JPH08313178A - Evaporator for heat exchanger - Google Patents

Evaporator for heat exchanger

Info

Publication number
JPH08313178A
JPH08313178A JP14419395A JP14419395A JPH08313178A JP H08313178 A JPH08313178 A JP H08313178A JP 14419395 A JP14419395 A JP 14419395A JP 14419395 A JP14419395 A JP 14419395A JP H08313178 A JPH08313178 A JP H08313178A
Authority
JP
Japan
Prior art keywords
evaporator
heat exchange
liquid return
perforated plate
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14419395A
Other languages
Japanese (ja)
Inventor
Minoru Suzuki
実 鈴木
Masakazu Nakanishi
正和 仲西
Kimiharu Yuyama
公春 湯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP14419395A priority Critical patent/JPH08313178A/en
Publication of JPH08313178A publication Critical patent/JPH08313178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE: To obtain a higher heat exchanging performance 10 a small heat exchanger by arranging a liquid return port below a porous plate with a liquid return pipe piercing the porous plate while a steam port is arranged above the porous plate. CONSTITUTION: A porous plate 10 is arranged at a position above the liquid level of a fluid 6 for heat exchange inside an evaporator 1 for a heat exchanger. A liquid return port 3a is arranged below the porous plate 10 and a steam port 2a is arranged above the porous plate 10. A liquid return area 7 is secured at a bottom surface part of the evaporator 1 to receive the fluid 6 for heat exchange and a distribution area 8 following the area 7. A number of ridges 5 having a clearance therebetween are arranged in another area and a number of grooves comprising clearances are made to communicate with the distribution area 8. This enables obtaining of higher heat exchanging performance even in a small heat exchanger.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱交換用流体の蒸発お
よび凝縮を伴って熱の交換が行われる熱交換器の蒸発器
に関するものであり、特にサイリスタ、パワートランジ
スタ等の電気部品の冷却に好適な小型の熱交換器用蒸発
器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaporator of a heat exchanger in which heat is exchanged by evaporating and condensing a heat exchange fluid, and more particularly to cooling electric parts such as thyristors and power transistors. The present invention relates to a small-sized evaporator for a heat exchanger suitable for.

【0002】[0002]

【従来の技術】サイリスタ、パワートランジスタ等の電
気部品は所定の回路に組み込まれて使用されるが、発熱
量が多く、そのままでは必要な性能が得られなかったり
劣化するため熱交換器等を用いた冷却が行われている。
ところで、これらの電気部品は、電機製品の小型化のた
め、各種部品を集積した基板上に設置されることが多
く、上記熱交換器も当然に小型で省スペースのものが必
要とされる。このため上記熱交換器の形状を工夫する手
段も講じられており、例えば、サイリスタ等の発熱体と
接触させる蒸発器を扁平な形状にし、高さ方向の寸法を
小さくすることによって熱交換器の小型化を図るととも
に他の部品等との干渉を避ける工夫がなされている。
2. Description of the Related Art Electric parts such as thyristors and power transistors are used by incorporating them in a predetermined circuit. However, since they generate a large amount of heat and the required performance cannot be obtained or deteriorates, the heat exchanger is used. The cooling was done.
By the way, these electric parts are often installed on a substrate on which various parts are integrated in order to miniaturize electric products, and naturally the heat exchanger is also required to be small and space-saving. Therefore, means for devising the shape of the heat exchanger is also taken, for example, by making the evaporator to be brought into contact with a heating element such as a thyristor into a flat shape and reducing the dimension in the height direction, It is designed to be compact and avoid interference with other parts.

【0003】この熱交換器20を図6に基づいて具体的
に説明すると、扁平形状を有する蒸発器21の外部下面
にサイリスタ等の発熱体22(被冷却部材)が密着して
取り付けられており、この蒸発器21には、凝縮器23
が蒸気管24と液戻し管25を介して連結されている。
蒸気管24の一端は蒸発器21の上面で開口して蒸気口
24aが設けられており、一方液戻し管25は蒸発器2
1の上面を貫通して、その先端が蒸発器21内に位置し
ており、該先端は開口して液戻し口25aが設けられて
いる。これら蒸発器21、蒸気管24、凝縮器23、液
戻し管25間を、液化または気化した熱交換用流体26
が熱交換を伴いながら循環している。
The heat exchanger 20 will be described in detail with reference to FIG. 6. A heat generating element 22 (member to be cooled) such as a thyristor is closely attached to the outer lower surface of an evaporator 21 having a flat shape. , This evaporator 21 has a condenser 23
Are connected via a vapor pipe 24 and a liquid return pipe 25.
One end of the vapor pipe 24 is opened at the upper surface of the evaporator 21 and is provided with a vapor port 24a, while the liquid return pipe 25 is provided in the evaporator 2.
1 penetrates the upper surface, the tip is located in the evaporator 21, and the tip is opened and a liquid return port 25a is provided. A liquefied or vaporized heat exchange fluid 26 is provided between the evaporator 21, the steam pipe 24, the condenser 23, and the liquid return pipe 25.
Circulates with heat exchange.

【0004】[0004]

【発明が解決しようとする課題】しかし前記した蒸発器
21では、扁平な形状を有することによって以下の問題
が生じている。第1に、蒸発器21内部の高さが低く、
熱交換用流体26の液面と蒸気口24aとが接近してい
るため、熱交換用流体26の沸騰に際し発生する飛沫
が、蒸気口24aや蒸気管24の内面に付着して蒸気の
流出や移動を妨げて蒸気流量を減少させたり、さらには
飛沫が凝縮器23にまで飛散し、凝縮器23の内面を覆
って蒸気の液化を妨げるなどして熱交換性能を著しく低
下させるという問題がある。第2には、蒸発器21の高
さが低いため内部に収容される熱交換流体液の深さが浅
く液の循環性が悪いため、液の熱が不均一になり、良好
な熱交換が行われないという問題がある。本発明は、上
記事情を背景としてなされたものであり、小型の熱交換
器においても良好な熱交換性能が得られる蒸発器を提供
することを目的とする。
However, the above-mentioned evaporator 21 has the following problems due to its flat shape. First, the height inside the evaporator 21 is low,
Since the liquid surface of the heat exchange fluid 26 and the steam port 24a are close to each other, the splashes generated during boiling of the heat exchange fluid 26 adhere to the steam port 24a and the inner surface of the steam pipe 24 to cause the outflow of steam or the like. There is a problem that the heat exchange performance is remarkably deteriorated by hindering the movement to reduce the flow rate of the vapor, and further, the splashes are scattered to the condenser 23 to cover the inner surface of the condenser 23 and prevent the liquefaction of the vapor. . Second, since the height of the evaporator 21 is low, the depth of the heat exchange fluid contained in the interior is shallow and the circulation of the fluid is poor, so that the heat of the fluid becomes non-uniform and good heat exchange is achieved. There is a problem that it is not done. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an evaporator that can obtain good heat exchange performance even in a small heat exchanger.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
本発明のうち、第1の発明は、液化した熱交換用流体を
液溜めして蒸発させる熱交換器用蒸発器において、その
内部であって液溜めされた熱交換用流体の液面より上方
の位置に、前記液面を覆う多孔板が配置されており、該
多孔板を液戻し管が貫通して多孔板の下方に液戻し口が
配置され、かつ多孔板の上方に蒸気口が配置されている
ことを特徴とする。
In order to solve the above-mentioned problems, the first aspect of the present invention is a heat exchanger evaporator for storing and evaporating a liquefied heat exchange fluid in a heat exchanger evaporator. A perforated plate that covers the liquid surface is disposed above the liquid surface of the heat exchange fluid that has been pooled, and a liquid return pipe penetrates the perforated plate and the liquid return port is located below the perforated plate. Is arranged, and the steam port is arranged above the perforated plate.

【0006】第2の発明の熱交換器蒸発器は、蒸発器底
面部に、液戻し口から戻る熱交換用流体を受ける液戻り
領域と、該液戻り領域に連続し前記流体を前記底面部の
他領域に分配する分配領域とが確保されており、前記他
領域の底面には、多数の突条が互いに間隙を有して並設
されており、前記間隙で構成される多数の溝が前記分配
領域に連通していることを特徴とする。
In the heat exchanger evaporator of the second invention, a liquid return region for receiving a heat exchange fluid returning from the liquid return port is provided on the bottom face part of the evaporator, and the fluid is continuous with the liquid return region to the bottom face part. A distribution area for distribution to other areas is secured, and on the bottom surface of the other area, a large number of protrusions are arranged in parallel with each other with a gap, and a large number of grooves formed by the gaps are formed. It is characterized in that it communicates with the distribution area.

【0007】なお、第1の発明における多孔板は、でき
るだけ液面の全面を覆うのが望ましい。また、液面は多
孔板を超えず、多孔板下面と接触するか所定の間隙を有
する必要があり、多孔板はこのような観点から液面と蒸
気口との間の適宜の位置に設置される。さらに多孔板の
板面に形成されている孔は、蒸気が円滑に上方に抜ける
とともに、飛沫ができるだけ通過しないものが望まし
く、これらの観点から孔の大きさや数や配置等が適宜選
定される。例えば、孔の大きさを2〜15mmにするの
が望ましく、また孔の開口率(多孔板全体に対する面積
比)で20〜50%とするのが望ましい。また、孔の形
状も特に限定されるものではなく、円形や四角形等の多
角形形状とすることができる。さらに多孔板は、上下に
間隔をおいて複数枚を配置してもよく、その場合、飛沫
の通過をより効果的に防止するため、上下の多孔板で孔
の位置をずらして配置するのが望ましい。
The porous plate in the first aspect of the invention preferably covers the entire liquid surface as much as possible. Further, the liquid surface should not contact the perforated plate and contact the lower surface of the perforated plate or have a predetermined gap.From this viewpoint, the perforated plate is installed at an appropriate position between the liquid surface and the vapor port. It Further, it is desirable that the holes formed on the plate surface of the perforated plate allow the vapor to smoothly flow upward and prevent splashes from passing through as much as possible. From these viewpoints, the size, number and arrangement of the holes are appropriately selected. For example, the size of the holes is preferably 2 to 15 mm, and the opening ratio of the holes (area ratio with respect to the whole perforated plate) is preferably 20 to 50%. Further, the shape of the hole is not particularly limited, and may be a polygonal shape such as a circle or a quadrangle. Further, a plurality of perforated plates may be arranged at intervals in the upper and lower sides. In that case, in order to prevent the passage of splashes more effectively, it is preferable to dispose the holes in the upper and lower perforated plates so that their positions are shifted. desirable.

【0008】また、第2の発明では、蒸発器の形状や液
戻し管の位置、形状等によって、液戻り領域および分配
領域の位置や形状、広さ等を適宜定めてこれら領域のた
めの空間を確保する。また、液戻しを、複数の液戻し管
や扁平な液戻し管等で広範囲に行う場合には、液戻り領
域と分配領域とを同一領域としたり、分配領域の一部を
液戻り領域に兼用させることも可能である。上記した液
戻り領域および分配領域の底部に位置する蒸発器底面は
液の移動が損なわれないように平滑面とするのが望まし
いが、液の流れに若干の方向性を与えるために、微小な
突条を設けることは可能である。
According to the second aspect of the invention, the position, shape, width, etc. of the liquid return region and the distribution region are appropriately determined according to the shape of the evaporator and the position, shape, etc. of the liquid return pipe, and the space for these regions is defined. Secure. Also, when liquid return is performed over a wide range with multiple liquid return pipes or flat liquid return pipes, the liquid return area and the distribution area may be the same area, or part of the distribution area may also be used as the liquid return area. It is also possible to let. It is desirable that the bottom surface of the evaporator located at the bottom of the liquid return region and the distribution region is a smooth surface so that the movement of the liquid is not impaired. It is possible to provide a ridge.

【0009】さらに、他領域に設けられる突条の数や間
隙、配置も特に限定されないが、その間隙で構成される
溝によって液化した熱交換用流体が蒸発器の全方向に一
様に拡がるように設定するのが望ましく、例えば、上記
他領域の長手方向に沿ってその全長に亘るように突条を
設けることができる。なお、上記突条は、液面下にある
場合は、その上端が液面にできるだけ近いのが望まし
く、さらには液面を超える高さを有するのが一層望まし
い。
Further, the number, gaps, and arrangement of the protrusions provided in the other regions are not particularly limited, but the heat exchange fluid liquefied by the grooves formed by the gaps spreads uniformly in all directions of the evaporator. It is desirable to set to, for example, a ridge can be provided so as to extend along the entire length of the other region in the longitudinal direction. When the ridge is below the liquid surface, the upper end thereof is preferably as close as possible to the liquid surface, and more preferably has a height exceeding the liquid surface.

【0010】また液戻り領域と分配領域を除く他領域の
一部には、突条を設けない交流領域を確保することも可
能であり、これにより液の交流が促進され、液の熱の均
一性が向上する。この交流領域は、前記した溝と連通さ
せるが、分配領域と連通している側とは異なる側の端部
で溝と連通させる他に、溝と溝との間に設けて、両側の
溝と連通させるようにしてもよい。このように溝と溝と
の間に設ける場合には、交流領域の一方側にある溝は、
交流領域を介し間接的に分配領域に連通することにな
る。なお、第1の発明と第2の発明とは組み合わせるこ
とも可能であり、この場合、第2の発明における突条に
多孔板を載置することによって多孔板を設置することが
可能になる。本発明の蒸発器は、前述したように発熱性
の電気部品等の冷却に用いる小型の熱交換器に好適であ
るが、本発明としては特に用途が限定されるものではな
く、また小型のものに限定されるものでもない。
In addition, it is possible to secure an alternating current region in which a ridge is not provided in a part of the other region except the liquid return region and the distribution region, which promotes the alternating current of the liquid and makes the heat of the liquid uniform. The property is improved. This AC region communicates with the above-mentioned groove, but in addition to communicating with the groove at the end on the side different from the side communicating with the distribution region, it is provided between the groove and the groove on both sides. You may make it connect. When provided between the grooves in this way, the groove on one side of the AC region is
It will communicate indirectly with the distribution area through the AC area. The first invention and the second invention can be combined, and in this case, the perforated plate can be installed by placing the perforated plate on the protrusion in the second invention. The evaporator of the present invention is suitable for a small heat exchanger used for cooling exothermic electric parts and the like as described above, but the present invention is not particularly limited in its application and is small. It is not limited to.

【0011】[0011]

【作用】すなわち、本発明のうち第1の発明によれば、
熱交換用流体の沸騰に伴って発生した飛沫は、多孔板で
上昇が阻止され、その後、液面に落下する。万一、飛沫
の一部が孔を通過しても、その勢いは孔の通過によって
失われており、蒸気口や蒸気管への飛散は阻止され、最
終的には孔から下方の液面に落下する。そして蒸発器で
沸騰して蒸気となった熱交換用流体は、飛沫によって移
動が阻害されることなく多孔板の孔を速やかに通過して
上昇し、多孔板の上方に位置する蒸気口から円滑に流出
する。この熱交換用流体は例えば蒸気管を通って凝縮器
に達し、ここで良好な熱交換がなされて液化する。液化
した熱交換用流体は例えば液戻し管を通り、多孔板を通
過して液戻し口から蒸発器に再度収容される。この際に
多孔板が液戻しを阻害することもない。上記したよう
に、熱交換用流体は、蒸発器を含む熱交換器内を、蒸発
や凝縮を伴いながら円滑に移動して良好な熱交換がなさ
れており、熱交換器全体において優れた熱交換性能が得
られている。
That is, according to the first aspect of the present invention,
The droplets generated by the boiling of the heat exchange fluid are prevented from rising by the perforated plate, and then fall onto the liquid surface. Even if some of the droplets pass through the hole, the momentum is lost due to the passage of the hole, and the splash to the steam port and steam pipe is blocked, and eventually the liquid drops from the hole to the liquid surface below. To fall. The heat exchange fluid that has boiled into steam in the evaporator quickly passes through the holes of the perforated plate and rises without being hindered from moving by the droplets, and then smoothly flows from the steam port located above the perforated plate. Spill to. This heat exchange fluid reaches the condenser through, for example, a steam pipe, where good heat exchange is performed and it is liquefied. The liquefied heat exchange fluid passes through the liquid return pipe, passes through the perforated plate, and is stored again in the evaporator through the liquid return port. At this time, the porous plate does not hinder the liquid return. As described above, the heat exchange fluid smoothly moves in the heat exchanger including the evaporator, accompanied by evaporation and condensation, and excellent heat exchange is performed, resulting in excellent heat exchange in the entire heat exchanger. Performance is obtained.

【0012】次に、第2の発明によれば、液化した熱交
換用流体は液戻り領域に戻され、これに連続する分配領
域に流れ込む。これらの液戻り領域および分配領域は、
蒸発器の底部全体に比較すれば、一部を占めているにす
ぎず、この領域内で熱交換用流体が均等に分散して熱の
均一化が図られる。そして分配領域には多数の溝が連通
しており、均一化された流体は分配領域に留まることな
く上記の多数の溝にほぼ均等に分配され、溝を通って他
領域に一様に流れ込む。また、交流領域が確保されてい
れば、一旦溝に流れ込んだ熱交換用流体が交流領域で混
合され、溝の配置によってはさらに多数の溝に分散して
流れ込む。これらの液の移動によって、液戻しされた熱
交換用流体は蒸発器の底部で一様に分散混合され、蒸発
器の底部全体で液の均一化が図られる。したがって、蒸
発器の底部全面で一様に熱交換がなされ、熱交換効率が
向上する。
Next, according to the second aspect of the invention, the liquefied heat exchange fluid is returned to the liquid return region and flows into the continuous distribution region. These liquid return and distribution areas are
It only occupies a part of the bottom of the evaporator, and the heat exchange fluid is evenly distributed in this region to make the heat uniform. A large number of grooves are in communication with the distribution area, and the homogenized fluid does not remain in the distribution area but is substantially evenly distributed to the large number of grooves and flows into the other areas through the grooves. Further, if the AC region is secured, the heat exchange fluid once flowing into the groove is mixed in the AC region, and depending on the arrangement of the grooves, the heat exchange fluid is dispersed and flows into a larger number of grooves. By the movement of these liquids, the returned liquid for heat exchange is uniformly dispersed and mixed at the bottom of the evaporator, and the liquid is made uniform throughout the bottom of the evaporator. Therefore, heat is uniformly exchanged on the entire bottom surface of the evaporator, and heat exchange efficiency is improved.

【0013】また、上記突条は、熱交換用流体と蒸発器
との接触面積を飛躍的に増大させ、熱交換性能をさらに
向上させる。また、この突条は、熱交換用流体の微少な
沸騰核の生成を促進するとともに、沸騰による粗大な気
泡の生成を防止して熱交換性能を一層向上させる。な
お、第2の発明と第1の発明とを組み合わることも可能
であり、この組み合わせによれば、第1および第2の発
明による作用に加え、上記突条によって比較的上方で生
じやすい飛沫が、多孔板の作用によって蒸気口等に飛散
するのを有効に防止することができる。
The ridges dramatically increase the contact area between the heat exchange fluid and the evaporator, and further improve the heat exchange performance. In addition, this ridge promotes the generation of minute boiling nuclei of the heat exchange fluid, and prevents the generation of coarse bubbles due to boiling to further improve the heat exchange performance. It is also possible to combine the second invention and the first invention. According to this combination, in addition to the effects of the first and second inventions, the droplets are liable to be generated relatively upward by the protrusion. However, it is possible to effectively prevent scattering to the steam port or the like due to the action of the perforated plate.

【0014】[0014]

【実施例】以下に本発明の一実施例を図1〜図3に基づ
き説明する。アルミニウム合金製の蒸発器1は、扁平で
密閉された箱形状からなり、その上面の一端部に蒸気管
2が連結され、上面中央部に液戻し管3が連結されてお
り、これら蒸気管2および液戻し管3の他端は凝縮器4
の両側部下方に連結されている。凝縮器4では、上記蒸
気管2と液戻し管3との間に凝縮部(図示しない)が設
けられており、蒸気管2から凝縮部および液戻し管3に
至るまで連通している。なお凝縮器4の外面には図示し
ない放熱フィンが設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The evaporator 1 made of an aluminum alloy has a flat and closed box shape, a steam pipe 2 is connected to one end of the upper surface thereof, and a liquid return pipe 3 is connected to the center of the upper surface thereof. And the other end of the liquid return pipe 3 is a condenser 4
Are connected to the lower sides of both sides. In the condenser 4, a condenser (not shown) is provided between the vapor pipe 2 and the liquid return pipe 3, and the vapor pipe 2 communicates with the condenser and the liquid return pipe 3. A radiator fin (not shown) is provided on the outer surface of the condenser 4.

【0015】上記した蒸発器1の内部底面には、水平長
手方向を基準とする中央帯域および両端帯域を除いて、
長手方向に沿って互いに所定の間隙を有する多数の突条
5…5が並設されており、それぞれの間隙によって溝5
aが構成されている。なお、該突条5…5は、蒸発器1
内に収容される液化熱交換流体6の液面を越えて突出す
る高さを有している。この実施例では上記突条5…5の
並設は、平板上に多数の突条5…5が一体に形成された
押出し型材を蒸発器1の底板として使用することによっ
て達成されている。なお、上記した蒸発器1の底面部に
おける中央帯域は面積の広い菱形状の中央部とその両側
に位置する幅の狭い帯状部とで構成されており、前記中
央部が液戻り領域7に割り当てられ、前記帯状部が分配
領域8に割り当てられている。また、上記両端帯域は交
流領域9に相当する。
On the inner bottom surface of the evaporator 1 described above, except for the central zone and both end zones based on the horizontal longitudinal direction,
A large number of ridges 5 ... 5 having predetermined gaps are arranged in parallel along the longitudinal direction, and the grooves 5 are formed by the respective gaps.
a is configured. The ridges 5 ... 5 correspond to the evaporator 1
The liquefied heat exchange fluid 6 accommodated therein has a height protruding beyond the liquid surface. In this embodiment, the protrusions 5 ... 5 are arranged side by side by using an extruded mold material having a large number of protrusions 5 ... 5 integrally formed on a flat plate as the bottom plate of the evaporator 1. The central zone on the bottom surface of the evaporator 1 is composed of a diamond-shaped central area having a wide area and narrow strip-shaped portions located on both sides thereof, and the central area is assigned to the liquid return region 7. And the strips are assigned to the distribution area 8. Further, the both end bands correspond to the alternating current region 9.

【0016】次に、上記突条5…5上には、蒸発器1内
の熱交換用流体6の全面を覆う多孔板10が載置、固定
されており、該多孔板10には多数の孔10a…10a
が等間隔で形成されており、該孔10aは、径が9mm
で、その開口率が多孔板10の全面積に対し、合計で2
5%になるように設定されている。なお、上記多孔板1
0の中央部には上方から液戻し管3が貫通しており、該
液戻し管3の先端に形成された液戻し口3aは、多孔板
10の下方であって液戻り領域7の上部に位置してい
る。また、前記した蒸気管2の先端は蒸発器1の上面に
位置しており、その先端に蒸気口2aが形成されてい
る。
Next, a perforated plate 10 covering the entire surface of the heat exchange fluid 6 in the evaporator 1 is placed and fixed on the projections 5 ... 5, and the perforated plate 10 has a large number of plates. Hole 10a ... 10a
Are formed at equal intervals, and the diameter of the holes 10a is 9 mm.
The total aperture ratio is 2 with respect to the total area of the porous plate 10.
It is set to be 5%. The porous plate 1
The liquid return pipe 3 penetrates from the upper part in the center of 0, and the liquid return port 3a formed at the tip of the liquid return pipe 3 is below the perforated plate 10 and above the liquid return region 7. positioned. The tip of the vapor pipe 2 is located on the upper surface of the evaporator 1, and the vapor port 2a is formed at the tip.

【0017】次に、上記蒸発器を用いた熱交換器の作用
について説明する。蒸発器1の内部には前記したように
液化した熱交換用流体6が収容されており、その液面
は、最大でも上記した突条5の上端よりも低い位置にあ
る。この蒸発器1の下面には被冷却部材となる発熱体1
1,11が取り付けられており、該発熱体11の熱は、
蒸発器1の底板をおよび突条5を通して熱交換用流体6
に伝達される。熱交換用流体6は、この熱によって沸
騰、蒸発し、その蒸気は多孔板10の孔10aを通過し
て蒸気口2aから流出する。この沸騰に際し発生する飛
沫は上記多孔板10で有効に阻止されており、蒸気は円
滑に流出する。蒸気は蒸気管2を通って凝縮器4の凝縮
部に流れ込み、ここで熱交換されて液化する。液化した
熱交換用流体は、液戻し管3に回収され、この管内を流
下して遂には液戻し口3aから液戻り領域7に戻され
る。
Next, the operation of the heat exchanger using the evaporator will be described. Inside the evaporator 1, the liquefied heat exchange fluid 6 is contained, and the liquid level thereof is at a position lower than the upper ends of the protrusions 5 described above at the maximum. On the lower surface of the evaporator 1, a heating element 1 to be a member to be cooled is formed.
1, 11 are attached, and the heat of the heating element 11 is
The heat exchange fluid 6 is passed through the bottom plate of the evaporator 1 and the ridges 5.
Is transmitted to The heat exchange fluid 6 boils and evaporates due to this heat, and the vapor thereof passes through the holes 10a of the perforated plate 10 and flows out from the vapor port 2a. The splashes generated during this boiling are effectively blocked by the perforated plate 10, and the steam flows out smoothly. The steam flows through the steam pipe 2 into the condensation section of the condenser 4, where it is heat-exchanged and liquefied. The liquefied heat exchange fluid is collected in the liquid return pipe 3, flows down in the pipe, and is finally returned from the liquid return port 3a to the liquid return region 7.

【0018】液戻り領域7に戻された熱交換用流体は、
液戻り領域7から分配領域8へと拡がり、これら領域で
既に収容されている熱交換用流体と混合される。さらに
熱交換用流体6は、分配領域8から多数の溝5aに流れ
込み、溝5aに沿って蒸発器1の底部全体に一様に拡散
し、液が均一化される。また、溝5a内を拡散する熱交
換用流体6は、遂には交流領域9に達し、この領域で他
の溝5a内を拡散してきた熱交換用流体と混合され、さ
らに均一化が促進される。このように蒸発器1では液の
均一化が定常的に行われており、熱交換が効率よく行わ
れ、さらに発熱体11からの伝熱によって熱交換用流体
の沸騰、蒸発が行われる。また、この沸騰に際し、突条
5は、粗大な気泡が発生して熱交換性能が低下するのを
防止する。
The heat exchange fluid returned to the liquid return area 7 is
It spreads from the liquid return area 7 to the distribution area 8 where it is mixed with the heat exchange fluid already contained. Further, the heat exchange fluid 6 flows from the distribution area 8 into the large number of grooves 5a, is uniformly diffused along the grooves 5a to the entire bottom of the evaporator 1, and the liquid is made uniform. Further, the heat exchange fluid 6 diffusing in the groove 5a finally reaches the AC region 9 and is mixed with the heat exchange fluid diffusing in the other groove 5a in this region, and further homogenization is promoted. . As described above, in the evaporator 1, the uniformization of the liquid is constantly performed, the heat exchange is efficiently performed, and the heat exchange fluid is boiled and evaporated by the heat transfer from the heating element 11. Further, during the boiling, the ridges 5 prevent the generation of coarse bubbles and the deterioration of the heat exchange performance.

【0019】なお、上記実施例では、本発明における第
1の発明と第2の発明とを組み合わせて説明したが、本
発明では、当然にいずれか一方を単独で採用してもよ
く、この場合にも熱交換性能が向上する効果が得られ
る。また、上記実施例では、蒸発器1の両側に交流領域
を設けたが、本発明としては交流領域を省略することも
可能であり、また、図4に示すように、溝の間に交流領
域12を確保することも可能である。さらに、上記実施
例では多孔板は1枚であったが、図5に示す多孔板1
3、14のように2枚以上の多孔板を使用してもよい。
なお、図5の実施例では、多孔板13の孔13aと多孔
板14の孔14aとを水平方向にずらすことによって飛
沫の通過をより効果的に防止している。
In the above embodiment, the first invention and the second invention of the present invention have been described in combination, however, in the present invention, naturally, either one may be adopted alone. Also, the effect of improving the heat exchange performance can be obtained. Further, in the above-mentioned embodiment, the AC region is provided on both sides of the evaporator 1. However, the AC region can be omitted in the present invention, and as shown in FIG. 4, the AC region is provided between the grooves. It is also possible to secure twelve. Further, although the number of the perforated plate is one in the above-mentioned embodiment, the perforated plate 1 shown in FIG.
You may use two or more perforated plates like 3 and 14.
In the embodiment of FIG. 5, the holes 13a of the perforated plate 13 and the holes 14a of the perforated plate 14 are horizontally displaced to more effectively prevent the passage of droplets.

【0020】次に、本発明の熱交換性能の向上効果を確
認するため、性能試験を行った。この試験では、上記実
施例の熱交換器(試験No.1、第1発明+第2発明)
と、突条を省略し多孔板のみを設けた熱交換器(試験N
o.2、第1発明)と、多孔板を省略した熱交換器(試
験No.3、第2発明)と、多孔板、突条ともに設けな
い従来の熱交換器(試験No.4、従来例)とを使用
し、前記発熱体に変えて蒸発器の下面に複数の熱伝導体
を介してダミー熱源を取り付け、蒸発器におけるダミー
熱源との接触部温度と、ダミー熱源からの熱の影響を受
けていない雰囲気温度との温度差(ΔT)を測定するこ
とによって熱交換性能を評価した。その結果を示すと以
下の通りである。 試験No. ΔT(℃) No.1 55 No.2 62 No.3 73.2 No.4 76.1 上記から明らかなように、本発明の実施例の蒸発器を用
いた熱交換器は、いずれも従来例に比べてダミー熱源が
良好に冷却されて上記温度差が小さくなっており、優れ
た冷却性能を有していることが示された。したがって、
本発明の採用によって、熱交換性能が大幅に向上してい
ることが確認された。
Next, in order to confirm the effect of improving the heat exchange performance of the present invention, a performance test was conducted. In this test, the heat exchanger of the above embodiment (test No. 1, first invention + second invention)
And a heat exchanger in which the ridges are omitted and only the perforated plate is provided (Test N
o. 2, first invention), a heat exchanger without a perforated plate (Test No. 3, second invention), and a conventional heat exchanger without a perforated plate and ridges (Test No. 4, conventional example). In place of the heating element, a dummy heat source is attached to the bottom surface of the evaporator through a plurality of heat conductors, and the contact temperature with the dummy heat source in the evaporator and the influence of heat from the dummy heat source are used. The heat exchange performance was evaluated by measuring the temperature difference (ΔT) from the ambient temperature. The results are as follows. Test No. ΔT (° C.) No. 1 55 No. 2 62 No. 3 73.2 No. 4 76.1 As is apparent from the above, any heat exchanger using the evaporator of the embodiment of the present invention is conventional. It was shown that the dummy heat source was cooled well and the above-mentioned temperature difference was small as compared with the example, and that it had excellent cooling performance. Therefore,
It was confirmed that the heat exchange performance was significantly improved by adopting the present invention.

【0021】[0021]

【発明の効果】以上説明したように、本発明のうち第1
の発明の熱交換器用蒸発器によれば、熱交換器用蒸発器
の内部であって液溜めされた熱交換用流体の液面より上
方の位置に、前記液面を覆う多孔板を配置し、これに液
戻し管を貫通させて多孔板の下方に液戻し口を配置し、
かつ多孔板の上方に蒸気口を配置したので、熱交換用流
体の沸騰に伴い発生する飛沫の悪影響を排除して熱交換
性能の低下を防止し、優れた熱交換性能を有する熱交換
器を得ることができる。
As described above, the first aspect of the present invention
According to the heat exchanger evaporator of the invention of the invention, a porous plate for covering the liquid surface is arranged at a position above the liquid surface of the heat exchange fluid stored in the evaporator for the heat exchanger, The liquid return pipe is pierced through this and the liquid return port is arranged below the perforated plate,
Moreover, since the steam port is arranged above the perforated plate, it is possible to eliminate the adverse effect of the droplets generated due to the boiling of the heat exchange fluid, prevent the deterioration of the heat exchange performance, and provide a heat exchanger with excellent heat exchange performance. Obtainable.

【0022】また、第2の発明の熱交換器用蒸発器によ
れば、蒸発器底面部に、液戻し口から戻る熱交換用流体
を受ける液戻り領域と、該液戻り領域に連続し前記流体
を前記底面部の他領域に分配する分配領域とを確保し、
前記他領域の底面に、互いに間隙を有する多数の突条を
並設し、前記間隙で構成される多数の溝を前記分配領域
に連通させたので、蒸発器内で熱交換用流体が均一化さ
れ、熱交換が良好になされる。また、突条によって伝熱
面積が大幅に増え、さらに熱交換性能が向上する。
Further, according to the evaporator for a heat exchanger of the second invention, a liquid return region for receiving the heat exchange fluid returning from the liquid return port is provided on the bottom face of the evaporator, and the fluid is continuous with the liquid return region. Securing a distribution area for distributing the other area of the bottom part,
On the bottom surface of the other area, a large number of ridges having gaps are arranged in parallel, and a large number of grooves formed by the gaps are communicated with the distribution area, so that the heat exchange fluid is made uniform in the evaporator. Good heat exchange. Moreover, the heat transfer area is greatly increased by the protrusions, and the heat exchange performance is further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例が適用された熱交換器の一
部を断面した正面図である。
FIG. 1 is a front view in which a part of a heat exchanger to which an embodiment of the present invention is applied is sectioned.

【図2】 同じく、一部を断面した側面図である。FIG. 2 is likewise a side view with a partial cross section.

【図3】 同じく、多孔板を省略した蒸発器の平面断面
図である。
FIG. 3 is likewise a plan sectional view of an evaporator in which a perforated plate is omitted.

【図4】 他の実施例の、多孔板を省略した蒸発器の平
面断面図である。
FIG. 4 is a plan sectional view of an evaporator of another embodiment in which a perforated plate is omitted.

【図5】 さらに他の実施例の蒸発器を示す側面断面図
である。
FIG. 5 is a side sectional view showing an evaporator of still another embodiment.

【図6】 従来の熱交換器を示す、一部を断面した正面
図である。
FIG. 6 is a partially sectional front view showing a conventional heat exchanger.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 蒸気管 2a 蒸気口 3 液戻し管 3a 液戻し口 4 凝縮器 5 突条 5a 溝 6 熱交換用流体 7 液戻り領域 8 分配領域 9 交流領域 10 多孔板 10a 孔 11 発熱体 12 交流領域 13 多孔板 13a 孔 14 多孔板 14a 孔 1 Evaporator 2 Steam Pipe 2a Steam Port 3 Liquid Return Pipe 3a Liquid Return Port 4 Condenser 5 Projection 5a Groove 6 Heat Exchange Fluid 7 Liquid Return Area 8 Distribution Area 9 AC Area 10 Perforated Plate 10a Hole 11 Heating Element 12 AC Region 13 Perforated Plate 13a Hole 14 Perforated Plate 14a Hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液化した熱交換用流体を液溜めして蒸発
させる熱交換器用蒸発器において、その内部であって液
溜めされた熱交換用流体の液面より上方の位置に、前記
液面を覆う多孔板が配置されており、該多孔板を液戻し
管が貫通して多孔板の下方に液戻し口が配置され、かつ
多孔板の上方に蒸気口が配置されていることを特徴とす
る熱交換器用蒸発器
1. An evaporator for a heat exchanger for storing and evaporating a liquefied heat exchange fluid, wherein the liquid level is provided inside the evaporator and above the liquid level of the stored heat exchange fluid. Characterized in that a perforated plate that covers the perforated plate is disposed, a liquid return pipe penetrates the perforated plate, a liquid return port is disposed below the perforated plate, and a vapor port is disposed above the perforated plate. Evaporator for heat exchanger
【請求項2】 蒸発器底面部に、液戻し口から戻る熱交
換用流体を受ける液戻り領域と、該液戻り領域に連続し
前記流体を前記底面部の他領域に分配する分配領域とが
確保されており、前記他領域の底面には、多数の突条が
互いに間隙を有して並設されており、前記間隙で構成さ
れる多数の溝が前記分配領域に連通していることを特徴
とする熱交換器用蒸発器
2. An evaporator bottom surface is provided with a liquid return region for receiving a heat exchange fluid returning from a liquid return port, and a distribution region continuous with the liquid return region for distributing the fluid to another region of the bottom surface portion. It is ensured that, on the bottom surface of the other area, a large number of ridges are arranged in parallel with each other with a gap, and a large number of grooves formed by the gap communicate with the distribution area. Characteristic evaporator for heat exchanger
JP14419395A 1995-05-19 1995-05-19 Evaporator for heat exchanger Pending JPH08313178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14419395A JPH08313178A (en) 1995-05-19 1995-05-19 Evaporator for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14419395A JPH08313178A (en) 1995-05-19 1995-05-19 Evaporator for heat exchanger

Publications (1)

Publication Number Publication Date
JPH08313178A true JPH08313178A (en) 1996-11-29

Family

ID=15356380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14419395A Pending JPH08313178A (en) 1995-05-19 1995-05-19 Evaporator for heat exchanger

Country Status (1)

Country Link
JP (1) JPH08313178A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431500B1 (en) * 2001-11-30 2004-05-17 주식회사 에이팩 Micro cooler device
KR100441782B1 (en) * 2001-11-15 2004-07-27 엘지전선 주식회사 Device For Transfering The Heat
KR100446620B1 (en) * 2001-12-14 2004-09-04 삼성전자주식회사 Heat transferring apparatus having thin evaporator
KR100497819B1 (en) * 2002-10-10 2005-07-01 주식회사 에이팩 Manufacture method and it's manufacture goods of micro cooler device
CN101894812A (en) * 2010-06-13 2010-11-24 华东理工大学 Evaporator for cooling chip and manufacture method thereof
JP2013026362A (en) * 2011-07-20 2013-02-04 Hitachi Ltd Electronic apparatus cooling device
JP2013504730A (en) * 2009-09-14 2013-02-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Heat exchange device with confined convection boiling and improved efficiency
JP2013055355A (en) * 2012-11-20 2013-03-21 Panasonic Corp Cooling device and electronic apparatus including the same
JP2013145069A (en) * 2012-01-13 2013-07-25 Panasonic Corp Cooling device, and electronic apparatus and electric vehicle equipped with the same
JP2013211506A (en) * 2011-09-22 2013-10-10 Panasonic Corp Cooling device, electric vehicle equipped with the same, and electronic apparatus equipped with the same
JP2013243277A (en) * 2012-05-22 2013-12-05 Fujitsu Ltd Heat generation element cooling device and cooling method and information equipment
JP5757086B2 (en) * 2008-10-29 2015-07-29 日本電気株式会社 COOLING STRUCTURE, ELECTRONIC DEVICE, AND COOLING METHOD
WO2016151805A1 (en) * 2015-03-25 2016-09-29 三菱電機株式会社 Cooler, power conversion device, and cooling system
WO2017203847A1 (en) * 2016-05-23 2017-11-30 パナソニックIpマネジメント株式会社 Cooling device, projector, and heat reception unit
US20180177077A1 (en) * 2015-09-03 2018-06-21 Fujitsu Limited Loop heat pipe and fabrication method therefor, and electronic device
KR20180137404A (en) * 2017-06-16 2018-12-27 에스디(주) Thermosyphon with curved perforated plate

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441782B1 (en) * 2001-11-15 2004-07-27 엘지전선 주식회사 Device For Transfering The Heat
KR100431500B1 (en) * 2001-11-30 2004-05-17 주식회사 에이팩 Micro cooler device
KR100446620B1 (en) * 2001-12-14 2004-09-04 삼성전자주식회사 Heat transferring apparatus having thin evaporator
KR100497819B1 (en) * 2002-10-10 2005-07-01 주식회사 에이팩 Manufacture method and it's manufacture goods of micro cooler device
JP5757086B2 (en) * 2008-10-29 2015-07-29 日本電気株式会社 COOLING STRUCTURE, ELECTRONIC DEVICE, AND COOLING METHOD
US9557117B2 (en) 2008-10-29 2017-01-31 Nec Corporation Cooling structure, electronic device using same, and cooling method
JP2013504730A (en) * 2009-09-14 2013-02-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Heat exchange device with confined convection boiling and improved efficiency
CN101894812A (en) * 2010-06-13 2010-11-24 华东理工大学 Evaporator for cooling chip and manufacture method thereof
JP2013026362A (en) * 2011-07-20 2013-02-04 Hitachi Ltd Electronic apparatus cooling device
JP2013211506A (en) * 2011-09-22 2013-10-10 Panasonic Corp Cooling device, electric vehicle equipped with the same, and electronic apparatus equipped with the same
JP2013145069A (en) * 2012-01-13 2013-07-25 Panasonic Corp Cooling device, and electronic apparatus and electric vehicle equipped with the same
JP2013243277A (en) * 2012-05-22 2013-12-05 Fujitsu Ltd Heat generation element cooling device and cooling method and information equipment
JP2013055355A (en) * 2012-11-20 2013-03-21 Panasonic Corp Cooling device and electronic apparatus including the same
WO2016151805A1 (en) * 2015-03-25 2016-09-29 三菱電機株式会社 Cooler, power conversion device, and cooling system
JPWO2016151805A1 (en) * 2015-03-25 2017-10-19 三菱電機株式会社 Cooler, power conversion device and cooling system
US20180177077A1 (en) * 2015-09-03 2018-06-21 Fujitsu Limited Loop heat pipe and fabrication method therefor, and electronic device
US10881021B2 (en) * 2015-09-03 2020-12-29 Fujitsu Limited Loop heat pipe and fabrication method therefor, and electronic device
US11536518B2 (en) 2015-09-03 2022-12-27 Fujitsu Limited Fabrication method for loop heat pipe
WO2017203847A1 (en) * 2016-05-23 2017-11-30 パナソニックIpマネジメント株式会社 Cooling device, projector, and heat reception unit
JPWO2017203847A1 (en) * 2016-05-23 2019-03-22 パナソニックIpマネジメント株式会社 Cooling device, projector, and heat receiving unit
KR20180137404A (en) * 2017-06-16 2018-12-27 에스디(주) Thermosyphon with curved perforated plate

Similar Documents

Publication Publication Date Title
JPH08313178A (en) Evaporator for heat exchanger
US6561262B1 (en) Boiling and cooling apparatus
JP3918502B2 (en) Boiling cooler
DE112006000645B4 (en) Systems for improved passive liquid cooling
CN105829821B (en) A kind of evaporation and absorptive unit
JPH02201999A (en) Cooling plane device for cooling electronic circuit parts
JPH1131768A (en) Boiling-cooling device
JP3305653B2 (en) Plate type evaporator and absorber of absorption refrigerator
CN214676229U (en) Thermosiphon radiator
WO2019142310A1 (en) Ebullient cooler
US4757370A (en) Circuit package cooling technique with liquid film spreading downward across package surface without separation
JP3093442B2 (en) Heat pipe type heat sink
JP2011196632A (en) Ebullient cooling device
JPH10256445A (en) Boiling and cooling device and its manufacture
CN114245861A (en) Air heat exchanger and method for its manufacture and electronic structure equipped with it
WO2022195719A1 (en) Boiling-type cooler
CN214676231U (en) Thermosiphon radiator
JP7299441B1 (en) boiling cooler
JP3956854B2 (en) Boiling cooler
JP2000156445A (en) Boiling cooling device
JP3969556B2 (en) Plate heat exchanger
CN113641231A (en) Cold drawing device and server
JP3085205U (en) Heat exchange equipment
JP2002206880A (en) Boiling cooler
JP3081984B2 (en) Absorption chiller / heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Effective date: 20050419

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050823