KR102005339B1 - Thermosyphon with curved perforated plate - Google Patents

Thermosyphon with curved perforated plate Download PDF

Info

Publication number
KR102005339B1
KR102005339B1 KR1020180059339A KR20180059339A KR102005339B1 KR 102005339 B1 KR102005339 B1 KR 102005339B1 KR 1020180059339 A KR1020180059339 A KR 1020180059339A KR 20180059339 A KR20180059339 A KR 20180059339A KR 102005339 B1 KR102005339 B1 KR 102005339B1
Authority
KR
South Korea
Prior art keywords
heat transfer
heat
evaporator
condenser
liquid
Prior art date
Application number
KR1020180059339A
Other languages
Korean (ko)
Other versions
KR20180137404A (en
Inventor
김석광
Original Assignee
에스디(주)
김석광
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스디(주), 김석광 filed Critical 에스디(주)
Publication of KR20180137404A publication Critical patent/KR20180137404A/en
Priority to PCT/KR2019/006197 priority Critical patent/WO2019225982A1/en
Application granted granted Critical
Publication of KR102005339B1 publication Critical patent/KR102005339B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

본 발명은 곡면 다공판을 구비한 열사이펀의 전열면적 확대에 관한 것으로, 특히 열사이펀의 증발부와 응축부에서 전열면적을 증대시켜 열전달을 촉진하는 기술에 관한 것이다.
종래에 개시된 열사이펀은 국부적인 열전달 특성을 변화시켜 증발부의 액체 풀(liquid pool)에서 기-액이 동반하여 응축부를 향해 유동 진동이 발생하면서 안정화하는데 문제가 있어 시동이 느리고, 기화된 증기와 낙하한 액적(droplet)이 혼합되는 현상이 발생하며, 이러한 현상은 가열부하 변화가 클수록 큰 영향을 받아 열전달 효율을 크게 감소하는 문제점이 야기된다.
이러한 문제점을 일소하기 위한 방안으로 열사이펀의 증발부에 상하 간격을 두고 다수의 곡면 다공판을 설치하여 전열면적을 확장시켜 열전달 효율을 증대함과 아울러 국부적 고열과열을 분산시키고, 기-액이 상층부로 유동됨을 방지하도록 하는 기술을 강구함을 특징으로 한다.
BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a heat transfer area increase of a heat siphon having a curved perforated plate, and more particularly, to a technique for promoting heat transfer by increasing a heat transfer area in an evaporation portion and a condensing portion of a heat siphon.
The heat siphon disclosed in the prior art has a problem of stabilizing while generating flow vibration toward the condenser due to the vapor-liquid accompanying the liquid pool in the liquid pool of the evaporator by changing the local heat transfer characteristic, A phenomenon occurs in which a droplet is mixed. This phenomenon is caused by the fact that the larger the change in the heating load, the larger the influence is, and the heat transfer efficiency is greatly reduced.
In order to solve such a problem, a plurality of curved perforated plates are vertically spaced apart from each other in the evaporation portion of the thermal siphon to expand the heat transfer area to increase the heat transfer efficiency and to disperse the local high temperature superheat, To prevent the flow of the refrigerant to the compressor.

Description

곡면 다공판을 구비한 열사이펀{Thermosyphon with curved perforated plate}Thermosyphon with curved perforated plate < RTI ID = 0.0 >

본 발명은 열사이펀의 전열면적 확대에 관한 것으로, 특히 열사이펀의 증발부와 응축부에서 전열면적을 증대시켜 열전달을 촉진하는 기술에 관한 것이다.The present invention relates to an expansion of heat transfer area of a thermal siphon, and more particularly, to a technique for promoting heat transfer by increasing a heat transfer area in a vaporizing portion and a condensing portion of a thermal siphon.

열사이펀(thermosyphon)은 작동유체의 비등과 응축을 통해 열을 연속적으로 전달하는 것으로 밀폐용기 내부를 진공으로 하면 비교적 낮은 온도에서 작동유체가 연속적으로 증기-액체간의 상변화과정을 통하여 용기양단 사이에 작은 온도차로 대량의 열을 흡수하고 방출하는 것으로, 액체의 귀환이 윅(wick)에 의해 이루어지는 경우를 히트파이프(heat pipe), 액체의 귀환이 중력에 의해서 귀환하는 경우를 열사이펀(thermosyphon)이라 하며 통칭하여 히트파이프(heat pipe)라고도 한다. A thermosyphon is a continuous transfer of heat through the boiling and condensation of the working fluid. When the interior of the closed vessel is evacuated, the working fluid is continuously passed through the vapor-liquid phase change process at relatively low temperatures, It absorbs and emits a large amount of heat with a small temperature difference. It is called a heat pipe when the liquid is returned by a wick. A case where the return of the liquid is returned by gravity is referred to as a thermosyphon Collectively referred to as a heat pipe.

상기 열사이펀은 이론적으로 구리보다 유효 열전도율이 수천 배로 높기 때문에 단위면적당 발열량이 큰 전자장비 냉각이나, 친환경자동차의 고발열 전자 장비들의 냉각에 필요할 뿐만 아니라, 산업체의 설비 및 가정용 보일러 등에서 일부는 고온 폐열의 경우 회수 및 이용하고 있으나, 중저온 폐열의 경우 버려지고 있기 때문에 고효율 열교환기가 요구되고 있다.Since the thermal siphon is theoretically thousands times as high as copper in theory, it is necessary not only for cooling electronic equipment with a large calorific value per unit area but also for cooling high-temperature electronic equipment of an environmentally friendly automobile, However, since the waste heat is discarded in the case of low-temperature and low-temperature waste heat, a highly efficient heat exchanger is required.

그러나 기존의 열사이펀은 증발부의 가열부 표면과 유체의 거리에 따라 온도 및 밀도가 다르고 내부 작동 유체의 비등 메커니즘과 기-액 유동 등 복합적으로 작용하여 국부적인 열전달 특성을 변화시켜 증발부의 액체 풀(liquid pool)에서 기-액이 동반하여 응축부를 향해 유동 진동이 발생하여 안정화하는데 문제가 있어 시동이 느리고, 기화된 증기와 낙하한 액적(droplet)이 혼합되는 현상이 발생하는데, 이것은 가열부하 변화가 클수록 큰 영향을 받아 열전달 효율을 크게 감소하는 문제점이 있었다.However, the existing thermal siphon differs in temperature and density depending on the distance between the surface of the heating part of the evaporator and the fluid, and acts in combination with the boiling mechanism of the internal working fluid and the gas-liquid flow, thereby changing the local heat transfer characteristic, liquid vapor, and liquid droplets in the liquid pool due to the flow vibration toward the condenser due to the vapor-liquid, which causes a phenomenon that the start-up is slow and the vaporized vapor and the dropped droplets are mixed. There is a problem that the heat transfer efficiency is greatly reduced due to the large influence.

따라서 기존에 열사이펀 성능을 향상시키기 위한 연구에서 작동유체 및 형태에 따라 열사이펀을 일정한 경사각으로 유지했을 때 유동진동을 감소시키고 액막의 일부가 액적상태로 증기 유동장내로 흡입되는 현상을 감소시켜 열사이펀의 열전달 성능을 향상 시킬 수 있었다.In order to improve the thermal siphon performance, it is necessary to reduce the flow vibration when the thermal siphon is maintained at a constant inclination angle depending on the working fluid and the shape, and to reduce the phenomenon that part of the liquid film is sucked into the steam flow field in the droplet state, The heat transfer performance of the heat exchanger can be improved.

「조동현, 이종선, 경사 열사이폰 열교환기의 비등열전달 성능에 관한 연구, 한국산학기술학회논문지, Vol.6, No. 2, pp. 202-209, 2005"A Study on the Boiling Heat Transfer Performance of a Heat Exchanger with a Tube Heat Exchanger", Proceedings of the Korean Academy of Industrial Science and Technology, Vol.6, No. 2, pp. 202-209, 2005

K. S. Ong, W. L. Tong, J. S. Gan, N. Hisham, Axial temperature distribution and performance of R410a and water filled thermosyphon at various fill ratios and inclinations, Frontiers in Heat Pipes, 5-2, 2014」K. S. Ong, W. L. Tong, J. S. Gan, N. Hisham, Axial temperature distribution and performance of R410a and water filled thermosyphon at various fill ratios and inclinations, Frontiers in Heat Pipes, 5-2, 2014

그러나 최적의 경사각을 유지하더라도 비등열전달의 성능향상에는 한계가 있으며, 증발부 및 응축부에서 작동유체와 전열면의 접촉 면적이 한정되어 있기 때문에 이를 극복하기 위해 나노유체를 적용하여 열전달 성능을 향상시키기 연구가 진행되고 있다.However, even if the optimum inclination angle is maintained, there is a limit to enhancement of the boiling heat transfer performance. Since the contact area between the working fluid and the heat transfer surface is limited in the evaporator and the condenser, nanofluid is applied to improve the heat transfer performance Research is underway.

나노금속입자가 함유된 나노유체를 이용하여 열사이펀의 성능을 향상시키기 위한 선행기술로는 「특허공개 제10-2005-0017738호, 명칭/ 나노유체를 이용한 2상 유동 수직막대형 서모사이펀」이 개시되고 있다. As a prior art for improving the performance of a thermal siphon using a nanofluid containing nano metal particles is disclosed in Japanese Patent Application Laid-Open No. 10-2005-0017738 entitled " 2-phase Flow Vertical Barrier Thermosiphon Using Nanofluid " .

그러나 나노유체는 열전달 면적을 증가시키고 유효전도성 및 비등촉진 등의 성능향상을 예상하지만, 실제 열교환 시스템에서 나노입자들이 표면에 침착되어 비등열전달 계수가 감소하고, 나노분말의 침전과 뭉침 현상으로 인하여 향후 해결해야할 문제점으로 되고 있다.However, nanofluids increase the heat transfer area and expect the performance improvement such as effective conductivity and boiling promotion. However, due to the deposition of nanoparticles on the surface in actual heat exchange systems, the boiling heat transfer coefficient decreases and the precipitation and aggregation of nano powder It has become a problem to be solved.

「M.M. Sarafraz, F. Hormozi, S.M. Peyghambarzadeh, Role of nanofluid fouling on thermal performance of a thermosyphon: Are nanofluids reliable working fluid?, Applied Thermal Engineering 82, 212-224, 2015.&Quot; M.M. Sarafraz, F. Hormozi, S.M. Peyghambarzadeh, Role of nanofluid fouling on thermal performance of a thermosyphon: Are nanofluids reliable working fluid, Applied Thermal Engineering 82, 212-224, 2015.

김우중, 양용우, 김영훈, 박성식, 김남진, 나노유체에서 파울링 현상이 유동 비등 열전달에 미치는 영향에 대한 연구, 설비공학논문집 Vol.28, No.03, 95-102, 2016.」Kim Woo Joong, Yang Yong Kim, Young-Hoon Park, Sung Sik Park, and Kim Jin Nam, "Effects of Fouling Phenomenon on Nanofluid on Flow Boiling Heat Transfer, Mechanical Engineering Vol.28, No.03, 95-102, 2016."

본 발명의 주목적은 증발부 및 응축부에서 전열면적을 증가시켜 열전달 효율을 증가시키는데 있다.The main object of the present invention is to increase the heat transfer efficiency by increasing the heat transfer area in the evaporator and the condenser.

아울러, 본 발명의 다른 목적은 기화된 증기와 응축된 액적이 낙하하면서 증발부에서 기화된 증기와 혼합되는 것을 방지하는데 있다.Another object of the present invention is to prevent the vaporized vapor and the condensed droplets from mixing with the vaporized vapor in the vaporizing section.

또한, 본 발명의 다른 목적은 증발부에서 부하변동으로 인한 기-액의 유동진동을 방지하는데 있다.Another object of the present invention is to prevent flow vibration of gas-liquid due to load variation in the evaporator.

본 발명은 상기한 과제를 해결하기 위한 수단으로 열사이펀의 증발부에 상하 간격을 두고 다수의 곡면 다공판을 설치하여 전열면적을 확장시켜 열전달 효율을 증대함과 아울러 국부적 고열과열을 분산시키고, 기-액이 상층부로 유동됨을 방지하도록 하는 기술을 강구한다.In order to solve the above-mentioned problems, the present invention provides a heat siphon evaporation unit having a plurality of curved perforated plates spaced apart from each other by an upper and a lower spacing to enlarge a heat transfer area to increase heat transfer efficiency, disperse local superheating heat, - to prevent the liquid from flowing to the upper layer.

또한, 열사이펀의 응축부에 상하 간격을 두고 다수의 곡면 다공판을 설치하여 전열면적을 확장시켜 응축잠열을 높일 수 있도록 하는 기술을 강구한다.In addition, a technique for increasing the latent heat of condensation by expanding the heat transfer area by providing a plurality of curved perforated plates at upper and lower intervals in the condensation portion of the thermal siphon.

본 발명에 따르면, 증발부 및 응축부에 다수의 곡면 다공판이 설치됨으로써 동일 체적에서 전열면적이 확대되어 증발 및 응축잠열이 증가하고 열전달 효율을 증대시키는 효과가 있다.According to the present invention, since a plurality of curved perforated plates are provided in the evaporator and the condenser, the heat transfer area increases in the same volume, thereby increasing the latent heat of evaporation and condensation and increasing the heat transfer efficiency.

또한, 상기 증발부에서 곡면 다공판은 작동유체의 온도를 균일하게 하여 국부적 고열 과열을 분산시키고, 기-액이 상층부로 유동하여, 요동 진동을 방지함으로써 비교적 단시간에 안정화 되고 시동이 빠른 특징이 있다.In addition, the curved perforated plate in the evaporator is characterized in that the temperature of the working fluid is uniformized to disperse the local high temperature superheat, and the gas-liquid flows to the upper layer to prevent the oscillation vibration, thereby stabilizing in a relatively short time, .

아울러, 기화된 증기와 응축된 액적이 낙하하면서 증발부에서 기화된 증기와 혼합되어 열전달 효율을 감소하는 것을 방지할 수 있는 효과를 제공한다.Further, the vaporized vapor and the condensed droplet are mixed with the vapor vaporized in the vaporizing portion while falling, thereby preventing the heat transfer efficiency from being reduced.

도 1은 본 발명 열사이펀의 증기 및 액체의 흐름도
도 2는 본 발명 열사이펀의 내부구조를 나타낸 정단면도
도 3은 본 발명 곡면 다공판의 설치상태 평단면도
도 4는 본 발명 곡면 다공판의 평면도
1 is a flow diagram of the vapor and liquid of the thermal siphon of the present invention
2 is a front sectional view showing the internal structure of the heat siphon of the present invention
Fig. 3 is a plan view showing the installation state of the curved perforated plate of the present invention
4 is a plan view of a curved perforated plate of the present invention

본 발명이 해결하고자 하는 과제의 해결수단을 보다 구체적으로 구현하기 위한 바람직한 실시 예에 대하여 설명하기로 한다.Preferred embodiments of the present invention will now be described in more detail with reference to the accompanying drawings.

본 발명의 바람직한 실시 예에 따른 전체적인 구성을 첨부된 도면에 의거 개략적으로 살펴보면, 증발부(20), 단열부(30), 응축부(40), 다수의 곡면 다공판(50)의 구성요소로 대분됨을 확인할 수 있다.The overall structure according to a preferred embodiment of the present invention will be schematically described with reference to the accompanying drawings. The components of the evaporator 20, the heat insulating portion 30, the condenser 40, and the plurality of curved perforated plates 50 It can be confirmed that it is divided.

이하, 상기 개략적인 구성으로 이루어진 본 발명을 실시 용이하도록 좀더 상세하게 설명하기로 한다.Hereinafter, the present invention having the above-described schematic configuration will be described in more detail for facilitating the implementation.

본 발명은 열사이펀의 증발부(20) 및 응축부(40)의 전열면적을 확대하여 열전달 효율을 향상함을 특징적인 요지로 하는 것으로, 열전도성이 좋은 금속재 밀폐관(10)의 내부에 작동유체를 충전하고 진공상태로 밀봉 처리한 구조를 이루고 있다.The present invention is characterized in that the heat transfer area of the heat siphon evaporator (20) and the condenser (40) is enlarged to improve the heat transfer efficiency. The heat sink The fluid is filled and sealed in a vacuum state.

상기 밀폐관(10)은 증발부(20)와, 응축부(40)와, 상기 증발부(20)와 응축부(40)를 연결하는 단열부(30)로 구분되며 작동유체의 상변화를 통해 열원(Heat Source, 1)으로부터 방열부(Heat Sink)로 열을 전달하는 장치이다.The closed tube 10 is divided into an evaporator 20, a condenser 40 and a heat insulating portion 30 connecting the evaporator 20 and the condenser 40, Is a device for transferring heat from a heat source (1) to a heat sink.

밀폐관(10) 외벽을 통해 증발부(20) 내의 작동유체에 열이 가해지면 작동유체는 비등을 일으켜 기화시키고 기화된 작동유체는 응축부(40)의 증기보다 온도가 높으므로 온도차에 의해 유발되는 압력차로 단열부(30)를 거쳐 응축부(40)로 이송된다.When heat is applied to the working fluid in the evaporator 20 through the outer wall of the closed tube 10, the working fluid is boiled and vaporized. Since the vaporized working fluid has a temperature higher than that of the condenser 40, And is conveyed to the condensing section 40 through the heat insulating section 30 by the pressure difference.

상기 단열부(30)는 증발부(20)에서 기화한 작동유체가 응축부(40)로 이동할 때 내부로부터 열의 유출을 차단한다.The heat insulating portion 30 blocks the flow of heat from the inside when the working fluid vaporized in the evaporating portion 20 moves to the condensing portion 40.

그러나 단열부(30)는 증발부(20)와 응축부(40)의 사이의 거리가 짧은 경우에는 생략할 수 있다.However, the heat insulating portion 30 may be omitted if the distance between the evaporating portion 20 and the condensing portion 40 is short.

상기 응축부(40)로 이송된 증기는 밀폐관(10)의 응축부(40) 벽면에서 열을 방출하고 응축되어 중력에 의해 상기 밀폐관(10)의 내벽을 타고 상기 증발부(20) 쪽으로 귀환하며, 이러한 증발과 응축과정을 반복하면서 열전달이 이루어진다.The steam transferred to the condenser 40 discharges heat from the wall surface of the condenser 40 of the closed tube 10 and is condensed and flows toward the evaporator 20 through the inner wall of the closed tube 10 by gravity And the heat transfer is carried out by repeating this evaporation and condensation process.

상기 증발부(20)의 내주면에는 본 발명의 핵심기술인 다수의 다공판이 상하 간격을 두고 설치된다. 바람직하게는 상기 다공판은 일정한 곡률 반경을 가지는 곡면 다공판(50)으로 이루어진다.A plurality of perforated plates, which are the core technology of the present invention, are installed on the inner circumferential surface of the evaporator 20 at upper and lower intervals. Preferably, the perforated plate comprises a curved perforated plate 50 having a constant radius of curvature.

이러한 본 발명은 상기 열원(1)이 증발부(30)의 외측면을 가열하면 증발부(20)의 내벽 및 내측에 설치된 다수의 곡면 다공판(50)은 증발부 외벽의 열원으로부터 전도되어 증발면적이 확대되어 작동유체의 대류 열전달량이 증가하고, 균일하게 가열함으로써 증발효과를 크게 향상시킬 수 있다.When the heat source 1 heats the outer surface of the evaporator 30, the plurality of curved perforated plates 50 installed on the inner wall and the inner wall of the evaporator 20 are evacuated from the heat source on the outer wall of the evaporator, The area is enlarged to increase the convective heat transfer amount of the working fluid, and the evaporation effect can be greatly improved by heating uniformly.

또한, 상기 곡면 다공판(50)은 증발부(20)의 외표면에서 전도에 의해 열을 작동유체에 전달하여 대류면적의 증가로 국부적 고열과열을 방지함으로 액체 풀(60)에서 기-액이 동반하여 응축부를 향해 요동 진동하는 것을 방지할 수도 있게 된다.The curved perforated plate 50 transmits heat to the working fluid by conduction on the outer surface of the evaporator 20 to prevent localized high temperature overheating by increasing the convection area, Thereby making it possible to prevent oscillation oscillation toward the condensing portion.

그리고 상기 증발부(20)에서 기화된 증기는 단열부(30)를 지나 응축부(40)로 유입되고, 응축부(40)로 유입된 증기는 상대적으로 온도가 낮은 내벽에서 냉각되어 열을 방출하고 액체로 응축된다.The steam vaporized in the evaporator 20 flows into the condenser 40 through the heat insulating portion 30 and the vapor introduced into the condenser 40 is cooled in the inner wall having a relatively low temperature to discharge heat And condensed into liquid.

여기에서 상기 응축부(40)의 내주면에는 상하 간격을 두고 다수의 곡면 다공판(50a)이 설치되는 기술이 추가로 접목됨으로써 응축부(40)의 내면 및 다수의 곡면 다공판(50a)을 통과하면서 응측되는 과정에서 응축부(40)에 설치된 곡면 다공판(50a)은 응축 전열면적이 확대되어 응축수량이 증대되는 동시에 외주면에 대량의 열을 방열하는 특별한 효과를 제공한다.A plurality of curved perforated plates 50a are vertically spaced on the inner circumferential surface of the condenser 40 to further pass through the inner surface of the condenser 40 and the plurality of curved perforated plates 50a The curved perforated plate 50a provided in the condenser 40 in the course of being neglected provides a special effect of radiating a large amount of heat to the outer circumferential surface while increasing the condensed heat transfer area.

이와 같이 증발부(20) 및 응축부(40)에 설치되는 다수의 곡면 다공판(50)(50a)은 도 2 내지 도 4와 같이 상부 중앙으로 볼록한 곡면부(51)가 형성되고, 상기 곡면부(51)에는 다수의 증기홀(52)이 형성되며, 상기 곡면부(51)의 외주면에는 방사상으로 다수의 액체홀(53)이 등간격으로 관통 형성되고, 상기 액체홀(53)은 밀폐관(10)의 내면과 접하도록 설치된다.As shown in FIGS. 2 to 4, the plurality of curved perforated plates 50 and 50a provided in the evaporator 20 and the condenser 40 are formed with a curved surface portion 51 convex to the upper center, A plurality of vapor holes 52 are formed in the portion 51 and a plurality of liquid holes 53 are radially formed on the outer peripheral surface of the curved portion 51 at equal intervals, And is disposed so as to be in contact with the inner surface of the pipe (10).

액체홀(53)은 증기홀(52)에 비해 직경을 더 크게하여 응축부에서 증발부로 액체가 충분히 귀환할 수 있도록 하는 것이 바람직하다.It is preferable that the liquid hole 53 is made larger in diameter than the vapor hole 52 so that the liquid can sufficiently return from the condensing portion to the evaporating portion.

상기 곡면 다공판(50a)을 통과하면서 응측된 액체는 곡면부(51)를 따라 응축부(40)의 내벽으로 유도된 후 내벽을 따라 흘러내리면서 액체홀(53)을 통과하고, 순차적으로 단열부(30)를 지나 중력에 의해 증발부(20)로 회수될 수 있게 된다.The liquid that has passed through the curved perforated plate 50a is guided along the curved surface portion 51 to the inner wall of the condensing portion 40 and then flows down along the inner wall to pass through the liquid hole 53, And can be recovered to the evaporator 20 by gravity through the portion 30.

한편, 본 발명의 곡면 다공판(50)(50a)은 증기홀(52) 및 액체홀(53)이 상하 동일선상에 위치하지 않고, 도 2와 같이 상하방향으로 상호 교대로 반복하여 엇갈리게 배치됨으로써 기화된 증기와 응축된 액적이 낙하하면서 증발부(20)에서 기화된 증기와 혼합되는 것을 방지하고, 상기 증발부(20)에서 곡면 다공판(50)은 작동유체의 온도를 균일하게 하여 국부적 고열 과열을 분산시키며, 기-액이 상층부로 유동됨을 방지할 뿐만 아니라 요동 진동을 방지할 수 있는 특별한 효과를 제공한다.The curved perforated plates 50 and 50a of the present invention are arranged such that the vapor holes 52 and the liquid holes 53 are not located on the upper and lower collinear lines but are staggered alternately in the vertical direction as shown in FIG. The vaporized vapor and the condensed droplets are prevented from being mixed with the vapor vaporized in the evaporator 20 while falling, and the curved perforated plate 50 in the evaporator 20 uniformizes the temperature of the working fluid, Disperse the superheat, and prevent the oscillation of the gas-liquid to the upper layer, and also provide a special effect that can prevent oscillation vibration.

이러한 본 발명은 열사이펀에 곡면 다공판(50)(50a)을 설치함으로써 증발부(20) 내의 작동유체를 균일하게 가열하면서 유동·진동을 방지하고, 시간에 따른 온도 변화율이 빠르며, 증발 및 응축 잠열이 크기 때문에 효과적으로 대량 열 수송이 가능하다.In the present invention, by providing the curved perforated plate (50) (50a) on the heat siphon, the working fluid in the evaporator (20) is uniformly heated to prevent the flow and vibration, the rate of temperature change with time is fast, Due to its large latent heat, massive heat transfer is possible.

또한, 대류면적의 증가는 증발부에서 작동유체의 온도를 균일하게 함으로써 열원으로부터 가열되면 비교적 단시간에 안정화되고 시동이 빠른 특징이 있다.In addition, the increase of the convection area is characterized by the fact that the temperature of the working fluid in the evaporation part is made uniform, so that it is stabilized in a comparatively short time when the heat source is heated from the heat source and the start is quick.

1: 열원 10: 밀폐관
20: 증발부 30: 단열부
40: 응축부 50, 50a: 곡면 다공판
51: 곡면부 52: 증기홀
53: 액체홀 60: 액체풀
1: Heat source 10: Closed tube
20: evaporator 30:
40: condensing part 50, 50a: curved surface plate
51: curved portion 52: steam hole
53: liquid hole 60: liquid pool

Claims (8)

증발부 및 응축부를 포함하는 밀폐관으로 이루어진 열사이펀에 있어서,
상기 증발부 및 응축부를 통한 전열면적을 확대시키기 위하여 다수의 곡면 다공판이 상기 밀폐관의 증발부 및 응축부의 내주면에 결합되어 구성되되,
상기 다수의 곡면 다공판은 상기 증발부 및 상기 응축부 각각에 복수개가 상호 이격되어 설치되고,
또한, 상기 곡면 다공판은 상기 증발부로부터 상기 응축부를 향해 상부 중앙이 볼록한 곡면부를 포함하며,
한편, 상기 곡면부에는 증발부에서 기화된 증기가 이동하는 다수의 증기홀이 관통 형성되고, 상기 곡면부의 외주면에는 응축부에서 응축된 액체가 이동하는 다수의 반원 형상의 액체홀이 원주방향을 따라 등간격으로 관통 형성되며,
또한, 상기 증발부 및 응축부에 각각 이격되어 배치된 복수의 곡면 다공판은 증기홀 및 액체홀이 상하 동일 선상에 위치하지 않고, 상하방향으로 상호 교대로 반복하여 엇갈리게 배치되며,
또한, 상기 증기홀은 원형으로 형성되되 직경이 상기 액체홀의 직경보다 작은 것을 특징으로 하는 곡면 다공판을 구비한 열사이펀.
A thermal siphon comprising a closed tube including an evaporator and a condenser,
Wherein a plurality of curved perforated plates are coupled to the inner circumferential surface of the evaporator and the condenser of the closed tube in order to increase the heat transfer area through the evaporator and the condenser,
Wherein a plurality of the curved perforated plates are provided in each of the evaporator and the condenser so as to be spaced apart from each other,
Further, the curved perforated plate includes a curved surface portion whose upper center is convex from the evaporating portion toward the condensing portion,
A plurality of semi-circular liquid holes through which the liquid condensed in the condenser moves are formed in the circumferential surface of the curved surface portion along the circumferential direction. At regular intervals,
The plurality of curved perforated plates spaced apart from each other in the evaporator and the condenser may be arranged such that the vapor holes and the liquid holes are not located on the same vertical line but are alternately repeatedly alternately arranged in the vertical direction,
Further, the steam holes are formed in a circular shape, and their diameters are smaller than the diameter of the liquid holes.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020180059339A 2017-06-16 2018-05-25 Thermosyphon with curved perforated plate KR102005339B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/006197 WO2019225982A1 (en) 2017-06-16 2019-05-23 Thermosyphon having curved perforated plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170076802 2017-06-16
KR1020170076802 2017-06-16

Publications (2)

Publication Number Publication Date
KR20180137404A KR20180137404A (en) 2018-12-27
KR102005339B1 true KR102005339B1 (en) 2019-07-30

Family

ID=64953361

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180059339A KR102005339B1 (en) 2017-06-16 2018-05-25 Thermosyphon with curved perforated plate

Country Status (2)

Country Link
KR (1) KR102005339B1 (en)
WO (1) WO2019225982A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502741A (en) * 2021-06-15 2021-10-15 哈尔滨工业大学 Structure for inhibiting vortex-induced vibration of cylindrical structure
CN115245686B (en) * 2022-06-24 2023-07-04 安徽三禾化学科技有限公司 Purifying device for ethylene glycol phenyl ether production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313056A (en) * 2005-04-05 2006-11-16 Denso Corp Heat pipe, and exhaust heat recovery system using the same
JP2013242135A (en) * 2012-05-22 2013-12-05 Kojun Seimitsu Kogyo Kofun Yugenkoshi Heat pipe
JP2016023866A (en) * 2014-07-22 2016-02-08 株式会社フジクラ Loop type thermo-siphon

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190390A (en) * 1986-02-14 1987-08-20 Mitsubishi Electric Corp Heat transfer device
JPH08313178A (en) * 1995-05-19 1996-11-29 Mitsubishi Alum Co Ltd Evaporator for heat exchanger
KR20050017738A (en) * 2003-08-08 2005-02-23 이세용 Two-phase vertical bar Thermosyphon using Nano Fluid as working fluid
KR200387358Y1 (en) * 2005-03-10 2005-06-17 배민현 Dryer with electric heat pipe
KR20100098943A (en) * 2009-03-02 2010-09-10 충북대학교 산학협력단 Flat heat pipe having a foam stabilizing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313056A (en) * 2005-04-05 2006-11-16 Denso Corp Heat pipe, and exhaust heat recovery system using the same
JP2013242135A (en) * 2012-05-22 2013-12-05 Kojun Seimitsu Kogyo Kofun Yugenkoshi Heat pipe
JP2016023866A (en) * 2014-07-22 2016-02-08 株式会社フジクラ Loop type thermo-siphon

Also Published As

Publication number Publication date
WO2019225982A1 (en) 2019-11-28
KR20180137404A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
CN111642103B (en) High heat flux porous heat sink flow cooling device
US8353334B2 (en) Nano tube lattice wick system
US20190154353A1 (en) Heat pipe having a wick with a hybrid profile
JP4033699B2 (en) Loop thermosyphon and Stirling refrigerator
Zhao et al. Visualization study of flow boiling characteristics in open microchannels with different wettability
CN109612314A (en) Phase-change heat radiating device
WO1999050604A1 (en) Thermoelectric cooling device using heat pipe for conducting and radiating
KR102005339B1 (en) Thermosyphon with curved perforated plate
US20150308750A1 (en) Slug Pump Heat Pipe
He et al. Efficiency enhancement of a loop thermosyphon on a mixed-wettability evaporator surface
JP6285356B2 (en) Boiling cooler
US5795446A (en) Method and equipment for heat-of-vaporization transfer
Liu et al. Visualization and heat transfer comparative analysis of two phase closed thermosyphon
Zhang et al. Effect of key structure and working condition parameters on a compact flat-evaporator loop heat pipe for chip cooling of data centers
JP2011027321A (en) Loop type heat pipe and electronic device
WO2017110740A1 (en) Heat-dissipating device, phase-change cooling device in which same is used, and method for dissipating heat
JP2011196659A (en) Porous body, boil cooling device, boil cooling system, power generation system, and boil cooling method
CN101924321A (en) Micro-scale phase change cooling integrated system for side pump high-average power round-bar laser crystal
Vasiliev et al. Vapordynamic thermosyphon–heat transfer two-phase device for wide applications
JP2011142298A (en) Boiling cooler
US6437983B1 (en) Vapor chamber system for cooling mobile computing systems
RU2675977C1 (en) Method of transmitting heat and heat transferring device for its implementation
JPWO2017208558A1 (en) Heat exchanger
JP7444704B2 (en) Heat transfer member and cooling device having heat transfer member
KR20120042403A (en) Heat pipe and cooling apparatus having the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
A302 Request for accelerated examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant