KR101999146B1 - Lithium-iron-manganese phosphate cathode active material composition, method for preparing the same and lithium secondary thin film battery using the same - Google Patents

Lithium-iron-manganese phosphate cathode active material composition, method for preparing the same and lithium secondary thin film battery using the same Download PDF

Info

Publication number
KR101999146B1
KR101999146B1 KR1020180034957A KR20180034957A KR101999146B1 KR 101999146 B1 KR101999146 B1 KR 101999146B1 KR 1020180034957 A KR1020180034957 A KR 1020180034957A KR 20180034957 A KR20180034957 A KR 20180034957A KR 101999146 B1 KR101999146 B1 KR 101999146B1
Authority
KR
South Korea
Prior art keywords
lithium
thin film
iron
manganese phosphate
active material
Prior art date
Application number
KR1020180034957A
Other languages
Korean (ko)
Inventor
최지원
김진상
강종윤
김성근
백승협
송현철
김상태
이현석
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020180034957A priority Critical patent/KR101999146B1/en
Application granted granted Critical
Publication of KR101999146B1 publication Critical patent/KR101999146B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Disclosed are an olivine-based lithium-iron-manganese phosphate compound positive electrode active material composition for a lithium thin film secondary battery, which is represented by LiFe_1-xMn_xPO_4 (0<x<0.5), a method for manufacturing the same, and a lithium thin film secondary battery using the same. Accordingly, a positive electrode active material having a high transmittance, a high operating voltage, a high capacity, and suitable for a transparent lithium thin film secondary battery can be provided.

Description

리튬-철-망간 인산화합물 양극 활물질 조성물, 그 제조 방법 및 이를 이용한 리튬 박막 이차전지{LITHIUM-IRON-MANGANESE PHOSPHATE CATHODE ACTIVE MATERIAL COMPOSITION, METHOD FOR PREPARING THE SAME AND LITHIUM SECONDARY THIN FILM BATTERY USING THE SAME}FIELD OF THE INVENTION [0001] The present invention relates to a lithium-iron-manganese phosphate compound, a lithium-iron-manganese phosphate compound, and a lithium secondary battery using the same.

본 명세서는, 리튬-철-망간 인산화합물 양극 활물질 조성물, 그 제조 방법 및 이를 이용한 리튬 이차전지, 특히 리튬 박막 이차 전지에 관한 것이다.TECHNICAL FIELD The present invention relates to a lithium-iron-manganese phosphate compound cathode active material composition, a method for producing the same, and a lithium secondary battery, particularly, a lithium thin film secondary battery using the same.

리튬 이차전지는 휴대폰, 태블릿 컴퓨터, 노트북, 카메라 등 소형기기의 휴대용 전원장치로 넓게 이용되고 있다. 이와 더불어, 최근에는 전기자동차 및 에너지 저장장치 등의 급속한 발전에 따라 높은 에너지 밀도 및 고출력 및 고안정성의 전극 물질에 대한 요구가 증가되고 있다. Lithium secondary batteries are widely used as portable power supplies for small-sized devices such as mobile phones, tablet computers, notebooks, and cameras. In addition, with the recent rapid development of electric vehicles and energy storage devices, demands for high energy density, high output, and high stability electrode materials are increasing.

현재 리튬 이차전지용 양극활 물질로는 LiCoO2, LiFePO4 양극 등이 사용되고 있는데, LiCoO2는 Co의 높은 가격, 인체에 대한 독성 및 폭발 위험성으로 이용에 제약이 되고 있다. At present, LiCoO 2 and LiFePO 4 anode are used as cathode active materials for lithium secondary batteries, and LiCoO 2 is restricted due to high cost of Co, toxicity to human body and explosion risk.

또한, LiFePO4는 값싼 원재료와 친환경적인 물질이지만 낮은 작동전압 등의 단점을 갖고 있다. 그럼에도 불구하고, 올리빈(Olivine) 구조를 갖는 LiFePO4는 우수한 안정성 및 고용량 재료로서, 기존 사용되는 LiCoO2 양극 재료를 대체할 수 있는 재료로 많은 관심을 받고 있다. In addition, LiFePO 4 is a cheap raw material and environmentally friendly material, but it has disadvantages such as low operating voltage. Nonetheless, LiFePO 4 with an olivine structure has excellent stability and high capacity as a conventional LiCoO 2 It is attracting much attention as a substitute material for cathode materials.

최근 LiFePO4와 같이 올리빈 구조를 갖는 LiMnPO4는 LiFePO4의 장점인 고안정성 및 고용량을 가질 뿐만 아니라 높은 작동전압(4.1V)으로 높은 에너지 밀도를 갖고 있어, 리튬 이차전지용 차세대 양극 재료로 활발하게 연구되고 있다. Recently LiMnPO 4 having an olivine structure of LiFePO 4, as it is not only has a high stability and high capacity benefits of LiFePO 4 has a high energy density and a high operating voltage (4.1V), for a lithium secondary battery positive electrode material to the next generation are actively Research.

그러나, LiMnPO4는 낮은 전기전도도 및 이온전도도를 갖고 있기 때문에 이론 용량을 발현하는데 문제가 있었다. However, since LiMnPO 4 has low electric conductivity and ion conductivity, there is a problem in expressing the theoretical capacity.

따라서, 최근 들어 LiMnPO4의 낮은 전기전도도 및 이온전도도를 극복하기 위하여 나노 입자화 및 입자에 탄소를 코팅하는 등 여러 방안으로 연구가 진행되었으며, 일부 Mn이 Fe로 치환된 LiFe1 - xMnxPO4/C 소재에 대한 연구도 진행되고 있다. Therefore, in order to overcome the low electrical conductivity and ionic conductivity of LiMnPO 4 , several studies have been carried out in order to overcome the problems of nanoparticle formation and carbon coating on particles. Some of the Li - Fe - 1 - x Mn x PO Research on 4 / C materials is underway.

그러나, 기존 기술의 경우, 탄소 등 전도성 소재의 사용을 전제로 하여 후막에 적용하기 위한 방법으로 합성이 어렵고 박막으로 적용하기 어렵다. However, in the case of the existing technology, it is difficult to synthesize it as a method for applying to a thick film on the premise of using a conductive material such as carbon, and it is difficult to apply it as a thin film.

따라서, 최근 웨어러블 기기나 초소형 마이크로 기기에서 요구되는 고 안정성, 고용량 등을 만족할 수 있는 리튬 이차 전지 양극 활물질의 개발이 요구된다. Therefore, it is required to develop a lithium secondary battery cathode active material capable of satisfying high stability and high capacity required in wearable devices and micro micro devices.

한국특허출원공개 제10-2016-0060856호Korean Patent Application Publication No. 10-2016-0060856

J. Mater. Chem., Vol 21, pp. 15813-15818 (2011)  J. Mater. Chem., Vol 21, pp. 15813-15818 (2011)

본 발명의 예시적인 구현예들에서는, 일측면에서, 탄소 등 전도성 소재의 코팅이 필요 없으면서도, 높은 작동 전압 및 고용량을 가지며, 합성이 간단하고 박막 이차 전지로 적용될 수 있는, 리튬-철-망간 인산화합물 양극 활물질 조성물, 그 제조 방법 및 이를 이용한 리튬 박막 이차 전지를 제공하는 것이다.Exemplary embodiments of the present invention provide, in one aspect, a lithium-iron-manganese battery having a high operating voltage and high capacity, which is simple to synthesize and can be applied as a thin film secondary battery, Phosphate compound, a process for producing the same, and a lithium thin film secondary battery using the same.

본 발명의 예시적인 구현예들에서는, 전도성 소재가 코팅되지 않은 리튬 박막 이차전지용 올리빈계 리튬-철-망간 인산화합물 양극 활물질 조성물로서, 하기 식으로 표시되는 리튬-철-망간 인산화합물 양극 활물질 조성물을 제공한다. In an exemplary embodiment of the present invention, there is provided an olivine lithium-iron-manganese phosphate compound cathode active material composition for a lithium thin film secondary battery in which a conductive material is not coated, wherein the cathode active material composition of lithium- to provide.

[화학식 1] [Chemical Formula 1]

LiFe1 - XMnXPO4 LiFe 1 - X Mn X PO 4

(상기 식에서, x는 0 < x < 0.5 의 범위이다.)(Wherein x is in the range of 0 < x < 0.5).

본 발명의 예시적인 구현예들에서는 또한, 상기 리튬-철-망간 인산화합물 양극 활물질 조성물의 제조 방법으로서, 연속 조성 확산법을 통하여 LiFe1 - XMnXPO4의 조성을 탐색하는 단계;를 포함하는 리튬-철-망간 인산화합물 양극 활물질 조성물의 제조 방법을 제공한다.Exemplary embodiments of the present invention also provide a method for preparing the lithium-iron-manganese phosphate compound cathode active material composition, comprising: searching for a composition of LiFe 1 - X Mn x PO 4 through a continuous diffusion method; - iron-manganese phosphate compound cathode active material composition.

본 발명의 예시적인 구현예들에서는 또한, 상기 리튬-철-망간 인산화합물 양극 활물질 조성물로 이루어진 양극 및 이를 포함하는 리튬 박막 이차 전지를 제공한다.Exemplary embodiments of the present invention also provide a positive electrode comprising the lithium-iron-manganese phosphate compound cathode active material composition and a lithium thin film secondary battery comprising the same.

본 발명의 예시적인 구현예에 따른 리튬-철-망간 인산화합물 양극 활물질 조성물 박막을 리튬 박막 이차전지의 양극재에 적용하는 경우, 기존 LiFePO4 조성보다 높은 작동전압을 제공하여 보다 높은 에너지 밀도의 리튬 박막 이차 전지를 얻을 수 있다. 또한, 올리빈 결정구조는 안정성이 높다. 또한, 탄소 등 전도성 소재의 사용이 없으므로 간편한 방법으로 박막으로 제작이 가능하다. 따라서, 최근 웨어러블 기기나 초소형 마이크로 기기에서 요구되는 고 안정성, 고용량 등을 만족할 수 있는 리튬 박막 이차 전지 양극 활물질로서 매우 유용하다. When a thin film of a lithium-iron-manganese phosphate compound cathode active material composition according to an exemplary embodiment of the present invention is applied to a cathode material of a lithium thin film secondary battery, a higher operating voltage is provided than a conventional LiFePO 4 composition, A thin film secondary battery can be obtained. In addition, the olivine crystal structure is highly stable. In addition, since there is no use of a conductive material such as carbon, it can be formed into a thin film by a simple method. Therefore, it is very useful as a cathode active material of a lithium thin film secondary battery which can satisfy high stability and high capacity required in wearable devices and micro micro devices in recent years.

도 1은 본 발명의 실시예에 따른, 연속조성확산법을 이용한 박막 제조 공정을 나타낸 개략도이다.
도 2는 본 발명의 실시예에 따른, 연속조성확산법을 위한 LiFePO4와 LiMnPO4의 단일 박막의 특성분석 결과를 나타내는 것이다.
도 3은 본 발명의 실시예에 따른, 연속조성확산법으로 증착된 올리빈계 리튬-철-망간 인산화합물 양극활물질 박막의 XRD 결과를 나타낸 것이다.
도 4는 본 발명의 실시예에 따른, 연속조성확산법을 통하여 증착된 올리빈계 리튬-철-망간 인산화합물 양극활물질 박막의 위치별 충방전 특성을 나타낸다.
도 5는 본 발명의 실시예에 따른, 연속조성확산법을 통하여 증착된 올리빈계 리튬-철-망간 인산화합물 양극활물질 박막의 조성 분석 결과를 나타낸 것이다.
도 6은 본 발명의 실시예에 따른, 코인셀 제작을 위해 합성된 올리빈계 리튬-철-망간 인산화합물 양극활물질 분말의 XRD 결과를 나타낸 것이다.
도 7은 본 발명의 실시예에 따른, 연속조성확산법을 통하여 탐색한 LiFe0.77Mn0.23PO4조성과 기존 LiFePO4조성 분말을 사용하여 제작한 코인셀의 충방전 특성을 나타낸다.
FIG. 1 is a schematic view showing a thin film manufacturing process using a continuous composition diffusion method according to an embodiment of the present invention.
FIG. 2 is a graph showing a characteristic analysis result of a single thin film of LiFePO 4 and LiMnPO 4 for a continuous composition diffusion method according to an embodiment of the present invention.
3 shows the XRD results of the olivine-based lithium-iron-manganese phosphate compound cathode active material thin film deposited by the continuous diffusion method according to the embodiment of the present invention.
FIG. 4 shows charge / discharge characteristics of the olivine-based lithium-iron-manganese phosphate compound cathode active material thin film deposited through the continuous diffusion method according to an embodiment of the present invention.
FIG. 5 is a graph showing the compositional analysis results of a cathode active material layer of an olivine-based lithium-iron-manganese phosphate compound deposited by a continuous diffusion method according to an embodiment of the present invention.
6 shows the XRD results of an olivine-based lithium-iron-manganese phosphate compound cathode active material powder synthesized for coin cell fabrication, according to an embodiment of the present invention.
FIG. 7 shows charge / discharge characteristics of a coin cell fabricated using the LiFe 0.77 Mn 0.23 PO 4 composition and the conventional LiFePO 4 composition powder, which were searched through the continuous diffusion method, according to an embodiment of the present invention.

이하, 첨부한 도면을 참조하여 본 발명의 예시적인 구현예들을 상세히 설명한다. Exemplary implementations of the present invention will now be described in detail with reference to the accompanying drawings.

본 명세서에서 용어 '연속조성 확산법'이란 탐색하려는 조성물을 예컨대 90° 수직 대향된 독립된 건(gun)을 이용하여 동시에 스퍼터링 함으로써 하나의 기판 위에 위치에 따라 연속적으로 다른 조성을 갖는 박막을 증착하여 우수한 특성을 갖는 화합물 조성을 단시간 내에 탐색할 수 있는 방법이다. The term &quot; continuous compositional diffusion method &quot; as used herein refers to a method of continuously depositing a thin film having different compositions continuously on a substrate by simultaneously sputtering the composition to be sought using, for example, a 90 DEG vertically opposed independent gun, Is a method capable of searching for the composition of the compound having a small amount of hydrogen in a short time.

본 명세서에서 박막 이차 전지란 양극/전해질/음극의 모든 구성요소가 고체 상태로 이루어져 있는 이차 전지이다. 이는 CVD, PVD 등의 증착 방법을 통하여 얇은 기판상에 수 마이크론(㎛) 내외의 두께로 제조될 수 있다.In the present specification, the thin film secondary battery is a secondary battery in which all components of the anode / electrolyte / cathode are in a solid state. It can be manufactured to a thickness of several microns (탆) on a thin substrate through a CVD or PVD deposition method.

본 발명의 예시적인 구현예들에서는, 탄소와 같은 전도성 물질을 사용하지 못하는 박막 이차 전지 등 응용 분야에서 LiFePO4의 Mn의 치환량에 따른 최적조성을 탐색하고자 하였다. In the exemplary embodiments of the present invention, the optimum composition of LiFePO 4 according to the substitution amount of Mn was investigated in applications such as thin film secondary batteries which can not use a conductive material such as carbon.

구체적으로, 탄소 등 전도성 소재의 코팅 없이, LiFePO4의 양극 활물질 박막의 Fe 자리에 Mn을 연속조성확산법으로 치환시킨 뒤, 전체 조성에 대하여 전기화학적 특성 분석을 실시하였으며, 그 중 탄소 등 전도성 소재가 코팅되지 않으면서, 높은 작동전압과 높은 용량을 갖는 조성을 확인하였다. Specifically, after the substitution of Mn for the Fe sites of the LiFePO 4 cathode without a conductive material such as carbon by the continuous diffusion method, electrochemical characterization of the whole composition was carried out. Of these, conductive materials such as carbon Without coating, a composition with high operating voltage and high capacity was identified.

이와 같이 연속조성 확산법에 의해 LiFePO4 양극 활물질 박막에서 Fe에 Mn을 치환하여, 기존에 알려져 있는 조성과 다른 조성에서 고전압, 고용량 특성을 나타내는 새로운 양극 활물질 박막의 최적 조성을 발견할 수 있었다.In this way, it was found that the optimal composition of the cathode active material thin film exhibiting the high voltage and high capacity characteristics in the composition different from the known composition by replacing Mn in Fe in the LiFePO 4 cathode active material thin film by the continuous composition diffusion method.

구체적으로, 본 발명의 예시적인 구현예들에서는, 전도성소재가 코팅되지 않은 리튬 박막 이차전지용 올리빈계 리튬-철-망간 인산화합물 양극 활물질 조성물로서, 하기 식으로 표시되는 리튬-철-망간 인산화합물 양극 활물질 조성물 및 이를 이용한 리튬 박막 이차전지를 제공한다.Specifically, in exemplary embodiments of the present invention, an olivine lithium-iron-manganese phosphate compound cathode active material composition for a lithium thin film secondary battery in which a conductive material is not coated is characterized by comprising a lithium-iron-manganese phosphate compound anode An active material composition and a lithium thin film secondary battery using the same are provided.

[화학식 1] [Chemical Formula 1]

LiFe1 - XMnXPO4 LiFe 1 - X Mn X PO 4

(상기 식에서, x는 0 < x < 0.5 의 범위 또는 0.01 ≤x < 0.5 의 범위, 바람직하게는 0.01 ≤x≤ 0.23 이다.) (Wherein x is in the range of 0 < x < 0.5 or 0.01 < x &lt; 0.5, preferably 0.01 &

Mn으로 치환함으로 인해서 전압과 용량의 증가가 시작된다. 아래 포지션(Position) 1이 도 4b로부터 확인할 수 있듯이, Mn 첨가의 경우 x=0인 LiFePO4보다 용량 및 작동 전압이 높으며 포지션 2(x=0.23)에서 최적의 조성이 되는 값이 나타난다. 그러나, x=0.5를 넘는 범위에서는 용량 감소가 현저하게 일어나므로 x는 0.5 미만으로 해야 한다.The substitution with Mn starts to increase the voltage and capacity. As can be seen from FIG. 4b below, the Mn addition exhibits a higher capacity and operating voltage than LiFePO 4 with x = 0 and an optimal composition at position 2 (x = 0.23). However, in the range exceeding x = 0.5, the capacity decrease remarkably occurs, so x should be less than 0.5.

예시적인 일 구현예에서, 양극 활물질 박막의 두께는 0.5~10㎛이다. 0.5 ㎛미만인 경우 너무 작은 용량을 갖게 되며, 10㎛를 넘는 경우에는 두께의 증가로 인한 리튬의 탈 삽입 반응 효율 감소로 충방전 용량이 감소하게 될 수 있다.
예시적인 일 구현예에서, 상기 양극 박막은 투명 양극 박막일 수 있다.
In an exemplary embodiment, the thickness of the cathode active material film is 0.5 to 10 占 퐉. If the thickness is less than 0.5 탆, the capacity is too small. If the thickness is more than 10 탆, the charge / discharge capacity may be decreased due to the reduction in the efficiency of lithium insertion and extraction due to the increase in thickness.
In an exemplary embodiment, the anode thin film may be a transparent anode thin film.

전술한 LiFe1 - xMnxPO4 (0 < x < 0.5 ) 양극 활물질 조성물 박막은 기존 LiFePO4 조성보다 높은 작동 전압을 제공하여 보다 높은 에너지 밀도의 리튬 박막 이차전지를 얻을 수 있다.The LiFe 1 - x Mn x PO 4 (0 < x < 0.5) cathode active material composition thin film described above provides a higher operating voltage than that of the conventional LiFePO 4 composition, so that a lithium thin film secondary battery having a higher energy density can be obtained.

따라서, 본 발명의 예시적인 구현예들의 올리빈계 리튬-철-망간 인산화합물 조성물은 특히 리튬 박막 이차전지의 양극 활물질로 매우 유용하며, 웨어러블 기기나 초소형 마이크로 기기 등에 적합하게 사용될 수 있다.Therefore, the olivine-based lithium-iron-manganese phosphate compound composition of the exemplary embodiments of the present invention is particularly useful as a cathode active material of a lithium thin film secondary battery, and can be suitably used for a wearable device or a microelectronic device.

이하의 본 발명의 예시적인 구현예들을 실시예를 통하여 더욱 상세하게 설명된다. 본 발명의 실시예들은 단지 설명을 위한 목적으로 예시된 것으로서, 본 발명의 실시예들은 다양한 형태로 실시될 수 있으며 본 발명이 실시예들에 한정되는 것으로 해석되어서는 안 된다. The following illustrative embodiments of the invention are described in further detail by way of example. The embodiments of the present invention are illustrated for illustrative purposes only and the embodiments of the present invention can be implemented in various forms and the present invention should not be construed as being limited to the embodiments.

<실시예><Examples>

탄소와 같은 전도성 물질을 사용하지 않고 Mn으로 치환된 LiFePO4 박막의 전기화학적 특성을 효과적으로 평가하기 위해 연속조성확산법을 이용하여 하나의 기판 위에 Mn:Fe 비에 따른 전 조성을 연속적으로 증착시켜 특성평가를 수행하였다. In order to evaluate the electrochemical properties of LiFePO 4 thin films substituted with Mn without using a conductive material such as carbon, the continuous composition diffusion method was used to continuously deposit the entire composition according to the ratio of Mn: Fe on one substrate, Respectively.

도 1은 본 발명의 실시예에 따른, 연속조성확산법을 이용한 박막 제조 공정을 나타낸 그림이다.1 is a view illustrating a thin film manufacturing process using a continuous diffusion method according to an embodiment of the present invention.

도 1에 도시된 바와 같이, 먼저 스퍼터 건의 방향이 기판에 90°로 배열된 오프-엑시스(off-axis) 연속조성확산법에 의해 양쪽 RF-마그네트론 건(magnetron gun)에 올리빈 계인 LiFePO4 타겟과 LiMnPO4 타겟을 장착하여 조성 탐색을 진행하였다.As shown in FIG. 1, first, an RF-magnetron gun was charged with an olivine-based LiFePO 4 target and a LiFePO 4 target by an off-axis continuous composition diffusion method in which the direction of the sputter gun was arranged at 90 ° to the substrate LiMnPO 4 target was used for the composition search.

도 2는 본 발명의 실시예에 따른, 연속조성확산법을 위한 LiFePO4와 LiMnPO4의 단일 박막의 특성분석 결과를 나타내는 것이다.FIG. 2 is a graph showing a characteristic analysis result of a single thin film of LiFePO 4 and LiMnPO 4 for a continuous composition diffusion method according to an embodiment of the present invention.

연속조성확산법을 이용하여 조성 탐색을 진행하기 위해서는 양쪽의 독립된 타겟의 최적 조건을 잡는 것이 중요하다. 따라서 각각의 독립된 단일조성으로 선행 실험을 진행하였고, 도 2와 같이 양쪽 각각의 타겟으로 증착한 박막의 특성 분석을 진행하였다. In order to proceed with the composition search using the continuous diffusion method, it is important to optimize the conditions of the two independent targets. Therefore, the preceding experiment was carried out with each independent single composition. As shown in FIG. 2, the characteristics of the thin films deposited on both targets were analyzed.

LiFePO4의 경우 X선 회절분석과 충방전 실험을 통하여 최적 증착 조건을 확립하였고, 같은 방법으로 LiMnPO4 타겟을 이용하여 실험을 진행하였다.In the case of LiFePO 4 , optimal deposition conditions were established through X-ray diffraction analysis and charge / discharge experiments, and the experiment was conducted using the LiMnPO 4 target in the same manner.

LiMnPO4 단일 박막의 X선 회절분석 결과, 도 2에서 볼 수 있듯이, JCPDS에서 찾은 LiMnPO4의 peak과 일치하는 단일상을 얻을 수 있었으며, 충방전 결과 5 ㎂h/㎠ 방전용을 갖는 것을 확인할 수 있었다. 이는 탄소가 코팅되지 않은 LiMnPO4의 기존 연구 문헌들과 비슷한 값이다(비특허문헌 1).As can be seen from FIG. 2, the X-ray diffraction analysis of the LiMnPO 4 single thin film showed a single phase consistent with the peak of LiMnPO 4 found in the JCPDS, and it was confirmed that the charging and discharging had a discharge of 5 hh / cm 2 there was. This value is similar to that of the existing research literature of LiMnPO 4 not coated with carbon (Non-Patent Document 1).

LiFePO4 타겟과 LiMnPO4 타겟에 각각 160 W와 120 W의 파워를 인가해준 상태에서, 상온의 기판 위에 1 시간 동안 스퍼터링을 통해 박막을 증착하였다. LiFePO 4 Target and LiMnPO 4 A thin film was deposited on the substrate at room temperature for 1 hour by sputtering with a power of 160 W and 120 W applied to the target, respectively.

증착 분위기는 선행실험에서 찾은 최적 증착 조건과 같이 아르곤 가스를 이용하여 챔버의 분압 5 mTorr에서 증착을 진행하였다. 박막의 결정화를 위해 증착 후 분위기 로를 이용하여 500℃ 환원 분위기에서 2시간 유지를 시켜 결정화를 진행하였다. As for the deposition conditions, deposition was performed at a partial pressure of 5 mTorr of the chamber using argon gas as in the optimum deposition conditions found in the preceding experiments. For crystallization of the thin film, crystallization was carried out by keeping in a reducing atmosphere of 500 캜 for 2 hours using an atmosphere furnace after the deposition.

도 3은 본 발명의 실시예에 따른, 연속조성확산법으로 증착된 올리빈계 리튬-철-망간 인산화합물 양극활 물질 박막의 XRD 결과를 나타낸 것이다.FIG. 3 shows XRD results of an olivine-based lithium-iron-manganese phosphate compound cathode active material thin film deposited by a continuous diffusion method according to an embodiment of the present invention.

도 3에서 볼 수 있듯이, 후 열처리를 통하여 결정화 된 박막의 결정성을 확인하기 위해 X선 회절 분석을 한 결과, 올리빈 구조의 X선 회절 패턴을 확인할 수 있었다. As can be seen from FIG. 3, X-ray diffraction analysis was performed to confirm the crystallinity of the thin film crystallized through the post-heat treatment, and the X-ray diffraction pattern of the olivine structure was confirmed.

이는 JCPDS에서 찾은 LiMnPO4 peak과 일치하였고, 이차상이 존재하지 않는 것을 확인하였다. 또한, LiMnPO4 타겟에 가까운 샘플의 경우 철에서 망간으로 치환되는 양이 많아짐에 따라 주 peak들이 low angle로 이동하는 것을 확인할 수 있었다.This was consistent with the LiMnPO 4 peak found in JCPDS and confirmed that no secondary phase was present. Also, LiMnPO 4 As the amount of iron to manganese substitution increased, the main peaks shifted to low angle.

X선 회절 분석을 통하여 결정성이 확인된 박막을 WBCS3000 충방전 장비로 전기화학적 특성 평가를 진행하였다.X - ray diffraction analysis confirmed the crystallinity of the thin films.

도 4는 본 발명의 실시예에 따른 연속조성확산법을 통하여 증착된 올리빈계 리튬-철-망간 인산화합물 양극 활물질 박막의 위치별 충방전 특성 즉, 전압 특성(도 4a) 및 용량 특성(도 4b)을 나타낸다.FIG. 4 is a graph showing the charge-discharge characteristics (FIG. 4A) and the capacity characteristics (FIG. 4B) of the lithium-iron-manganese phosphate compound cathode active material deposited by the continuous diffusion method according to the present invention, .

도 4에서 나타낸 바와 같이, 각각의 증착된 위치 별로 충방전 특성을 평가한 결과, 망간의 양이 늘어감에 따라, 방전용량이 증가하다가 포지션 2(Positon 2) 이 후부터는 용량이 감소하는 것을 확인하였다. 또한, 포지션 5 이후에 용량 감소가 현저하였다. As shown in FIG. 4, charging and discharging characteristics were evaluated for each deposited position. As a result, as the amount of manganese increased, the discharge capacity increased and the capacity decreased after Positon 2 . In addition, the capacity decrease after position 5 was remarkable.

각 포지션에 대한 x값은 포지션 1은 x=0.11, 포지션 2는 x=0.23, 포지션 3은 x=0.38, 포지션 4는 x=0.49, 포지션 5는 x=0.57, 포지션 6은 x=0.65이다. The x value for each position is x = 0.11 for position 1, x = 0.23 for position 2, x = 0.38 for position 3, x = 0.49 for position 4, x = 0.57 for position 5 and x = 0.65 for position 6.

따라서, LiFe1 - xMnxPO4 에서, x는 0 < x < 0.5 의 범위 또는 0.01 ≤x < 0.5, 바람직하게는 0.01 ≤x≤ 0.23 이다. Therefore, in LiFe 1 - x Mn x PO 4 , x is in the range of 0 < x < 0.5 or 0.01 < x &lt; 0.5, preferably 0.01 &

이는 망간이 전위차 증가를 생성시켜 작동전압을 향상시키지만 일정량 이상 치환될 경우 망간의 낮은 이온전도도의 영향으로 오히려 용량감소가 발생 된 것을 보여준다. This shows that manganese improves the operating voltage by increasing the potential difference, but when it is replaced by more than a certain amount, the capacity decrease is caused by the low ion conductivity of manganese.

따라서 포지션(Position 2)에 증착된 조성이 연속조성확산법으로 확인한 다양한 조성 가운데 가장 우수한 전기화학적 특성을 갖고 있는 것을 확인하였고, 기존 LiFePO4보다도 높은 방전용량을 갖고 있는 것을 확인하였다. Therefore, it was confirmed that the composition deposited at the position (Position 2) had the best electrochemical characteristics among the various compositions determined by the continuous diffusion method, and it was confirmed that the LiFePO 4 had higher discharge capacity than the LiFePO 4 .

포지션(Position 2)에 증착된 양극 활물질의 두께가 1 μm일 때, 27.8 ㎂h/㎠ 방전용량을 갖는 것을 확인할 수 있었으며, 망간의 영향으로 LiFePO4보다 상대적으로 높은 작동전압을 갖는 것도 확인할 수 있었다. It was confirmed that the cathode active material deposited at the position 2 had a discharge capacity of 27.8 hh / cm 2 when the thickness was 1 탆, and it was confirmed that the operation voltage was higher than LiFePO 4 due to the effect of manganese .

루터포드 백스케터링 스펙트로메트리(Rutherford backscattering spectrometry)를 이용하여 가장 우수한 전기화학적 특성을 나타낸 포지션(Position 2)의 조성을 확인하였다. Using Rutherford backscattering spectrometry, the composition of Position 2 showing the best electrochemical properties was confirmed.

도 5는 본 발명의 실시예에 따른, 연속조성확산법을 통하여 증착 된 올리빈계 리튬-철-망간 인산화합물 양극활물질 박막에서 가장 우수한 특성을 보였던 부분에 관한 조성 분석(도 5a) 및 각 포지션에 관한 조성(도 5b)을 나타낸 것이다. FIG. 5 is a graph showing the compositional analysis (FIG. 5A) and the respective positions of the lithium-iron-manganese phosphate compound cathode active material thin films deposited through the continuous diffusion diffusion method according to the embodiment of the present invention (Fig. 5B).

도 5a에 나타낸 바와 같이, 포지션(Position 2)는 LiFe0 . 77Mn0 . 23PO4의 조성을 갖는 것을 확인하였다. As shown in Fig. 5A, the position (Position 2) is LiFe 0 . 77 Mn 0 . 23 PO 4 .

또한, 도 5b에도 나타낸 바와 같이, 포지션 1은 LiFe0 . 89Mn0 . 11PO4, 포지션 3은 LiFe0.62Mn0.38PO4, 포지션 4는 LiFe0 . 51Mn0 . 49PO4, 포지션 5는 LiFe0 . 43Mn0 . 57PO4, 포지션 6은 LiFe0 . 35Mn0 . 65PO4 조성을 갖는다.Also, as shown in Fig. 5B, the position 1 is LiFe 0 . 89 Mn 0 . 11 PO 4 , position 3 is LiFe 0.62 Mn 0.38 PO 4 , and position 4 is LiFe 0 . 51 Mn 0 . 49 PO 4 , and position 5 is LiFe 0 . 43 Mn 0 . 57 PO 4 , and position 6 is LiFe 0 . 35 Mn 0 . 65 PO 4 composition.

한편, 연속조성확산법으로 탐색한 LiFe0 . 77Mn0 . 23PO4 조성이 LiFePO4보다 우수한 특성을 나타내는지 코인셀을 제작하여 확인하였다. On the other hand, LiFe 0 . 77 Mn 0 . 23 PO 4 composition showed better characteristics than LiFePO 4 .

양극 분말의 합성은 Li2CO3(Aldrich Co), FeC2O4·2H2O(Aldrich. Co.), MnCO3(Aldrich. Co.) 및 NH4H2PO4(Aldrich Co.)를 출발 물질로 하여 제조되었다. The synthesis of the anode powder was carried out using Li 2 CO 3 (Aldrich Co), FeC 2 O 4 .2H 2 O (Aldrich Co.), MnCO 3 (Aldrich. Co.) and NH 4 H 2 PO 4 (Aldrich Co.) Lt; / RTI &gt; as starting materials.

양극 소재 LiFePO4와 LiFe0 . 77Mn0 . 23PO4의 준비 과정은 출발물질을 일정한 비율로 24시간 동안 ball-milling후, 350℃에서 12시간 하소하였다. 하소한 분말은 pellet으로 압착하여 소결하였다. 소결은 650℃에서 12시간 동안 질소분위기에서 진행하였으며, 소결 후, 딱딱한 펠렛(pellet) 형식의 물질은 분쇄하여 400 메시(mesh)로 체가름을 하여 준비되었다. The anode materials LiFePO 4 and LiFe 0 . 77 Mn 0 . 23 PO 4 was prepared by ball milling the starting materials for 24 hours at a constant rate and then calcining at 350 ° C for 12 hours. The calcined powder was pressed and sintered with a pellet. The sintering was carried out at 650 ° C. for 12 hours in a nitrogen atmosphere. After the sintering, the hard pellet type material was pulverized and sieved to 400 mesh.

코인셀에 사용된 정극은 80 wt.% 양극분말, 15 wt.%의 도전재(Supar P), 5 wt.%의 PVdF(polyvinylidene fluoride) 결합제를 NMP(Nmethylpyrrolidene)용매에 혼합하여 알루미늄(Al) 포일(foil)에 균일하게 도포한 다음 3시간 동안 80℃로 건조하여 제조하였다. 건조된 정극을 회전 압착기로 압착하여 24 시간 동안 80℃로 진공 건조하였으며, LiPF6 액체전해질과 다공성 분리막을 사용하여 코인셀을 제작하였다.The positive electrode used in the coin cell was prepared by mixing 80 wt.% Of positive electrode powder, 15 wt.% Of conductive material (Supar P) and 5 wt.% Of PVdF (polyvinylidene fluoride) binder in NMP (Nmethylpyrrolidene) Uniformly applied to a foil, and then dried at 80 DEG C for 3 hours. The dried positive electrode was pressed with a rotary press and vacuum dried at 80 ° C for 24 hours. A coin cell was fabricated using a LiPF 6 liquid electrolyte and a porous separator.

도 6a 및 6b는 본 발명의 실시예에 따른, 코인셀 제작을 위해 합성된 올리빈계 리튬-철-망간 인산화합물 양극 활물질 분말의 XRD 결과를 나타낸 것이다.FIGS. 6A and 6B show XRD results of an olivine-based lithium-iron-manganese phosphate compound cathode active material powder synthesized for coin cell fabrication, according to an embodiment of the present invention.

도 6a 및 6b에서 확인할 수 있듯이, 합성된 분말의 결정성을 확인하기 위해 X선 회절 분석을 한 결과, 올리빈 구조의 X선 회절 패턴을 확인할 수 있었다. 이는 JCPDS에서 찾은 LiFePO4 peak과 일치하였고, 이차상이 존재하지 않는 것을 확인하였다. 또한 망간으로 치환된 LiFe0 . 77Mn0 . 23PO4 조성의 경우 주 peak들이 low angle로 이동하는 것을 확인할 수 있었다.As can be seen from FIGS. 6A and 6B, X-ray diffraction analysis was performed to confirm the crystallinity of the synthesized powder, and it was confirmed that the X-ray diffraction pattern of the olivine structure was confirmed. This was consistent with the LiFePO 4 peak found in JCPDS and confirmed that no secondary phase was present. LiFe 0 substituted with manganese . 77 Mn 0 . 23 PO 4 composition, it was confirmed that the main peaks were shifted to low angle.

상기 제작한 코인셀을 WBCS3000 충방전 장비로 전기화학적 특성 평가를 진행하였다. The prepared coin cell was subjected to electrochemical characterization using a WBCS3000 charge / discharge device.

도 7은 본 발명의 실시예에 따른, 연속조성확산법을 통하여 탐색한 LiFe0.77Mn0.23PO4(LFMP) 조성과 기존 LiFePO4 (LFP) 조성 분말을 사용하여 제작한 코인셀의 충방전 특성을 나타낸다. FIG. 7 is a graph showing the relationship between the composition of LiFe 0.77 Mn 0.23 PO 4 (LFMP) and the composition of LiFePO 4 Discharge characteristics of a coin cell fabricated using a coarse powder (LFP) composition powder.

도 7a에서 나타낸 바와 같이, LiFe0 . 77Mn0 . 23PO4조성(3.5 V, 121.8 mAh/g)의 경우 기존 LiFePO4(3.4 V, 112.3 mAh/g)보다 상대적으로 높은 작동전압과 방전용량을 갖는 것을 확인할 수 있었다. As shown in FIG. 7A, LiFe 0 . 77 Mn 0 . 23 PO 4 composition (3.5 V, 121.8 mAh / g) showed higher operating voltage and discharge capacity than conventional LiFePO 4 (3.4 V, 112.3 mAh / g).

또한, 도 7b는 6개씩 만든 샘플의 전류밀도에 따른 방전용량 평균값을 나타낸 것으로 이 결과에서도 LiFe0 . 77Mn0 . 23PO4 조성이 LiFePO4보다 높은 방전용량을 갖는 것을 확인하였으며, 높은 재현성과 신뢰성를 보여주었다. FIG. 7B shows the average discharge capacity according to the current density of six samples . In this result, LiFe 0 . 77 Mn 0 . 23 PO 4 It was confirmed that the composition had a discharge capacity higher than that of LiFePO 4 and showed high reproducibility and reliability.

이러한 도 7의 결과로부터 알 수 있듯이, 박막이 아닌 후막으로 적용하는 경우에도 우수한 특성을 나타내는 것을 알 수 있다.As can be seen from the results of FIG. 7, it can be seen that even when applied as a thick film instead of a thin film, excellent characteristics are exhibited.

Claims (9)

리튬 박막 이차전지용 올리빈계 리튬-철-망간 인산화합물 양극 활물질 조성물로서,
전도성소재가 코팅되지 않은 것이며,
하기 식으로 표시되는 것을 특징으로 하는 리튬-철-망간 인산화합물 양극 활물질 조성물.
[화학식 1]
LiFe1-XMnXPO4
(상기 식에서, x는 0 < x < 0.38의 범위이다.)
An olivine-based lithium-iron-manganese phosphate compound cathode active material composition for a lithium thin film secondary battery,
Conductive material is not coated,
A lithium-iron-manganese phosphate compound according to claim 1, wherein the lithium-iron-manganese phosphate compound is represented by the following formula.
[Chemical Formula 1]
LiFe 1 - X Mn X PO 4
(Where x is in the range of 0 < x < 0.38).
제 1 항에 있어서,
상기 식에서 x는 0.01 ≤ x < 0.38인 것을 특징으로 하는 리튬-철-망간 인산화합물 양극 활물질 조성물.
The method according to claim 1,
Wherein x is 0.01 < x &lt; 0.38. &Lt; / RTI &gt;
제 1 항에 있어서,
상기 식에서 x는 0.01 ≤ x ≤ 0.23인 것을 특징으로 하는 리튬-철-망간 인산화합물 양극 활물질 조성물.
The method according to claim 1,
The lithium-iron-manganese phosphate compound according to claim 1, wherein x is 0.01? X? 0.23.
제 1 항에 있어서,
상기 식에서 x는 0.23인 것을 특징으로 하는 리튬-철-망간 인산화합물 양극 활물질 조성물.
The method according to claim 1,
The lithium-iron-manganese phosphate compound according to claim 1, wherein x is 0.23.
리튬 박막 이차전지용 양극 박막으로서,
제 1 항 내지 제 4 항 중 어느 한 항에 따른 리튬-철-망간 인산화합물 양극 활물질 조성물로 이루어지는 것을 특징으로 하는 리튬 박막 이차전지용 양극 박막.
As a positive electrode thin film for a lithium thin film secondary battery,
A positive electrode thin film for a lithium thin film secondary battery, comprising the lithium-iron-manganese phosphate compound cathode active material composition according to any one of claims 1 to 4.
제 5 항에 있어서,
상기 양극 박막은 투명 양극 박막인 것을 특징으로 하는 리튬 박막 이차전지용 양극 박막.
6. The method of claim 5,
Wherein the positive electrode thin film is a transparent positive electrode thin film.
제 5 항에 있어서,
상기 양극 박막의 두께는 0.5~10 ㎛인 것을 특징으로 하는 리튬 박막 이차전지용 양극 박막.
6. The method of claim 5,
Wherein the thickness of the positive electrode thin film is 0.5 to 10 mu m.
리튬 박막 이차전지로서,
제 1 항 내지 제 4 항 중 어느 한 항에 따른 리튬-철-망간 인산화합물 양극 활물질 조성물로 이루어지는 양극 박막을 포함하는 것을 특징으로 하는 리튬 박막 이차전지.
As a lithium thin film secondary battery,
The lithium thin film secondary battery according to any one of claims 1 to 4, comprising a cathode thin film made of a lithium-iron-manganese phosphate compound cathode active material composition.
제 1 항 내지 제 4 항 중 어느 한 항에 따른 리튬-철-망간 인산화합물 양극 활물질 조성물의 제조 방법으로서,
연속 조성 확산법을 통하여 LiFe1 - XMnXPO4 의 조성을 탐색하는 단계;를 포함하는 것을 특징으로 하는 리튬-철-망간 인산화합물 양극 활물질 조성물 제조 방법.
A process for producing a lithium-iron-manganese phosphate compound cathode active material composition according to any one of claims 1 to 4,
Through continuous diffusion method, LiFe 1 - X Mn X PO 4 The method comprising the steps of: preparing a lithium-iron-manganese phosphate compound;
KR1020180034957A 2018-03-27 2018-03-27 Lithium-iron-manganese phosphate cathode active material composition, method for preparing the same and lithium secondary thin film battery using the same KR101999146B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180034957A KR101999146B1 (en) 2018-03-27 2018-03-27 Lithium-iron-manganese phosphate cathode active material composition, method for preparing the same and lithium secondary thin film battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180034957A KR101999146B1 (en) 2018-03-27 2018-03-27 Lithium-iron-manganese phosphate cathode active material composition, method for preparing the same and lithium secondary thin film battery using the same

Publications (1)

Publication Number Publication Date
KR101999146B1 true KR101999146B1 (en) 2019-07-11

Family

ID=67254396

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180034957A KR101999146B1 (en) 2018-03-27 2018-03-27 Lithium-iron-manganese phosphate cathode active material composition, method for preparing the same and lithium secondary thin film battery using the same

Country Status (1)

Country Link
KR (1) KR101999146B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130001930A (en) * 2011-06-28 2013-01-07 한국과학기술연구원 Sputtering equipment for thin film deposition and composition investigation
KR20160060856A (en) 2014-11-20 2016-05-31 주식회사 포스코 Positive active material for lithium secondary battery, method of preparing same and a lithium secondary battery comprising the same
KR20160106125A (en) * 2014-01-08 2016-09-09 이리카 테크놀로지스 리미티드 Vapour deposition method for fabricating lithium-containing thin film layered structures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130001930A (en) * 2011-06-28 2013-01-07 한국과학기술연구원 Sputtering equipment for thin film deposition and composition investigation
KR20160106125A (en) * 2014-01-08 2016-09-09 이리카 테크놀로지스 리미티드 Vapour deposition method for fabricating lithium-containing thin film layered structures
KR20160060856A (en) 2014-11-20 2016-05-31 주식회사 포스코 Positive active material for lithium secondary battery, method of preparing same and a lithium secondary battery comprising the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. Mater. Chem., Vol 21, pp. 15813-15818 (2011)
JOURNAL OF ALLOYS AND COMPOUNDS 425 (2006) 362-366* *

Similar Documents

Publication Publication Date Title
US11139479B2 (en) Solid state catholyte or electrolyte for battery using LiaMPbSc (M=Si, Ge, and/or Sn)
US20200194831A1 (en) Solid electrolyte sheet, method for manufacturing same, and sodium ion all-solid-state secondary cell
US20170200952A1 (en) LIPON COATINGS FOR HIGH VOLTAGE AND HIGH TEMPERATURE Li-ION BATTERY CATHODES
US9362547B2 (en) Solid electrolyte cell and positive electrode active material
JP2021502671A (en) Excitu solid electrolyte interfacial modification with chalcogenide for lithium metal anodes
WO2010021205A1 (en) Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
WO2020045633A1 (en) Sulfide solid electrolyte and all-solid-state battery
EP2983230A1 (en) Cathode active material for lithium battery, lithium battery, and method for producing cathode active material for lithium battery
JP6378875B2 (en) Negative electrode for secondary battery and method for producing the same
US9325008B2 (en) Solid electrolyte battery and positive electrode active material
US20210320294A1 (en) Negative electrode active material for lithium secondary battery, and negative electrode and lithium secondary battery including the same
KR20190059198A (en) Cathode active material of lithium secondary battery
US11916227B2 (en) Multilayer body and method for producing same
KR101999146B1 (en) Lithium-iron-manganese phosphate cathode active material composition, method for preparing the same and lithium secondary thin film battery using the same
Wu et al. In-situ thermal annealing Pt/Ti interphase layers for epitaxial growth of improved Li (Ni0. 5Mn0. 3Co0. 2) O2 solid thin-film cathodes
KR100495674B1 (en) A cathode thin film for all solid state battery, preparation method thereof, and lithium thin film battery using the same
KR101728825B1 (en) Solid electrolytes for all solid state rechargeable lithium battery, methods for manufacturing the same, and all solid state rechargeable lithium battery including the same
WO2016080912A1 (en) All-solid-state lithium-ion battery
CN114616695A (en) LMO cathode composition
KR100329809B1 (en) Lithium secondary battery comprising tin and lithium oxide as a anode electrode active material
RU2526239C1 (en) Method to produce positive electrode of lithium-ion accumulator and lithium-ion accumulator
JP4892964B2 (en) Charging method of lithium ion secondary battery
KR20240080160A (en) Method for Preparing Electrode with Deposited Thin Film Electrolyte Using Sputtering Process, Cathode Prepared Thereby and Secondary Battery Comprising Same
CN115552662A (en) Battery and method for manufacturing same
KR20030094633A (en) Negative electrode for lithium secondary thin battery and manufacturing method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant