publication number
KR102016594B1
KR102016594B1 KR1020180163405A KR20180163405A KR102016594B1 KR 102016594 B1 KR102016594 B1 KR 102016594B1 KR 1020180163405 A KR1020180163405 A KR 1020180163405A KR 20180163405 A KR20180163405 A KR 20180163405A KR 102016594 B1 KR102016594 B1 KR 102016594B1
Authority
KR
South Korea
Prior art keywords
conjugated copolymer
layer
bis
compound
selenophene
Prior art date
Application number
KR1020180163405A
Other languages
English (en)
Inventor
김인태
최효성
Original Assignee
광운대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광운대학교 산학협력단 filed Critical 광운대학교 산학협력단
Priority to KR1020180163405A priority Critical patent/KR102016594B1/ko
Application granted granted Critical
Publication of KR102016594B1 publication Critical patent/KR102016594B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D421/00Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D421/14Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D517/00Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D517/02Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms in which the condensed system contains two hetero rings
    • C07D517/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • H01L51/0036
    • H01L51/442
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3247Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing combinations of different heteroatoms other than nitrogen and oxygen or nitrogen and sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

본 발명은 셀레노펜 단량체를 가지는 공액 공중합체 및 그 제조방법, 이를 이용한 유기 태양전지 디바이스에 관한 것으로, 그 목적은 레노펜을 포함하는 단량체로부터 낮은 밴드갭을 가지는 도너-억셉터 구조의 공액 공중합체와 그 제조방법 및 이를 이용하여 제조된 유기 태양전지를 제공하는데 있다.
본 발명의 구성은 하기 화학식 1로 표시되는 셀레노펜 단량체를 가지는 공액 공중합체와 그 제조방법과 이를 이용한 유기 태양전지 디바이스를 발명의 특징으로 한다.
[화학식 1]
Figure 112019055850591-pat00011

상기 화학식 1에서 n은 0.3~0.7의 값을 가지는 당량이고, m은 29~39의 값을 가지는 정수이다.

Description

셀레노펜 단량체를 가지는 공액 공중합체 및 그 제조방법, 이를 이용한 유기 태양전지 디바이스{Conjugated copolymer using selenophene monomer and manufacturing method thereof, organic solar cell device using the new conjugated copolymer}
본 발명은 셀레노펜 단량체를 가지는 공액 공중합체 및 그 제조방법, 이를 이용한 유기 태양전지 디바이스에 관한 것으로, 자세하게는 셀레노펜 단량체를 포함하는
Figure 112019026684055-pat00001
-공액 구조를 갖는 고분자를 셀레노펜 단량체의 비율을 각각 달리하여 합성하는 기술과 이를 이용하여 높은 효율을 보이는 유기 태양전지 디바이스에 적용한 기술에 관한 것이다.
공액계, 즉 파이-공액 구조를 갖는 유기 단분자, 올리고머 또는 고분자들은 분자의 구조적 특성으로 인하여 반도체적 성질을 가지는 것이 밝혀지면서 유기 반도체 소재로서 다양한 연구가 수행되고 있다.
특히, 도너-억셉터(donor-acceptor) 구조를 갖는 공액 단분자 및 고분자들은 유기 태양전지, 투명 전도체(transparent conductor), 박막 트랜지스터, 유기발광소자(OLED: Organic Light Emitting Diodes 또는 유기 EL) 등으로의 적용가능성에 대하여 다양한 연구가 수행되고 있다.
예를 들어, 도너-억셉터(donor-acceptor) 구조를 갖는 고분자에서 도너로서는 간단한 구조의 3-hexylthiophene, 2,5-(7,7-dioctyl)-cyclopentadithiophene 등 thiophene 기반의 단분자와 복잡한 구조의 (4,8-bis(5-(2-ethylhexyl)thiophen- 2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) 등을 사용하고 억셉터로서는 4,7-dibromo-5,6-difluoro-2,1,3-benzothiadiazole를 사용함으로써 반복적인 도너-억셉터 구조를 가질 수 있다.
일반적으로 도너와 억셉터의 반복 구조로 이루어진 올리고머는 도너의 높은 HOMO(Highest Occupied Molecular Orbital) 에너지와 억셉터의 낮은 LUMO(Lowest Unoccupied Molecular Orbital) 에너지의 혼성화로 인해서 그 차이를 나타내는 값인 밴드갭이 낮아지는 경향이 있다. 따라서 더 좋은 전기적 특성과 광학적 특성을 가지고 있어 LED나 태양전지에 더 유용하게 쓰일 수 있다.
한편, 칼코겐족(chalcogen group)으로 불리우는 16족 원소들은 그 족의 전자적 특징 때문에, 유기물질에 다양하게 응용되어져 왔다. 그중 셀레늄이 들어간 단량체는 황이 들어간 단량체보다 비교적 연구된 경우가 적기 때문에 최근 유기 태양전지에서 관심있게 연구되고 있다. 셀레늄이 포함된 단량체는 낮은 밴드갭(band gap)을 가지며, 강한 셀레늄-셀레늄 상호작용을 하는 장점을 가지고 있다. 또한 컨쥬게이션 길이의 확장으로 인한 전도도의 증가, 근적외선 영역의 파장 흡수와 같은 성질이 좋아져 전도성 고분자에 응용성을 높일 수 있다.
이러한 장점들에도 불구하고 셀레노펜을 포함하는 단량체를 가지는 고분자에 대한 연구사례는 싸이오펜을 포함한 고분자에 비해 비교적 적은 실정이며 이에 대한 합성 연구의 필요성이 대두되고 있다.
한국 등록특허공보 등록번호 10-1739259(2017.05.18.) 한국 등록특허공보 등록번호 10-1777669(2017.09.06.)
Photovoltaic properties of novel thiophene- and selenophene-based conjugated low bandgap polymers: a comparative study 국제전문학술지(SCI급) ROYAL SOC CHEMISTRY KIM IN TAE, 6315-6321
본 발명의 다른 목적은 셀레노펜을 포함하는 단량체로부터 낮은 밴드갭을 가지는 도너-억셉터 구조의 공액 공중합체와 그 제조방법을 제공하는데 있다.
본 발명의 다른 목적은 셀레노펜 단량체를 가지는 공액 공중합체를 이용하여 제조된 유기 태양전지를 제공하는데 있다.
상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은 하기 화학식 1로 표시되는 셀레노펜 단량체를 가지는 공액 공중합체:를 제공함으로써 달성된다.
[화학식 1]
Figure 112018126710819-pat00002
상기 화학식 1에서 n은 0.3~0.7의 값을 가지는 당량이고, m은 29~39의 값을 가지는 정수이다.
본 발명은 다른 실시양태로,
a) 셀레노펜 단량체인 4,6-dibromo-2-heptadecyl selenopheno[3,4-d]thia zole과 (4,8-bis(5-(2-ethylhexyl)thiophen- 2-yl)benzo[1,2-b:4,5-b']dithiop h ene-2,6-diyl)bis(trimethylstannane)와 4,7-dibromo-5,6-difluoro-2,1,3-benzoth iadiazole을 당량비율로 용매에 녹인 후 교반하여 반응시키는 단계;
b) 이후 팔라듐 촉매 존재 하에서 용매를 첨가 후 전자파를 가하며 온도를 올리면서 교반시키는 단계;
c) 이후 4-bromobenzotrifluoride를 첨가 후, 전자파를 가하면서 교반시키는 단계를 포함하여 반응시켜 Poly(2-heptadecylselenopheno [3,4-d]thiazole-5,6- difluoro-2,1,3-benzothiadiazole-(4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)benzo [1,2-b:4,5-b']dithiophene)을 합성하는 단계;를 거쳐 하기 화학식 1로 표시되는 공액 공중합체를 합성하는 것을 특징으로 하는 셀레노펜 단량체를 가지는 공액 공중합체의 제조방법을 제공함으로써 달성된다.
[화학식 1]
Figure 112019055850591-pat00003

상기 화학식 1에서 n은 0.3~0.7의 값을 가지는 당량이고, m은 29~39의 값을 가지는 정수이다.
바람직한 실시예로, 상기 a)단계는 4,6-dibromo-2-heptadecyl selenopheno [3,4-d]thiazole과 (4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']d ithiophene-2,6-diyl)bis(trimethylstannane)와 4,7-dibromo-5,6-difluoro-2,1, 3-benzothiadiazo le을 0.3 ~ 0.7 : 1 : 0.7 ~ 0.3의 당량비율로 용매에 녹인 것일 수 있다.
바람직한 실시예로, 상기 a) 단계에서 6-dibromo-2-heptadecylselenopheno [3,4-d]thiazole과 (4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b'] dithiophene-2,6-diyl)bis(trimethylstannane)와 4,7-dibromo-5,6-difluoro-2,1,3 -benzothiadiazole을 녹이는 용매는 무수 Chlorobenzene, Benzene, Toluene, Dichl orobenzene, Trichlorobenzene 중에서 어느 하나를 사용할 수 있다.
바람직한 실시예로, 상기 b) 단계에서 팔라듐 촉매는 Tris(dibenzylideneac etone)dipalladium(0)과 Tri(o-tolyl)phosphine이 혼합된 촉매 또는 Tetrakis(tri phenylphosphine) palladium(0)일 수 있다.
본 발명은 다른 실시양태로,
Cathode 역할을 하는 ITO가 패턴된 유리(glass)층과;
상기 ITO 위에 적층되어 형성되고, electron transfer layer(ETL)층으로 작용하는 ZnO층과;
상기 ZnO층 위에 적층되어 형성되고, 공액공중합체와 PC71BM의 BHJ(Bulk heterojunction)가 혼합되어 구성된 active layer층과;
active layer 위에 적층되어 형성되고, hole transfer layer(HTL)층으로 작용하는 MoO3 층과;
MoO3 층 위에 적층되어 형성되고, anode 역할을 하는 Ag층으로 구성된 것을 특징으로 하는 셀레노펜 단량체를 가지는 공액 공중합체를 이용한 유기 태양전지 디바이스를 제공함으로써 달성된다.
바람직한 실시예로, 상기 active layer층은 공액 공중합체와 PC71BM을 1 : 0.8 ~ 1 : 1.5의 질량 비율로 혼합한 용질을 용매 및 첨가제와 함께 교반하여 혼합한 용액을 스핀 코팅(spin-coating)하여 적층 형성할 수 있다.
바람직한 실시예로, 상기 용매는 chlorobenzene, 1,2-dichlorobenzene, chl oroform 중에서 어느 하나이고, 첨가제는 1,8-diiodooctane 또는 Diphenylether일 수 있다.
상기와 같은 특징을 갖는 본 발명의 셀레노펜 단량체를 포함하는 공액 공중합체는 셀레노펜 단량체의 알킬기와 (4,8-bis(5-(2-ethylhexyl)thiophen-2-y l)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane)의 알킬기에 의해 용해도를 증가시켜 다양한 극성 및 무극성 유기용매에서 용해도 증가를 볼 수 있다. 이에 따라 다양한 반도체 소자나 유기태양전지 소자 제조에 적합하다는 장점이 있다.
또한 본 발명에 따른 공액 공중합체는 셀레노펜 단량체와 4,7-dibromo -5,6-difluoro-2,1,3-benzothiadiazole와 (4,8-bis(5-(2-ethylhexyl)thiophen-2-y l)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane)의 반복구조로 인한 컨쥬게이션 길이 확장 효과와 전자주개(electron donor)와 전자받개(electron acceptor) 반복 시스템에 의해 낮은 밴드갭을 갖게 된다. 이에 따라 전도도의 증가, 근적외선 영역의 파장 흡수와 같은 성질이 향상되어 전도성 고분자로서 응용가능성이 높다는 장점을 가진다.
구체적으로 본 발명에 따른 셀레노펜 단량체를 가지는 공액 공중합체는 싸이오펜 단량체를 가지는 공액 공중합체보다 UV-vis spectrum에서 더 큰 red shift를 보이며 더 넓은 영역의 파장을 흡수한다. 이러한 물성 때문에 태양전지, OLED 등의 제조에 적합하다는 장점을 가진다.
상기에서 살펴본 바와 같이 본 발명에 따른 셀레노펜 단량체를 가지는 공액 공중합체는 다양한 효과를 가진 유용한 발명으로 산업상 그 이용이 크게 기대되는 발명인 것이다.
도 1은 본 발명에 따른 셀레노펜 단량체를 가지는 공액 공중합체의 화학식이고,
도 2는 본 발명의 한 실시예에 따른 셀레노펜 단량체를 가지는 공액 공중합체의 합성과정을 보인 공정도이고,
도 3a는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.3 당량을 가지는 공액 공중합체의 1H-NMR 특성을 보인 그래프이고,
도 3b는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.5 당량을 가지는 공액 공중합체의 1H-NMR 특성을 보인 그래프이고,
도 3c는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.7 당량을 가지는 공액 공중합체의 1H-NMR 특성을 보인 그래프이고,
도 4a는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.3 당량을 가지는 공액 공중합체의 자외선-가시광선(UV-vis) 흡수분광 특성을 보인 그래프이고,
도 4b는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.5 당량을 가지는 공액 공중합체의 자외선-가시광선(UV-vis) 흡수분광 특성을 보인 그래프이고,
도 4c는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.7 당량을 가지는 공액 공중합체의 자외선-가시광선(UV-vis) 흡수분광 특성을 보인 그래프이고,
도 5a는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.3 당량을 가지는 공액 공중합체의 순환전압전류법(CV)을 통해 나타낸 전압-전류 그래프이고,
도 5b는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.5 당량을 가지는 공액 공중합체의 순환전압전류법(CV)을 통해 나타낸 전압-전류 그래프이고,
도 5c는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.7 당량을 가지는 공액 공중합체의 순환전압전류법(CV)을 통해 나타낸 전압-전류 그래프이고,
도 6은 본 발명의 한 실시예에 따른 셀레노펜 단량체를 다른 비율로 가지는 공액 공중합체들의 수평균분자량, 무게평균분자량, 분자량분포도에 관한 표이고,
도 7a는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.3 당량을 가지는 공액 공중합체의 열 중량 분석(TGA)에 대한 그래프이고,
도 7b는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.5 당량을 가지는 공액 공중합체의 열 중량 분석(TGA)에 대한 그래프이고,
도 7c는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.7 당량을 가지는 공액 공중합체의 열 중량 분석(TGA)에 대한 그래프이고,
도 8는 본 발명의 한 실시예에 따른 셀레노펜 단량체 공액 공중합체를 이용한 태양전지의 구조도이고,
도 9a는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.3 당량을 가지는 공액 공중합체의 J-V에 대한 그래프이고,
도 9b는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.5 당량을 가지는 공액 공중합체의 J-V에 대한 그래프이고,
도 9c는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.7 당량을 가지는 공액 공중합체의 J-V에 대한 그래프이고,
도 10a는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.3 당량을 가지는 공액 공중합체의 원자력현미경(AFM)에 대한 그래프이고,
도 10b는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.5 당량을 가지는 공액 공중합체의 원자력현미경(AFM)에 대한 그래프이고,
도 10c는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.7 당량을 가지는 공액 공중합체의 원자력현미경(AFM)에 대한 그래프이고,
도 11a는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.3 당량을 가지는 공액 공중합체의 자외선-가시광선 흡수(UV-vis Absorption)에 대한 그래프이고,
도 11b는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.5 당량을 가지는 공액 공중합체의 자외선-가시광선 흡수(UV-vis Absorption)에 대한 그래프이고,
도 11c는 본 발명의 한 실시예에 따른 셀레노펜 단량체 0.7 당량을 가지는 공액 공중합체의 자외선-가시광선 흡수(UV-vis Absorption)에 대한 그래프이다.
이하 본 발명의 실시 예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다. 또한 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.
도 1은 본 발명의 셀레노펜 단량체를 가지는 공액 공중합체의 화학식으로, 하기 화학식 1과 같이 정의되는 공액 공중합체로, 하기 화학식 2로 표시되는 셀레노펜 단량체의 비율을 달리하여 합성시킨 공액 공중합체이다.
<화학식 1>
Figure 112018126710819-pat00004
상기 셀레노펜 단량체를 포함하는 공액 공중합체에서 n은 0.3 ~ 0.7의 값을 가지는 당량이고, m은 29 ~ 39의 값을 가지는 정수이다.
상기 수치를 한정한 이유는 n 값이 0.3 보다 작으면 셀레노펜 단량체의 비율이 낮아져 낮은 용해도를 나타내었으며, n 값이 0.7 보다 크면 4,7-dibromo-5,6- difluoro-2,1,3-benzo thiadiazole의 비율이 낮아져 공액 공중합체에서 전자 받개의 역할이 감소하기 때문이다. n 값 비율의 단위는 당량이다.
또한 m값이 29 보다 작으면 공액 공중합체가 합성되었을 때는 자외선-가시광선 흡수 파장의 red shift가 감소되는 경향을 보였으며 m 값이 39 보다 크면 공액 공중합체는 분자량분포도 값이 감소하기 때문이다.
<화학식 2>
Figure 112018126710819-pat00005
상기 화학식 1에서, R은 C4 ~ C17의 알킬이다.
상기와 같은 화학식 1과 같은 구조를 가지는 공액 공중합체는 셀레노펜 단량체의 알킬기와 (4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b' ]di thiophene-2,6-diyl)bis(trimethylst annane)의 알킬기에 의해 용해도를 증가시켜 다양한 극성 및 무극성 유기용매에서 용해도 증가를 볼 수 있다. 이에 따라 다양한 반도체 소자나 유기태양전지 소자 제조에 적합하다.
또한 상기 공액 공중합체는 셀레노펜 단량체와 4,7-dibromo-5,6-di fluoro-2,1,3-benzothiadiazole와 (4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo [1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane)의 반복구조로 인한 컨쥬게이션 길이 확장 효과와 전자주개(electron donor)와 전자받개(electron acc eptor) 반복 시스템에 의해 낮은 밴드갭을 갖게 된다. 이에 따라 전도도의 증가, 근적외선 영역의 파장 흡수와 같은 성질이 향상되어 전도성 고분자로서 응용가능성이 높게 된다.
상기 공액 공중합체는 싸이오펜 단량체를 가지는 공액 공중합체보다 UV-vis spectrum에서 더 큰 red shift를 보이며 더 넓은 영역의 파장을 흡수하는 물성 때문에 태양전지, OLED 등의 제조에 적합하다.
도 2는 본 발명의 한 실시예에 따른 셀레노펜 단량체가 들어간 공액 공중합체(Poly(2-heptadecylselenopheno[3,4-d]thiazole-5,6-difluoro-2,1,3-benzothia diazole-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiop hene))의 합성과정을 보인 공정도로, 상기 화학식 1의 구조를 가지는 한 실시예에 따른 공액 공중합체인 Poly(2-heptadecylselenopheno [3,4-d]thiazole-5,6-difluo ro-2,1,3-benzothiadiazole-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b: 4,5-b']dithiophene)의 합성 과정을 보인 공정도이다.
합성과정은 다음과 같은 단계를 가진다.
a) 셀레노펜 단량체인 4,6-dibromo-2-heptadecyl selenopheno[3,4-d]thiaz ole과 (4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene -2,6-diyl)bis(trimethylstannane)와 4,7-dibromo-5,6-difluoro-2,1,3-benzothiad iazole을 각각 0.3 ~ 0.7 : 1 : 0.7 ~ 0.3의 당량 비율로 하여 용매에 녹인 후 교반하여 반응시키는 단계;를 가진다.
상기 수치를 한정한 이유는 당량 비율 값이 0.3 보다 작으면 셀레노펜 단량체의 비율이 낮아져 낮은 용해도를 나타내었으며, 당량 비율 값이 0.7 보다 크면 4,7-dibromo -5,6-difluoro-2,1,3-benzothiadiazole의 비율이 낮아져 공액 공중합체에서 전자 받개의 역할이 감소하게 되기 때문이다.
b) 이후 팔라듐 촉매 존재 하에서 용매를 첨가 후 전자파를 가하며 온도를 올리면서 교반시키는 단계;를 가진다.
c) 이후 4-bromobenzotrifluoride를 첨가 후, 전자파를 가하면서 교반시키는 단계를 포함하여 반응시켜 Poly(2-heptadecylselenopheno[3,4-d]thiazole-5,6-dif luoro-2,1,3-benzothiadiazole-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1, 2-b:4,5-b']dithiophene)을 합성하는 단계;를 거쳐 합성된다.
상기 a) 단계에서 6-dibromo-2-heptadecyl selenopheno[3,4-d]thiazole과 (4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-di yl)bis(trimethylstannane)와 4,7-dibromo-5,6-difluoro-2,1,3-benzothiadiazole을 녹이는 용매는 무수 Chlorobenzene, Benzene, Toluene, Dichlorobenzene, Trich lorobenzene 중에서 어느 하나를 사용한다.
상기 b) 단계에서 팔라듐 촉매는 Tris(dibenzylideneacetone)dipalladium(0) 과 Tri(o-tolyl)phosphine이 혼합된 촉매 또는 Tetrakis(triphenylphosphine)pall adium(0)를 사용한다.
이하 본 발명의 바람직한 실시예이다.
실시예에서는 도 2를 참조하여 설명하는데, 도면에 도시된 여러 화학식 중 화합물 1은 셀레노펜 단량체인 4,6-dibromo-2-heptadecylselenopheno[3,4-d]thiaz ole이고, 화합물 2는 (4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b: 4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane)이고, 화합물 3은 4,7-dibromo-5, 6-difluoro-2,1,3-benzothia diazole이고, 화합물 4는 본 발명의 공액 공중합체인 Poly(2-heptadecylselenopheno[3,4-d]thiazole-5,6-difluoro-2,1,3-benzothiadia zole-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophe ne)이다. (이하에서는 각각 '화합물 1', '화합물2', '화합물3' 및 '화합물4' 이라 칭한다.)
또한 이하 실시예에서는 셀레노펜 단량체가 들어간 공액 공중합체 제조시 화합물 1과 화합물 2와 화합물 3을 각각 ⓐ 0.3:1:0.7와 ⓑ 0.5:1:0.5와 ⓒ 0.7:1:0.3의 비율로 하여 용매에 녹인 후 교반하여 반응시키는 단계를 걸쳐 제조한 예이다.
또한 ⓐ 0.3:1:0.7 의 비율로 합성된 공액 공중합체를 '화합물5'라하고, ⓑ 0.5:1:0.5 의 비율로 합성된 공액 공중합체를 '화합물6'이라하고, ⓒ 0.7:1:0.3 의 비율로 합성된 공액 공중합체를 '화합물7'이라 칭한다.
(실시예 1) 화합물 1 준비 단계
본 발명의 셀레노펜 단량체가 들어간 공액 공중합체인 Poly(2-hepta decylselenopheno[3,4-d]thiazole-5,6-difluoro-2,1,3-benzothiadiazole-(4,8-bis( 5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene)를 합성하기 위한 사전 단계로 우선 셀레노펜 단량체인 화합물 1(4,6-dibromo-2-heptadecylselenoph eno [3,4-d]thiazole)을 준비한다.
화합물 1은 본 출원의 발명자가 발표한 특허에 공개한 물질 4,6-dibromo-2-heptadecyl selenopheno[3,4-d]thiazole을 사용한다.(참고 특허 - 한국 등록특허공보 등록번호 10-2016-0032721 (2016.03.18.))
구체적으로 화합물 1은,
a) 4,5-bis(bromomethyl)-2-heptadecylthiazole에 Se, NaBH4를 용매 하에 Na2Se를 반응용기 내에서 합성하여 셀레늄이 고리 내에 포함되는 고리 닫힘 반응을 진행시켜 2-heptadecyl-4,6-dihydroselenopheno[3,4-d]thiazole을 합성하는 단계;
b) 합성된 2-heptadecyl-4,6-dihydroselenopheno[3,4-d]thiazole에 1,2-dic hloro-5,6-dicyano-hydroquione(DDQ)를 용매 하에 반응시켜 2-heptadecylseleno pheno[3,4-d]thiazole을 합성하는 단계;
c) 합성된 2-heptadecylselenopheno[3,4-d]thiazole을 N-bromosuccinimide (NBS)를 용매하에 반응시켜 합성하는 단계;를 거쳐 제조된다.
(실시예 2) 화합물 5 합성 단계
본 발명의 한 실시예에 따른 화학식 1의 구조를 가지고 화합물 1의 셀레노펜 단량체를 0.3 의 비율로 가지는 공액 공중합체는 하기 화학식 3과 같은 구조를 가진다.
<화학식 3>
Figure 112018126710819-pat00006
이하, 보다 구체적으로 셀레노펜 단량체를 0.3의 비율로 가지는 공액 공중합체 Poly(2-heptadecylselenopheno[3,4-d]thiazole-5,6-difluoro-2,1,3-benzothia diazole-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithi ophene)의 제조방법을 설명한다.
먼저, Microtube에 상기 화합물 1인 4,6-dibromo-2-heptadecyl selenopheno [3,4-d]thiazole 0.01937 g(0.03315 mmol)과 화합물 2인 (4,8-bis(5-(2-ethylhexy l)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannan e) 0.1 g(0.1105 mmol)과 화합물 3인 4,7-dibromo-5,6-difluoro-2,1,3-benzothia diazole 0.02552 g(0.07735 mmol)을 chlorobenzene 3 mL에 녹인 후 상온에서 10분간 교반한다.
여기에 촉매로서 Tris(dibenzylideneacetone)dipalladium(0) 0.002023 g(0.0 022 mmol)과 Tri(o-tolyl)phosphine 0.002678 g(0.0088 mmol)을 microtube에 넣어준 후 상온에서 10분간 교반한다.
촉매를 첨가한 Microtube를 microwave에 넣은 후 110 W의 전자파를 가하며 150 ℃로 온도를 유지시키며 10시간동안 교반한다.
교반이 끝난 후 합성된 공액 공중합체를 end capping하기 위하여 4-bromo benzotrifluoride 0.0002475 g(0.001105 mmol)을 microtube에 넣어준 후 microwave를 이용하여 110 W의 전자파, 150 ℃의 온도 하에서 1시간동안 교반한다.
합성된 공액 공중합체를 정제하기 위하여 먼저 methanol 용매하에서 65 ℃의 온도를 가해주며 공액 공중합체를 하루동안 교반시킨 후 methanol에 녹아나온 여액을 필터를 통해 제거한다.
필터페이퍼 위에 남은 공액 공중합체를 ethanol 용매하에서 78 ℃의 온도를 가해주며 하루동안 교반시킨 후 ethanol에 녹아나온 여액을 필터를 통해 제거한다.
마찬가지로 필터페이퍼 위에 남은 공액 공중합체를 acetone 용매하에서 56 ℃의 온도를 가해주며 하루동안 교반시킨 후 필터하고, 필터페이퍼 위 남은 공액 공중합체를 hexane 용매하에서 68 ℃의 온도를 가해주며 하루동안 교반시킨 후 필터하여 진한 남색 색깔의 셀레노펜 단량체를 0.3당량 가지는 공액 공중합체 Poly(2-heptadecylselenopheno[3,4-d]thiazole-5,6-difluoro-2,1,3-benzothiadiaz ole-(4,8-bis(5-(2- ethylhexyl) thiophen-2-yl) benzo[1,2-b:4,5-b']dithiophene)을 0.0752 g 얻었다.
(실시예 3) 화합물 6 합성 단계
본 발명의 한 실시예에 따른 화학식 1의 구조를 가지고 화합물 1의 셀레노펜 단량체를 0.5의 비율로 가지는 공액 공중합체는 하기 화학식 4와 같은 구조를 가진다.
<화학식 4>
Figure 112018126710819-pat00007
이하, 보다 구체적으로 셀레노펜 단량체를 0.5의 비율로 가지는 공액 공중합체 Poly(2-heptadecylselenopheno[3,4-d]thiazole-5,6-difluoro-2,1,3-benzothia diazole-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithi ophene)의 제조방법을 설명한다.
먼저, Microtube에 상기 화합물 1인 4,6-dibromo-2-heptadecyl selenopheno [3,4-d]thiazole 0.0322 g(0.0552 mmol)과 화합물 2인 (4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) 0.1 g(0.1105 mmol)과 화합물 3인 4,7-dibromo-5,6-difluoro-2,1,3-benzothiadi azole 0.01821 g(0.0552 mmol)을 chlorobenzene 3 mL에 녹인 후 상온에서 10분간 교반한다.
여기에 촉매로서 Tris(dibenzylideneacetone)dipalladium(0) 0.002023 g(0.0 022 mmol)과 Tri(o-tolyl)phosphine 0.002678 g(0.0088 mmol)을 microtube에 넣어준 후 상온에서 10분간 교반한다.
촉매를 첨가한 Microtube를 microwave에 넣은 후 110 W의 전자파를 가하며 150 ℃로 온도를 유지시키며 10시간동안 교반한다.
교반이 끝난 후 합성된 공액 공중합체를 end capping하기 위하여 4-bromoben zotrifluoride 0.0002475 g(0.001105 mmol)을 microtube에 넣어준 후 microwave를 이용하여 110 W의 전자파, 150 ℃의 온도 하에서 1시간동안 교반한다.
합성된 공액 공중합체를 정제하기 위하여 먼저 methanol 용매하에서 65 ℃의 온도를 가해주며 공액 공중합체를 하루동안 교반시킨 후 methanol에 녹아나온 여액을 필터를 통해 제거한다.
필터페이퍼 위에 남은 공액 공중합체를 ethanol 용매하에서 78 ℃의 온도를 가해주며 하루동안 교반시킨 후 ethanol에 녹아나온 여액을 필터를 통해 제거한다.
마찬가지로 필터페이퍼 위에 남은 공액 공중합체를 acetone 용매하에서 56 ℃의 온도를 가해주며 하루동안 교반시킨 후 필터하고, 필터페이퍼 위 남은 공액 공중합체를 hexane 용매하에서 68 ℃의 온도를 가해주며 하루동안 교반시킨 후 필터하여 진한 남색 색깔의 셀레노펜 단량체를 0.5당량 가지는 공액 공중합체 Poly(2-heptadecylselenopheno[3,4-d]thiazole-5,6-difluoro-2,1,3-benzothiadiaz ole-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene)을 0.0795 g 얻었다.
(실시예 4) 화합물 7 합성 단계
본 발명의 한 실시예에 따른 화학식 1의 구조를 가지고 화합물 1의 셀레노펜 단량체를 0.7 의 비율로 가지는 공액 공중합체는 하기 화학식 5와 같은 구조를 가진다.
<화학식 5>
Figure 112018126710819-pat00008
이하, 보다 구체적으로 셀레노펜 단량체를 0.7의 비율로 가지는 공액 공중합체 Poly(2-heptadecylselenopheno[3,4-d]thiazole-5,6-difluoro-2,1,3-benzothia diazole-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophen e)의 제조방법을 설명한다.
먼저, Microtube에 상기 화합물 1인 4,6-dibromo-2-heptadecylselenopheno [3,4-d]thiazole 0.0452 g(0.07735 mmol)과 화합물 2인 (4,8-bis(5-(2-ethylhexy l)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannan e) 0.1 g(0.1105 mmol)과 화합물 3인 4,7-dibromo-5,6-difluoro-2,1,3-benzothiad iazole 0.01094 g(0.03315 mmol)을 chlorobenzene 3 mL에 녹인 후 상온에서 10분간 교반한다.
여기에 촉매로서 Tris(dibenzylideneacetone)dipalladium(0) 0.002023 g(0. 0022 mmol)과 Tri(o-tolyl)phosphine 0.002678 g(0.0088 mmol)을 microtube에 넣어준 후 상온에서 10분간 교반한다.
촉매를 첨가한 Microtube를 microwave에 넣은 후 110 W의 전자파를 가하며 150 ℃로 온도를 유지시키며 10시간 동안 교반한다.
교반이 끝난 후 합성된 공액 공중합체를 end capping하기 위하여 4-bromo benzotrifluoride 0.0002475 g(0.001105 mmol)을 microtube에 넣어준 후 microwave를 이용하여 110 W의 전자파, 150 ℃의 온도 하에서 1시간동안 교반한다.
합성된 공액 공중합체를 정제하기 위하여 먼저 methanol 용매하에서 65 ℃의 온도를 가해주며 공액 공중합체를 하루동안 교반시킨 후 methanol에 녹아나온 여액을 필터를 통해 제거한다.
필터페이퍼 위에 남은 공액 공중합체를 ethanol 용매하에서 78 ℃의 온도를 가해주며 하루동안 교반시킨 후 ethanol에 녹아나온 여액을 필터를 통해 제거한다.
마찬가지로 필터페이퍼 위에 남은 공액 공중합체를 acetone 용매하에서 56 ℃의 온도를 가해주며 하루동안 교반시킨 후 필터하고, 필터페이퍼 위 남은 공액 공중합체를 hexane 용매하에서 68 ℃의 온도를 가해주며 하루동안 교반시킨 후 필터하여 진한 남색 색깔의 셀레노펜 단량체를 0.7당량 가지는 공액 공중합체 Poly (2-heptadecylselenopheno[3,4-d]thiazole-5,6-difluoro-2,1,3-benzothiadiazole-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene)을 0.07 35g 얻었다.
상기 합성된 본 발명 화합물 5, 화합물 6, 화합물7의 물성적 특성은 도 3a 내지 7c에 나타나 있다.
먼저, 도 3a는 본 발명의 한 실시예에 따른 화합물 5의 1H-NMR 특성을 보인 그래프이고, 도 3b는 본 발명의 한 실시예에 따른 화합물 6의 1H-NMR 특성을 보인 그래프이고, 도 3c는 본 발명의 한 실시예에 따른 화합물 7의 1H-NMR 특성을 보인 그래프이다.
도 3a, 도 3b, 도 3c는 합성된 공액 공중합체의 작용기 유무와 구조 분석을 위한 NMR data이다. 도 3a 내지 3c의 NMR 그래프를 보면 1~2 ppm에서 넓은 peak를 통해 화합물 1의 알킬기와 화합물 2의 알킬기를 확인할 수 있다.
도 4a는 본 발명의 한 실시예에 따른 화합물 5의 자외선-가시광선(UV-vis) 흡수분광 특성을 보인 그래프이고, 도 4b는 본 발명의 한 실시예에 따른 화합물 6의 자외선-가시광선(UV-vis) 흡수분광 특성을 보인 그래프이고, 도 4c는 본 발명의 한 실시예에 따른 화합물 7의 자외선-가시광선(UV-vis) 흡수분광 특성을 보인 그래프이다.
도 4a를 보면 화합물 5의 광학적 성질을 분석한 결과 최대 흡수 파장은 670 nm이며 흡수 밴드 edge는 754 nm를 나타내었으며, 도 4b를 보면 화합물 6은 최대 흡수 파장은 674 nm이며 흡수 밴드 edge는 771 nm를 나타내었고, 도 4c를 통해서는 화합물 7은 최대 흡수 파장은 671 nm이며 흡수 밴드 edge는 763 nm인 것을 알 수 있다. 이를 통해 광학적인 밴드갭을 계산해 본 결과 화합물 5는 1.64 eV, 화합물 6은 1.61 eV, 화합물 7은 1.62 eV를 갖는 다는 것을 알 수 있다.
도 4a 내지 4c의 자외선-가시광선(UV-vis) 흡수분광 그래프를 보면 화합물 5, 화합물 6, 화합물 7 모두 670 nm 이상의 높은 최대 흡수 파장을 갖는 것으로 red shift가 일어난 것을 알 수 있다. red shift가 일어남으로써 흡수할 수 있는 파장 범위가 늘어나고 전도성 고분자로서 활용 가능성이 높아진다. 또한 흡수 밴드 edge를 통해 계산한 광학적인 밴드갭은 1.6 eV 대의 값을 얻어 합성한 공액 공중합체 모두 낮은 밴드갭을 갖는 다는 것을 확인했다. 화합물 5, 화합물 6, 화합물 7의 넓은 흡수 파장 영역대와 낮은 밴드갭은 태양전지, OLED 등의 활성층(active layer)에 적용가능하여 고분자 전자재료 산업에 활발히 응용 될 수 있다.
도 5a는 본 발명의 한 실시예에 따른 화합물 5의 순환전압전류법(CV)을 통해 나타낸 전압-전류 그래프이고, 도 5b는 본 발명의 한 실시예에 따른 화합물 6의 순환전압전류법(CV)을 통해 나타낸 전압-전류 그래프이고, 도 5c는 본 발명의 한 실시예에 따른 화합물 7의 순환전압전류법(CV)을 통해 나타낸 전압-전류 그래프이다.
도 5a 내지 5c를 보면 화합물 5, 화합물 6, 화합물 7의 순환전압전류법(CV)으로 얻은 전압-전류 그래프를 통해 각각의 전기화학적 특징을 알 수 있다. 작동전극과 보조전근으로 백금전극을 사용하였고, 기준전극으로 Ag/Ag+ 전극을 사용하였으며, 전해질로는 tetrabutylammonium hexafluorophosphate를 사용하였다. 또한 측정할 고분자를 작동전극 표면위에 얇은 필름으로 제작하여 acetonitrile 용매하에서 측정하였다. Fc/Fc+ (ferrocene)의 potential을 acetonitrile 용매하에 측정하여 0.45 V의 값을 얻었고, 이를 standard reference 값으로 하였다.
도 5a를 보면 화합물 5는 onset 산화퍼텐셜 1.51 V, onset 환원퍼텐셜 -0.0849 V를 나타내었고, 이를 통해 계산한 HOMO 값은 -5.86 eV, LUMO 값은 -4.27 eV 이며, 두 값의 차를 통해 계산된 전기화학적 밴드갭은 1.60 eV의 값을 얻었다. 도 5b를 보면 화합물 6은 onset 산화퍼텐셜 1.18 V, onset 환원퍼텐셜 -0.3327 V를 나타내었고, 이를 통해 계산한 HOMO 값은 -5.41 eV, LUMO 값은 -4.02 eV이며, 두 값의 차를 통해 계산된 전기화학적 밴드갭은 1.51 eV의 값을 얻었다. 도 5c를 보면 화합물 7은 onset 산화퍼텐셜 1.04 V, onset 환원퍼텐셜 -0.5533 V를 나타내었고, 이를 통해 계산한 HOMO 값은 -5.39 eV, LUMO 값은 -3.79 eV이며, 두 값의 차를 통해 계산된 전기화학적 밴드갭은 1.60 eV의 값을 얻었다. 이를 통해 화합물 5, 화합물 6, 화합물 7 모두 전기화학적으로 계산한 밴드갭 또한 1.60 eV 이하의 낮은 값을 가진다는 것을 알 수 있으며, 이런 특징으로 합성한 공액공중합체 모두 태양전지, OLED 등의 활성층(active layer)에 적용 가능하여 고분자 전자재료 산업에 활발히 응용 될 수 있다.
도 6은 본 발명의 한 실시예에 따른 셀레노펜 단량체를 다른 비율로 가지는 공액 공중합체들의 수평균분자량, 무게평균분자량, 분자량분포도에 관한 표로, 화합물 5, 화합물 6, 화합물 7을 GPC를 통해 측정한 수평균분자량, 무게평균분자량, 분자량분포도에 관한 표이다. GPC는 합성한 공액공중합체를 THF에 1 weight percent로 녹여 분자량을 측정하였다. 화합물 5는 65,707의 수평균분자량, 101,295의 무게평균분자량, 1.54의 분자량분포도 값을 가졌으며, 화합물 6은 85,459의 수평균분자량, 100,127의 무게평균분자량, 1.17의 분자량분포도 값을 가졌고, 화합물 7은 71,666의 수평균분자량, 78,123의 무게평균분자량, 1.12의 분자량분포도 값을 가졌다.
삭제
도 7a는 본 발명의 한 실시 예에 따른 화합물 5의 열 중량 분석(TGA)에 대한 그래프이며, 도 7b는 본 발명의 한 실시 예에 따른 화합물 6의 열 중량 분석(TGA)에 대한 그래프이고, 도 7c는 본 발명의 한 실시 예에 따른 화합물 7의 열 중량 분석(TGA)에 대한 그래프이다.
도 7a 내지 7c는 화합물 5, 화합물 6, 화합물 7의 열적인 안정성을 측정한 열 중량 분석(TGA)에 대한 그래프이다. 도 7a를 보면 화합물 5는 433.77 ℃에서 onset 값, 498.80 ℃에서 endset 값을 가지며 -1.190 mg의 무게감소를 보였다. 도 7b를 보면 화합물 6은 355.45 ℃에서 onset 값, 499.1 ℃에서 endset 값을 가지며 -1.634 mg의 무게감소를 보였다. 도 7c를 보면 화합물 7은 418.32 ℃에서 onset 값, 499.01 ℃에서 endset값을 가지며 -1.510 mg의 무게감소를 보였다.
도 8는 본 발명의 한 실시예에 따른 셀레노펜 단량체 공액 공중합체를 이용한 태양전지의 구조도로, 상기 본 발명의 각 실시예 2 내지 실시예 4에 따른 공액공중합체 화합물 5, 화합물 6, 화합물 7을 디바이스인 태양전지에 적용했을 때의 구조에 대한 그림이다.
도시된 태양전지의 전반적인 구조는 다음과 같다.
Cathode 역할의 ITO가 패턴된 유리(glass)층 위에 electron transfer layer(ETL)층으로 작용하는 ZnO층이 형성되어 있고, 이 위에 본 발명예에 따라 합성한 공액공중합체와 PC71BM의 BHJ(Bulk heterojunction)으로 구성된 active layer층이 형성된다. 이 active layer층 위에 hole transfer layer(HTL)층으로 작용하는 MoO3층이 있으며, 마지막으로 anode 역할을 하는 Ag층이 구성된다.
ZnO의 경우, 1g의 zinc acetate dihydrate, 284μl의 ethanolamine, 10 ml의 2-methoxyethanol을 혼합한 용액을 60℃에서 24시간 교반하여 준비할 수 있다.
이 혼합한 용액을 ITO가 패턴된 glass 위에 spin-coating하여 적층한다.
Active Layer의 경우, chlorobenzene 또는 1,2-dichlorobenzene 또는 chloroform 용액 하에 본 발명에 따라 합성된 화학식 1로 표시되는 공액 공중합체와 PC71BM을 1 : 0.8 ~ 1 : 1.5의 질량 비율로 용액을 제조하며, 합성한 공중합체의 용액에 대한 농도는 평균 15mg/ml이다. 또한, 첨가제(additive)로 DPE(Diphenylether)를 용매 부피의 3% 만큼 첨가한다. 이 혼합 용액은 50℃에서 18 ~ 24시간 교반하여 준비할 수 있다. 이 혼합 용액 역시 spin-coating 하여 적층한다.
Hole Transfer Layer의 경우, MoO3는 thermal evaporator로 2nm 두께로 증착한다. Anode인 Ag의 경우도 thermal evaporator로 100nm 두께로 증착한다.
도 9a 내지 9c를 보면, 화합물 5, 화합물 6, 화합물 7을 도 8의 태양전지 소자 구조에 적용했을 때의 J-V curve이다.
먼저, 화합물 5의 경우, 단락 전류 밀도(short circuit current density)는 10.15 mA/cm2, 개방전압 (open-circuit voltage)는 0.67 V, 충전율(fill factor) 0.38, 전력변환효율(power conversion efficiency) 2.58%이다.
또한 화합물 6의 경우, 단락 전류 밀도(short circuit current density)는 12.39 mA/cm2, 개방전압 (open-circuit voltage)는 0.60 V, 충전율(fill factor) 0.47, 전력변환효율(power conversion efficiency) 3.50%이다.
또한 화합물 7의 경우, 단락 전류 밀도(short circuit current density)는 9.49 mA/cm2, 개방전압 (open-circuit voltage)는 0.57 V, 충전율(fill factor) 0.49, 전력변환효율(power conversion efficiency) 2.64 %이다.
도 10a 내지 10c를 보면, 화합물 5, 화합물 6, 화합물 7의을 도 8의 태양전지 소자 구조 중, active layer까지 제작했을 때 그 표면을 측정한 원자력 현미경(AFM) 이미지이다.
AFM 측정을 통해 각 화합물에 대한 표면 roughness를 측정할 수 있었다.
먼저, 화합물 5의 경우, roughness는 0.938 nm이다.
또한 화합물 6의 경우, roughness는 0.965 nm이다.
또한 화합물 7의 경우, roughness는 0.945 nm이다.
도 11a 내지 11c를 보면, 화합물 5, 화합물 6, 화합물 7의 film상 자외선-가시광선 빛에 대한 흡수 측정 그래프이다.
먼저, 화합물 5의 경우, λonset = 772 nm이고, 따라서 optical bandgap은 1.61 eV이며, λmax = 679 nm 이다.
또한 화합물 6의 경우, λonset = 808 nm 이고, 따라서 optical bandgap은 1.53 eV이며, λmax = 680 nm 이다.
또한 화합물 7의 경우, λonset = 764 nm 이고, 따라서 optical bandgap은 1.62 eV이며, λmax = 692 nm 이다.
본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.

Claims (8)

  1. 하기 화학식 1로 표시되는 셀레노펜 단량체를 가지는 공액 공중합체:
    [화학식 1]

    Figure 112019055850591-pat00009

    상기 화학식 1에서 n은 0.3 ~ 0.7의 값을 가지는 당량이고, m은 29~39의 값을 가지는 정수이다.
  2. a) 셀레노펜 단량체인 4,6-dibromo-2-heptadecyl selenopheno[3,4-d]thiazo le과 (4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene- 2,6-diyl)bis(trimethylstannane)와 4,7-dibromo-5,6-difluoro-2,1,3-benzothiadi azole을 당량비율로 용매에 녹인 후 교반하여 반응시키는 단계;
    b) 이후 팔라듐 촉매 존재 하에서 용매를 첨가 후 전자파를 가하며 온도를 올리면서 교반시키는 단계;
    c) 이후 4-bromobenzotrifluoride를 첨가 후, 전자파를 가하면서 교반시키는 단계를 포함하여 반응시켜 Poly(2-heptadecylselenopheno[3,4-d]thiazole-5,6-di fluoro-2,1,3-benzothiadiazole-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[ 1,2-b:4,5-b']dithiophene)을 합성하는 단계;를 거쳐 하기 화학식 1로 표시되는 공액 공중합체를 합성하는 것을 특징으로 하는 셀레노펜 단량체를 가지는 공액 공중합체의 제조방법.
    [화학식 1]

    Figure 112019055850591-pat00010

    상기 화학식 1에서 n은 0.3 ~ 0.7의 값을 가지는 당량이고, m은 29~39의 값을 가지는 정수이다.
  3. 청구항 2에 있어서,
    상기 a)단계는 4,6-dibromo-2-heptadecyl selenopheno[3,4-d]thiazole과 (4, 8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl) bis(trimethylstannane)와 4,7-dibromo-5,6-difluoro-2,1,3-benzothiadiazole을 0. 3 ~ 0.7 : 1 : 0.7 ~ 0.3의 당량비율로 용매에 녹인 것을 특징으로 하는 셀레노펜 단량체를 가지는 공액 공중합체의 제조방법.
  4. 청구항 2에 있어서,
    상기 a) 단계에서 6-dibromo-2-heptadecylselenopheno[3,4-d]thiazole과 (4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-di yl)bis(trimethylstannane)와 4,7-dibromo-5,6-difluoro-2,1,3-benzothiadiazole을 녹이는 용매는 무수 Chlorobenzene, Benzene, Toluene, Dichlorobenzene, Trichlo robenzene 중에서 어느 하나를 사용하는 것을 특징으로 하는 공액 공중합체의 제조 방법.
  5. 청구항 2에 있어서,
    상기 b) 단계에서 팔라듐 촉매는 Tris(dibenzylideneacetone)dipalladium(0) 과 Tri(o-tolyl)phosphine이 혼합된 촉매 또는 Tetrakis(triphenylphosphine)pall adium(0)인 것을 특징으로 하는 공액 공중합체의 제조방법.
  6. Cathode 역할을 하는 ITO가 패턴된 유리(glass)층과;
    상기 ITO 위에 적층되어 형성되고, electron transfer layer(ETL)층으로 작용하는 ZnO층과;
    상기 ZnO층 위에 적층되어 형성되고, 청구항 1의 화학식 1로 표시되는 공액공중합체와 PC71BM의 BHJ(Bulk heterojunction)가 혼합되어 구성된 active layer층과;
    active layer 위에 적층되어 형성되고, hole transfer layer(HTL)층으로 작용하는 MoO3 층과;
    MoO3 층 위에 적층되어 형성되고, anode 역할을 하는 Ag층으로 구성된 것을 특징으로 하는 셀레노펜 단량체를 가지는 공액 공중합체를 이용한 유기 태양전지 디바이스.
  7. 청구항 6에 있어서,
    상기 active layer층은 공액 공중합체와 PC71BM을 1 : 0.8 ~ 1 : 1.5의 질량 비율로 혼합한 용질을 용매 및 첨가제와 함께 교반하여 혼합한 용액을 스핀 코팅(spin-coating)하여 적층 형성한 것을 특징으로 하는 셀레노펜 단량체를 가지는 공액 공중합체를 이용한 유기 태양전지 디바이스.
  8. 청구항 7에 있어서,
    상기 용매는 chlorobenzene, 1,2-dichlorobenzene, chloroform 중에서 어느 하나이고, 첨가제는 1,8-diiodooctane 또는 Diphenylether인 것을 특징으로 하는 셀레노펜 단량체를 가지는 공액 공중합체를 이용한 유기 태양전지 디바이스.



KR1020180163405A 2018-12-17 2018-12-17 셀레노펜 단량체를 가지는 공액 공중합체 및 그 제조방법, 이를 이용한 유기 태양전지 디바이스 KR102016594B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180163405A KR102016594B1 (ko) 2018-12-17 2018-12-17 셀레노펜 단량체를 가지는 공액 공중합체 및 그 제조방법, 이를 이용한 유기 태양전지 디바이스

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180163405A KR102016594B1 (ko) 2018-12-17 2018-12-17 셀레노펜 단량체를 가지는 공액 공중합체 및 그 제조방법, 이를 이용한 유기 태양전지 디바이스

Publications (1)

Publication Number Publication Date
KR102016594B1 true KR102016594B1 (ko) 2019-08-30

Family

ID=67776347

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180163405A KR102016594B1 (ko) 2018-12-17 2018-12-17 셀레노펜 단량체를 가지는 공액 공중합체 및 그 제조방법, 이를 이용한 유기 태양전지 디바이스

Country Status (1)

Country Link
KR (1) KR102016594B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210097402A (ko) * 2020-01-30 2021-08-09 광운대학교 산학협력단 신규 셀레노 셀레나졸 단량체 및 그 제조방법, 이를 이용한 공액 올리고머, 공액 공중합체 및 그 제조 방법
KR20220159514A (ko) 2021-05-25 2022-12-05 광운대학교 산학협력단 유기 태양전지의 전자수송층 도핑에 따른 열 안정성을 분석하는 방법
CN116082670A (zh) * 2023-04-11 2023-05-09 中国人民解放军军事科学院军事医学研究院 一种含有季膦盐的声响应假性共轭聚合物纳米颗粒的制备方法及其在抗菌领域的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130066615A (ko) * 2010-04-19 2013-06-20 메르크 파텐트 게엠베하 벤조디티오펜의 중합체 및 유기 반도체로서의 이의 용도
KR20160101701A (ko) * 2015-02-17 2016-08-25 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
KR101739259B1 (ko) 2015-04-22 2017-05-25 광운대학교 산학협력단 신규 피롤 단량체 및 그 제조방법, 피롤 단량체로부터 합성된 고분자 또는 화합물 및 그 제조방법
KR101777669B1 (ko) 2016-03-18 2017-09-14 광운대학교 산학협력단 신규 셀레노펜 단량체 및 그 제조방법, 셀레노펜 단량체로부터 합성된 공액 올리고머 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130066615A (ko) * 2010-04-19 2013-06-20 메르크 파텐트 게엠베하 벤조디티오펜의 중합체 및 유기 반도체로서의 이의 용도
KR20160101701A (ko) * 2015-02-17 2016-08-25 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
KR101739259B1 (ko) 2015-04-22 2017-05-25 광운대학교 산학협력단 신규 피롤 단량체 및 그 제조방법, 피롤 단량체로부터 합성된 고분자 또는 화합물 및 그 제조방법
KR101777669B1 (ko) 2016-03-18 2017-09-14 광운대학교 산학협력단 신규 셀레노펜 단량체 및 그 제조방법, 셀레노펜 단량체로부터 합성된 공액 올리고머 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Photovoltaic properties of novel thiophene- and selenophene-based conjugated low bandgap polymers: a comparative study 국제전문학술지(SCI급) ROYAL SOC CHEMISTRY KIM IN TAE, 6315-6321

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210097402A (ko) * 2020-01-30 2021-08-09 광운대학교 산학협력단 신규 셀레노 셀레나졸 단량체 및 그 제조방법, 이를 이용한 공액 올리고머, 공액 공중합체 및 그 제조 방법
KR102313114B1 (ko) 2020-01-30 2021-10-14 광운대학교 산학협력단 신규 셀레노 셀레나졸 단량체 및 그 제조방법, 이를 이용한 공액 올리고머, 공액 공중합체 및 그 제조 방법
KR20220159514A (ko) 2021-05-25 2022-12-05 광운대학교 산학협력단 유기 태양전지의 전자수송층 도핑에 따른 열 안정성을 분석하는 방법
CN116082670A (zh) * 2023-04-11 2023-05-09 中国人民解放军军事科学院军事医学研究院 一种含有季膦盐的声响应假性共轭聚合物纳米颗粒的制备方法及其在抗菌领域的应用
CN116082670B (zh) * 2023-04-11 2023-06-27 中国人民解放军军事科学院军事医学研究院 一种含有季膦盐的声响应假性共轭聚合物纳米颗粒的制备方法及其在抗菌领域的应用

Similar Documents

Publication Publication Date Title
Ma et al. Ladder-type dithienonaphthalene-based small-molecule acceptors for efficient nonfullerene organic solar cells
Mo et al. Chlorination of low-band-gap polymers: Toward high-performance polymer solar cells
Lin et al. Regio-specific selenium substitution in non-fullerene acceptors for efficient organic solar cells
Xu et al. Selenium-containing medium bandgap copolymer for bulk heterojunction polymer solar cells with high efficiency of 9.8%
CN108148073B (zh) 有机半导体化合物
CN109891616B (zh) 有机半导体化合物
CN107915661B (zh) 有机半导体化合物
JP2014512100A (ja) 電気光学デバイスの活性物質および電気光学デバイス
KR102016594B1 (ko) 셀레노펜 단량체를 가지는 공액 공중합체 및 그 제조방법, 이를 이용한 유기 태양전지 디바이스
KR101777325B1 (ko) 전자 공여체 고분자 및 이를 포함하는 유기 태양 전지
EP2682412A1 (en) Polymer and photoelectric conversion element
Jang et al. Synthesis and characterization of low-band-gap poly (thienylenevinylene) derivatives for polymer solar cells
Sharma et al. Recent progress in advanced organic photovoltaics: emerging techniques and materials
KR20120000495A (ko) 전자 공여체 고분자 및 이를 포함하는 유기 태양 전지
Raji et al. Benzo bis (Thiazole)-Based Conjugated Polymer with Varying Alkylthio Side-Chain Positions for Efficient Fullerene-Free Organic Solar Cells
TWI797185B (zh) 有機半導性化合物
KR101142207B1 (ko) 파이렌 화합물이 도입된 전도성 고분자 및 그를 이용한 유기 태양전지
CN110998888B (zh) 有机半导体聚合物
KR20210027929A (ko) N-형 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 태양전지
CN113544186B (zh) 有机半导体组合物
EP3323871A2 (en) Organic hole transporting compound using p-doped conjugated polymer electrolyte, organic electronic device using same, and manufacturing method therefor
WO2023091152A1 (en) Fused dithieno benzothiadiazole polymers for organic photovoltaics
KR101535066B1 (ko) 두 개의 적층형 유기 태양전지 소자용 유기 반도체 화합물, 및 이를 포함하는 유기전자소자
KR20120121358A (ko) 좁은 밴드갭을 갖는 평면성 공중합물 및 이를 이용한 유기 고분자 박막 태양 전지 소자
JP7116075B2 (ja) 有機半導体化合物

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant