JP2013232436A - Negative electrode active material of self-supporting metal sulfide-based two-dimensional nanostructure and production method therefor - Google Patents

Negative electrode active material of self-supporting metal sulfide-based two-dimensional nanostructure and production method therefor Download PDF

Info

Publication number
JP2013232436A
JP2013232436A JP2013161749A JP2013161749A JP2013232436A JP 2013232436 A JP2013232436 A JP 2013232436A JP 2013161749 A JP2013161749 A JP 2013161749A JP 2013161749 A JP2013161749 A JP 2013161749A JP 2013232436 A JP2013232436 A JP 2013232436A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
sns
metal sulfide
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013161749A
Other languages
Japanese (ja)
Inventor
Jin Gu Kang
ジン グ カン
Don Wan Kim
ドン ワン キム
Jae-Gwan Park
ジェ グワン パク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Korea Institute of Science and Technology KIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Korea Institute of Science and Technology KIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST, Korea Institute of Science and Technology KIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of JP2013232436A publication Critical patent/JP2013232436A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode active material of high crystallinity, high uniformity and high purity self-supporting metal sulfide-based two-dimensional nanostructure applicable to a secondary battery, and to provide a production method therefor.SOLUTION: The negative electrode active material grows directly, as a metal sulfide-based two-dimensional nanostructure, on a metal substrate by peeling an aggregate composed of a metal sulfide-based material. The production method thereof includes a step for producing an aggregate composed of a metal sulfide-based material, a step for inserting the aggregate into a tube in an electric furnace for pulse laser vapor deposition, a step for inserting a metal substrate into a tube and locating the metal substrate separately from the aggregate, a step for lowering the pressure in the tube to vacuum state and raising the temperature of the electric furnace to 590-610°C, and a step for peeling the aggregate by injecting pulse laser into the tube. The metal sulfide-based material is grown, as a two-dimensional nanostructure, directly on the metal substrate.

Description

本発明は、2次電池に適用可能な高結晶性、高均一性、高純度の自己支持形金属硫化物系2次元ナノ構造体の負極活物質及びその製造方法に関する。   The present invention relates to a negative electrode active material of a self-supporting metal sulfide-based two-dimensional nanostructure having high crystallinity, high uniformity, and high purity applicable to a secondary battery, and a method for manufacturing the same.

最近、電気自動車とハイブリッド自動車の急速な発展と携帯用電子製品の軽量化及び小型化傾向に伴い、これら製品の電力供給源を大容量化して高出力化できる技術開発が持続的に要求されている。上記電力供給源は、大きく分けて、一回使用が可能な1次電池、放電されると再充電して複数回使用可能な2次電池、水素を燃料とする燃料電池、及び太陽エネルギを電気エネルギに変換する太陽電池がある。   Recently, along with the rapid development of electric vehicles and hybrid vehicles and the trend toward lighter and smaller portable electronic products, there is a continuous demand for technological development that can increase the power supply sources of these products and increase their output. Yes. The power supply source is roughly divided into a primary battery that can be used once, a secondary battery that can be recharged and used multiple times when discharged, a fuel cell that uses hydrogen as fuel, and solar energy. There are solar cells that convert energy.

この中、1次電池には、アルカリ電池、水銀電池、マンガン電池などがあり、これらは大容量であるにもかかわらず、リサイクルが不可能であるため、環境に優しくない短所がある反面、鉛蓄電池、ニッケルカドミウム電池、ニッケルメタルハイドライド電池、リチウム金属電池、リチウムイオン電池などの2次電池は再使用が可能であるため、環境に優しく、1次電池よりも駆動電圧が高くてエネルギ効率が高いという長所がある。   Among these, primary batteries include alkaline batteries, mercury batteries, manganese batteries, etc., which are large in capacity but cannot be recycled, so there are disadvantages that are not friendly to the environment, but lead. Secondary batteries such as storage batteries, nickel cadmium batteries, nickel metal hydride batteries, lithium metal batteries, and lithium ion batteries are reusable, so they are environmentally friendly, have a higher driving voltage and higher energy efficiency than primary batteries There is an advantage.

さらに、燃料電池には、リン酸型、プロトン交換膜型、溶解炭酸型、固体酸化物型などのように駆動方式に応じて様々なものがあり、これらは低エネルギ密度を有し、まだ技術的に解決しなければならない課題が多いが、2次電池は、高エネルギ密度、高出力密度を有する製品が産業分野で商用化されている。   Furthermore, there are various types of fuel cells, such as phosphoric acid type, proton exchange membrane type, dissolved carbonic acid type, solid oxide type, etc., depending on the driving system, and these have low energy density and are still technical Although there are many problems that have to be solved, secondary batteries have been commercialized in the industrial field as products having high energy density and high output density.

この中、リチウムイオン2次電池(あるいはリチウム2次電池)は、他の2次電池に比べて、非常に高いエネルギ密度と出力密度を有するため、次世代エネルギ技術として最も脚光を浴びている。   Among these, a lithium ion secondary battery (or a lithium secondary battery) has an extremely high energy density and output density as compared with other secondary batteries, and is therefore attracting the most attention as a next-generation energy technology.

このようなリチウム2次電池は、電荷伝達媒介体であるリチウムイオンが正極活物質または負極活物質に移動したときに発生する可逆的な挿入/脱離反応を用いるため、リチウムイオンを貯蔵できる正極活物質と負極活物質の収容能力が電池の性能を左右する。   Such a lithium secondary battery uses a reversible insertion / desorption reaction that occurs when lithium ions, which are charge transfer mediators, move to a positive electrode active material or a negative electrode active material, and thus a positive electrode that can store lithium ions. The capacity of the active material and the negative electrode active material determines the performance of the battery.

最初は上記負極活物質としてリチウム金属を用いて高エネルギ密度を実現したが、充放電時に電極表面が急激に変化して充放電容量が減少し、負極から析出されたリチウム金属デンドライトが正極に接触して爆発の危険性があるため、これ以上研究開発していない。   Initially, a high energy density was achieved using lithium metal as the negative electrode active material, but the surface of the electrode suddenly changed during charge / discharge, the charge / discharge capacity decreased, and the lithium metal dendrite deposited from the negative electrode contacted the positive electrode. Because of the danger of explosion, no further research and development has been done.

その後、1991年にソニーが負極活物質として炭素を、正極活物質としてリチウム酸化物を用いてリチウムイオン2次電池を基盤とする製品を常用化し、現在でも挿入/脱離反応によりリチウムイオンを収容する炭素系基盤の負極活物質がリチウムイオン2次電池に広く用いられている。   Later, in 1991, Sony made a regular product based on lithium-ion secondary batteries using carbon as the negative electrode active material and lithium oxide as the positive electrode active material, and still contains lithium ions through insertion / extraction reactions. Carbon-based negative electrode active materials are widely used in lithium ion secondary batteries.

このように負極活物質として最も広く使用されている炭素系物質は、大きく分けて、ハードカーボン(難黒鉛化性炭素)、ソフトカーボン(易黒鉛化性炭素)、及び黒鉛に分類することができる。ハードカーボンとソフトカーボンは、両方とも非黒鉛系炭素であり、ハードカーボンは、複数の層からなる小さい黒鉛状の結晶が不規則に配列されており、高温の熱処理過程を通して黒鉛化が不可能な反面、ソフトカーボンは層状構造の結晶がある程度配向性を有するため、高温の熱処理を通して黒鉛化が可能である。   As described above, the carbon-based materials most widely used as the negative electrode active material can be roughly classified into hard carbon (non-graphitizable carbon), soft carbon (graphitizable carbon), and graphite. . Both hard carbon and soft carbon are non-graphitic carbon, and hard carbon is irregularly arranged with multiple graphitic crystals consisting of multiple layers and cannot be graphitized through a high-temperature heat treatment process. On the other hand, soft carbon can be graphitized through high-temperature heat treatment because crystals of a layered structure have a certain degree of orientation.

これら非黒鉛系炭素は、リチウムイオンが層状構造内の層間と炭素内部気孔に挿入されるため、黒鉛系炭素よりも非常に大きい容量が可能であるが、非可逆容量が大きいという短所がある(非特許文献1及び2)。   These non-graphitic carbons can have a capacity much larger than that of graphite-based carbon because lithium ions are inserted between layers and carbon internal pores in the layered structure, but have a disadvantage that the irreversible capacity is large ( Non-Patent Documents 1 and 2).

従って、炭素系物質のうち、黒鉛が最も広く用いられており、これはさらに天然黒鉛と人工黒鉛に分類することができる。   Accordingly, graphite is the most widely used carbonaceous material, and can be further classified into natural graphite and artificial graphite.

代表的な人工黒鉛としては、メゾカーボン繊維、メゾカーボン微小ビーズがあり、最近は、2種元素がドーピングされた人工黒鉛が負極活物質として生産されている。また、メゾフェーズ繊維とメゾフェーズカーボン微小ビーズは、製造上の利点にもかかわらず、高価と複雑な工程により著しく低い容量を呈す。   Typical artificial graphite includes mesocarbon fibers and mesocarbon microbeads. Recently, artificial graphite doped with two kinds of elements has been produced as a negative electrode active material. Mesophase fibers and mesophase carbon microbeads also exhibit significantly lower capacities due to costly and complex processes, despite manufacturing advantages.

さらに、天然黒鉛は、メゾフェーズ繊維やメゾフェーズカーボン微小ビーズに比べて充放電容量が高く、非可逆容量が非常に低いという長所がある反面、板状構造を有するため、高密度の極板製造が容易ではないという短所がある。   In addition, natural graphite has the advantages of higher charge / discharge capacity and very low irreversible capacity compared to mesophase fibers and mesophase carbon microbeads. However, it is not easy.

従って、上記問題点を解決するために、低価のコークス系人工黒鉛にホウ素のような元素をドーピングして負極活物質として使用する技術が開発されている(特許文献1〜4)。   Therefore, in order to solve the above problems, techniques have been developed in which low-cost coke-based artificial graphite is doped with an element such as boron and used as a negative electrode active material (Patent Documents 1 to 4).

しかし、上記の全ての炭素系負極活物質は、基本的に小さい理論容量(372mAh/g)を有し、商用化された容量はこれよりもさらに小さいと知らされている。また、充放電過程で電解質溶液との間で副反応を起こして非可逆容量が大きく、反応電圧が低いため、爆発の危険性がある。そのため、次世代携帯用電子機器や電気自動車などで要求される技術傾向である高エネルギ密度と高出力密度を充足させるには限界がある。   However, all the above carbon-based negative electrode active materials basically have a small theoretical capacity (372 mAh / g), and it is known that the commercialized capacity is even smaller than this. Further, there is a risk of explosion because a side reaction occurs with the electrolyte solution during the charge / discharge process, the irreversible capacity is large, and the reaction voltage is low. Therefore, there is a limit to satisfy the high energy density and the high output density, which are technical trends required for next-generation portable electronic devices and electric vehicles.

炭素系材料を代替する負極活物質として挿入/脱離反応基盤のTiO系材料が注目を集めている。これは高速充放電が可能で、安全であるという利点はあるが、炭素系材料と同様に理論容量が小さいという短所がある。 An insertion / desorption reaction-based TiO 2 -based material has attracted attention as a negative electrode active material replacing carbon-based materials. This is advantageous in that it can be charged and discharged at high speed and is safe, but has the disadvantage that the theoretical capacity is small as in the case of carbon-based materials.

従って、挿入/脱離反応とは異なり、リチウムを貯蔵する方式に対する研究が注目を浴びているが、これは転換反応(conversion reaction)及びリチウム合金反応(alloying reaction)に大きく分けられる。   Therefore, unlike the insertion / extraction reaction, research on a method for storing lithium is attracting attention, which can be broadly divided into a conversion reaction and a lithium alloy reaction.

この中、上記転換反応は、CuO、CoO、Fe、NiO、MnOなどの遷移金属酸化物がリチウムを貯蔵する方式であり、原子一個当たり3〜6個のリチウムイオンに反応するため、高容量である(非特許文献3及び4)。 Among them, the above conversion reaction is a method in which transition metal oxides such as CuO, CoO, Fe 2 O 3 , NiO, and MnO 2 store lithium, and react with 3 to 6 lithium ions per atom. High capacity (Non-patent Documents 3 and 4).

このような転換反応は、具体的にM+2yLi⇔xM+yLi2O(M=transition metal)のように起き、既に電気化学的活性がないと報告されたLi2Oがナノサイズの遷移金属ドメインと可逆的に反応しながら高容量を発現する。 Such conversion reactions, specifically M x O y + 2yLi⇔xM + yLi occur as 2 O (M = transition metal) , already a transition metal of the reported Li 2 O that no electrochemical activity nanosize High capacity is expressed while reversibly reacting with the domain.

しかし、上記転換反応は、持続的な充放電反応により粒子間の凝集(aggregation)が起きて局部的に不均一な組成を作り、これはサイクル特性を阻害する。また、遷移金属と酸素間の結合を切断するため、リチウムを貯蔵する転換反応の特性上、出力特性が低下する問題がある(非特許文献5)。   However, in the above conversion reaction, aggregation between particles occurs due to a continuous charge / discharge reaction to create a locally non-uniform composition, which impairs cycle characteristics. Further, since the bond between the transition metal and oxygen is cut, there is a problem that the output characteristics are deteriorated due to the characteristics of the conversion reaction for storing lithium (Non-patent Document 5).

上記遷移金属酸化物が有する短所を改善するために、ナノ構造体を合成してリチウム2次電池に応用する研究が、Co、Feなどを用いて行われた(非特許文献6〜8)。この研究によれば、ナノ線Co、ナノチューブCoは1次元ナノ構造体であるが、サイクル回数による急激な容量減少が起き、また、ナノロッド形態の銅集電体上にFeを蒸着した自己支持形電極は、分極が抑制されて出力特性が改善されたが、様々な段階の工程順序を行わなければならない。 In order to improve the disadvantages of the transition metal oxides, research on synthesizing nanostructures and applying them to lithium secondary batteries has been conducted using Co 3 O 4 , Fe 3 O 4, etc. References 6-8). According to this study, nanowires Co 3 O 4 and nanotubes Co 3 O 4 are one-dimensional nanostructures, but a sudden capacity decrease occurs with the number of cycles, and Fe on the copper current collector in the form of nanorods. The self-supporting electrode on which 3 O 4 is deposited has improved output characteristics due to suppression of polarization, but the process sequence of various stages must be performed.

一方、合金反応は、Si、Ge、Snの単元素物質がLiSi、LiGe、LiSnのリチウム合金を形成することによりリチウムイオンを貯蔵する方式である。これは原子一個当たり最大4.4個のリチウムイオンと反応するため、理論容量が大きく(Li−Si:4200mAh/g、Li−Ge:1600mAh/g、Li−Sn:990mAh/g)、そのため、黒鉛系材料に比べて高容量を達成することができる。しかし、リチウムとの合金/脱合金反応時の過度な体積膨張により粒子が粉砕(pulverization)され、電子が移動する通路が切れる電気的孤立(electrical isolation)現象が発生する問題があり、これはサイクル特性が急速に減少する原因になってリチウム合金系物質の商用化の可能性を阻害する(非特許文献9及び10)。 On the other hand, the alloy reaction is a system in which lithium ions are stored by forming a lithium alloy of Li x Si, Li x Ge, and Li x Sn by a single element material of Si, Ge, and Sn. Since this reacts with a maximum of 4.4 lithium ions per atom, the theoretical capacity is large (Li-Si: 4200 mAh / g, Li-Ge: 1600 mAh / g, Li-Sn: 990 mAh / g). High capacity can be achieved compared to graphite-based materials. However, due to excessive volume expansion during the alloy / dealloying reaction with lithium, there is a problem in that particles are pulverized and an electric isolation phenomenon occurs in which a path for electrons to move is cut. This causes a rapid decrease in properties, which hinders the possibility of commercializing lithium alloy materials (Non-Patent Documents 9 and 10).

上記リチウム合金系負極活物質を多様な形態のナノ構造体により製造して電極特性を改善する研究が相当数報告された。先ず、化学気相蒸着法を用いてナノ線Siまたはナノ線Geを金属集電体上に成長させた場合、充放電時に導電材を経由して電子が伝達される方式ではないため、活物質間の接触抵抗が最小化され、高出力特性が得られるが、製造工程が複雑で、合成温度が高いという短所がある(非特許文献11及び12)。また、液相合成法を用いてSnナノ粒子を炭素球に注入するか、炭素レイヤで囲んだ場合、サイクル特性は向上したが、工程手続が難しくなるという問題がある(非特許文献13及び14)。   A considerable number of studies have been reported on improving the electrode characteristics by manufacturing the lithium alloy-based negative electrode active material using various types of nanostructures. First, when nanowire Si or nanowire Ge is grown on a metal current collector using chemical vapor deposition, it is not a system in which electrons are transmitted via a conductive material during charge / discharge, so an active material The contact resistance is minimized and high output characteristics can be obtained, but the manufacturing process is complicated and the synthesis temperature is high (Non-patent Documents 11 and 12). In addition, when Sn nanoparticles are injected into a carbon sphere using a liquid phase synthesis method or surrounded by a carbon layer, the cycle characteristics are improved, but the process procedure is difficult (Non-Patent Documents 13 and 14). ).

以上、様々な代替負極活物質を説明したが、既存の炭素系負極材料を代えるためには、高エネルギ密度、高出力密度、安定したサイクル特性を有するだけでなく、製造工程が簡単で、大面積にかけて製造できる新しい負極活物質が必要である。   Although various alternative negative electrode active materials have been described above, in order to replace existing carbon-based negative electrode materials, not only has high energy density, high output density, and stable cycle characteristics, but also the manufacturing process is simple and large. A new negative electrode active material that can be manufactured over the area is required.

一方、リチウムイオン2次電池用負極活物質としてSnSを用いる場合、最初の放電過程に限って転換反応(SnS+2LiSn+LiS)とリチウム合金反応(Sn+4.4LiLi4.4Sn)が順次起き、以後の充放電過程ではリチウム合金反応(Sn+4.4LiLi4.4Sn)だけ起きる。これは合金反応によりリチウムを貯蔵するため、理論容量(782mAh/g)が高い。 On the other hand, when SnS is used as the negative electrode active material for a lithium ion secondary battery, a conversion reaction (SnS + 2LiSn + Li 2 S) and a lithium alloy reaction (Sn + 4.4LiLi 4.4 Sn) occur sequentially only in the first discharge process. In the charge / discharge process, only the lithium alloy reaction (Sn + 4.4LiLi 4.4 Sn) occurs. Since this stores lithium by an alloy reaction, the theoretical capacity (782 mAh / g) is high.

また、最初の放電時に生成された非晶質LiSマトリックスは、以後の反応には非活性になり、単に活物質を囲んでいるため、リチウム合金/脱合金反応による過度な体積膨張を緩和してサイクル特性の向上を期待できる。 In addition, the amorphous Li 2 S matrix produced during the first discharge becomes inactive for the subsequent reactions and simply surrounds the active material, thus mitigating excessive volume expansion due to the lithium alloy / dealloying reaction. Thus, improvement in cycle characteristics can be expected.

しかしながら、今までの報告書によれば、SnS負極活物質は容量特性に劣り、サイクル特性も顕著に低い(非特許文献15及び16)。これは粒子の大きさと形状の問題、そして導電材と結合材を用いた既存の電極製造方式の欠点による。   However, according to the reports so far, the SnS negative electrode active material is inferior in capacity characteristics and the cycle characteristics are also remarkably low (Non-patent Documents 15 and 16). This is due to the problem of particle size and shape, and the disadvantages of existing electrode manufacturing methods using conductive materials and binders.

特開平3−165463号JP-A-3-165463 特開平3−245458号JP-A-3-245458 特開平5−26680号JP-A-5-26680 特開平9−63584号JP-A-9-63584

R. Alcantara et al., J. Electrochem. Soc. 149 (2002) A201R. Alcantara et al., J. Electrochem. Soc. 149 (2002) A201 J. R. Dahn et al., Carbon 37 (1997) 825J. R. Dahn et al., Carbon 37 (1997) 825 P. Poizot et al., Nature 407 (2000) 496P. Poizot et al., Nature 407 (2000) 496 M. Dolle et al., Electrochem. Solid-State Lett. 5 (2002) A18M. Dolle et al., Electrochem. Solid-State Lett. 5 (2002) A18 R. Yang et al., Electrochem. Solid-State Lett. 7 (2004) A496-A499R. Yang et al., Electrochem. Solid-State Lett. 7 (2004) A496-A499 X. W. Lou et al., Adv. Mater. 20 (2008) 258X. W. Lou et al., Adv. Mater. 20 (2008) 258 Y. Li et al., Nano Lett. 8 (2008) 265Y. Li et al., Nano Lett. 8 (2008) 265 P. L. Taberna et al., Nature Mater. 5 (2006) 567P. L. Taberna et al., Nature Mater. 5 (2006) 567 A. Anani et al., J. Electrochem. Soc. 134 (1987) 3098A. Anani et al., J. Electrochem. Soc. 134 (1987) 3098 W. J. Weydanz et al., J. Power Sources 237 (1999) 81W. J. Weydanz et al., J. Power Sources 237 (1999) 81 C. K. Chan et al., Nature Nanotech. 3 (2008) 31C. K. Chan et al., Nature Nanotech. 3 (2008) 31 C. K. Chan et al., Nano Lett. 8(1) (2008) 307C. K. Chan et al., Nano Lett. 8 (1) (2008) 307 W. M. Zhang et al., Adv. Mater. 20 (2008) 160W. M. Zhang et al., Adv. Mater. 20 (2008) 160 M. Noh et al., Chem. Mater. 17 (2005) 1926M. Noh et al., Chem. Mater. 17 (2005) 1926 X.-L. Gou et al., Mater. Chem. Phys. 93 (2005) 557X.-L. Gou et al., Mater. Chem. Phys. 93 (2005) 557 Y. Li et al., Electrochim. Acta 52 (2006) 1383Y. Li et al., Electrochim. Acta 52 (2006) 1383

本発明は、上記のような問題点を解決するためのものであり、パルスレーザー蒸着法を用いて低温で広い面積の金属基板上に触媒がなくても直接成長する金属硫化物系2次元ナノ構造体の負極活物質を提供することにその目的がある。
また、本発明は、上記負極活物質を製造する方法を提供することにその目的がある。
また、本発明は、上記負極活物質を含む負極を提供することにその目的がある。
また、本発明は、上記負極活物質を採用する2次電池を提供することにその目的がある。
The present invention is for solving the above-described problems, and is a metal sulfide-based two-dimensional nanocrystal that grows directly on a metal substrate having a large area at a low temperature using a pulsed laser deposition method without a catalyst. The object is to provide a negative active material for a structure.
Another object of the present invention is to provide a method for producing the negative electrode active material.
Another object of the present invention is to provide a negative electrode containing the negative electrode active material.
Another object of the present invention is to provide a secondary battery that employs the negative electrode active material.

上記目的を達成するために本発明は、金属硫化物系物質からなる凝集体が剥離され、金属基板上に金属硫化物系2次元ナノ構造体として直接成長することを特徴とする自己支持形金属硫化物系2次元ナノ構造体の負極活物質を提供する。   In order to achieve the above object, the present invention provides a self-supporting metal characterized in that an aggregate composed of a metal sulfide-based material is peeled off and directly grown as a metal sulfide-based two-dimensional nanostructure on a metal substrate. A negative electrode active material of a sulfide-based two-dimensional nanostructure is provided.

また、本発明は、金属硫化物系物質からなる凝集体を製造するステップと、上記凝集体をパルスレーザー蒸着用電気炉内のチューブに挿入装着するステップと、上記チューブ内に金属基板を挿入し、上記凝集体から離れて位置させるステップと、上記チューブ内の圧力を0.01〜0.03Torrの真空状態に下げ、上記電気炉の温度を590〜610℃に上げるステップと、上記チューブ内にパルスレーザーを注入して上記凝集体を剥離するステップと、を含み、金属硫化物系物質を上記金属基板上に2次元ナノ構造体として直接成長させることを特徴とする自己支持形金属硫化物系2次元ナノ構造体の負極活物質の製造方法を提供する。   The present invention also includes a step of producing an agglomerate comprising a metal sulfide-based material, a step of inserting and attaching the agglomerate into a tube in an electric furnace for pulse laser deposition, and a metal substrate being inserted into the tube. A step of separating from the aggregate, a step of lowering the pressure in the tube to a vacuum of 0.01 to 0.03 Torr and raising the temperature of the electric furnace to 590 to 610 ° C., and A self-supporting metal sulfide system, comprising the step of peeling agglomerates by injecting a pulse laser, wherein the metal sulfide material is directly grown as a two-dimensional nanostructure on the metal substrate. A method for producing a negative electrode active material having a two-dimensional nanostructure is provided.

本発明は、パルスレーザー蒸着法を用いて低温で触媒がなくても金属硫化物系物質を大面積の金属基板上に直接成長させ、自己支持形金属硫化物系2次元ナノ構造体の負極活物質を製造することにより、従来の負極活物質の短所である低容量、低出力特性を解決し、高結晶性、高均一性、高純度の負極活物質の製造が可能である。   In the present invention, a metal sulfide-based material is directly grown on a large-area metal substrate using a pulsed laser deposition method without a catalyst at a low temperature, and the negative electrode active of a self-supporting metal sulfide-based two-dimensional nanostructure is developed. By manufacturing the material, the low capacity and low output characteristics, which are the disadvantages of the conventional negative electrode active material, can be solved, and a high crystallinity, high uniformity, and high purity negative electrode active material can be manufactured.

特に、2次元ナノ構造体の負極活物質を製造するためにパルスレーザー蒸着法を用いるため、工程手続が簡単で、低温で合成可能となり、別途の触媒が不要であるため経済的であり、リチウムイオン2次電池だけでなく太陽電池分野への実質的応用が期待される。   In particular, since the pulse laser deposition method is used to manufacture the two-dimensional nanostructure negative electrode active material, the process procedure is simple, it can be synthesized at a low temperature, and no separate catalyst is required. Substantial application not only to ion secondary batteries but also to the solar cell field is expected.

凝集体を製造するために使用するSnSパウダーの電界放出走査電子顕微鏡写真である。It is a field emission scanning electron micrograph of SnS powder used in order to manufacture an aggregate. パルスレーザー蒸着のための工程装備の模式図である。It is a schematic diagram of process equipment for pulse laser deposition. 本発明による自己支持型SnS2次元ナノ構造体の製造方法を示すフローチャートである。3 is a flowchart illustrating a method of manufacturing a self-supporting SnS two-dimensional nanostructure according to the present invention. 本発明により製造した自己支持形SnSナノシート、薄いナノプレート、厚いナノプレート、薄膜の電界放出走査電子顕微鏡写真と大面積合成を示す写真である。2 is a field emission scanning electron micrograph and a large area synthesis of self-supporting SnS nanosheets, thin nanoplates, thick nanoplates, and thin films prepared according to the present invention. 本発明により製造した自己支持形SnSナノシートのX−ray回折パターンを示す図面である。1 is an X-ray diffraction pattern of a self-supporting SnS nanosheet manufactured according to the present invention. 本発明により製造したSnSナノシートの高倍率及び低倍率の透過電子顕微鏡写真である。It is a transmission electron micrograph of the high magnification and low magnification of the SnS nanosheet manufactured by this invention. 本発明により製造した自己支持形SnSナノシート、薄膜、パウダーのサイクル別容量変化を示すグラフである。It is a graph which shows the capacity | capacitance change according to cycle of the self-supporting SnS nanosheet manufactured by this invention, a thin film, and powder. 本発明により製造した自己支持形SnSナノシート、薄膜、パウダーの電流密度別容量変化を示すグラフである。It is a graph which shows the capacity | capacitance change according to the current density of the self-supporting SnS nanosheet manufactured by this invention, a thin film, and powder.

本発明では多数の実施例が存在でき、本発明の説明において従来の技術と同一の部分に対する重複説明は省略する。   In the present invention, a number of embodiments can exist, and in the description of the present invention, duplicate descriptions for the same parts as those of the prior art are omitted.

本発明は、金属硫化物系物質が2次元のナノ構造体として金属基板上に直接成長する自己支持形負極活物質及びその製造方法に関するものであって、優れたリチウム貯蔵能力、広い比表面積、短いリチウムイオン/電子拡散距離、効果的な応力緩和特性を有する金属硫化物系2次元ナノ構造体を、触媒がコーティングされていない金属集電体のステンレススチール(SUS)基板上に直接成長させた負極活物質とその製造方法に関する。   The present invention relates to a self-supporting negative electrode active material in which a metal sulfide-based material grows directly on a metal substrate as a two-dimensional nanostructure, and a method for manufacturing the same, and has an excellent lithium storage capacity, a wide specific surface area, Metal sulfide-based two-dimensional nanostructures with short lithium ion / electron diffusion distance and effective stress relaxation properties were grown directly on a stainless steel (SUS) substrate of a metal collector that is not coated with a catalyst. The present invention relates to a negative electrode active material and a manufacturing method thereof.

本発明の実施例では、金属硫化物系物質として錫硫化物(SnS)を提示しているが、適用可能な金属硫化物系物質がこれに限定されることではない。   In the embodiment of the present invention, tin sulfide (SnS) is presented as the metal sulfide-based material, but the applicable metal sulfide-based material is not limited thereto.

本発明によるナノ構造体は、それ自体が薄肉の広い面積を有する形状を示す。これは電界放出走査電子顕微鏡(Field Emission Scanning Electron Microscope、FESEM)と高分解透過電子顕微鏡(High−resolution Transmission Electron Microscopy、HRTEM)などにより観察可能であり、合成された結果の相(phase)の種類と結晶学的構造は、X線回折パターン(X−ray Difffraction Patterns、XRD)を用いて確認できる。   The nanostructure according to the present invention exhibits a shape having a thin and wide area. This can be observed with a field emission scanning electron microscope (FESEM), a high-resolution transmission electron microscope (FTEM), and a type of phase (synthesized ph). The crystallographic structure can be confirmed using an X-ray diffraction pattern (XRD).

以下、添付した図面を参照して本発明の好ましい実施例を詳細に説明する。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明による実施例は、パルスレーザー蒸着法を用いて錫硫化物の凝集体(target)を周期性を有するレーザーで剥離して高温の金属基板上に2次元の錫硫化物ナノ構造体として成長させる。   According to an embodiment of the present invention, a two-dimensional tin sulfide nanostructure is grown on a high-temperature metal substrate by exfoliating a tin sulfide target with a periodic laser using a pulsed laser deposition method. Let

錫硫化物ナノ構造体の合成方法は、大きく液相法、固相法、気相法に分けられる。   Methods for synthesizing tin sulfide nanostructures can be broadly divided into liquid phase methods, solid phase methods, and gas phase methods.

上記液相法は、低温で結晶質が得られ、均一で小さい大きさの粒子が得られるという長所があるが、合成手続が複雑で、粒子の結晶性が低いという短所がある。   The liquid phase method has the advantages that a crystalline material is obtained at a low temperature and uniform and small-sized particles can be obtained, but the synthesis procedure is complicated and the crystallinity of the particles is low.

また、上記固相法は、経済的な面で有利であるが、粒度の大きさが不均一で、粒度が大きいという欠陥がある。   The solid phase method is advantageous from an economical viewpoint, but has a defect that the particle size is not uniform and the particle size is large.

反面、上記気相法は、生成物質の結晶性が非常に高く、大量生産が容易であるという長所がある。   On the other hand, the gas phase method has the advantage that the crystallinity of the product is very high and mass production is easy.

このような気相法は、大きく化学気相蒸着法と物理気相蒸着法に分けられるが、電気化学気相蒸着法は、工程変数が複雑で、気体使用による安全性問題があるが、物理気相蒸着法は、相対的に工程変数が少なく、工程手続が簡単で、比較的安全である。   Such a vapor phase method is roughly divided into a chemical vapor deposition method and a physical vapor deposition method, but the electrochemical vapor deposition method has complicated process variables and has a safety problem due to the use of gas. The vapor deposition method has relatively few process variables, simple process procedures, and is relatively safe.

上記物理気相蒸着法の中、パルスレーザー蒸着法は2元(binary)化合物または3元(ternary)化合物などのように複雑な組成比を有する材料の組成比を維持しながらも、薄膜またはナノ構造体形態に製造できるという長所がある。   Among the physical vapor deposition methods, the pulsed laser deposition method is a thin film or nano-structure while maintaining a composition ratio of a material having a complicated composition ratio such as a binary compound or a ternary compound. There is an advantage that it can be manufactured in a structure form.

本発明で使用するパルスレーザー蒸着法は、SnSパウダーを円柱状の凝集体として製造して高温で熱処理し、これを剥離して所望するナノ構造体を製造するが、凝集体を製造するために用いられたSnSパウダーは、暗い灰色で、形状はFESEM写真により観察可能である。   In the pulse laser deposition method used in the present invention, SnS powder is manufactured as a cylindrical aggregate, heat-treated at a high temperature, and peeled to manufacture a desired nanostructure. The SnS powder used is dark gray and the shape can be observed by FESEM photographs.

図1は、凝集体を製造するために使用するSnSパウダーの電界放出走査電子顕微鏡写真であり、図2は、パルスレーザー蒸着のための工程装備の模式図である。   FIG. 1 is a field emission scanning electron micrograph of SnS powder used to produce an aggregate, and FIG. 2 is a schematic diagram of process equipment for pulsed laser deposition.

図1によれば、SnSパウダーは特定方向に向けて弱い結合力を帯びる層状構造を有する。   According to FIG. 1, the SnS powder has a layered structure with a weak binding force toward a specific direction.

本発明でパルスレーザー蒸着のために使用する装備の模式図は図2に示す。   A schematic diagram of the equipment used for pulsed laser deposition in the present invention is shown in FIG.

図2に示すように、電気炉内に挿入された石英チューブ内部にSnS凝集体とSUS(ステンレススチール)基板を位置させた後、高エネルギのパルスレーザーをレンズでフォーカシングしてSnS凝集体を剥離し、基板上に蒸着する。ここで、SnS凝集体を剥離する時の温度、圧力、レーザーエネルギ、及び周期、時間、SnS凝集体の高さと位置、SUS基板の位置が全体工程を左右する重要な要素である。   As shown in FIG. 2, after the SnS aggregate and the SUS (stainless steel) substrate are positioned inside the quartz tube inserted in the electric furnace, the high energy pulse laser is focused with a lens to peel off the SnS aggregate. And vapor-deposited on the substrate. Here, the temperature, pressure, laser energy, cycle, time, height and position of the SnS aggregate, and the position of the SUS substrate when peeling the SnS aggregate are important factors that influence the entire process.

本発明による自己支持形SnS2次元ナノ構造体の負極活物質を製造するために使用するパルスレーザー蒸着工程は、図3に概略的に示されており、図3に基づいた具体的な実施方法は下記の通りである。   The pulse laser deposition process used to manufacture the negative electrode active material of the self-supporting SnS two-dimensional nanostructure according to the present invention is schematically illustrated in FIG. 3, and a specific implementation method based on FIG. It is as follows.

先ず、SnSパウダーを秤量して一定量を円柱モールド(mold)に入れた後、一軸(uniaxial)圧力を加えて凝集体形態(仮凝集体)に製造する。電気炉内の石英チューブ中に仮凝集体を挿入装着した後、水素気体を加えながら、上記電気炉の温度を580〜600℃まで上げて3〜5時間熱処理をする。   First, SnS powder is weighed and a certain amount is put into a cylindrical mold (mold), and then uniaxial pressure is applied to produce an aggregate form (temporary aggregate). After the temporary agglomerates are inserted and mounted in the quartz tube in the electric furnace, the temperature of the electric furnace is increased to 580 to 600 ° C. while adding hydrogen gas, and heat treatment is performed for 3 to 5 hours.

上記温度が580〜600℃未満であれば、SnS凝集体内のパウダー間の物理的結合(SnS凝集体の強度)が不十分で、レーザー剥離を効果的に行うことができなく、この範囲を超えると、SnS凝集体が酸化して黄色に変化するとともに容易に砕けるため、580〜600℃の範囲を維持することが良い。   If the said temperature is less than 580-600 degreeC, the physical coupling | bonding (the intensity | strength of SnS aggregate) between the powder in SnS aggregate is inadequate, and laser peeling cannot be performed effectively, and exceeds this range. Then, since the SnS aggregate is oxidized to change to yellow and easily broken, it is preferable to maintain a range of 580 to 600 ° C.

また、上記熱処理時間は約3時間程度が好ましい。   The heat treatment time is preferably about 3 hours.

上述したように製造されたSnS凝集体を、図2に示すようにパルスレーザー蒸着用電気炉の中心に位置させ、フォーカシングされたレーザーが正確に剥離するようにSnS凝集体の高さ(石英チューブの内壁面から2.0〜2.5cm上に位置する)及び大きさを調節することが重要である。次に、触媒がコーティングされていないSUS基板をディスク状に加工してSnS凝集体の近くに位置させ、SUS基板の位置に応じて合成物の形状が変わるため、所望する形状が得られるように位置(SnS凝集体との距離)を調節することが好ましい。   As shown in FIG. 2, the SnS aggregate produced as described above is positioned at the center of the electric furnace for pulsed laser deposition, and the height of the SnS aggregate (quartz tube) so that the focused laser can be accurately peeled off. It is important to adjust the size and the size (located 2.0-2.5 cm above the inner wall surface). Next, the SUS substrate not coated with the catalyst is processed into a disk shape and positioned near the SnS aggregate, and the shape of the composite changes depending on the position of the SUS substrate, so that a desired shape can be obtained. It is preferable to adjust the position (distance from the SnS aggregate).

ここで、凝集体の近くの範囲は、凝集体の中心から両側に向けてそれぞれ14〜20cmの区間を意味し、熱電対により温度を測定した時、200〜350℃に該当する区間を意味する。この区間内でSUS基板の位置を変更することにより、ナノシート、ナノプレート、薄膜など様々な構造体が得られるため、適切な位置を定めることが重要である。   Here, the range near the aggregate means a section of 14 to 20 cm from the center of the aggregate toward both sides, and means a section corresponding to 200 to 350 ° C. when the temperature is measured by a thermocouple. . By changing the position of the SUS substrate within this section, various structures such as nanosheets, nanoplates, and thin films can be obtained. Therefore, it is important to determine an appropriate position.

次に、ロータリーポンプを用いて石英チューブ内の圧力を0.01〜0.03Torrの真空状態に下げ、電気炉の温度を590〜610℃範囲まで上げる。上記温度範囲がこの範囲まで上昇しない場合は、SnS凝集体が容易に剥離せず、SUS基板上に到達するSnS粒子の量が不充分であり、この範囲を超えると、凝集体が酸化して黄色に変化し、容易に砕けるため、この範囲を維持することが好ましい。   Next, the pressure in the quartz tube is lowered to a vacuum state of 0.01 to 0.03 Torr using a rotary pump, and the temperature of the electric furnace is raised to a range of 590 to 610 ° C. When the above temperature range does not rise to this range, the SnS aggregates do not easily peel off, and the amount of SnS particles reaching the SUS substrate is insufficient. If this range is exceeded, the aggregates are oxidized. This range is preferably maintained because it turns yellow and breaks easily.

次に、温度と圧力を上記範囲に維持した状態で、KrFエキシマレーザー(波長:248nm)をエネルギ密度0.8〜1J/cmに設定した後、上記石英チューブ内にパルスレーザーを注入してSnS凝集体を1秒当たり3〜5回の速度で25〜35分間剥離する。 Next, with the temperature and pressure maintained in the above ranges, a KrF excimer laser (wavelength: 248 nm) was set to an energy density of 0.8-1 J / cm 2 , and then a pulse laser was injected into the quartz tube. The SnS aggregate is stripped at a rate of 3-5 times per second for 25-35 minutes.

上記1秒当たり剥離速度が3〜5回未満であれば、SUS基板に単位時間内に到達するSnS粒子の量が少なくてナノ構造体の密度が低くなり、この範囲を超えると、到達するSnS粒子の量が多すぎてナノ構造体の代わりに薄膜が成長するため、この範囲を維持することが好ましい。   If the peeling rate per second is less than 3 to 5 times, the amount of SnS particles that reach the SUS substrate within a unit time is small, and the density of the nanostructures is reduced. This range is preferably maintained because the amount of particles is too large and a thin film grows in place of the nanostructure.

また、上記剥離時間も25〜35分の範囲でなければ、ナノ構造体の密度が低くなるか、薄膜が成長するため、この時間を維持することが良い。好ましくは、上記剥離時間は30分程度が適当である。   Further, if the peeling time is not in the range of 25 to 35 minutes, the density of the nanostructures is reduced or the thin film grows, so this time is preferably maintained. Preferably, the peeling time is about 30 minutes.

レーザー剥離が終わると、上記石英チューブ内の圧力範囲(0.01〜0.03Torr)を維持したまま電気炉の温度を下げて工程を完了する。   When the laser peeling is finished, the temperature of the electric furnace is lowered while maintaining the pressure range (0.01 to 0.03 Torr) in the quartz tube to complete the process.

上述したように、本発明で提示した方法によれば、一回の工程により単にSUS基板の位置を変更することにより、ナノシート、ナノプレート、薄膜など様々な形状を同時に製造でき、これはFESEM観察により確認できる。   As described above, according to the method presented in the present invention, various shapes such as nanosheets, nanoplates, and thin films can be simultaneously manufactured by simply changing the position of the SUS substrate in a single process, which is observed by FESEM observation. Can be confirmed.

図4の(a)、(b)、(c)、(d)には、SUS基板とSnS凝集体との距離によるSnS合成物の形状変化を示す。図4の(d)から(a)になるほど、SUS基板がSnS凝集体から離れて合成温度が低くなり、これによってSnS合成物は薄膜、厚いナノプレート、薄いナノプレート、ナノシートに順次変化して形成されることが分かる。特に、図4の(a)のナノシートは、10〜15nmという非常に薄い厚さで製造されたもので、図4の(e)に示すように、2×2cmの大面積にかけて合成することができる。以下では図4の(a)のSnSナノシートの形状について説明する。 4A, 4B, 4C, and 4D show changes in the shape of the SnS composite depending on the distance between the SUS substrate and the SnS aggregate. As (d) to (a) in FIG. 4, the SUS substrate is separated from the SnS aggregate and the synthesis temperature is lowered. As a result, the SnS composite is sequentially changed into a thin film, a thick nanoplate, a thin nanoplate, and a nanosheet. It can be seen that it is formed. In particular, the nanosheet of FIG. 4A is manufactured with a very thin thickness of 10 to 15 nm, and is synthesized over a large area of 2 × 2 cm 2 as shown in FIG. Can do. Hereinafter, the shape of the SnS nanosheet of FIG. 4A will be described.

図5は、本発明で製造した自己支持形SnSナノシートのX−ray回折パターンを示す図面であり、図6は、本発明で製造したSnSナノシートの高倍率及び低倍率の透過電子顕微鏡写真である。   FIG. 5 is a drawing showing an X-ray diffraction pattern of a self-supporting SnS nanosheet produced according to the present invention, and FIG. 6 is a high- and low-magnification transmission electron micrograph of the SnS nanosheet produced according to the present invention. .

上記ナノシートは、SUS基板上に直接成長した純粋なSnSであり、これは図5に示すXRDパターンから確認できる。   The nanosheet is pure SnS grown directly on the SUS substrate, which can be confirmed from the XRD pattern shown in FIG.

本発明で製造したSnSナノシートは結晶質であり、斜方晶系(orthorhombic)の結晶構造を有し、このようなSnSナノシートの具体的な形状はTEMまたはHRTEM観察により詳しく観察することができる。   The SnS nanosheet produced in the present invention is crystalline and has an orthorhombic crystal structure, and the specific shape of such a SnS nanosheet can be observed in detail by TEM or HRTEM observation.

図6の(a)に示すTEM写真によれば、SnSナノシートは、2つの方向に広く延びており、一点で直角形態をなす。また、図6の(b)に示すHRTEM観察から分かるように、ナノシートは単結晶状であり、<101>グループ方向に成長する。   According to the TEM photograph shown in FIG. 6A, the SnS nanosheet extends widely in two directions, and forms a right angle at one point. Further, as can be seen from the HRTEM observation shown in FIG. 6B, the nanosheet is single crystal and grows in the <101> group direction.

一方、このような自己支持形SnS2次元ナノ構造体を、当該分野ではエネルギ素子、より詳しくは、リチウムイオン2次電池、太陽電池などに使用することができる。   On the other hand, such a self-supporting SnS two-dimensional nanostructure can be used in an energy device, more specifically, a lithium ion secondary battery, a solar battery, or the like in this field.

したがって、本発明は、上記自己支持形SnS2次元ナノ構造体の中、特にナノシートのリチウム2次電池の負極活物質としての可能性を判断するために、2次電池用電極を別途製作して半電池(half−cell)を構成し、電気化学的特性を評価することができる。   Therefore, in order to determine the possibility of the nanosheet as a negative electrode active material of the lithium secondary battery, in particular, the self-supporting SnS two-dimensional nanostructure is manufactured by separately manufacturing a secondary battery electrode. A battery (half-cell) can be constructed and its electrochemical properties can be evaluated.

通常、リチウムイオン2次電池は、負極活物質の原子1個当たり反応できるリチウムイオンの個数が多いほど、活物質間の接触抵抗が最小化されるほど、充放電時の体積膨張が抑制されるほど、活物質と電解質間の接触界面が広いほど、優れた電気化学的な性能が得られる。   In general, in a lithium ion secondary battery, the volume expansion during charging / discharging is suppressed as the number of lithium ions that can be reacted per atom of the negative electrode active material is increased and the contact resistance between the active materials is minimized. The wider the contact interface between the active material and the electrolyte, the better the electrochemical performance.

先ず、本発明による自己支持形ナノシート電極を正極、リチウム金属を負極にして2つの電極の間に電解質と分離膜(separator)を入れて半電池をグローブボックス内で完成する。   First, a self-supporting nanosheet electrode according to the present invention is used as a positive electrode and lithium metal is used as a negative electrode, and an electrolyte and a separator are placed between the two electrodes to complete a half-cell in a glove box.

そして、サイクル特性を測定するために、0.01〜1.3Vの電圧区間で1Cの電流密度を加えて100サイクル間の充放電反応を行う。   Then, in order to measure the cycle characteristics, a current density of 1 C is applied in a voltage interval of 0.01 to 1.3 V, and a charge / discharge reaction is performed for 100 cycles.

また、出力特性を評価するために、上記電圧領域で多様な電流密度(例えば1C、3C、5C、10C、20C、40C、80C)を加えて各電流密度当たり10サイクルの充放電反応を行う。各電流密度に該当する電流量はSnSナノシート活物質の純粋量を測定することにより計算でき、活物質の純粋量はナノシートが合成される前のSUS基板の重さと、合成された後の基板の重さを定量して両者の差を求めて決定する。   In addition, in order to evaluate the output characteristics, various current densities (for example, 1C, 3C, 5C, 10C, 20C, 40C, and 80C) are added in the voltage range, and 10 cycles of charge / discharge reactions are performed for each current density. The amount of current corresponding to each current density can be calculated by measuring the pure amount of the SnS nanosheet active material, and the pure amount of the active material is determined by the weight of the SUS substrate before the nanosheet is synthesized and the substrate after the synthesis. The weight is quantified to determine the difference between the two.

そして、自己支持形SnSナノシート負極活物質の相対的な性能を評価するために、SnS薄膜とSnSパウダーの電気化学的特性を測定する。   Then, in order to evaluate the relative performance of the self-supporting SnS nanosheet negative electrode active material, the electrochemical characteristics of the SnS thin film and the SnS powder are measured.

SnS薄膜の場合、上記自己支持形SnSナノシートと同様にそれ自体を電極として使用でき、SnSパウダーは後述するような製造方式により電極として製造される。   In the case of a SnS thin film, it can be used as an electrode as in the case of the self-supporting SnS nanosheet, and SnS powder is produced as an electrode by a production method as described later.

先ず、SnSパウダー、導電剤(conductive additive)、結合剤(binder)を定量して不活性有機溶媒に溶かし、機械的混合と超音波処理により3つの物質を均一に混合する。次に、スラリー状の上記混合物を銅集電体上に薄く塗布して電極製造を完成する。   First, SnS powder, conductive additive, and binder are quantified and dissolved in an inert organic solvent, and the three substances are uniformly mixed by mechanical mixing and ultrasonic treatment. Next, the slurry-like mixture is thinly applied onto the copper current collector to complete electrode production.

以下、本発明を下記の実施例により具体的に説明し、本発明が次の実施例により限定されることはない。   Hereinafter, the present invention will be specifically described with reference to the following examples, and the present invention is not limited to the following examples.

<実施例1>
ツヤのある暗い灰色のSnSパウダー2gを秤量して直径1cmの円柱状モールドに均一に注入した後、600psiの圧力で一軸成形して凝集体を製造した。
<Example 1>
2 g of glossy dark gray SnS powder was weighed and uniformly injected into a cylindrical mold having a diameter of 1 cm, and then uniaxially molded at a pressure of 600 psi to produce an aggregate.

この凝集体を電気炉の内部に挿入された石英チューブ中に位置させた後、水素気体100sccmを加え、同時に1分当り3℃の速度で温度を580℃まで上げて3時間熱処理した。   The aggregate was placed in a quartz tube inserted in the electric furnace, and then hydrogen gas (100 sccm) was added, and at the same time, the temperature was increased to 580 ° C. at a rate of 3 ° C. per minute and heat treated for 3 hours.

熱処理の完了後、1分当り3℃の速度で常温まで温度を下げて凝集体の製造を完了した。   After the heat treatment was completed, the temperature was lowered to room temperature at a rate of 3 ° C. per minute to complete the production of the aggregate.

<実施例2>
パルスレーザー蒸着前にレーザーのフォーカシング作業が必要であるため、レーザーが注入される部分に焦点距離(focal length)50cmの焦点レンズを位置させた。レーザーが適切な大きさでフォーカシングされたか否かを印画紙により確認し、パルスレーザー蒸着用電気炉の内部に直径28cm、長さ80cmの石英チューブを挿入した。
<Example 2>
Since a laser focusing operation is necessary before pulsed laser deposition, a focal lens with a focal length of 50 cm was positioned at the portion where the laser was injected. Whether or not the laser was focused at an appropriate size was confirmed by photographic paper, and a quartz tube having a diameter of 28 cm and a length of 80 cm was inserted into the electric furnace for pulse laser deposition.

次に、石英チューブ内で焦点レンズから50cm離れて位置した部分に上記実施例1で製造したSnS凝集体を位置させ、フォーカシングされたレーザーがSnS凝集体を効果的に剥離するように凝集体の高さを適正に調節した。   Next, the SnS aggregate produced in Example 1 is positioned in a portion located 50 cm away from the focal lens in the quartz tube, and the aggregated laser is effectively peeled off by the focused laser. The height was adjusted appropriately.

この時、高さの調節は、アルミナボート(alumina boat)とアルミナ板(alumina plate)を用いて調節し、フォーカシングされたレーザーの中心が凝集体の中心に正確に到達するようにした。   At this time, the height was adjusted using an alumina boat and an alumina plate so that the center of the focused laser reached the center of the aggregate accurately.

次に、触媒がコーティングされていないSUS基板を直径1cmのディスク状に製作し、上記SnS凝集体の右側から20cm離れた部分に位置させた。   Next, a SUS substrate not coated with a catalyst was manufactured in a disk shape having a diameter of 1 cm, and was placed in a portion 20 cm away from the right side of the SnS aggregate.

次に、ロータリーポンプを用いて石英チューブ内の圧力を0.02Torrの真空状態にして1分当り20℃の速度で590℃まで昇温した。   Next, the pressure in the quartz tube was set to a vacuum state of 0.02 Torr using a rotary pump, and the temperature was raised to 590 ° C. at a rate of 20 ° C. per minute.

そして、上記590℃の温度と0.02Torrの圧力下でフォーカシングされたレーザーのエネルギ密度が0.9J/cmになるように設定し、SnS凝集体を1秒当たり3回の速度で30分間剥離した。 Then, the energy density of the laser focused at a temperature of 590 ° C. and a pressure of 0.02 Torr was set to 0.9 J / cm 2 , and SnS aggregates were applied at a rate of 3 times per second for 30 minutes. It peeled.

レーザー剥離が終わった後、上記0.02Torrの圧力状態で1分当り3℃の速度で電気炉の温度を下げてSnS2次元ナノシートを製造した。   After the laser peeling, SnS two-dimensional nanosheets were manufactured by lowering the temperature of the electric furnace at a rate of 3 ° C. per minute under the pressure of 0.02 Torr.

<実験例1>
上記実施例1〜2により製造された自己支持形SnS2次元ナノシートの2次電池用負極活物質としての電気化学的特性を評価し、その特性を薄膜及びパウダー電極と比較するために下記のように半電池を製造した。
<Experimental example 1>
In order to evaluate the electrochemical characteristics of the self-supporting SnS two-dimensional nanosheets manufactured according to Examples 1 and 2 as the negative electrode active material for a secondary battery and compare the characteristics with the thin film and the powder electrode as follows: A half-cell was manufactured.

(a)電極の製造
上記実施例1〜2により製造されたSnSナノシートと、その対照群であるSnS薄膜はそれ自体を電極として使用した。
(A) Manufacture of electrode The SnS nanosheet manufactured by the said Examples 1-2 and the SnS thin film which is the control group itself were used as an electrode.

他の対照群としてSnSパウダー電極は、パウダー2mg、導電剤である黒鉛(MMM、Carbon)、結合剤であるKynar2801(PVdF−HFP)の質量比が67:20:13となるように秤量し、不活性の有機溶媒であるN−メチル−ピロリドン(NMP)に溶解させてスラリーを得た。上記スラリーを集電体である銅ホイルに塗布して100℃の真空オーブンで4時間乾燥し、有機溶媒を揮発させた後、プレス(pressing)をかけてディスク状にパンチングした。   As another control group, the SnS powder electrode was weighed so that the mass ratio of powder 2 mg, graphite (MMM, Carbon) as a conductive agent, and Kynar 2801 (PVdF-HFP) as a binder was 67:20:13, A slurry was obtained by dissolving in N-methyl-pyrrolidone (NMP), which is an inert organic solvent. The slurry was applied to a copper foil as a current collector and dried in a vacuum oven at 100 ° C. for 4 hours to volatilize the organic solvent, and then pressed into a disk shape by pressing.

(b)電気化学的な特性評価のための半電池の製作及び測定
自己支持形SnS2次元ナノシートの電気化学的特性を測定するために、リチウム金属を負極とし、上記(a)で製造した電極を正極とした。この2つの間に電解質と分離膜(Celgard2400)を入れてスウェージロック(Swagelok)型の半電池を構成した。この時、エチレンカーボネイト(EC)とジメチルカーボネイト(DMC)が体積比1:1で混ぜられた溶液に、LiPFが溶解された物質を電解質として使用した。上記製造過程は、不活性気体であるアルゴンで充填されているグローブボックス(glove box)の中で行った。
(B) Production and measurement of half-cell for electrochemical property evaluation In order to measure the electrochemical properties of the self-supporting SnS two-dimensional nanosheet, the electrode produced in (a) above was used with lithium metal as the negative electrode. A positive electrode was obtained. An electrolyte and a separation membrane (Celgard 2400) were inserted between the two to form a Swagelok type half-cell. At this time, a substance in which LiPF 6 was dissolved in a solution in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 1 was used as an electrolyte. The manufacturing process was performed in a glove box filled with argon, an inert gas.

上記製造したスウェージロック型の半電池は、定電流方式(galvanostatic mode)の充放電サイクラー(WBCS3000、WonA Tech.、韓国)を利用して0.01〜1.30V電圧で1C電流密度を加えて100サイクル充放電した。   The manufactured Swagelok type half-cell is manufactured by adding a 1C current density at a voltage of 0.01 to 1.30V using a charge / discharge cycler (WBCS3000, WonA Tech., Korea) of a galvanostatic mode. Cycle charge / discharge.

また、同じ電圧で電流密度を1C、3C、5C、10C、20C、40C、80Cに変え、各電流密度当たり10サイクルの充放電テストを行った。   Moreover, the current density was changed to 1C, 3C, 5C, 10C, 20C, 40C, and 80C at the same voltage, and a charge / discharge test of 10 cycles was performed for each current density.

そして、測定から得られた容量による電圧推移曲線を分析して電気化学的特性を評価した。この時、加えた電流量は、SnSの理論容量と活物質の実際の重さから逆換算されたものである。   And the voltage transition curve by the capacity | capacitance obtained from the measurement was analyzed, and the electrochemical characteristic was evaluated. At this time, the applied current amount is inversely converted from the theoretical capacity of SnS and the actual weight of the active material.

1Cの電流密度を加えた時、自己支持形SnSナノシート、薄膜、パウダー電極のサイクル回数による容量変化を図7のグラフに示す。   The graph of FIG. 7 shows the change in capacity depending on the number of cycles of the self-supporting SnS nanosheet, the thin film, and the powder electrode when a current density of 1 C is applied.

これによれば、自己支持形SnSナノシート負極活物質は、薄膜やパウダー電極よりも高容量であって、サイクル特性が非常に優れている。   According to this, the self-supporting SnS nanosheet negative electrode active material has a higher capacity than a thin film or a powder electrode, and has extremely excellent cycle characteristics.

また、上記3つの電極間の出力特性を比較した電流密度の変化による容量変化を図8のグラフに示す。   Further, the graph of FIG. 8 shows the change in capacitance due to the change in current density, comparing the output characteristics between the three electrodes.

図8によれば、自己支持形SnSナノシート電極は、他の2つの電極に比べて全ての電流密度で優れた容量特性を示す。これは自己支持形SnSナノシート活物質が集電体(SUS基板)に直接接触して電子が効果的に伝達され、2次元構造体であるため、粒子間の接触抵抗が最小化されたからである。   According to FIG. 8, the self-supporting SnS nanosheet electrode exhibits superior capacity characteristics at all current densities compared to the other two electrodes. This is because the self-supporting SnS nanosheet active material is in direct contact with the current collector (SUS substrate) and the electrons are effectively transmitted to form a two-dimensional structure, so that the contact resistance between particles is minimized. .

次の表1には、上記実施例1〜2により合成された自己支持形SnSナノシート、薄膜、パウダー活物質の1C電流密度下で測定した第1及び第50放電容量を示し、表2は各電極の1C、3C、5C、10C、20C、40C、80Cの電流密度における放電容量を示す。   The following Table 1 shows the first and 50th discharge capacities of the self-supporting SnS nanosheets synthesized according to Examples 1 and 2 measured at 1 C current density of the thin film and the powder active material. The discharge capacity in the current density of 1C, 3C, 5C, 10C, 20C, 40C, 80C of the electrode is shown.

上記図7、図8、及び表1、表2によれば、自己支持形SnS2次元ナノシートがSnS薄膜やSnSパウダーよりも非常に優れた容量、出力、サイクル特性を発現することが分かり、これは電極と電解質間の広い接触面積、電子/リチウムイオンの短い拡散距離、体積膨張の効果的緩和、集電体と活物質間の円滑な電子移動、粒子間の接触抵抗を最小化することによる。   According to FIGS. 7 and 8 and Tables 1 and 2, it can be seen that the self-supporting SnS two-dimensional nanosheet expresses much better capacity, output and cycle characteristics than SnS thin film and SnS powder. By minimizing the wide contact area between the electrode and electrolyte, the short diffusion distance of electrons / lithium ions, the effective relaxation of volume expansion, the smooth electron transfer between the current collector and the active material, and the contact resistance between particles.

本発明により製造された電極は、導電剤(conductive additive)と結合剤(mechanical binder)なしに負極活物質と金属集電体が直接接触した自己支持形(self−supported)電極であって、電気的孤立現象と負極活物質間の接触抵抗が最小化され、集電体と活物質間に効果的な電子伝達が可能であるため、安定したサイクル特性と優れた出力特性を示す。   The electrode manufactured according to the present invention is a self-supported electrode in which a negative electrode active material and a metal current collector are in direct contact without a conductive additive and a mechanical binder, The isolated resistance and contact resistance between the negative electrode active material are minimized, and effective electron transfer is possible between the current collector and the active material, so that stable cycle characteristics and excellent output characteristics are exhibited.

また、パルスレーザー蒸着法(pulsed laser deposition)により、本発明は、単純な合成過程により多様な幾何学的形状を有する2次元ナノ構造体を低温で製造でき、広い面積の無触媒金属基板上に均一に合成することができる。   In addition, by the pulsed laser deposition method, the present invention can produce two-dimensional nanostructures having various geometric shapes at a low temperature by a simple synthesis process, on a large area non-catalytic metal substrate. It can be synthesized uniformly.

Claims (2)

金属硫化物系物質からなる凝集体が剥離され、金属基板上に金属硫化物系2次元ナノ構造体として直接成長する
ことを特徴とする自己支持形金属硫化物系2次元ナノ構造体の負極活物質。
Aggregates composed of metal sulfide-based materials are peeled off and grown directly on the metal substrate as metal sulfide-based two-dimensional nanostructures. The negative electrode activity of self-supporting metal sulfide-based two-dimensional nanostructures material.
金属硫化物系物質からなる凝集体を製造するステップと、
前記凝集体をパルスレーザー蒸着用電気炉内のチューブに挿入装着するステップと、
前記チューブ内に金属基板を挿入し、前記凝集体から離れて位置させるステップと、
前記チューブ内の圧力を0.01〜0.03Torrの真空状態に下げ、前記電気炉の温度を590〜610℃に上げるステップと、
前記チューブ内にパルスレーザーを注入して前記凝集体を剥離するステップと、
を含み、
金属硫化物系物質を前記金属基板上に2次元ナノ構造体として直接成長させる
ことを特徴とする自己支持形金属硫化物系2次元ナノ構造体の負極活物質の製造方法。
Producing an agglomerate comprising a metal sulfide-based material;
Inserting and attaching the agglomerates to a tube in an electric furnace for pulsed laser deposition;
Inserting a metal substrate into the tube and positioning it away from the aggregate;
Lowering the pressure in the tube to a vacuum of 0.01 to 0.03 Torr and raising the temperature of the electric furnace to 590 to 610 ° C .;
Injecting a pulsed laser into the tube to separate the aggregates;
Including
A method for producing a negative electrode active material of a self-supporting metal sulfide-based two-dimensional nanostructure, wherein the metal sulfide-based material is directly grown on the metal substrate as a two-dimensional nanostructure.
JP2013161749A 2009-12-30 2013-08-02 Negative electrode active material of self-supporting metal sulfide-based two-dimensional nanostructure and production method therefor Pending JP2013232436A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0134988 2009-12-30
KR1020090134988A KR20110078236A (en) 2009-12-30 2009-12-30 Self-supported surfur-based two-dimensional nanostructured anode active materials and the method for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010288125A Division JP5531347B2 (en) 2009-12-30 2010-12-24 Self-supporting metal sulfide-based two-dimensional nanostructure negative electrode active material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2013232436A true JP2013232436A (en) 2013-11-14

Family

ID=44349962

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010288125A Expired - Fee Related JP5531347B2 (en) 2009-12-30 2010-12-24 Self-supporting metal sulfide-based two-dimensional nanostructure negative electrode active material and method for producing the same
JP2013161749A Pending JP2013232436A (en) 2009-12-30 2013-08-02 Negative electrode active material of self-supporting metal sulfide-based two-dimensional nanostructure and production method therefor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010288125A Expired - Fee Related JP5531347B2 (en) 2009-12-30 2010-12-24 Self-supporting metal sulfide-based two-dimensional nanostructure negative electrode active material and method for producing the same

Country Status (2)

Country Link
JP (2) JP5531347B2 (en)
KR (1) KR20110078236A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6063320B2 (en) * 2012-09-21 2017-01-18 積水化学工業株式会社 Method for producing sulfide semiconductor fine particles
CN105200388B (en) * 2015-08-18 2018-02-27 中山大学 The selenizing vulcanization plant and method of a kind of Cu-In-Ga-Se-S thin film
CN111490149A (en) * 2020-04-20 2020-08-04 自贡朗星达科技有限公司 P-type layered structure compound TiTe2Preparation and performance optimization method
CN114477270B (en) * 2022-02-21 2023-10-27 福建师范大学 Method for growing ultrathin stannous sulfide nanosheets by sulfur passivation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083933A (en) * 2002-08-22 2004-03-18 Japan Science & Technology Corp Crystalline sulfide thin film and its manufacturing method
JP2005259637A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Negative electrode for secondary battery, its manufacturing method, and secondary battery using it
JP2008138228A (en) * 2006-11-30 2008-06-19 Kuraray Luminas Co Ltd Method for producing sputtering target
JP2008287900A (en) * 2007-05-15 2008-11-27 Osaka Univ Photoelectric transfer element and manufacturing method therefor, and solar cell using the element
KR100934956B1 (en) * 2007-09-13 2010-01-06 한국과학기술연구원 Photovoltaic Driven Secondary Battery System
JP2009134917A (en) * 2007-11-29 2009-06-18 Panasonic Corp Electrode plate for nonaqueous secondary batteries, and nonaqueous secondary battery using the same
KR100946701B1 (en) * 2007-12-10 2010-03-12 한국전자통신연구원 Nano-crystalline Composite Oxides Thin Films, Enviromental Gas Sensors Using the Film and Method for Preparing the Sensors

Also Published As

Publication number Publication date
JP5531347B2 (en) 2014-06-25
JP2011138769A (en) 2011-07-14
KR20110078236A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
US20220209219A1 (en) Electrodes and lithium ion cells with high capacity anode materials
US20220246902A1 (en) Silicon oxide based high capacity anode materials for lithium ion batteries
Dong et al. Metallurgy inspired formation of homogeneous Al2O3 coating layer to improve the electrochemical properties of LiNi0. 8Co0. 1Mn0. 1O2 cathode material
JP4971387B2 (en) Transition metal oxide / multi-wall carbon nanotube nanocomposite and method for producing the same
JP6448057B2 (en) Porous silicon-based negative electrode active material, manufacturing method thereof, and lithium secondary battery including the same
KR101573423B1 (en) Porous silicon based negative electrode active material, method for manufacturing the same, and rechargeable lithium battery including the same
KR100830612B1 (en) Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
TWI627785B (en) Anode active material for lithium secondary battery and method of preparing the same
US7465519B2 (en) Lithium-ion battery incorporating carbon nanostructure materials
KR20130079109A (en) Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
WO2010035919A1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery comprising the same
KR100994269B1 (en) New calcium-cobalt oxide anode materials and method for manufacturing the same
JP5531347B2 (en) Self-supporting metal sulfide-based two-dimensional nanostructure negative electrode active material and method for producing the same
JP2010510625A (en) Electrode active material for non-aqueous secondary battery
Coban Metal Oxide (SnO2) Modified LiNi0. 8Co0. 2O2 Cathode Material for Lithium ION Batteries
Pang et al. 3D hierarchical porous NiO nanoflowers as an advanced anode material with remarkable lithium storage performance
Wang et al. Metal oxides in batteries
KR101106261B1 (en) Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
KR100968583B1 (en) Electrochemical cell
JP5608856B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
Kumar et al. Nanostructured Materials for Li-Ion Battery Applications
KR101821880B1 (en) Preparing method of porous Ge/Carbon composites using glucose
KR101638866B1 (en) Negative electrode active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same
JP2022117978A (en) Positive electrode, lithium battery adopting the same, and manufacturing method of the same
Addu Facile fabrication of mesostructured Zn 2 SnO 4 based anode materials for reversible lithium ion storage