JP6378875B2 - Negative electrode for secondary battery and method for producing the same - Google Patents

Negative electrode for secondary battery and method for producing the same Download PDF

Info

Publication number
JP6378875B2
JP6378875B2 JP2013265867A JP2013265867A JP6378875B2 JP 6378875 B2 JP6378875 B2 JP 6378875B2 JP 2013265867 A JP2013265867 A JP 2013265867A JP 2013265867 A JP2013265867 A JP 2013265867A JP 6378875 B2 JP6378875 B2 JP 6378875B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
iron oxide
iron
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013265867A
Other languages
Japanese (ja)
Other versions
JP2015122218A (en
Inventor
浩一 伊豆原
浩一 伊豆原
誠 大福
誠 大福
俊輔 大内
俊輔 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sango Co Ltd
Original Assignee
Sango Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sango Co Ltd filed Critical Sango Co Ltd
Priority to JP2013265867A priority Critical patent/JP6378875B2/en
Publication of JP2015122218A publication Critical patent/JP2015122218A/en
Application granted granted Critical
Publication of JP6378875B2 publication Critical patent/JP6378875B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、活物質として酸化鉄を用いた二次電池用負極、特にコンバーョン電極反応を伴う二次電池用負極及びその製造方法に関する。 The present invention is a negative electrode for a secondary battery using the iron oxide as an active material, about the negative electrode, and a manufacturing method thereof for a secondary battery, especially involving convergence di ® emission electrode reaction.

近年、携帯電話、デジタルカメラ、多機能タブレット型端末、ノートパソコン等のモバイル型の電子機器が情報社会の重要な役割を果たしている。これらの電子機器は長時間駆動が求められており、必然的に駆動電源であるリチウムイオン二次電池の軽量化、高エネルギー密度化が望まれてきた。また、ハイブリッド自動車(HEV)、電気自動車(EV)、電動バイク等の車両や、建設機械など屋外の過酷な環境で使用される中型及び大型の二次電池に対する需要が急増している。これらの機器の電源として、安価で耐久性に優れた高性能な二次電池が求められている。 In recent years, mobile electronic devices such as mobile phones, digital cameras, multi-function tablet terminals, and notebook computers have played an important role in the information society. These electronic devices are required to be driven for a long time, and it has been desired to reduce the weight and increase the energy density of the lithium ion secondary battery, which is a driving power source. In addition, demand for vehicles such as hybrid vehicles (HEV), electric vehicles (EV), electric motorcycles, and medium-sized and large-sized secondary batteries used in harsh outdoor environments such as construction machinery is rapidly increasing. As a power source for these devices, a high-performance secondary battery that is inexpensive and excellent in durability is required.

リチウムイオン二次電池は、リチウム塩を非水溶媒に溶解させた電解液やリチウム固体電解質が負極活物質と正極活物質との間に挟まれた構造とされており、負極活物質と正極活物質との間をリチウムイオンが行き来し、負極の集電体基材に塗布された活物質にリチウムイオンがインターカレートすることで充放電が可能となる。 A lithium ion secondary battery has a structure in which an electrolytic solution in which a lithium salt is dissolved in a nonaqueous solvent or a lithium solid electrolyte is sandwiched between a negative electrode active material and a positive electrode active material. Lithium ions move back and forth between the materials, and the lithium ions intercalate with the active material applied to the current collector base material of the negative electrode, so that charging / discharging becomes possible.

リチウムイオン二次電池用の負極活物質としては、リチウムイオン電池の商品化の当初は結晶性が比較的低い非晶質炭素が使用されたが、現在は比重が大きく高エネルギー密度が得られやすい人造黒鉛系材料が主に用いられている。通常は、結晶性の高いグラファイト粒子やカーボンナノチューブを結合剤と混合して集電体基材に塗布して用いられている。 As the negative electrode active material for the lithium ion secondary battery, amorphous carbon having relatively low crystallinity was used at the beginning of commercialization of the lithium ion battery, but at present, the specific gravity is large and high energy density is easily obtained. Artificial graphite materials are mainly used. Usually, highly crystalline graphite particles or carbon nanotubes are mixed with a binder and applied to a current collector substrate.

しかし、グラファイトを用いる負極では、グラファイト層間にインターカレートできるリチウム原子は炭素原子6個について1個であり、その最大充放電容量は理論的に372mAh/gに制限される。そこで、理論的にカーボン系負極材料以上の充放電容量が得られる負極材料を用いてリチウムイオン二次電池の高容量化を図る研究開発が進められている。 However, in a negative electrode using graphite, the number of lithium atoms that can be intercalated between graphite layers is one for every six carbon atoms, and the maximum charge / discharge capacity is theoretically limited to 372 mAh / g. Therefore, research and development for increasing the capacity of a lithium ion secondary battery using a negative electrode material that can theoretically provide a charge / discharge capacity that is greater than that of a carbon-based negative electrode material is underway.

そのような負極材料として遷移金属酸化物のナノ粒子を用いると大きな容量が得られることが報告されている(非特許文献1)。CoO,NiO,CuO,FeO等の酸化物において、1〜5nm程度のナノ粒子を電極に使用した場合、例えば、2CoO+Li⇔Li2O+2Coの反応が可逆的に進行し、700mAh/hを超える大きな容量が得られる。この可逆反応は、コンバーョン電極反応とも言われ、負極におけるLiのインサーション反応やLi合金の形成反応とは異なり、負極材料の金属粒子の酸化還元が可逆的に進行する反応である。この可逆反応を利用する二次電池はコンバーョン型(分解・再生型)電池とも言われる。 It has been reported that when a transition metal oxide nanoparticle is used as such a negative electrode material, a large capacity can be obtained (Non-patent Document 1). In the case of using an oxide of CoO, NiO, CuO, FeO or the like with a nanoparticle of about 1 to 5 nm as an electrode, for example, the reaction of 2CoO + Li⇔Li 2 O + 2Co proceeds reversibly and exceeds 700 mAh / h. Large capacity can be obtained. The reversible reaction is also referred to as convergence di tio emission electrode reaction, unlike the formation reaction of insertion reactions and Li alloys Li in the anode, the redox of the metal particles of the anode material is a reaction which proceeds reversibly. A secondary battery using this reversible reaction is also referred to as convergence di ® emission type (decomposition and regeneration type) battery.

鉄酸化物(Fe23及びFe34)は、低価格、天然に豊富、環境にやさしいといった利点を有する高容量のコンバーョン型電池の電極材料として期待される(非特許文献2)。コンバーョン型電池の負極材料として、α-Fe23では、Fe23+6Li→3Li2O+2Feの反応によって理論容量が1008mAh/gとなり、従来の負極材料である炭素材料の約3倍もの高い理論容量を有する。 Iron oxide (Fe 2 O 3 and Fe 3 O 4) is a low cost, naturally abundant, the expected (Non-patent Document as an electrode material for converting di ® emission type high capacity battery having an advantage environmentally friendly 2). As a negative electrode material of convergence di ® emission type battery, the α-Fe 2 O 3, Fe 2 O 3 + 6Li → 3Li 2 theoretical capacity by the reaction of O + 2Fe is 1008mAh / g, and the approximately 3 of a conventional carbon material is a negative electrode material The theoretical capacity is twice as high.

コンバーョン型電池の負極活物質層の形成方法としては、Fe23粉末を導電助剤やバインダー等と混合して銅箔上等の集電体表面に薄く塗布し、真空加熱した後、乾燥、プレスして負極を作製する方法が一般的である。しかし、コンバージョン反応による電池は、通常、不可逆容量が極めて大きく、電極反応に伴って約2倍程度の体積膨張が起こるため、塗布方法で作製した電極では、集電体と活物質層との界面から活物質層が剥離したりするので、耐久性に劣るという問題がある。 As a method for forming the negative electrode active material layer convergence di ® emission type battery, Fe 2 O 3 powder mixed with a conductive aid and a binder such as a thin coating to a current collector surface of the copper foil choice, and vacuum heating Thereafter, a method of producing a negative electrode by drying and pressing is common. However, a battery based on a conversion reaction usually has a very large irreversible capacity, and the volume expansion of about twice occurs with the electrode reaction. Therefore, in the electrode produced by the coating method, the interface between the current collector and the active material layer Since the active material layer is peeled off, there is a problem that the durability is poor.

このような剥離の防止のため、α-Fe23粒子を活物質とし、バインダー成分がポリアミド酸及びその一部がイミド化されたものを用いた負極及びその製造方法に係わる発明(特許文献1)が特許出願されている。 In order to prevent such peeling, an invention related to a negative electrode using α-Fe 2 O 3 particles as an active material, a binder component made of polyamic acid and a part thereof imidized, and a method for producing the same (patent document) 1) has been applied for a patent.

また、一般的な塗布法により活物質層を形成した二次電池ではなく、SnO2、TiO2、Fe23、Fe34、CoO、Co34、CaO、MgO、CuO、ZnO、In23、NiO、MoO3、WO3、Li4Ti512、SnSiO3及びこれらの混合物のナノ粒子(ナノ粒子の凝集体は、200nm乃至2μmの平均粒子径を有し、ナノ粒子は2nm乃至200nmの平均粒子径を有する。)の分散液を集電体に噴射して多孔性の活物質層を形成した二次電池に関する発明(特許文献2)、物理蒸着法又は化学蒸着法によってFe23粒子を蒸発させて、Rzが3μm以上の粗面を有する集電体にα-Fe23膜を堆積したリチウム二次電池に関する発明(特許文献3)が出願されている。 Also, not a secondary battery in which an active material layer is formed by a general coating method, but SnO 2 , TiO 2 , Fe 2 O 3 , Fe 3 O 4 , CoO, Co 3 O 4 , CaO, MgO, CuO, ZnO , In 2 O 3 , NiO, MoO 3 , WO 3 , Li 4 Ti 5 O 12 , SnSiO 3, and mixtures thereof nanoparticles (aggregates of nanoparticles have an average particle size of 200 nm to 2 μm, The invention relates to a secondary battery in which a porous active material layer is formed by spraying a dispersion liquid of particles having an average particle diameter of 2 nm to 200 nm on a current collector (Patent Document 2), physical vapor deposition or chemical vapor deposition. An invention (Patent Document 3) related to a lithium secondary battery in which Fe 2 O 3 particles are evaporated by a method and an α-Fe 2 O 3 film is deposited on a current collector having a rough surface with Rz of 3 μm or more has been filed. Yes.

このようなコンバーョン型電池の活物質として酸化鉄系材料を用いたリチウム二次電池としては、正極又は負極の一方にFe23とLiFe58との混合物を用いたもの(特許文献4)、Fe23粉末とペロブスカイト型酸化物等の触媒を含む負極を用いたもの(特許文献5)、集電体としてのカーボンシート上にFe23粉末を含む負極活物質層を備えたもの(特許文献6)が挙げられる。 As such a converter di tio emission type lithium secondary battery using the iron oxide-based material as an active material of a battery, those using a mixture of Fe 2 O 3 and LiFe 5 O 8 on one of the positive electrode or the negative electrode ( Patent Document 4), using negative electrode containing catalyst such as Fe 2 O 3 powder and perovskite oxide (Patent Document 5), negative electrode active material containing Fe 2 O 3 powder on carbon sheet as current collector The thing (patent document 6) provided with the layer is mentioned.

さらに、近年、リチウムイオン電池の性能を大幅に上回る次世代電池として、リチウムの代わりにナトリウムイオンを使うナトリウムイオン二次電池が注目されている。ナトリウムイオン二次電池の負極としては、珪素を含有する化合物(特許文献7)やハードカーボン(特許文献8)が主に研究されているが、Fe34などのエコフレンドリーな鉄酸化物はコンバーョン型負極として利用可能であることが報告されている(非特許文献3)。 Furthermore, in recent years, sodium ion secondary batteries that use sodium ions instead of lithium have attracted attention as next-generation batteries that greatly exceed the performance of lithium ion batteries. As a negative electrode of a sodium ion secondary battery, compounds containing silicon (Patent Document 7) and hard carbon (Patent Document 8) are mainly studied, but eco-friendly iron oxides such as Fe 3 O 4 are it has been reported that converting is available as a di-tio emission type negative electrode (non-patent document 3).

P.Poizot et al. Trascon,Nature,407,496,(2000)P. Poizot et al. Trascon, Nature, 407, 496, (2000) J. Cabana et al.,Adv. Mater.,2010 Sep.15;22(35):E170-92.doi:10.1002/adma.201000717J. Cabana et al., Adv. Mater., 2010 Sep. 15; 22 (35): E170-92.doi: 10.1002 / adma.201000717 S.Hariharan et al. Physical Chemistry Chemical Physics 15(2013) 2945-2953S. Hariharan et al. Physical Chemistry Chemical Physics 15 (2013) 2945-2953

WO2011/058981WO2011 / 058981 特開2010−97945号公報JP 2010-97945 A WO2010/092689WO2010 / 092689 WO2011/125202WO2011 / 125202 特開2012−28248号公報JP 2012-28248 A 特開2012−84345号公報JP 2012-84345 A 特開2005−32733号公報JP 2005-32733 A 再表2010/109889号公報Table 2010/109889

鉄酸化物の中でも特にα-Fe23は、コンバーョン型電池の活物質として注目されているが、α-Fe23は、通常、充放電の可逆性が低く、不可逆容量が大きいという問題がある。また、α-Fe23のナノ粒子をバインダと添加剤を用いて集電体に塗布する必要があるが、ナノ粒子とバインダとの混合工程、塗布工程、乾燥工程など複雑な工程が必要であり、また、バインダを用いて活物質層を形成した電極では、集電体と活物質層との接着力が大きくないと充放電の繰り返しにより集電体と活物質層との界面から活物質層が剥離したりするので、耐久性に劣るという問題がある。 In particular α-Fe 2 O 3 Among the iron oxides, have been attracting attention as an active material for converting di ® emission type battery, α-Fe 2 O 3 is usually low reversibility of charge and discharge, irreversible capacity There is a problem that is large. In addition, α-Fe 2 O 3 nanoparticles need to be applied to the current collector using a binder and additives, but complicated steps such as a mixing process, a coating process, and a drying process of the nanoparticles and the binder are required. In addition, in an electrode in which an active material layer is formed using a binder, if the adhesive force between the current collector and the active material layer is not large, the electrode is activated from the interface between the current collector and the active material layer by repeated charge and discharge. Since the material layer peels off, there is a problem that the durability is poor.

また、特許文献3に示されるように、物理蒸着法又は化学蒸着法によってα-Fe23結晶からなる膜を堆積する方法では、集電体表面との密着性を良好にするために表面粗さRzが3μm以上の銅箔等を用いる必要がある。また、蒸着法の場合は、ナノ粒子膜を形成できない。 Further, as shown in Patent Document 3, in the method of depositing a film made of α-Fe 2 O 3 crystal by physical vapor deposition or chemical vapor deposition, the surface is used to improve the adhesion to the current collector surface. It is necessary to use a copper foil having a roughness Rz of 3 μm or more. In the case of the vapor deposition method, a nanoparticle film cannot be formed.

さらに、金属酸化物ナノ粒子の製法としては、固相法(機械的粉砕法)、気相法、液相法が一般に知られているが、機械的粉砕法で粒子径1μm以下の微粒子を効率良く製造することは困難であり、金属ハロゲン化物と酸化性ガスを用いる化学気相析出法(CVD法)では、ナノ粒子にハロゲン化物が混入するためナノ粒子の性能が悪化する。共沈法などの液相法では、生成したナノ粒子が加熱工程で成長してしまうという問題があり、金属酸化物ナノ粒子を使用した電極では、コストが高くつく。 Furthermore, as a method for producing metal oxide nanoparticles, a solid phase method (mechanical pulverization method), a gas phase method, and a liquid phase method are generally known, but fine particles having a particle diameter of 1 μm or less are efficiently obtained by the mechanical pulverization method. It is difficult to manufacture well, and the chemical vapor deposition method (CVD method) using a metal halide and an oxidizing gas deteriorates the performance of the nanoparticles because the nanoparticles are mixed with the halide. In the liquid phase method such as the coprecipitation method, there is a problem that the generated nanoparticles grow in the heating process, and the cost using the electrode using the metal oxide nanoparticles is high.

本発明は、バインダや添加剤を用いる塗布工程やターゲット材料を用いて活物質層を蒸着する工程を用いないで、ナノ酸化物粒子を負極活物質とする耐久性の優れたコンバーション型二次電池と、該二次電池を単純な方法で且つ低価格にて製造する方法を提供することを目的とする。また、薄い活物質で効率的で安定したコンバーョン反応を実現できる負極構造を提供することを目的とする。 The present invention does not use a coating step using a binder or an additive or a step of depositing an active material layer using a target material, and a conversion type secondary material having excellent durability using nano-oxide particles as a negative electrode active material. It is an object of the present invention to provide a battery and a method for producing the secondary battery by a simple method and at a low price. Another object is to provide an efficient and stable convergence di tio down the reaction can realize a negative electrode structure with a thin active material.

上記目的を達成するために、本発明は、負極と、リチウム化合物又はナトリウム化合物を活物質とする正極と、この正負極間に配置される電解液と、正負極間を隔離するセパレータと、からコンバージョン型二次電池用負極において、表面が鉄又は鉄を主成分
とする合金からなる基材上に、酸素プラズマ処理によって形成されて基材の表面に付着している酸化鉄ナノ粒子膜からなる活物質層を有することを特徴とするコンバーョン型二次電池用負極を提供する。
In order to achieve the above object, the present invention comprises a negative electrode , a positive electrode using a lithium compound or a sodium compound as an active material, an electrolyte solution disposed between the positive and negative electrodes, and a separator that separates the positive and negative electrodes. In a negative electrode for a conversion type secondary battery, the surface is formed of an iron oxide nanoparticle film that is formed by oxygen plasma treatment and adhered to the surface of the base material on a base material made of iron or an iron-based alloy. providing a negative electrode for converting di tio emission type secondary battery characterized by having an active material layer.

本発明は、また、前記酸化鉄ナノ粒子は、非晶質及び/又は微結晶のFe34であることを特徴とするコンバーョン型二次電池用負極を提供する。 The present invention is also the iron oxide nanoparticles provide amorphous and / or negative electrode convergence di tio emission type secondary battery which is a Fe 3 O 4 fine crystals.

本発明は、また、前記酸化鉄ナノ粒子膜の粒子の粒径が10〜30nmの範囲に分布することを特徴とするコンバーョン型二次電池用負極を提供する。 The present invention also provides a convergence di ® emission type secondary battery negative electrode size of the particles of the iron oxide nanoparticles film is characterized in that distributed in the range of 10 to 30 nm.

本発明は、また、前記酸化鉄ナノ粒子膜の下層に酸化鉄層が形成されていることを特徴とするコンバーョン型二次電池用負極を提供する。 The present invention also provides a convergence di ® emission type secondary battery negative electrode, wherein the iron oxide layer on the lower layer of the iron oxide nanoparticles film is formed.

本発明は、また、前記酸化鉄層の酸化鉄が結晶性のFe34であることを特徴とするリチウム二次電池用負極を特徴とするコンバーョン型二次電池用負極を提供する。 The present invention also provides a convergence di ® emission type secondary battery negative electrode, wherein the negative electrode for a lithium secondary battery, wherein the iron oxide of the iron oxide layer is Fe 3 O 4 crystalline To do.

本発明は、また、基材の表面に金属酸化物からなる活物質層を有する負極を製造する方法において、表面が鉄又は鉄を主成分とする合金からなる基材の表面を酸素プラズマ処理することによって表面酸化し、基材の最表面に酸化鉄ナノ粒子膜を形成することを特徴とする前記コンバーョン型二次電池用負極の製造方法を提供する。 The present invention also provides a method for producing a negative electrode having an active material layer made of a metal oxide on the surface of the substrate, wherein the surface of the substrate made of iron or an alloy containing iron as a main component is subjected to oxygen plasma treatment. it the surface oxidation, to provide the convergence di tio emission type secondary method for producing a negative electrode for a battery and forming iron oxide nanoparticles film at the outermost surface of the substrate.

本発明は、また、前記酸素プラズマ処理のプロセス圧を10Pa〜1気圧、酸素ガスの流量を10〜100ccm、出力密度を0.5W/cm2〜15W/cm2、処理時間を5分〜2時間とすることを特徴とする前記コンバーョン型二次電池用負極の製造方法を提供する。 In the present invention, the process pressure of the oxygen plasma treatment is 10 Pa to 1 atm, the flow rate of oxygen gas is 10 to 100 ccm, the power density is 0.5 W / cm 2 to 15 W / cm 2 , and the treatment time is 5 minutes to 2 to provide a method of manufacturing the convergence di tio emission type secondary battery negative electrode, characterized in that the time.

本発明は、さらに、負極、正極及び電解質を含み、上記負極が上記二次電池用負極であることを特徴とするコンバーョン型二次電池を提供する。 The present invention further, a negative electrode, wherein the positive electrode and the electrolyte, the negative electrode to provide a convertible di ® emission type secondary battery, which is a negative electrode for a secondary battery.

本発明のコンバーョン型二次電池用負極は、従来一般的な方法として用いられている塗布法によって設けた活物質の構造とは異なり、表面が鉄又は鉄を主成分とする合金からなる基材上に、酸素プラズマを照射する表面酸化処理により形成されて基材の最表面に付着している酸化鉄ナノ粒子膜からなる活物質層を有する。 The negative electrode for a convertible di tio emission type secondary battery of the present invention is different from the structure of the active material is provided by a coating method conventionally used as a general method, an alloy surface is mainly composed of iron or iron An active material layer made of an iron oxide nanoparticle film that is formed by surface oxidation treatment that irradiates oxygen plasma and adheres to the outermost surface of the substrate.

なお、ナノ粒子(nanoparticle)とは、一般に、微粒子(1000nm=1μm以下)の中でも粒径、すなわち粒子の直径が1〜100ナノメートル程度の超微粒子のことであり、本明細書においても、「ナノ粒子」の用語は、この定義に従う。本発明において、酸化鉄ナノ粒子の平均粒径はより好ましくは10〜30nmである。なお、平均粒径は、透過型電子顕微鏡(TEM)で撮影した写真を用い、任意に選択した10個の粒子について個々の粒子の最長部分(長径)の長さを測定し、その平均値を算出した値とする。 The nanoparticle is generally an ultrafine particle having a particle size, that is, a particle diameter of about 1 to 100 nanometers among fine particles (1000 nm = 1 μm or less). The term “nanoparticle” follows this definition. In the present invention, the average particle size of the iron oxide nanoparticles is more preferably 10 to 30 nm. The average particle size was measured using the photograph taken with a transmission electron microscope (TEM), and the length of the longest part (major axis) of each particle was measured for 10 arbitrarily selected particles. The calculated value.

コンバーョン型二次電池用負極表面の酸化鉄は、Liイオンと下記のようにコンバーョン反応する。 Fe23+6Li++6e- ⇔2Fe0+3Li2O Fe34+8Li++8e- ⇔3Fe0+4Li2O すなわち、充電によって酸化鉄がFeに還元されてLi2Oが生じ、放電によってFeが酸化されて酸化鉄が生じる。 Iron oxide convergence di ® emission type secondary battery negative electrode surface is convertible di tio emissions react as Li ions and below. Fe 2 O 3 + 6Li + + 6e ⇔2Fe 0 + 3Li 2 O Fe 3 O 4 + 8Li + + 8e ⇔3Fe 0 + 4Li 2 O That is, iron oxide is reduced to Fe by charging to produce Li 2 O, and Fe is generated by discharging. Oxidized to produce iron oxide.

負極を製造するための従来の塗布法では、化学的方法、物理的方法などで製造した酸化鉄の微粒子やナノ粒子の一次粒子や凝集体をバインダを用いて集電体に塗布しているが、本発明では、予め超微粒子として製造した酸化鉄の微粒子やナノ粒子は使用しない。 In the conventional coating method for producing a negative electrode, primary particles and aggregates of iron oxide fine particles and nanoparticles produced by a chemical method or a physical method are applied to a current collector using a binder. In the present invention, fine particles or nanoparticles of iron oxide produced in advance as ultrafine particles are not used.

本発明は、ナノ粒子を活物質とするコンバーョン型二次電池において、予め超微粒子として製造した高価で高品質のナノ粒子を使用しないで、また、特殊なバインダや添加剤を用いる塗布工程や塗布膜の後処理工程を必要とせずに、負極基材表面と活物質層との間の接着が強固で緻密な活物質層を形成することができ、耐久性に優れた二次電池用負極を低価格で製造することができる。 The present invention provides a convertible di tio emission type secondary battery using nanoparticles as an active material, without using a high-quality nanoparticles expensive prepared in advance as ultrafine particles, also applied using a special binder and additives A secondary battery with excellent durability, which can form a dense active material layer with strong adhesion between the negative electrode substrate surface and the active material layer without the need for a post-treatment process or a post-treatment process of the coated film The negative electrode can be manufactured at a low price.

また、本発明の二次電池は、負極活物質層の厚さが数百nmのオーダーであり、負極の厚さを薄くして、余った空間を有効活用することによって省スペース化に寄与することができるので、重量当たり及び体積当たりの電池容量を大きくすることができる。 In the secondary battery of the present invention, the thickness of the negative electrode active material layer is on the order of several hundred nm, and the negative electrode thickness is reduced, thereby contributing to space saving by effectively utilizing the remaining space. Therefore, the battery capacity per weight and per volume can be increased.

図1(左)は、負極基材の純鉄箔の表面に生成した酸化鉄層とこの層の最表面に付着した状態で生成している酸化鉄ナノ粒子膜をTEM像(倍率20万倍)で示している図面代用写真である。図1(右)は、図1(左)に示す酸化鉄ナノ粒子膜の一部分を拡大したTEM像(倍率80万倍)で示している図面代用写真である。FIG. 1 (left) shows a TEM image (magnification 200,000 times) of an iron oxide layer formed on the surface of a pure iron foil of a negative electrode substrate and an iron oxide nanoparticle film formed in a state of adhering to the outermost surface of this layer. It is a drawing substitute photograph shown in (). FIG. 1 (right) is a drawing-substituting photograph showing an enlarged TEM image (magnification of 800,000 times) of a part of the iron oxide nanoparticle film shown in FIG. 1 (left). 図2は、実施例1において、酸素プラズマ照射後の基板表面のTEM像(倍率1万倍)を示す図面代用写真である。FIG. 2 is a drawing-substituting photograph showing a TEM image (magnification 10,000 times) of the substrate surface after oxygen plasma irradiation in Example 1. 図3は、実施例1において、ナノ粒子の電子回折図形(μ-Diff03)である。FIG. 3 is an electron diffraction pattern (μ-Diff03) of nanoparticles in Example 1. 図4は、実施例1において、ハーフセルの充放電曲線を示すグラフである。FIG. 4 is a graph showing a charge / discharge curve of a half cell in Example 1. 図5は、実施例1において、フルセルの充放電曲線を示すグラフである。FIG. 5 is a graph showing a charge / discharge curve of a full cell in Example 1. 図6は、実施例2において、ハーフセルの充放電曲線を示すグラフである。FIG. 6 is a graph showing a charge / discharge curve of a half cell in Example 2.

本発明では、負極基材としては、純鉄箔、鉄鋼箔、ステンレス鋼箔等を用いる。また、負極基材は、リチウムイオン二次電池の集電体として、一般的に用いられるアルミニウム、銅、チタン、ステンレス鋼等の導電性金属に蒸着や有機化合物の還元法などの被覆法によって鉄からなる表面層を形成したものでもよい。 In the present invention, as the negative electrode base material, pure iron foil, steel foil, stainless steel foil or the like is used. In addition, the negative electrode base material is used as a current collector for lithium ion secondary batteries, and is applied to a commonly used conductive metal such as aluminum, copper, titanium, and stainless steel by a coating method such as vapor deposition or organic compound reduction method. The surface layer which consists of may be formed.

前記の二次電池用負極を製造するには、集電体を兼ねる鉄又は鉄を主成分とする合金からなる負極基材、又は集電体となる銅やアルミニウム等の導電性金属の上に鉄又は鉄を主成分とする合金を被覆した負極基材の表面を酸素プラズマ処理することによって、表面の鉄成分を酸化させて基材の最表面に付着した酸化鉄ナノ粒子膜の層を生成させる。 To manufacture the negative electrode for a secondary battery, a negative electrode substrate made of iron or an alloy containing iron as a main component serving as a current collector, or a conductive metal such as copper or aluminum as a current collector Oxygen plasma treatment is performed on the surface of the negative electrode substrate coated with iron or an iron-based alloy to oxidize the iron component on the surface to produce an iron oxide nanoparticle film layer attached to the outermost surface of the substrate. Let

上記のように、基材の表面を酸素プラズマ処理すると、基材表面の緻密な酸化鉄層を介して最表面に1〜2層の非結晶の酸化鉄ナノ粒子膜が形成されていることがTEM観察により分かる。この酸化鉄ナノ粒子は非晶質又は微結晶、あるいは非晶質と微結晶が混在したものである。そして、酸素プラズマ処理条件によって異なるが、酸化鉄ナノ粒子膜と基材表面との間に厚さ100〜300nm程度の酸化鉄膜が形成される。この酸化鉄膜の主成分は、結晶質のFe34であるが、少量の結晶質α-Fe23や非晶質のFe34やα-Fe23の存在がX線回折結果で認められる。 As described above, when oxygen plasma treatment is performed on the surface of the base material, one or two layers of amorphous iron oxide nanoparticle films are formed on the outermost surface via the dense iron oxide layer on the base material surface. It can be seen by TEM observation. These iron oxide nanoparticles are amorphous or microcrystalline, or a mixture of amorphous and microcrystalline. And although it changes with oxygen plasma process conditions, an iron oxide film about 100-300 nm in thickness is formed between an iron oxide nanoparticle film | membrane and a base-material surface. The main component of this iron oxide film is crystalline Fe 3 O 4 , but the presence of a small amount of crystalline α-Fe 2 O 3 , amorphous Fe 3 O 4 or α-Fe 2 O 3 is X Recognized by line diffraction results.

図1(左)は、負極のFe基材の表面に生成した結晶性の厚さ200nm程度の緻密な酸化鉄層と、この酸化鉄層の最表面に付着した状態で生成している平均粒径20nm程度の非結晶又は微結晶の酸化鉄ナノ粒子膜をTEM像で示している。図1(右)は、酸化鉄ナノ粒子の部分を拡大したTEM像である。 FIG. 1 (left) shows a dense iron oxide layer having a crystallinity of about 200 nm formed on the surface of the Fe base material of the negative electrode, and average grains generated in a state of being attached to the outermost surface of the iron oxide layer. An amorphous or microcrystalline iron oxide nanoparticle film having a diameter of about 20 nm is shown as a TEM image. FIG. 1 (right) is an enlarged TEM image of the iron oxide nanoparticles.

本発明の酸素プラズマ処理には、高周波プラズマ(RFプラズマ)を用いることが好ましい。酸素プラズマ処理装置は大気圧プラズマ装置、真空プラズマCVD装置、プラズマスパッタリング装置などのプラズマ発生機構を備えている装置であれば、いずれの装置でもよい。高周波は、工業的には、13.56MHz、27.12MHz、40.68MHz等が利用されるが、13.56MHzが一般的である。 In the oxygen plasma treatment of the present invention, it is preferable to use high frequency plasma (RF plasma). The oxygen plasma processing apparatus may be any apparatus provided with a plasma generation mechanism such as an atmospheric pressure plasma apparatus, a vacuum plasma CVD apparatus, and a plasma sputtering apparatus. Industrially, 13.56 MHz, 27.12 MHz, 40.68 MHz, etc. are used as the high frequency, but 13.56 MHz is common.

高周波プラズマは、マイクロ波プラズマと比べて広範な圧力範囲(圧力2Pa〜100kPa(大気圧))で比較的安定に形成でき、プラズマ密度は109〜1011/cm3程度と、マイクロ波プラズマに比べると幾分低いが、例えば大気圧雰囲気を用いた大気圧高周波プラズマ照射処理であれば装置構造が単純になり装置コストを安価にできる利点がある。 High-frequency plasma can be formed relatively stably in a wider pressure range (pressure 2 Pa to 100 kPa (atmospheric pressure)) than microwave plasma, and the plasma density is about 10 9 to 10 11 / cm 3. Although somewhat lower than the above, for example, atmospheric pressure high-frequency plasma irradiation processing using an atmospheric pressure atmosphere has the advantage of simplifying the device structure and reducing the device cost.

プラズマ照射処理では、プラズマの電子温度が高い(数eV程度)ため、基材が加熱されるが、その加熱温度はプラズマ照射処理条件(基板とプラズマ発生部の距離(照射距離)、処理時間、入力エネルギーにより100〜数百度℃まで大きく異なってくる。 In the plasma irradiation process, since the plasma electron temperature is high (about several eV), the substrate is heated. The heating temperature depends on the plasma irradiation process conditions (distance (irradiation distance) between the substrate and the plasma generation unit, the processing time, It varies greatly from 100 to several hundred degrees C. depending on the input energy.

本発明における酸素プラズマ処理としては、例えば、負極基材をプラズマCVD装置のチャンバ内にセットし、フローガスとして酸素を用いて、ガス流量を10〜100sccm、好ましくは10〜60sccm程度とし、基材温度を25℃〜300℃、プロセス圧を10Pa〜1気圧(101.325kPa)、好ましくは10〜100kPa程度、出力密度を0.5W/cm2〜15W/cm2、処理時間を5分〜2時間程度、好ましくは5〜100分程度とする。また、印加高周波の周波数は13.56MHzで行なえばよい。 As the oxygen plasma treatment in the present invention, for example, a negative electrode substrate is set in a chamber of a plasma CVD apparatus, oxygen is used as a flow gas, and a gas flow rate is set to about 10 to 100 sccm, preferably about 10 to 60 sccm. Temperature is 25 ° C. to 300 ° C., process pressure is 10 Pa to 1 atm (101.325 kPa), preferably about 10 to 100 kPa, power density is 0.5 W / cm 2 to 15 W / cm 2 , and processing time is 5 minutes to 2 hours. The degree, preferably about 5 to 100 minutes. The frequency of the applied high frequency may be 13.56 MHz.

本発明の負極の活物質層は、特にバインダを必要とせずに、負極基材の最表面に強固に付着した状態で生成している酸化鉄ナノ粒子膜の層からなる構造を有している。このために、活物質層は基材との接着力は強く、高い機械的、電気的な安定性を有する。また、さらに酸化鉄ナノ粒子膜の酸化鉄ナノ粒子の充填密度を高めるため、酸素プラズマ処理後に一般的な製法で製造された酸化鉄ナノ粒子を塗布法、噴射法、静電的付着法などで酸化鉄ナノ粒子膜の層に補充してもよい。 The active material layer of the negative electrode of the present invention has a structure composed of a layer of an iron oxide nanoparticle film that is generated in a state in which it is firmly attached to the outermost surface of the negative electrode base material without particularly requiring a binder. . For this reason, the active material layer has a strong adhesive force with the substrate and has high mechanical and electrical stability. Furthermore, in order to further increase the packing density of the iron oxide nanoparticles in the iron oxide nanoparticle film, the iron oxide nanoparticles produced by a general manufacturing method after the oxygen plasma treatment are applied by a coating method, a spray method, an electrostatic deposition method, etc. The layer of iron oxide nanoparticle film may be replenished.

本発明の負極は、コンバーョン型リチウム二次電池やナトリウム二次電池用の構成要素として用いることができる。すなわち、本発明の負極と、リチウム化合物又はナトリウム化合物を活物質とする正極と、この正負極間に配置される電解液と、正負極間を隔離するセパレータと、からコンバーョン型二次電池を形成することができる。電解液の有機溶媒と電解質、正極、セパレータ、並びにこの二次電池を構成する外容器の構造や大きさ等については、特に制限はなく、従来公知のものを用いることができる。本発明の負極は、負極集電体を兼ねることができるので、その場合は、別途集電体を用いる必要はない。 The negative electrode of the present invention can be used as a convertible di tio emission type element of a lithium secondary battery and a sodium secondary battery. That is, a negative electrode of the present invention, a positive electrode for a lithium compound or sodium compound as an active material, and an electrolytic solution disposed between the positive and negative electrodes, convertible di tio emission type secondary from a separator, which isolate the positive and negative electrodes A battery can be formed. There are no particular restrictions on the organic solvent and electrolyte of the electrolytic solution, the positive electrode, the separator, and the structure and size of the outer container constituting the secondary battery, and conventionally known ones can be used. Since the negative electrode of the present invention can also serve as a negative electrode current collector, it is not necessary to use a separate current collector in that case.

前記正極集電体は、例えば、アルミニウム、ニッケル又はステンレス鋼などでよい。正極活物質は、リチウム又はナトリウム酸化物、リチウム又はナトリウムと遷移金属とを含む複合酸化物、リチウム又はナトリウム硫化物、リチウム又はナトリウムを含む層間化合物、リチウム又はナトリウムリン酸化合物などでよい。 The positive electrode current collector may be, for example, aluminum, nickel, or stainless steel. The positive electrode active material may be lithium or sodium oxide, a composite oxide containing lithium or sodium and a transition metal, lithium or sodium sulfide, an intercalation compound containing lithium or sodium, or lithium or sodium phosphate compound.

セパレータは、ポリプロピレン(PP)、ポリエチレン(PE)などのポリオレフィン製の多孔質膜、セラミック製の多孔質膜でよい。 The separator may be a porous film made of polyolefin such as polypropylene (PP) or polyethylene (PE), or a porous film made of ceramic.

非水有機溶媒は、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート及びエチルメチルカーボネートが好適である。電解液の難燃性を向上させるためにフルオロエーテルを用いてもよい。非水有機溶媒は有機珪素化合物などの添加剤を含有してもよい。 As the non-aqueous organic solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are suitable. Fluoroether may be used to improve the flame retardancy of the electrolytic solution. The non-aqueous organic solvent may contain an additive such as an organosilicon compound.

電解質塩としては、リチウム二次電池の場合は、例えば、LiPF6 、LiBF4、LiClO4 、LiAsF6 、LiN(C25 SO22 、LiCF3 SO3、LiN(CF3 SO22 、LiC(CF3 SO23 、LiCl、LiBrなどが挙げられる。また、ナトリウム二次電池の場合は、例えば、NaPF6、NaBF4、NaClO4、NaTiF4、NaVF5、NaAsF、NaSbF6、NaCF3SO3、Na(C25SO22N、NaB(C242、N
aB10Cl10、NaB12Cl12、NaCF3COO、Na224、NaNO3、Na2SO4、NaPF3(C253、NaB(C654、Na(CF3SO23Cなどが挙げられる。なお、上記塩のうち1種単独で用いてもよく、2種以上を組み合わせてもよい。また、イオン液体を用いてもよい。ゲル状の電解質を用いてもよい。
As the electrolyte salt, in the case of a lithium secondary battery, for example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (C 2 F 5 SO 2 ) 2 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiCl, LiBr and the like. In the case of a sodium secondary battery, for example, NaPF 6 , NaBF 4 , NaClO 4 , NaTiF 4 , NaVF 5 , NaAsF, NaSbF 6 , NaCF 3 SO 3 , Na (C 2 F 5 SO 2 ) 2 N, NaB (C 2 O 4 ) 2 , N
aB 10 Cl 10 , NaB 12 Cl 12 , NaCF 3 COO, Na 2 S 2 O 4 , NaNO 3 , Na 2 SO 4 , NaPF 3 (C 2 F 5 ) 3 , NaB (C 6 F 5 ) 4 , Na ( CF 3 SO 2 ) 3 C and the like. In addition, 1 type may be used independently among the said salts, and 2 or more types may be combined. Further, an ionic liquid may be used. A gel electrolyte may be used.

<負極の作製> 基材として、厚さ50μm、縦50mm、横10mmの純鉄箔(株式会社ニラコ製)をプラズマ-CVD装置のチャンバ内にセットした。基材温度を400℃とし、チャンバ圧力を16Pa、酸素ガス流量を60ccmとして、出力密度を6W/cm2で40分間プラズマ照射した。 <Production of Negative Electrode> As a base material, pure iron foil (manufactured by Niraco Co., Ltd.) having a thickness of 50 μm, a length of 50 mm, and a width of 10 mm was set in a chamber of a plasma-CVD apparatus. Plasma irradiation was performed at a substrate temperature of 400 ° C., a chamber pressure of 16 Pa, an oxygen gas flow rate of 60 ccm, and an output density of 6 W / cm 2 for 40 minutes.

図1に示すように、基材の表面に厚さ200nm程度の緻密なFe34層と、この層の最表面に付着した状態で平均粒径20nm程度の非晶質の酸化鉄ナノ粒子膜が1〜2層形成されていることが分かる。図2に、プラズマ照射後の基材表面のTEM像を示すように、酸化鉄ナノ粒子の凹凸による粗面が観察される。また、図3に示すように、ナノ粒子の電子回折図形において、環状のパターンが観察され、非晶質か微結晶又はこれらの混在であることが理解される。 As shown in FIG. 1, a dense Fe 3 O 4 layer having a thickness of about 200 nm on the surface of a substrate and amorphous iron oxide nanoparticles having an average particle size of about 20 nm attached to the outermost surface of this layer It can be seen that 1-2 layers of film are formed. In FIG. 2, a rough surface due to the unevenness of the iron oxide nanoparticles is observed as shown in a TEM image of the surface of the substrate after plasma irradiation. In addition, as shown in FIG. 3, in the electron diffraction pattern of the nanoparticles, an annular pattern is observed, which is understood to be amorphous, microcrystalline, or a mixture thereof.

<ハーフセルの作製> 評価セルとして、上記負極を用い、対極をリチウム金属として2032コインセルを作製した。負極の鉄箔重量は、0.094gであった。電解液はEC:DMC=1:2(vol%)とし、電解質をLiPF6:1mol/lとした。セパレータとしてセルガードを用いた。 <Production of Half Cell> A 2032 coin cell was produced using the negative electrode as an evaluation cell and the counter electrode being lithium metal. The iron foil weight of the negative electrode was 0.094 g. The electrolyte was EC: DMC = 1: 2 (vol%), and the electrolyte was LiPF 6 : 1 mol / l. Celgard was used as a separator.

<ハーフセルによる評価> CC充放電、充放電電流20μAで5サイクル充放電を行った。充放電容量を表1及び図4に示す。最大放電容量は163μAh(2サイクル目)であった。図4に示すように、酸化鉄のコンバーョン負極に特有な電圧1.1V弱付近での明瞭なプラトーが確認された。 <Evaluation by half cell> 5 cycles of charge / discharge were performed with CC charge / discharge and a charge / discharge current of 20 μA. The charge / discharge capacity is shown in Table 1 and FIG. The maximum discharge capacity was 163 μAh (second cycle). As shown in FIG. 4, it was confirmed distinct plateau at around specific voltage 1.1V weak to convergence di tio down the negative electrode of the iron oxide.

<フルセルの作製>上記負極を用い、対極をLiCoO(1.5mAh/cm2)として2032コインセルを作製した。<フルセルによる評価> CC充放電、充放電電流50μAで5サイクル充放電を行った。充放電容量を表2及び図5に示す。最大放電容量は1059μAh(4サイクル目)であった。 <Production of Full Cell> A 2032 coin cell was produced using the above negative electrode and the counter electrode being LiCoO (1.5 mAh / cm 2 ). <Evaluation by Full Cell> 5 cycles of charge and discharge were performed with CC charge and discharge and a charge and discharge current of 50 μA. The charge / discharge capacity is shown in Table 2 and FIG. The maximum discharge capacity was 1059 μAh (fourth cycle).

<負極の作製> 基材として、厚さ0.8mm、直径16mmのSUS304ステンレス鋼をプラズマ-CVD装置のチャンバ内にセットした。基材温度を200℃とし、チャンバ圧力を16Pa、酸素ガス流量を60ccmとして、出力密度6W/cm2で90分間プラズマ照射した。実施例1と同様に、基材の表面に厚さ200nm程度の緻密なFe34層と、この層の最表面に付着した状態で平均粒径20nm程度の非晶質の酸化鉄ナノ粒子膜が1〜2層形成されていた。 <Production of Negative Electrode> As a substrate, SUS304 stainless steel having a thickness of 0.8 mm and a diameter of 16 mm was set in a chamber of a plasma-CVD apparatus. Plasma was irradiated for 90 minutes at a power density of 6 W / cm 2 at a substrate temperature of 200 ° C., a chamber pressure of 16 Pa, an oxygen gas flow rate of 60 ccm. Similar to Example 1, a dense Fe 3 O 4 layer having a thickness of about 200 nm on the surface of the substrate and amorphous iron oxide nanoparticles having an average particle size of about 20 nm attached to the outermost surface of this layer One or two layers of the film were formed.

<ハーフセルの作製> 評価セルは実施例1と同様に作製した。 <Production of Half Cell> The evaluation cell was produced in the same manner as in Example 1.

<ハーフセルによる評価> CC充放電、充放電電流10μAで3サイクル充放電を行った。充放電容量を表3及び図6に示す。 <Evaluation with a half cell> 3 cycles of charge / discharge were performed with CC charge / discharge and a charge / discharge current of 10 μA. The charge / discharge capacity is shown in Table 3 and FIG.

最大放電容量は93μAh(2、3サイクル目)であった。1サイクル目にプラトーが確認された。 The maximum discharge capacity was 93 μAh (second and third cycles). A plateau was confirmed in the first cycle.

従来のカーボンを負極活物質として用いるリチウムイオン二次電池などに代えて、酸化鉄ナノ粒子を負極活物質として使用する高容量で、かつ安価で安全なコンバーョン型二次電池としての利用が期待される。 Instead such a lithium ion secondary battery using the conventional carbon as a negative electrode active material, use of a high capacity using the iron oxide nanoparticles as a negative electrode active material, and as an inexpensive and safe convergence di tio emission type secondary battery There is expected.

Claims (5)

負極と、リチウム化合物又はナトリウム化合物を活物質とする正極と、この正負極間に配置される電解液と、正負極間を隔離するセパレータと、からなるコンバージョン型二次電池用負極において、表面が鉄又は鉄を主成分とする合金からなる基材上に、酸素プラズマ処理による表面酸化によって形成されて基材の最表面に付着している酸化鉄ナノ粒子膜からなる活物質層を有し、酸化鉄ナノ粒子膜の下層に主成分が結晶性のFe 3 4 である酸化鉄層が形成されていることを特徴とするコンバーョン型二次電池用負極。 In a negative electrode for a conversion type secondary battery comprising a negative electrode, a positive electrode using a lithium compound or a sodium compound as an active material, an electrolytic solution disposed between the positive and negative electrodes, and a separator separating the positive and negative electrodes, on iron or iron an alloy mainly composed of base material, formed by surface oxidation by oxygen plasma treatment have a active material layer consisting of iron oxide nanoparticles layer adhering to the outermost surface of the substrate, Conversion di tio emission type secondary battery negative electrode, wherein the main component in the lower layer of iron oxide nanoparticles film is crystalline Fe 3 O 4 in which the iron oxide layer is formed. 酸化鉄ナノ粒子は非晶質及び/又は微結晶のFe34であることを特徴とする請求項1記載の二次電池用負極。 The negative electrode for a secondary battery according to claim 1, wherein the iron oxide nanoparticles are amorphous and / or microcrystalline Fe 3 O 4 . 酸化鉄ナノ粒子膜の粒子の粒径が10〜30nmの範囲に分布することを特徴とする請求項1又は2記載の二次電池用負極。 The negative electrode for a secondary battery according to claim 1 or 2, wherein the particle diameter of the iron oxide nanoparticle film is distributed in a range of 10 to 30 nm. 基材の表面に金属酸化物からなる活物質層を有する負極を製造する方法において、表面が鉄又は鉄を主成分とする合金からなる基材を酸素プラズマ処理することによって表面酸化し、基材の最表面に酸化鉄ナノ粒子膜を形成することを特徴とする請求項1乃至3のいずれかに記載の二次電池用負極の製造方法。 In the method for producing a negative electrode having an active material layer made of a metal oxide on the surface of a base material, the surface is oxidized by subjecting the base material made of iron or an iron-based alloy as a main component to oxygen plasma treatment, and the base material The method for producing a negative electrode for a secondary battery according to any one of claims 1 to 3, wherein an iron oxide nanoparticle film is formed on the outermost surface of the secondary battery. 前記酸素プラズマ処理のプロセス圧を10Pa〜1気圧、酸素ガスの流量を10〜100ccm、出力密度を0.5W/cm2〜15W/cm2、処理時間を5分〜2時間とすることを特徴とする請求項4記載の二次電池用負極の製造方法。 The oxygen plasma treatment has a process pressure of 10 Pa to 1 atm, an oxygen gas flow rate of 10 to 100 ccm, a power density of 0.5 W / cm 2 to 15 W / cm 2 , and a treatment time of 5 minutes to 2 hours. The manufacturing method of the negative electrode for secondary batteries of Claim 4.
JP2013265867A 2013-12-24 2013-12-24 Negative electrode for secondary battery and method for producing the same Expired - Fee Related JP6378875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013265867A JP6378875B2 (en) 2013-12-24 2013-12-24 Negative electrode for secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265867A JP6378875B2 (en) 2013-12-24 2013-12-24 Negative electrode for secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015122218A JP2015122218A (en) 2015-07-02
JP6378875B2 true JP6378875B2 (en) 2018-08-22

Family

ID=53533678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265867A Expired - Fee Related JP6378875B2 (en) 2013-12-24 2013-12-24 Negative electrode for secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP6378875B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4324577A1 (en) 2015-12-16 2024-02-21 6K Inc. Method of producing spheroidal dehydrogenated titanium alloy particles
US11311938B2 (en) 2019-04-30 2022-04-26 6K Inc. Mechanically alloyed powder feedstock
EP4061787B1 (en) 2019-11-18 2024-05-01 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
EP4173060A1 (en) 2020-06-25 2023-05-03 6K Inc. Microcomposite alloy structure
CA3186082A1 (en) 2020-09-24 2022-03-31 6K Inc. Systems, devices, and methods for starting plasma
KR20230095080A (en) 2020-10-30 2023-06-28 6케이 인크. Systems and methods for synthesizing spheroidized metal powders

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101041932B1 (en) * 2008-10-15 2011-06-16 한국과학기술연구원 Electrode for secondary battery and the fabrication method thereof, and secondary battery using the same
US9070950B2 (en) * 2012-03-26 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Power storage element, manufacturing method thereof, and power storage device

Also Published As

Publication number Publication date
JP2015122218A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP6378875B2 (en) Negative electrode for secondary battery and method for producing the same
TWI709270B (en) Anode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing negative electrode active material particles
KR102267342B1 (en) Method for manufacturing electrode for storage battery
JP7148150B2 (en) Passivation of Lithium Metal by Two-Dimensional Materials for Rechargeable Batteries
JP5269692B2 (en) Method for forming positive electrode
JP6353329B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2015063979A1 (en) Negative electrode active material, production method for negative electrode active material, and lithium ion secondary battery
JP6070966B2 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
WO2018024184A1 (en) Method for preparing germanium/graphene/titanium dioxide nanofiber composite material, and battery
Im et al. Two-dimensional, P-doped Si/SiOx alternating veneer-like microparticles for high-capacity lithium-ion battery composite
JP5961910B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery, method for producing lithium secondary battery, and method for producing negative electrode for lithium secondary battery
JP7371957B2 (en) Positive electrode active material for secondary batteries and lithium secondary batteries containing the same
CN111095626B (en) Negative active material for lithium secondary battery and method for preparing same
WO2013035633A1 (en) Positive electrode material for lithium ion secondary batteries, positive electrode member for lithium ion secondary batteries, and lithium ion secondary battery
WO2016185663A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary batteries
JP2016076342A (en) Electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2015015883A1 (en) Lithium secondary battery and electrolyte solution for lithium secondary batteries
US9379379B2 (en) Cathode material for lithium ion secondary batteries, cathode member for lithium ion secondary batteries, lithium ion secondary battery, and method for producing cathode material for lithium ion secondary batteries
JP2023500474A (en) Irreversible additive, positive electrode material containing said irreversible additive, lithium secondary battery containing said positive electrode material
JP7152360B2 (en) Positive electrode of secondary battery, and secondary battery using the same
KR20110027112A (en) Method of preparing positine active material for lithium battery
JP2012164481A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
CN108987670B (en) Solid solution lithium-containing transition metal oxide, positive electrode, and battery
WO2014199782A1 (en) Anode active material for electrical device, and electrical device using same
JP2013232436A (en) Negative electrode active material of self-supporting metal sulfide-based two-dimensional nanostructure and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180730

R150 Certificate of patent or registration of utility model

Ref document number: 6378875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees